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Abstract

The inclusive production of the ψ(2S) charmonium state was studied as a function of centrality
in p-Pb collisions at the nucleon-nucleon center of mass energy √sNN = 5.02 TeV at the CERN
LHC. The measurement was performed with the ALICE detector in the center of mass rapidity
ranges −4.46 < ycms < −2.96 and 2.03 < ycms < 3.53, down to zero transverse momentum, by
reconstructing the ψ(2S) decay to a muon pair. The ψ(2S) production cross section σψ(2S) is pre-
sented as a function of the collision centrality, which is estimated through the energy deposited in
forward rapidity calorimeters. The relative strength of nuclear effects on the ψ(2S) and on the cor-
responding 1S charmonium state J/ψ is then studied by means of the double ratio of cross sections
[σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp between p-Pb and pp collisions, and by the values of the nuclear
modification factors for the two charmonium states. The results show a large suppression of ψ(2S)
production relative to the J/ψ at backward rapidity, corresponding to the flight direction of the Pb-
nucleus, while at forward rapidity the suppressions of the two states are comparable. Finally, com-
parisons to results from lower energy experiments and to available theoretical models are presented.

∗See Appendix A for the list of collaboration members
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1 Introduction

Charmonia are bound states of a charm and an anticharm quark (cc), and represent an important testing
ground for the properties of the strong interaction. In high-energy proton-proton collisions, the charmo-
nium production process is usually factorized in two steps: the creation of a cc pair via hard gluon fusion
followed, on a longer time scale, by the binding and emission of one or more gluons that brings the pair
to a colour singlet state. This process is described reasonably by theoretical models inspired by Quan-
tum Chromodynamics (QCD) [1], although a quantitative evaluation of the production cross sections and
polarization of the charmonium states still meets difficulties [1, 2].

If a charmonium state is produced within the nuclear medium, as can happen in proton-nucleus collisions,
several effects become important and might influence the charmonium formation. In particular, the
modification in the nucleus of the parton distribution functions, known as nuclear shadowing [3–5], can
lead to a suppression or an enhancement of the charmonium production. Furthermore, the incoming
gluons, as well as the outgoing cc pair, may lose energy in the nuclear medium, altering the differential
distributions of the produced charmonium state [6]. Finally, once the bound state is formed, it may be
dissociated via collisions within nuclear matter [7–9]. However, the formation of the final-state resonance
occurs in a finite time τf which, depending on the kinematics of the cc pair and on the collision energy,
may be longer than its crossing time, τc, in the nucleus.

Among the narrow charmonium states, i.e. those with a mass smaller than twice the mass of the lightest
D mesons, we address in this paper the vector states (JPC = 1−−) J/ψ , characterized by a binding energy
∆E ∼ 650 MeV (corresponding to the mass gap to the open charm threshold), and the weakly bound
ψ(2S), with ∆E ∼ 50 MeV [10]. A comparison of the production cross section of the two states in proton-
nucleus collisions offers interesting insights into the size of the various cold nuclear matter (CNM) effects
outlined above. In particular, shadowing acts on the initial state partons and affects in a very similar way
the production of the two charmonium states. Also the energy loss mechanism was shown to be largely
independent of the final resonance [6]. On the contrary, the break-up probability of the final resonance
inside the nucleus should be much larger for the weakly bound ψ(2S) [11].

Early results on J/ψ and ψ(2S) production in proton-nucleus collisions were obtained at fixed target
experiments by E866 [12] at FNAL (√sNN = 63 GeV), by HERA-B [13] at HERA (√sNN = 39 GeV)
and by NA38, NA50, NA60 [14–16] at the CERN SPS (√sNN = 17− 29 GeV). At mid-rapidity, i.e.,
close to ycms = 0, the relative production cross section σψ(2S)/σJ/ψ was found to decrease rather strongly
for increasing mass number of the nuclear target. Since part of the kinematic domain accessed at fixed
target energies is characterized by τf < τc [9], such an observation can indeed be related to a stronger
break-up effect on the weakly bound ψ(2S).

