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Abstract 

Spheres on Sphere Silica Particles – Mechanism and Modification 

Richard Hayes 

Supervisors: Dr. Haifei Zhang, Prof. Peter Myers 

 

 One of the current challenges in chromatography is the fast separation of large 

biomolecules. The demand for this is huge in pharmaceutical and biological research. To 

meet this challenge a new type of porous, large pore support material is required. A new, 

unique type of silica support, named spheres on sphere (SOS) silica, has recently been 

discovered which may meet these demands. SOS particles are produced via a one-pot 

synthesis and are comprised of a nanoparticle shell surrounding a larger core microsphere. 

High performance liquid chromatography (HPLC) columns packed with such particles have 

shown remarkably fast separation of proteins. These new particles show high potential as a 

revolutionary HPLC technology compared to widely used core-shell silica particles, which 

are prepared by a tedious layer by layer procedure and suffer with the issue of poor mass 

transfer for large analytes. 

This thesis outlines the experimental work undertaken to develop SOS particles 

which are specifically designed for the separation of proteins and large molecules using 

HPLC. The synthesis method has been optimised to achieve particles with a complete, 

densely packed, single-layer shell and a diameter suitable for use in HPLC. Additionally, a 

narrow particle size distribution is achieved, removing the need for a time-consuming and 

wasteful classification process. 

 The suitability of microwave irradiation for the surface functionalisation of silica 

materials has been investigated. This includes the development of a bonding method for 

SOS particles which is shown to be highly reproducible and capable of providing 

comparable bonding density to conventional reflux heating methods. The use of microwave 

heating also results in significantly shorter reaction times and lower power consumption 

compared to commonly used equipment such as hot plates or heating mantles. 

 



ii 

Following surface functionalisation, the performance of HPLC columns packed with 

SOS particles have been assessed in both isocratic and gradient elution mode. Parameters 

such as column permeability, total porosity and impedance have been determined in 

isocratic mode, which allows direct comparison with other column packing materials. In 

gradient elution mode the SOS columns have been used for the analysis and separation of a 

wide range of peptides and proteins. Excellent performance has been obtained using the 

SOS material where fast gradient analysis is applied, in some cases outperforming a 

commercial core-shell column specifically designed for protein analysis. 

This work is supported by the Engineering and Physical Sciences Research Council 

and Thermo Fisher Scientific. 
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Objectives 

 This thesis describes the development of spheres on sphere (SOS) particles for use 

in HPLC, with the aim of improving the separation of proteins and large biomolecules. 

Commercial core-shell particles for protein analysis are typically comprised of a thin shell 

with a large pore diameter to reduce the mass transfer effects observed for large 

molecules. While particles possessing this morphology have been shown to provide high 

performance in this type of application, the method of production is a slow and inefficient 

process. The synthesis methods, development and chromatographic performance of core-

shell particles will be discussed in detail in the introduction chapter. 

SOS silica particles are a new type of core-shell material with a single layer shell of 

nanoparticles surrounding a solid core, produced from a one-pot reaction without the need 

for further modification or classification. Particles have been found to be microporous, 

meaning they are effectively non-porous for analyte molecules. However the unique 

morphology provides interstitial macroporosity due to the shallow shell structure 

composed of relatively large nanoparticles. This combination of large pores and shallow 

shell depth appears to be ideal for large compounds such as proteins, as the diffusive 

effects should be greatly reduced. 

The experimental objectives in this thesis will focus on three main areas: 

1) Optimisation of the SOS synthesis method. By understanding the role of each 

reagent in the reaction, the aim is to be able to control the particle morphology to produce 

SOS materials with narrow particle size distribution, complete single layer shell and suitable 

diameter for use in HPLC. 

2) Functionalisation of SOS particles using microwave irradiation. Recent research has 

shown microwave heating to be extremely effective when producing silica bonded phases, 

however its use in this capacity is currently very limited. The aim is to assess the suitability 

and reproducibility of microwave bonding for SOS particles and compare this method with 

conventional heating. 

3) HPLC assessment of bonded SOS particles. The aim is to assess the 

chromatographic performance of SOS particles under isocratic and gradient modes. The 

particle morphology suggests that the SOS material should be ideal for large molecule 

separation and experimentation will be performed to determine this, with comparison to 

commercial materials. 
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These three areas of study will describe the development of a new type of particle 

for use in chromatography. Prior to the introduction of modern core-shell materials in 

2007, there had been little development in the basic morphology of silica particles other 

than continual reduction of the particle diameter. As such, advances in chromatographic 

performance have been mainly reliant on reducing the particle size. There is clearly a limit 

on how small particles can be made and therefore the future of chromatography will 

depend on the development of completely new materials. The experimental work in this 

thesis describes efforts to achieve this, starting with the basic synthesis of particles and 

optimisation of the process, through to the creation of packed bonded phases. 
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1 Introduction 