At collider energies, it becomes technically more difficult to have data samples corresponding to various
nuclear colliding species. Therefore, in order to vary the thickness of CNM crossed by the cc pair,
one can rather select classes of events based on estimators of the geometry (centrality) of the collision,
corresponding to various ranges in the number of nucleon-nucleon collisions Ncoll. This procedure was
followed by the PHENIX experiment at RHIC, which studied the nuclear modification factors, defined
as the ratio between the measured yields in d-Au and proton-proton collisions, normalized to Ncoll, for
the J/ψ and ψ(2S) resonances at mid-rapidity [17]. At √sNN = 200 GeV, the nuclear modification
factors were smaller by a factor ∼ 3 for ψ(2S) relative to J/ψ for central events, indicating a stronger
suppression for ψ(2S). However, such an observation is surprising since for mid-rapidity production at
RHIC energies the time spent by the cc pair in the nucleus (τc < 0.05 fm/c) is below the formation time
of the final-state resonance (most theory estimates [9, 18, 19] give τf > 0.15 fm/c). In such a situation,
one would rather expect a similar suppression for the J/ψ and ψ(2S) states.

At the LHC, centrality-integrated results on the ψ(2S) and J/ψ resonances for p-Pb collisions at √sNN =
5.02 TeV were obtained by ALICE [20,21] and LHCb [22,23]. At both forward and backward rapidities,
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corresponding to the p-going and Pb-going directions respectively, a significantly larger suppression
of ψ(2S) compared to J/ψ was observed, relative to proton-proton collisions. Again, this result was
unexpected, as the τc values are either at most the same order of magnitude (at negative ycms) or more
than two orders of magnitude smaller (at positive ycms) than τf [20].

As outlined above, a differential measurement as a function of the collisions centrality is equivalent to
a study of the propagation of the cc pairs over various thicknesses of CNM. In this Letter, we go in that
direction by showing results obtained by the ALICE Collaboration on ψ(2S) studies in p-Pb collisions as
a function of centrality, estimated through the energy deposited at very forward rapidity by the remnants
of the Pb-nucleus. The corresponding J/ψ studies were published in [24]. In Sect. 2 we give a brief
overview of the experimental apparatus and run conditions. Sect. 3 presents details on the analysis
procedure, while Sect. 4 is dedicated to the results. The conclusions are presented in Sect. 5.

2 Experimental conditions

The analysis presented in this Letter is based on the detection of the ψ(2S) → µ+µ− decay in the
forward muon spectrometer of ALICE, described in detail elsewhere [25, 26]. This detector covers the
pseudorapidity range −4 < ηlab <−2.5 and includes a 3 T· m dipole magnet and five stations of tracking
chambers, the central one being inside the magnet gap. A main absorber (10 interaction lengths thick) is
positioned between the ALICE interaction point and the tracking system, in order to remove hadrons. A
second absorber is placed downstream of the tracking detectors. It removes the remaining hadrons and
low-momentum muons produced predominantly from π and K decays, and is followed by two stations of
trigger chambers that select muon candidates based on their transverse momentum (pT). In addition to the
muon spectrometer, the first two layers of the Inner Tracking System (SPD, i.e., Silicon Pixel Detectors,
the first covering |ηlab| < 2.0 and the second |ηlab| < 1.4) [27] are used for the determination of the
position of the interaction vertex. The two V0 scintillator hodoscopes (covering −3.7 < ηlab <−1.7 and
2.8 < ηlab < 5.1, respectively) are used for triggering purposes [28]. Finally, two sets of Zero-Degree
Calorimeters (ZDC), positioned at 112.5 m on the two sides of the interaction point, each one including
a neutron calorimeter (ZN) and a proton calorimeter (ZP), are used to clean-up the event sample from
interactions occurring out of the nominal bunches and for the centrality estimate [29, 30].

The data-taking conditions were described in [21,31] and are briefly stated here. Two data samples were
taken, corresponding to the p-beam or the Pb-beam going in the direction of the muon spectrometer, and
labelled in the following as p-Pb and Pb-p, respectively. The integrated luminosities were LpPb

int = 5.01±
0.19 nb−1 and LPbp

int = 5.81± 0.20 nb−1 [32]. The events used in this analysis were collected requiring
a coincidence between a minimum bias (MB) trigger condition, defined by the logical AND of signals
on the two V0 hodoscopes (>99% efficiency for non-single diffractive events), and the detection of two
candidate opposite-sign tracks in the trigger system of the muon spectrometer. A pµ

T > 0.5 GeV/c cut on
such tracks was also imposed at the trigger level. The offline event selection, the muon reconstruction and
identification criteria and the kinematic and quality cuts applied at the single-muon and dimuon levels
have already been described in Refs. [20, 21, 24, 33]. In particular, the covered dimuon rapidity ranges
were 2.03 < ycms < 3.53 and −4.46 < ycms <−2.96 for the p-Pb and Pb-p configurations, respectively.

3 Data analysis

In this Section, the evaluation of the various elements that enter the cross section measurements and the
nuclear modification factor calculations are described.

The centrality selection and the determination of Ncoll are based on a hybrid method described in detail
in Ref. [30]. Events are selected according to the energy deposited at very large rapidity in the ZN
positioned in the Pb-going direction, which mainly detects slow neutrons emitted by the Pb-nucleus as
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the result of the interaction. Their emission, according to results obtained in the analysis of lower energy
proton-nucleus experiments, is expected to be monotonically related to Ncoll [34]. A centrality selection
based on the ZN energy is found to be less biased than other centrality estimators, based on the charged
particle multiplicity measurements at central (SPD) or forward (V0) pseudorapidity [30]. The average
number of nucleon-nucleon collisions hNcolli for each ZN-selected centrality class is then obtained by
assuming that the charged particle multiplicity measured at central rapidity is proportional to the number
of participants Npart = Ncoll + 1 [35]. The values of hNcolli, used in this analysis, are reported in Tab. 1,
together with their uncertainties.

ZN centrality class hNcolli
2–20% 11.3 ± 0.6 ± 0.9
20–40% 9.6 ± 0.2 ± 0.8
40–60% 7.1 ± 0.3 ± 0.6
60–80% 4.3 ± 0.3 ± 0.3

80–100% 2.1 ± 0.1 ± 0.2
Table 1: Average numbers of binary nucleon-nucleon collisions, Ncoll, evaluated in the ZN centrality classes used
in this analysis. The first quoted systematic uncertainty is uncorrelated, while the second is global.

The centrality classes used in this analysis correspond to 2–20%, 20–40%, 40–60%, 60–80% and 80–
100% of the measured cross section corresponding to the MB trigger. Very central events (0–2%) are
discarded from the event sample due to a large contamination from pile-up interactions.

The estimate of the ψ(2S) signal is based on fits to the dimuon invariant mass spectra mµµ corresponding
to events in the centrality ranges defined above. Details on the procedure, on the fitting functions and
on the estimate of systematic uncertainties are discussed in [20]. The function used in the fit is the sum
of a continuum background, mainly related to uncorrelated decays from pions and kaons and to semi-
leptonic decays of pairs of hadrons with open heavy flavor, and of resonance shapes corresponding to
the J/ψ and ψ(2S) mesons. The background is parameterized by various empirical shapes, directly fitted
to the data. The resonances are described by either a Crystal Ball function or a pseudo-gaussian with a
mass-dependent width [36]. The main parameters of the J/ψ line shapes, i.e. mass position and width, are
left as free parameters, while the non-gaussian tail parameters are fixed to Monte-Carlo (MC) estimates.
The ψ(2S) line shape parameters, given the less favourable signal over background, are fixed relative to
those of the J/ψ , assuming that the mass difference and the widths scale according to the MC result. The
results of the fits are shown in Fig. 1.

The quality of the fits is good, with χ2/ndf ranging from 0.7 to 1.3. The ψ(2S) signal is visible in all the
centrality bins, and the signal over background ratio increases from central (0.06 for p-Pb and 0.04 for
Pb-p) to peripheral events (0.15 and 0.28, respectively). The number of reconstructed ψ(2S) for the vari-
ous centrality bins, Ni

ψ(2S)→µ+µ− , ranges from 265±73±32 (i= 2–20%) to 100±29±9 (i= 80–100%) in
p-Pb, where the first uncertainty is statistical and the second one is systematic. The corresponding values
for Pb-p are 141± 64± 13 (i= 2–20%) and 65± 20± 7 (i= 80–100%). The systematic uncertainties on
the signal extraction are given by the root mean square of the number of ψ(2S) obtained with various fits
corresponding to different fitting functions for background and signal, and by varying the non-gaussian
tails of the resonance shape, and the ψ(2S) mass resolution values. In p-Pb, the systematic uncertainties
range between 9 and 12% from peripheral to central events (9–20% for Pb-p).