1.1 Overview 

Among different types of chromatography, high performance liquid 

chromatography (HPLC) has been most widely used as an essential analysis tool for 

research, manufacturing, clinical tests, and diagnostics. This is due to its universal 

applicability and remarkable assay precision.1 Two main types of column, packed particles 

and monoliths, are used for routine HPLC. Silica microspheres are the most frequently used 

packing materials for particle packed columns, while for monolithic columns both porous 

silica and crosslinked polymers are commonly used. The challenges in HPLC are to obtain 

efficient and fast separation with high resolution preferably with low back pressure for 

various types of samples, for example pharmaceuticals, food, life science, environmental 

and routine analysis in research labs.2 

This introduction aims to describe the types of stationary phase currently used in 

HPLC. The main emphasis will be on core-shell type particles, a concept first introduced in 

1969 by Horváth et al.,3 which have recently seen reintroduction and investigation for use 

as the packing material for HPLC columns. The preparation methods for producing core-

shell particles will be described, followed by discussion on the performance advantages 

over totally porous silica particles and monoliths. There will also be discussion on the use of 

core-shell particles in different types of liquid chromatography and examples of HPLC 

applications for the separation of various types of samples. 

The introduction is concluded with a perspective on future development of core-

shell particles in chromatography, including the limitations of the production method of 

such materials, the challenges currently faced by chromatographers and how the work 

undertaken in this research project plans to address these issues. 

 

1.1.1 Monoliths 

Monolithic columns were developed in the late 1980s and through the 1990s to be 

used as stationary phases in HPLC columns.4-6 Porous monoliths, rather than discrete 

particles, can be thought of as a single rod of stationary phase that fills the entire column 

length. The material consists of large interconnected pores, shown in figure 1.1, resulting in 

high permeability and hence low back pressure, even at high flow rates.7, 8 There are 
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generally two pore types; large macropores (>50 nm diameter) which run through the 

monolith structure and, in the case of silica monoliths, interconnecting mesopores (2-50 

nm diameter) which are present in the silica walls.7 Monoliths have been found to be a 

viable alternative to particle-packed columns for efficient separations in HPLC and 

satisfactory chromatographic performance has been achieved for a variety of samples.9-13 

 

 

Figure 1.1 SEM image showing the porous structure of a silica monolith material.14 

 

There are two main types of material used in monolithic columns; polymer or silica-

based. Pioneering work in the preparation of polymer monoliths was performed by Hjertén 

et al. using hydrophilic gels,5, 15 and by Svec et al. using hydrophobic gels.16, 17 Polymer-

based monoliths are generally prepared by in-situ polymerisation of organic monomers in a 

three step method, although in some cases the second step is the only one deemed 

necessary. Firstly the internal wall of the column is treated so that the later synthesised 

polymer will adhere strongly to it, stopping mobile phase flow between the wall and the 

polymer thus bypassing the bed and preventing separation. The second step involves the 

polymerisation of a mixture of reagents within the column, resulting in the precipitation of 

a high molecular weight polymer. The final step allows modification of the surface 

chemistry of the column bed, if necessary. There are many combinations of monomers and 

surface modifying reagents that allow for the tailoring of polymeric monoliths to a wide 

range of separations. For example, procedures to obtain materials suitable for ion 

exchange,18, 19 hydrophobic interaction,18 reversed phase20 and narrow-bore columns21 

have been determined. 
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Silica-based monoliths are prepared using a sol-gel process in which an alkoxysilane 

solution forms a silica gel via hydrolysis and condensation.22 Tetramethylorthosilicate 

(TMOS) and tetraethylorthosilicate (TEOS) are typical starting alkoxysilanes. The macropore 

formation within the silica sol-gel system is a competitive process involving phase 

separation and a sol-gel transition. A phase separation mechanism known as spinodal 

decomposition results in co-continuous structures of the two separated domains. There is 

composition fluctuation between two phase domains: a silica-rich domain (to be silica 

skeletons) and a solvent-rich domain (to be macropores).23 A co-continuous, sponge-like 

domain structure develops and remains unbroken for a period of time, after which the 

phase domains continuously increase in size and finally result in fragmented domains and a 

continuous matrix. When gel formation and phase separation occur competitively, various 

co-continuous structures are permanently frozen in the network. In the case of silica 

monolith formation, the initially fluid reaction system turns into a continuous silica 

skeleton plus a fluid phase which fills the resultant pore structure. Removal of the fluid 

leaves behind open pores. 

The size and volume of macropores in the structure can be controlled by various 

porogens such as water soluble polymers and surfactant templates which induce phase 

separation.23 For example, the use of poly(ethylene glycol) (PEG) forms strong hydrogen 

bonds with the silanol groups of the growing silica structure. The phase separation 

tendency is determined mainly by the PEG to silica ratio, therefore adjusting the ratio 

allows control over the size of the silica skeleton and the size of the macropores. The 

volume fraction of the fluid phase which becomes the pore space after drying mainly 

depends on the volume fraction of solvent phase in the starting solution. Consequently, the 

size and volume of macropores can be controlled by adopting PEG as an additive. Silica 

monoliths may also contain pores in the skeleton wall which can be created by solvent 

exchange treatments to obtain a bimodal meso-macroporous pore size distribution.24 

 Monolithic silica columns can be prepared in a mould25 (typically a glass tube up to 

9 mm in diameter) to generate a rod, or in a fused silica capillary23 using the sol-gel process. 