The product of acceptance times efficiency A× ε for the ψ(2S) resonance was calculated with the MC-
based procedure described in Refs. [20, 21]. The values are the same as quoted there for the centrality
integrated production (0.270±0.014 for p-Pb and 0.184±0.013 for Pb-p), since it was verified that the
tracking efficiency does not depend on the centrality of the collision [24]. The quoted errors are the
quadratic sum of the systematic uncertainties on tracking, trigger and matching efficiencies and on the
choice of the ψ(2S) pT and y input shapes used in the MC simulations.
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Fig. 1: Opposite-sign dimuon invariant mass spectra in ZN centrality classes at forward (top) and backward (bot-
tom) rapidities. The fit curves shown in red in the figure correspond to the sum of signal and background shapes,
the former being also shown separately in blue.

The normalization of the ψ(2S) yield was calculated according to the procedure described in Ref. [24].
It is based on the evaluation, for each centrality class, of the number of minimum bias events as Ni

MB =
Fi ·Ni

DIMU, where Ni
DIMU is the number of dimuon-triggered events and Fi is the inverse of the proba-

bility of having a dimuon triggered in a MB event for that class. The Fi-values increase from central to
peripheral events and are 287± 3 and 694± 8 for the 2–20% centrality class in p-Pb and Pb-p respec-
tively. The corresponding values for the 80–100% class are 3291± 36 and 3338± 35. The systematic
uncertainties quoted above (statistical uncertainties are negligible) come from the comparison obtained
with two slightly different approaches in the calculation of Fi, as detailed in [24].

In the evaluation of the systematic uncertainties on Fi, the presence of interaction pile-up was considered.
Pile-up can lead to a bias in the evaluation of the centrality of the collision since, for example, the
superposition of the signals from two peripheral events in the ZN can fake a more central event. The
contribution of pile-up was calculated by detecting events with multiple interaction vertices in the SPD,
and checking via a fast Monte-Carlo that the ZN energy distribution can be reproduced assuming a pile-
up probability corresponding to the observed interaction rate. Events in the 0–2% centrality interval were
rejected, as the pile-up contribution becomes significant (∼30%) in that region. The effect is small but
not negligible in the 2–20% range, where it amounts to 2.1% (2.6%) for p-Pb (Pb-p), and becomes < 1%
going towards more peripheral events.

From the quantities described above, the inclusive cross section for ψ(2S) production in the centrality
bin i, times its branching ratio to dimuons B.R.ψ(2S)→µµ , was calculated with the following expression

B.R.ψ(2S)→µ+µ−σ i,ψ(2S)
pPb =

Ni
ψ(2S)→µ+µ−

(A× ε) ·Ni
MB

×σMB (1)

The ratio NMB/σMB, where NMB is the total number of minimum bias events and σMB is the cross
section for events satisfying the minimum bias trigger condition, gives the integrated luminosity Lint.
The σMB values were evaluated through a van der Meer scan which gives σ pPb

MB = 2.09 ± 0.07 b and
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σPbp
MB = 2.12± 0.07 b [32]. A determination of the luminosity which makes use of a different reference

process, based on the signals released in a Čerenkov counter [26], gives a result compatible within
1% [32]. Therefore, an additional 1% uncertainty is added to the σMB values used in the ψ(2S) cross
section determination.

The comparison of the ψ(2S) and J/ψ production cross sections can be performed by calculating the ratio
B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ . In this way, the uncertainties related to the cross section
normalization and to the reconstruction efficiency cancel out. The J/ψ cross section values that enter this
ratio are those reported in [24], with the value for the centrality interval 2–20% obtained by summing
the 2–10% and 10–20% results. This ratio can be further normalized to the corresponding measurement
in pp collisions. This quantity, called double ratio in the following, gives direct access to modifications
in the ψ(2S) production relative to that of the J/ψ , going from pp to p-Pb collisions. Due to the lack
of precise pp data at

√
s = 5.02 TeV, the results obtained at

√
s = 7 TeV [37] were used instead. This

choice is justified from the fact that the
√
s- and y-dependence of the cross section ratio is known to be

weak in the TeV beam energy range. An 8% systematic uncertainty has been included, corresponding to
the maximum estimated size of the variation of the ratio between the two energies [20].