Preparation in a mould is accompanied by shrinkage of the structure, reducing the 

diameter of the resulting rod. The shrinkage causes detachment of the rod from the wall of 

the mould thus meaning it cannot be used directly as a HPLC column. Monolithic rods must 

therefore be recast, typically by covering with heat shrinking polytetrafluoroethylene 

(PTFE) tubing6, 26 or clad in polyether ether ketone (PEEK)25 before they can be utilised in 

chromatographic applications. 
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Columns have been prepared within 50-530 μm internal diameter (i.d.) fused-silica 

capillaries for use in HPLC and CEC.25, 27-30 A small sized capillary is favourable to create 

covalent bonds between the wall and silica skeleton which overcomes the effect of 

shrinkage due to the large ratio of contact area to silica volume. For a larger sized capillary, 

shrinkage can be minimised by the use of a mixture of TMOS and methyltrimethoxysilane 

(MTMS) instead of TMOS alone. 

The main obstacles for the wider use of monolithic columns are the reproducibility 

of the pore structure, shrinkage of the structure causing detachment from the column wall 

and the delicate cladding procedure to fit the monolith into a column. As a result, the 

analysis performance of monolithic columns may vary from batch to batch. Furthermore, 

the mechanical stability is generally weak for monolithic columns. There is an additional 

issue with polymer monoliths due to potential swelling problems in the presence of 

solvents. 

 

1.1.2 Silica Microspheres 

Although various polymer and ceramic microspheres have been used as packing 

materials, silica microspheres have been most extensively investigated and columns packed 

with these are by far the most commonly used. An example SEM image of 3 μm silica 

particles is shown in figure 1.2. Both non-porous and porous silica microspheres have been 

utilised as the stationary phase in HPLC columns. For non-porous particles, the separation 

occurs on the particle surface and band broadening is alleviated due to the extremely short 

diffusion path allowing fast mass transfer.31 However, due to the low surface area, 

retention, selectivity and ultimately, resolution are limited. The loading capacity is also 

reduced. For porous silica microspheres, in addition to the external particle surface area 

the surface area within the pores provides more sites to interact with analytes. For liquid 

phase separation the pore size is typically required to be greater than 6 nm to allow access 

to analytes. For separation of large molecules and biomolecules greater than a few 

thousand kilodaltons (kDa), increased pore sizes of up to 100 nm are often required for 

efficient separation.8 
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Figure 1.2 SEM image of classified 3 μm porous silica particles. Taken from own data. 

 

The evolution of porous, spherical silica particles began in the early 1970s. Before 

this point sorbents were composed of irregularly shaped particles around 100 μm in size. 

Early chromatographic theory was developed in parallel with advances in gas 

chromatography in the 1950s and 1960s. This discussed the advantages of small particles in 

chromatography, predicting that the use of smaller and more uniform particles would 

result in increasingly efficient separations and faster optimum mobile phase velocities. The 

cost of using smaller particles however is a significant increase in operating pressure. Table 

1.1 shows the advances in particle technology over the past 65 years, with a general trend 

of reducing particle diameter. 

The size of silica particles and the packing quality significantly affect the 

performance of the packed columns. Silica particles with smaller diameters and narrow size 

distribution are employed by manufacturers to achieve high performance separation. 

However, back pressure is proportional to the square of the particle diameter32 and while 

halving the particle size may double the separation performance in terms of theoretical 

plate numbers, it can also quadruple the back pressure.8 Despite this, sub-2 µm 

microspheres are the current state of the art material on the market for porous silica 

microspheres. To achieve fast separation on silica microspheres of certain size, a 

straightforward approach is to increase the flow rate and therefore the pressure drop 

across the column. To run at this increased pressure, ultra-high pressure liquid 

chromatography (UPLC) has been developed and used. This technique places much stricter 

requirements on the pumping system and the whole flow system due to the very high 
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operating pressure. One alternative to sub-2 μm particles is the recently developed core-

shell particles. 

 

Table 1.1 Development of HPLC particles since the 1950s. As the particle diameter 

decreases, efficiency improves at the expense of increasing instrument pressure 

requirements.1 

Year Particle size (μm) Pressure (bar) Plates/metre 

1950s 100, irregular <10 1500 

1967 50, pellicular <10 6500 

1972 10 15 40000 

1976-1980 5 20-50 50000-100000 

1980-1992 3 150 120000-150000 

2000 2.5 200 160000 

2003 <2 400 220000 

2007 2.7, core-shell 100 210000 

 

 

1.1.3 Core-Shell Particles 

The concept of pellicular particles, a type of core-shell particle containing a glass 

bead or spherical polymer core, was initially suggested and used in the late 1960s.3 It was 

noted by Horváth et al. that to achieve high speed and resolution in HPLC, long columns 

packed with small particles are required, operated at high mobile phase velocities resulting 

in high operating pressure. It was theorised that the available pressure drop is best 

exploited by using columns with low reduced plate heights in the practical range of mobile 

phase velocity. Pellicular particles were synthesised, meeting these requirements. Particles 

consisted of thin, uniform porous spherical shells supported by non-porous, mechanically 

strong glass spheres. The early generation of pellicular particles and shell particles were 

covered in the review by Guiochon et al.33 At about the same time as Horváth, particles 

with a comparatively thicker shell were prepared by Kirkland.34, 35 The spherical shape and 
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greater mechanical strength of these particles resulted in a higher column stability and a 

better reproducibility than columns packed with the irregularly shaped silica particles 

available at the time. 