The estimate of the nuclear modification factors Qi,ψ(2S)
pPb as a function of centrality is performed as the

product of the corresponding Qi,J/ψ
pPb for the J/ψ [24] (except for the 2–20% centrality interval where

Qi,J/ψ
pPb was re-computed by merging the 2–10% and 10–20% bins) and the double ratio between the

ψ(2S) and J/ψ cross sections in p-Pb and pp collisions:

Qi,ψ(2S)
pPb = Qi,J/ψ

pPb ·
σ i,ψ(2S)

pPb

σ i,J/ψ
pPb

·
σ J/ψ

pp

σψ(2S)
pp

(2)

The uncertainties are obtained combining those on Qi,J/ψ
pPb [24] with those on the double ratio, avoiding a

double counting of the J/ψ related uncertainties. The notation Qi,ψ(2S)
pPb , rather than the more usual Ri,ψ(2S)

pPb ,
is used in this Letter, to draw attention to possible residual biases in the centrality determination, related
to the loose correlation between the centrality estimators and the corresponding collision geometry [30].

Table 2 summarizes the values of the systematic uncertainties on the various ingredients that enter the
cross section determination and the calculation of the nuclear modification factor.

Source of uncertainty σψ(2S)
pPb , Qψ(2S)

pPb σψ(2S)
Pbp , Qψ(2S)

Pbp
2.03< ycms <3.53 -4.46< ycms <-2.96

Tracking efficiency (I) 4 6
Trigger efficiency (I) 3 3.4
Matching efficiency (I) 1 1
Signal extraction 10.8 − 13.4 10.8 − 20.9
MC input 1.8 1.8
σMB (I) 3.3 3.0
σMB (I,II) 1.6 1.6

Table 2: Systematic uncertainties, in percentage, on the ψ(2S) cross sections and nuclear modification factors. For
centrality-dependent quantities, the range of variation is given. Type I uncertainties are correlated over centrality,
while type II are correlated between the forward and the backward rapidity regions. When no indication is given,
the uncertainties are uncorrelated. The uncertainty on σMB is related to the ψ(2S) cross section only.
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4 Results

The ψ(2S) production cross sections as a function of the centrality of the collision, expressed via hNcolli,
are plotted in Fig. 2 (left). As expected, their values increase with hNcolli.
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Fig. 2: Left: ψ(2S) production cross sections shown as a function of hNcolli for both p-Pb and Pb-p collisions.
Right: B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ shown as a function of hNcolli and compared to the pp value
(line), with a band representing its uncertainty. In both figures, vertical error bars correspond to statistical uncer-
tainties, while the open boxes represent the systematic uncertainties. The Pb-p points are slightly shifted in hNcolli
to improve visibility.

In Fig. 2 (right) the ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ is shown as a function of hNcolli
and compared with the corresponding value for pp collisions. Despite the large uncertainties, the data
suggest a decreasing trend from peripheral to central events, in particular at backward rapidity, indicating
a suppression of the ψ(2S) production relative to the J/ψ . While for peripheral collisions the cross
section ratios are consistent with the pp value, they become a factor 2–3 smaller for central events, in
both rapidity ranges. As remarked in Sect. 3, the pp cross section ratio measured at

√
s= 7 TeV has been

used, including an 8% additional uncertainty to account for its possible
√
s- and y-dependence.

The degree of suppression of ψ(2S) is directly quantified in Fig. 3 where the double ratio between the
ψ(2S) and J/ψ cross sections in p-Pb and pp collisions is shown. The result is compared with two theoret-
ical calculations. The first is based on a scenario where the resonances may be dissociated via interactions
with the partons or hadrons produced in the collision in the same rapidity region (co-movers) [38]. The
model includes contributions from nuclear shadowing, based on the EPS09 LO parameterization [3], and
a co-mover interaction term, with dissociation cross sections σ co−J/ψ = 0.65 mb and σ co−ψ(2S) = 6 mb,
these values being fixed from fits to low-energy experimental data [39]. The effect of co-movers is
larger at backward rapidity since their density is larger in that region. The calculated co-mover densi-
ties are compatible with the measured experimental charged particle multiplicities [40]. The calculation
reproduces well the measured values of the double ratio. Shadowing effects are very similar for the
two mesons and in this model they are assumed to cancel out in the double ratio, so that only co-mover
absorption plays a role. The second model (QGP+HRG) is based on a thermal-rate equation frame-
work [41] which also implements the dissociation of charmonia in a hadron resonance gas, including a
total of 52 non-strange and single-strange meson species, up to a mass of 2 GeV/c2 [42]. The fireball
evolution includes the transition from a short QGP phase into the hadron resonance gas, through a mixed
phase. The shadowing effects, implemented through the EPS09 parametrization, cancel out in the double
ratio, as in the previous model. The result of the calculation, also shown in Fig. 3, is in fair agreement
with the measured values, in particular for central collisions. The model uncertainties are dominated by
the evaluation of the charmonium dissociation rates. The ALICE result is also compared to mid-rapidity
(|y|< 0.35) PHENIX data [17] in Fig. 3. Remarkably, in spite of the very different √sNN and ycms values,
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the observed patterns as a function of centrality are similar. It should also be noted that the PHENIX
result can be qualitatively described in a hadronic dissociation scenario, as discussed in [38, 42].
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Fig. 3: Double ratio [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp for p-Pb and Pb-p collisions, shown as a function of hNcolli
(Pb-p points are slightly shifted in hNcolli to improve visibility). The data are compared to PHENIX mid-rapidity
results [17] and to the theoretical calculations of Ref. [38] and [42]. The boxes around unity correspond to the
global systematic uncertainties at forward (red box) and backward (blue box) rapidities. The grey box is a global
systematic uncertainty common to both p-Pb rapidity ranges, while the green box refers to the PHENIX results.