The development and use of core-shell particles became popular in the 1970s with 

materials produced by several brands, for example Zipax (Dupont), Corasil I and II (Waters) 

and Pellicosil (Macherey-Nagel). However, major improvements in the manufacture of fully 

porous particles also took place at the same time, which eventually led to the 

disappearance of core-shell particles altogether. More recently, requirements of improved 

analytical throughput have led to the need for greater column efficiency. In response to 

this, manufacturers have developed sub-2 μm totally porous particles; however these 

cannot be operated on conventional HPLC instruments which allow only moderate 

operating pressure. This has led to the rejuvenation of core-shell particles as an alternative. 

The class of core-shell particles that are now widely used for chromatographic 

applications was initially developed by Agilent Technologies, who later synthesised and 

marketed these particles under the name Poroshell. The first “modern” core-shell material 

to be marketed however can be attributed to the 2.7 μm Halo material produced by 

Advanced Materials Technology (AMT).36 The owners of AMT were later subject to a 

lawsuit filed by Agilent due to misappropriation of trade secrets after developing core-shell 

particles using confidential information they had learned while employed at Agilent. 

Since their reintroduction, core-shell silica particles have been increasingly used for 

highly efficient separation with fast flow rate and relatively low back pressure.33 The solid 

core plus the porous shell results in a larger particle diameter and significantly lower back 

pressure compared to sub-2 μm particles. The porous shell and small solid core may also 

provide higher surface area for the separation to occur. As an example, 2.7 µm core-shell 

silica particles with 1.7 µm core and 0.5 µm thick porous shell can yield efficiency close to 

that of sub-2 µm particles but with operation pressure similar to 3 µm particles.37 The 

advantage with core-shell particles as packing materials is that the smaller pore depth 

drastically reduces the volume present for broadening from longitudinal diffusion (B term 

in the van Deemter equation). The shortened diffusion path length has also been shown to 

reduce the contribution of the C term due to fast mass transfer.32, 38 

For chromatographic applications there are a number of core-shell particles 

commercially available in a variety of particle sizes, bonded phases and column dimensions. 

Examples include Poroshell (Agilent), Halo (AMT), Cortecs (Waters), Kinetex (Phenomenex), 
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Eiroshell (Glantreo), Accucore (Thermo Fisher Scientific) and Ascentis Express (Supelco). 

While all are marketed as core-shell materials and the specifications for a typical 2.7 μm 

material suggest similar particle diameters, there may be differences between the 

properties of the silica. For example the pore size, surface area, ratio of core:shell, % 

carbon loading and bonding density may vary, which should all be considered when 

selecting a column. 

 

1.2 Preparation Methods for Core-Shell Particles 

As the name suggests, core-shell particles are a class of particles comprised of a 

central core and surrounding shell. The two substituent parts can be composed of different 

materials, or the same materials with different structures. Figure 1.3 shows a schematic 

representation of different particle types with the core and shell(s) expressed in different 

colours. The core may be formed from a single sphere (Figure 1.3 A) or aggregation of 

several smaller spheres (Figure 1.3 B). It is possible to have a hollow shell with an internal 

sphere, described as a rattle-like or yolk-shell structure (Figure 1.3 C).39 The shell structure 

can be a continuous layer (Figure 1.3 A-C), attachment of many smaller spheres onto a 

large core sphere (Figure 1.3 D and E)40 or an aggregation of core spheres (Figure 1.3 F).41 

Complex core-shell structures may also be made via incorporation of smaller 

spheres within the shell (Figure 1.3 G)42 or with multiple shells (Figure 1.3 H).43-45 Both the 

core and the shell can be composed of a non-porous material or have desirable and 

tuneable porous structures. The core-shell particles used in chromatography usually have 

both parts made from silica, but with a non-porous core and a porous shell (Figure 1.3 I). 

The size of the core particle, the shell thickness and shell porosity can be tuned to suit 

many different types of chromatographic applications. Core-shell particles are commonly 

synthesised via a multiple-step processes. The core particles are initially synthesised and 

the shell is then formed around this core using a variety of methods, depending on the type 

of core and shell materials and the desired morphology.46 
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Figure 1.3 Schematic representation of different types of core-shell particles.47 

 

Core-shell nanoparticles (<1 μm diameter) have been more extensively investigated 

compared to core-shell microspheres (1-1000 μm). The advantage of core-shell 

microspheres compared to nanospheres however is that they can be easily isolated by 

simple filtration or centrifugation. Silica core-shell microspheres are now routinely used as 

packing materials in HPLC because of the comparable size to existing spherical particles and 

the use of nanospheres would result in extremely high operating pressures. 