In Fig. 4 the nuclear modification factor for ψ(2S) mesons is shown as a function of centrality, separately
for forward and backward rapidities. In both regions, a trend towards an increasing suppression can be
seen when moving from peripheral to central collisions. The corresponding QJ/ψ

pPb values [24] are also
shown. At forward-y there is an indication for a smaller Qψ(2S)

pPb with respect to QJ/ψ
pPb . The difference

between the ψ(2S) and the J/ψ nuclear modification factors amounts, for central events, to 1.9σ , while,
integrating over centrality, the corresponding quantity is 2.3σ . At backward-y the suppression patterns
for the J/ψ and the ψ(2S) are different, with QJ/ψ

pPb ∼ 1 (or even slightly larger), and a strong suppression
for the ψ(2S). In the most central collisions, the difference between the measured QpPb corresponds
to 4.3σ , while, integrating over centrality, suppressions differ by 4.1σ . The results are compared to
calculations including either only shadowing (EPS09 LO [38], EPS09 NLO [43]) or only coherent energy
loss [44] and to models implementing final state interactions (co-movers [38], QGP+HRG [42]). While
the J/ψ results are reproduced by shadowing/energy loss calculations, additional final state effects, as
those discussed in the context of Fig. 3, are needed to describe theψ(2S) results, in particular at backward
rapidity.

Finally, the results are shown in Fig. 5 as a function of the pair crossing time τc in nuclear matter [9].
This quantity can be calculated as τc = hLi/(βzγ) where hLi is the average thickness of nuclear mat-
ter crossed by the pair, which was evaluated, for each centrality class, using the Glauber model [45],
βz = tanhyrest

cc is the velocity of the cc along the beam direction in the nucleus rest frame, γ = Ecc/mcc
and Ecc = mT,cc coshyrest

cc . The value mcc = 3.4 GeV/c2 was chosen for the (average) mass of the evolv-
ing cc pair [9, 46], while mT,cc was calculated in each centrality bin starting from the measured J/ψ hpTi
values [24]. We use the J/ψ hpTi as a proxy for the average pT of the cc pair, as the ψ(2S) statistics is too
low to extract a corresponding hpTi value. If we assume instead that hpψ(2S)

T i ∼ 1.1hpJ/ψ
T i as measured

by LHCb in pp collisions at
√
s= 7 TeV [47, 48], the τc values would decrease by ∼ 4%. Other sources

of uncertainties on τc include the uncertainties on the measured J/ψ hpTi, which contribute less than 1%,
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Fig. 4: J/ψ [24] and ψ(2S) nuclear modification factors, QpPb, shown as a function of hNcolli for the backward
(left) and forward (right) rapidity regions and compared to theoretical models [38,42–44]. The boxes around unity
correspond to the global ψ(2S) systematic uncertainties at forward (red box) and backward (blue box) rapidities.
The grey box is a global systematic uncertainty common to both J/ψ and ψ(2S).