The drive in the preparation of core-shell particles is to combine the desired 

properties of different materials and structures in order to offer a synergistic effect, to 

stabilise the active particles, or to provide biocompatible properties. For example, 

nanoparticles comprised of platinum-cobalt (Pt3Co) intermetallic cores and a platinum shell 

with a thickness of 2-3 atomic layers could enhance their activity and stability as oxygen 

reduction electrocatalysts.48 Nanoparticles are often coated with a layer of silica to improve 

stability in a water medium and provide biocompatibility for biomedical applications.49, 50 
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Many examples of core-shell microspheres have incorporated polymer 

microspheres such as polystyrene and poly(methyl methacrylate), or silica microspheres as 

the material for the core sphere.51 The shells are commonly comprised of metal or oxide 

nanoparticles. After heat treatment or dissolution to remove the core, hollow spheres can 

be produced.52 A rattle-like core-shell structure may be prepared this way when small 

spheres are present in the core spheres, provided that the small spheres cannot be 

removed or decomposed when the core spheres are removed.53 There are numerous 

reported methods for preparing core-shell microspheres. The main focus in this section is 

on those methods used to prepare particles suitable for use in liquid chromatography. 

 

1.2.1 Early Attempts 

 As mentioned earlier, the first generation of pellicular particles were introduced in 

the late 1960s by Horváth et al.3 These particles were designed for use in liquid-liquid 

chromatography (LLC), acting as a support for a liquid stationary phase. Spherical glass 

beads around 50 μm in diameter were coated with a thin film of styrene, divinylbenzene 

and benzoyl peroxide. Polymerisation and crosslinking were carried out at 90 °C in an 

aqueous suspension of the coated beads. Organic chemical reactions could then be made 

on the aromatic rings of the coating to provide strong anion or cation exchangers by the 

bonding of sulfonic acid or quaternary ammonium ions. Impressive separations of a 

mixture of ribonucleosides were performed on a 2 m × 1 mm column packed with these 

particles.54 

Kirkland et al. produced the first shell-type particles that can be likened to the 

modern core-shell particles used today, described as controlled porosity supports.34 The 

material consisted of non-porous spherical core particles coated with a uniform porous 

shell of controlled thickness and porosity. Particle size was in the region of 40 μm. 

Synthesis of the shell was achieved by a layer-by-layer method (discussed later), where 

charged core spheres were treated with an organic colloidal material bearing the opposite 

charge. The excess organic material was removed, followed by immersion of the coated 

core particles into a dispersion of inorganic microparticles possessing an opposite charge to 

that of the organic layer. Repeating the process by alternating between organic colloid and 

inorganic microparticles resulted in the addition of multiple shell layers. Once the desired 

thickness had been achieved, the organic layer was removed by thermal treatment, leaving 

behind layers of the inorganic material.55 The particles showed greater mechanical strength 
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compared to irregular packing materials available at the time, resulting in higher column 

stability and improved reproducibility. Several manufacturers later developed their own 

versions of these particles for use in LLC. 

 A second generation of core-shell particles was reported by Kirkland et al. in 1992. 

These were named Poroshell and composed of an ultra-pure non-porous silica core with a 

thin porous shell.56 The core particles were prepared by sintering 7 μm porous silica Zipax 

particles at 1050 °C, reducing the surface area to less than 1 m2/g. Following elutriation, 

this resulted in non-porous core particles around 5 μm in diameter. To form core-shell 

particles, co-spray-drying of an aqueous silica sol mixture and dense silica beads was 

performed so that a uniform porous shell of around 1 μm thickness formed around the 

core. Resultant particles were sintered then rehydroxylated for subsequent surface 

chemical modification. The Brunauer-Emmett-Teller (BET) surface area was measured by 

nitrogen adsorption to be 13 m2/g, with a pore size of 30 nm. A disadvantage to the 

method was the formation of some totally porous microspheres that could not be 

effectively separated from the desired core-shell particles of the same size. 

A coacervative approach was later employed to improve the quality of the 

Poroshell particles.57 The core particles were again prepared by sintering 7 μm porous silica 

Zipax particles to form 5 μm non-porous core particles. These core particles were then 

coated with a urea-formaldehyde/silica sol coacervate film. Elimination of the urea-

formaldehyde polymer by heating resulted in a layer of silica microparticles. Sintering was 

performed to increase particle strength and eliminate unwanted micropores, followed by 

rehydroxylation of the surface, simple classification by elutriation and bonding with a 

suitable stationary phase. Rapid separations of polypeptides, proteins, and DNA fragments 

were demonstrated under gradient conditions using a column packed with C18 

functionalised particles. 

More recently, an improved coacervative approach was developed by Chen et al. to 

produce core-shell particles for use in HPLC.58, 59 A schematic of this method is shown in 

figure 1.4. In this method, solid silica spheres are modified with a proper functionality, such 

as a urea-formaldehyde polymer. These are then suspended in coacervation reaction 

mixtures of urea, formaldehyde, and colloidal silica sol under acidic conditions. A 

coacervate of urea-formaldehyde polymer and ultrapure silica sol particles is formed and is 

then coated on the solid cores. The urea-formaldehyde polymer is removed by burning in 

an oven and the particles are strengthened by sintering at high temperature. Particles 
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produced ranged 2.7 to 3.5 μm in diameter, depending on the size of the core particle and 

the shell thickness and were classified to produce a narrow size distribution. 

 

 

Figure 1.4 Schematic representation of coacervative method for synthesis of 

superficially porous particles.59 

 

A dry blending method can be used to fix small particles onto larger particles when 

the ratio of the diameters is larger than 10:1. The binary mixture of particles is passed 

through a high-speed air stream and hit repeatedly by striking pins present on a rotor 

within a hybridiser. The small particles were fixed to the surface of the larger particles as a 

result of mechanical action.60 In one example, core-shell composite microspheres of non-

porous silica nanospheres on polyethylene beads were prepared by this approach.60, 61 The 

diameters of the beads were 5, 10, and 20 µm, respectively. Separation of a protein 

mixture within 10 minutes was demonstrated by the column packed with these C18 

bonded core-shell microspheres.60 Similarly, a double-coating layer of silica and titania 

nanospheres on polyethylene beads was generated. When employed as a complex 

stationary phase for HPLC, the surface double layer caused a change in the surface acidity 

of the oxides, rather than just a mixture of two stationary phases. The separation of acidic 

and basic drugs was performed via a multiple retention mechanism.62 
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1.2.2 Layer-by-Layer Approach 

The layer-by-layer (LbL) approach utilises electrostatic interaction (and also 

hydrogen bonding, covalent bonding and van der Waals interactions) between positively 

and negatively charged species to assemble multiple layers together. A schematic of this 

method is shown in figure 1.5. This technique has been widely used to prepare composites 

and microcapsules for biomedical applications.63 Microparticles with suitable surface 

charges are used as the core and alternative layers of oppositely charged species, for 

example negatively surface-charged silica nanospheres and cationic polymer 

poly(diallydimethylammonium chloride), are built up onto the core particles. The removal 

of the core particles produces hollow capsules. 

 

 

Figure 1.5 Schematic representation of the LbL process for synthesis of core-shell 

particles.59 

 

A large percentage of core-shell silica particles available on the market for 

chromatographic use are now prepared by the LbL approach.33 Using a method developed 

by Kirkland et al., non-porous core particles are firstly treated with a polyelectrolyte, for 

example negatively charged silica particles bound with a cationic polymer. Excess 

polyelectrolyte is removed by rinsing. The coated core particles are then immersed in a 

dispersion of nanoparticles with charges opposite from those of the organic 

polyelectrolyte. This process is repeated by alternating immersions between the 

polyelectrolyte solution and the nanoparticle suspension until the desired shell thickness is 

achieved.64 The resulting particles can then be treated thermally to remove the organic 
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polyelectrolyte and produce solid-core porous-shell particles. Figure 1.6 shows the 

scanning electron microscope (SEM) and transmission electron microscope (TEM) images of 

2.7 μm Halo core-shell particles produced by this method.65 The solid core and the porous 

shell structure can be clearly seen. Similar morphologies are observed for other types of 

core-shell particles, though these may vary in particle size, shell thickness, and pore size. 

These particle characteristics may be used to explain the difference in chromatographic 

performances of various manufacturers’ core-shell columns. 

 

 

Figure 1.6 The morphology and pore structure of Halo 2.7 μm particles. SEM images 

(A and B) show the core-shell microsphere and the surface pore structure. TEM image (C) 

shows the solid core and porous shell structure. High resolution TEM image (D) shows the 

pore structure within the shell.65 

 

Core-shell particles with quoted diameters of 1.6, 1.7, 2.5, 2.6, 2.7, 3.6 and 5 µm 

are currently available from several manufacturers. It should be noted that the size 

distributions may be obtained using different sizing methods, and by the use of either 

number or volume statistics. Additionally, physical properties may also differ between 

manufacturers; hence these particles are frequently evaluated together in comparison 

studies. 
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Recently developed 1.3 µm Kinetex core-shell particles have shown excellent 

chromatographic performance. These particles consisted of non-porous cores around 0.9 

µm in diameter and porous shell 0.2 µm in thickness. The column packed with 1.3 µm 

particles gave peak capacity values that were 20-40% higher for the same analysis time 

than a reference column packed with 1.7 µm fully porous particles.66 The obtained column 

efficiency, Hmin = 1.95 µm, corresponds to a plate count of around 500000 plates/m, which 

is thought to be the lowest ever reported plate height value for a commercial column. The 

separation impedance of this column was also particularly low with Emin = 2000. It should be 

noted that the optimal linear velocity and hence the lowest possible H value could not be 

reached before exceeding the upper pressure limit of the UPLC instrument. It means that 

with such column, the major contribution to band broadening is longitudinal diffusion.67 

Comparison of 1.3, 1.7, 2.6 and 5 µm particles showed that the highest performance was 

achieved with the 1.3 µm material when a very short analysis time was required without 

the need for high resolution. The 5 µm material proved to be the best for high resolution 

separation if a longer run time was acceptable. 

1.1 µm superficially porous particles with a 0.1 µm porous shell were synthesised 

by Blue et al.68 1 µm diameter non-porous silica spheres were heated at 1000 °C to produce 

0.9 µm particles which were then rehydroxylated for the LbL coating of different sources of 

silica nanospheres. The particles were synthesised by alternating a layer of positively 

charged polyelectrolyte and negatively charged colloidal silica onto the non-porous silica 

core, using the Kirkland method.64 The layers were alternated until the desired porous layer 

thickness was achieved. Resultant particles had narrow size distribution with a surface area 

of 52 m2/g and pore diameter of 7.1 nm. 