and those on hLi, which are dominant and of the order of 10%. In Fig. 5 we show the double ratio as a
function of τc in the two rapidity regions. Different τc intervals can also be selected by slicing the events
in bins of pT (see Ref. [33]), varying, in this way, the γ values of the cc. The double ratio results, obtained
in [33], are therefore also shown in Fig. 5 at their corresponding average τc values. In the double ratio
one effectively removes, as discussed above, initial state effects, so that Fig. 5 shows the τc dependence
of final state interactions on ψ(2S) compared to J/ψ . The two sets of results, corresponding to a slicing
of the events in centrality or in pT, are in good agreement. At backward-y, where the largest τc values
are reached, a clearly decreasing trend can be observed. The average resonance formation time τf is,
according to most theory estimates [9,18,19], larger by at least a factor ∼ 2 than the accessible τc range.
On the other hand, the width of the τf distribution is expected to be non-negligible [19], and it cannot be
excluded that at least a fraction of the cc pairs hadronizes inside the nucleus. Therefore, the observed
behaviour is likely due to a combination of final state effects which take place outside the nucleus, as e.g.
interaction with a hadronic resonance gas, and dissociation effects on the fully formed resonance, due to
nuclear matter, and taking place inside the nucleus. The relative importance of the two mechanisms is
difficult to quantify in such a simple analysis and quantitative theoretical studies, also exploring alterna-
tive mechanisms, are needed. At forward rapidity, where τc becomes smaller than τf by about 2–3 orders
of magnitude, the interaction with nuclear matter is not expected to play any significant role. The results
of a similar analysis carried out on PHENIX mid-rapidity data [17] are also shown in Fig. 5. Within
uncertainties, a scaling of the ALICE and PHENIX double ratio values with τc is observed.

5 Conclusions

The centrality dependence of the ψ(2S) production in p-Pb collisions at √sNN = 5.02 TeV was measured
in five intervals, using the ZN energy as an estimator. The ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ
is compatible with pp measurements in peripheral events, whereas a decrease is observed towards central
events, showing that the ψ(2S) state is suppressed with respect to the J/ψ . The results on the double
ratio [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp, as well as on the nuclear modification factors, show that effects
such as shadowing or energy loss are enough to explain the J/ψ behaviour, while additional mechanisms
are needed to describe the ψ(2S) suppression. Theoretical models that include final state interactions
are able to reproduce the data. A study of the double ratio as a function of the crossing time τc shows
that at forward-y the τc values are much shorter than the resonance formation time τf, excluding any
significant role of final state interactions with nuclear matter. Effects occurring at later times, such as the
break-up by co-movers in the hadronic gas, are suitable candidates for an explanation of the observed
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Fig. 5: Double ratio [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp shown as a function of τc for the backward and forward
rapidity regions. For each y-range, the two sets of points were obtained from the centrality analysis and from
the pT-dependent analysis of Ref. [20]. Statistical uncertainties are shown as lines, while the total systematic
uncertainties are shown as boxes around the points. The results of a corresponding analysis carried out on the
PHENIX mid-rapidity data [17] is also shown. The box around unity represents the PHENIX global systematic
uncertainty.

ψ(2S) suppression. At backward-y the τc values, although significantly larger, are still smaller than τf.
However, the observed scaling of the double ratios with τc may be suggestive of an effect at least partly
related to a dissociation of the fully-formed resonance in nuclear matter.
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J. Klein35, C. Klein-Bösing61, S. Klewin93, A. Kluge35, M.L. Knichel93, A.G. Knospe118,122, C. Kobdaj114,
M. Kofarago35, T. Kollegger97, A. Kolojvari132, V. Kondratiev132, N. Kondratyeva75, E. Kondratyuk111,
A. Konevskikh52, M. Kopcik115, P. Kostarakis89, M. Kour91, C. Kouzinopoulos35 , O. Kovalenko77,
V. Kovalenko132, M. Kowalski117, G. Koyithatta Meethaleveedu47, I. Králik55, A. Kravčáková40, M. Krivda55,101,
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15 Commissariat à l’Energie Atomique, IRFU, Saclay, France
16 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
17 Departamento de Fı́sica de Partı́culas and IGFAE, Universidad de Santiago de Compostela, Santiago
de Compostela, Spain
18 Department of Physics, Aligarh Muslim University, Aligarh, India
19 Department of Physics, Ohio State University, Columbus, Ohio, United States
20 Department of Physics, Sejong University, Seoul, South Korea
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
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132 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
133 Variable Energy Cyclotron Centre, Kolkata, India
134 Warsaw University of Technology, Warsaw, Poland
135 Wayne State University, Detroit, Michigan, United States
136 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
137 Yale University, New Haven, Connecticut, United States
138 Yonsei University, Seoul, South Korea
139 Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms,
Germany

20