More complicatedly, chiral core-shell silica microspheres with a trans-(1R,2R)-

diaminocyclohexane moiety bridged in the mesoporous shell were synthesised.69 The chiral 

shell was formed by the co-condensation of N,N′-bis-[(triethoxysilyl)propyl]-trans-(1R,2R)-

bis-(ureido)-cyclohexane (DACH-BS) and TEOS, using octadecyltrimethylammonium 

chloride and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) 

copolymer as the templates. The chiral shell was attached via an alternative LbL method to 

that used by Kirkland. Non-porous core particles were added to a solution containing the 

templates, followed by addition of DACH-BS and TEOS to form a layer of mesoporous chiral 

nanospheres on the surface. The resultant particles were isolated, washed and the process 

repeated multiple times to build up the shell. The mean particle size was 2.3 μm, with a 

shell thickness of approximately 100 nm. The BET surface area of these particles was 
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measured by nitrogen adsorption to be 147 m2/g, similar to that of commercial core-shell 

materials. When packed into HPLC columns the material provided fast enantioseparations 

of binaphthol, bromosubstituted binaphthol and biphenathrol. 

Manufacturing core-shell silica particles with the LbL method is a time-consuming 

approach, offering low productivity. This is due to the numerous centrifugation and 

classification steps that are needed to remove any loosely bound species in each coating 

cycle to avoid particle aggregation. A multilayer-by-multilayer (MLbML) approach was 

developed to increase the process speed.70 Silica core particles and silica nanoparticles 

were prepared by the Stöber process. The shell multilayers were assembled by repeated 

consecutive deposition of poly(diallyldimethylammonium chloride) (PDADMA) and silica 

nanoparticles. The polymer, depending on molecular weight, can absorb several layers of 

sol particles at a time. This allows for 5-10 layers of nanoparticles to be deposited per 

coating cycle, vastly improving the productivity of the synthesis. After five coatings, the 

surface area, pore volume, and average pore size of the core-shell particles were measured 

to be 255 m2/g, 0.54 ml/g and 9.4 nm, respectively. The particles were also found to have a 

narrow size distribution. Resultant particles were around 900 nm in diameter which are 

perhaps too small for use in HPLC, however the layering process could be performed onto a 

larger diameter core particle. 

Although fewer coating steps are required compared to the LbL method, the 

MLbML method is still a time-consuming approach due to the numerous centrifugation 

steps that are needed to remove the extra material and loosely bound species in each 

coating cycle. Each additional process step increases the variability of the process and 

decreases the yield. 

Core-shell silica particles may be further coated with a layer of carbon. Carbon is 

interesting as it is chemically inert and highly stable for a range of test mixtures. Pre-

formed commercial 2.7 μm core-shell silica particles were coated with carbon by firstly 

treating with aluminium.71, 72 The amount of added aluminium corresponded to a full 

monolayer (assumed to be 8 μmol/m2) of silanol groups on the silica surface. Chemical 

vapour deposition of carbon onto the aluminium surface was then conducted at 700 °C for 

6 hours using hexane vapour as the carbon source. These carbon clad particles produced 

reasonable peak capacity values for the gradient separation of indole metabolites. During 

fast LC × LC analysis, the carbon-clad column also provided excellent focusing in the second 

dimension. 



Chapter 1: Introduction 

17 

1.2.3 Shell Synthesis on Pre-Formed Cores 

An alternative to the LbL approach is the formation of a shell onto the core particle 

by various synthetic methods. This method is most commonly used to prepare 

nanoparticles,73, 74 however silica microspheres, polymer microspheres and other particles 

have been used as the cores in the preparation of a wide range of core-shell particles. For 

example silica-polymer core-shell particles by silica supported polymerisation,75 core-shell 

hybrid particles and hollow structures by precipitation polymerisation,76 silica-metal 

organic framework (MOFs) core-shell microspheres77, 78 and shaped nanoparticle-shell 

nanospheres.79 Hollow shell structures or capsules can be produced when the core polymer 

particles are removed by thermal treatment or washing.52 Silica spheres are employed to 

prepare various inorganic or composite core-shell structures although silica can also be 

removed by acid etching or alkaline washing to produce hollow structures. 

Silica is the main source for the core-shell particles used in chromatography. The 

Stöber reaction is a simple method commonly used to prepare uniform non-porous silica 

microspheres and nanospheres, where a tetraalkoxysilane is added to an excess of water 

containing a low mass alcohol, under basic conditions.51 Most of the non-porous core 

particles used in the subsequent production of core-shell materials are synthesised by this 

method. The reaction can also be easily modified to produce uniform nanospheres in a 

variety of sizes that are commonly used as the substituent particles that make up the 

porous shell. The Stöber method can also be modified to produce mesoporous silica 

spheres via the introduction of a surfactant which can act as a template, for example 

cetyltrimethylammonium bromide (CTAB), Pluronic P123 or Pluronic F127.80, 81 

Reactions based on the Stöber method have been frequently reported to form a 

silica coating on different types of particles, for example gold colloids and silica coated 

magnetite particles.82, 83 In one example, the sol-gel process of TEOS and n-

octadecyltrimethoxysilane was used to form a mesoporous shell onto previously prepared 

silica core spheres under basic conditions. The resultant particles were calcined to remove 

the porogen, after which porosity was found only in the outer shell. Particles sizes up to 

around 1 μm in diameter were produced. Depending on the amount of porogen in the 

reaction it was possible to obtain surface areas up to 350 m2/g, with pore diameters up to 4 

nm. The thermal stability and the high specific surface area make these silica beads suitable 

as adsorbents for various applications, such as capillary electrochromatography and 

ultrafast HPLC.84 
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In another example, preformed iron(II,III) oxide (Fe3O4) nanoparticles were coated 

with a thin layer of silica using a sol-gel approach to obtain non-porous silica-Fe3O4 

composites. A surfactant templating approach was then applied, using CTAB as the 

template, to deposit a mesostructured CTAB/silica composite onto the silica-Fe3O4 

microspheres. Finally the CTAB templates were removed to form a perpendicularly aligned 

mesoporous silica shell.85 Li et al. produced monodisperse poly(styrene-co-acrylic acid) 

spheres by surfactant-free emulsion polymerisation, which were then used as core particles 

to form a silver nanoparticle shell via in-situ reduction of silver nitrate. The silver 

nanoparticle shell was stabilised by the formation of a silica layer using a sol-gel process. 

The shell was functionalised with reactive epoxides which could be further modified with 

amine or carboxylate groups for the derivatisation of biological molecules. These composite 

core-shell microspheres were used as high performance surface-enhanced Raman 

spectroscopy substrates and molecular barcode labels.86 

 

1.2.4 One-Pot Synthesis and Spheres on Sphere Silica Particles 

The core-shell silica particles intended for HPLC applications are usually prepared 

by a time-consuming LbL approach. A one-pot synthesis of core-shell particles suitable for 

packing into HPLC columns would be highly advantageous, offering potential benefits such 

as reduced reaction time, easier quality control, lower material costs, and process 

simplicity for scale-up. Han et al. reported that uniform core-shell nanospheres with a silver 

nanoparticle core and a thick mesoporous silica shell could be produced from a one-pot 

synthesis by subsequent addition of silver nitrate and TEOS with sodium hydroxide as a 

basic catalyst.87 A one-step synthesis was also performed by Fuertes et al. to prepare 

SiO2@resorcinol-formaldehyde resin nanospheres around 220 nm in diameter under Stöber 

conditions.88 The reaction utilised the fast reaction rate of forming silica spheres and slow 

rate of forming resorcinol-formaldehyde spheres. There have however been very limited 

reports on the one-pot synthesis of core-shell silica microspheres which are suitable for 

HPLC. 

Ahmed et al. reported a one-pot synthesis of a new type of core-shell silica from a 

single precursor, 3-mercaptopropyltrimethoxysilane (MPTMS).40 These particles possessed 

a unique spheres on sphere (SOS) morphology composed of a solid microsphere core 

around 5.5 µm in diameter with a coating of nanospheres approximately 200 nm in size. 

Typically, an aqueous solution of poly(vinyl alcohol) (PVA) and CTAB was prepared. 
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Methanol, ammonium hydroxide and MPTMS were added sequentially with stirring. The 

reaction was stirred for 24 hours at room temperature and the resultant SOS silica particles 

collected. 

In this one-pot synthesis, particles were formed in two stages, shown in figure 1.7. 

Silica nanoparticles were initially formed which grew to form the microsphere core within 

the first 30 minutes. In the second stage, at a reaction time of around 30 minutes, the silica 

nanosphere shell began to form on the core surface. After a reaction time of 180 minutes, 

the SOS particles were fully formed and the particle morphology did not change 

significantly beyond this point. It was found that the reaction time could be reduced to 

around 5 minutes by microwave heating at 40 °C.89 Varying the preparation conditions, for 

example concentration of ammonium hydroxide, reagent concentration, stirring rate or 

solvent type, allowed a degree of control over the particle morphology, specifically core 

microsphere size, nanosphere size and density of nanospheres on the surface of the core. A 

HPLC column packed with functionalised SOS particles showed fast separation of a protein 

mixture with low back pressure.40, 89 The early synthesis, properties and applications of SOS 

particles will be discussed in more detail in later chapters. 
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Figure 1.7 SEM images showing morphology evolution at different reaction times until 

the SOS particles are formed. Reaction time = 0.5 (A), 2 (B), 5 (C), 10 (D), 20 (E), 30 (F), 45 

(G), 60 (H), 180 min (I).40 
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1.2.5 Droplet-Based Microfluidic Approach 

Microfluidics is a highly interdisciplinary research area which involves physics, 

chemistry, engineering, materials science and biology. The technology utilises extremely 

small volumes (10−9 to 10−8 L) of fluids, using channels with dimensions from tens to 

hundreds of micrometres. The technique has been widely used to prepare extremely 

monodisperse emulsions, double emulsions and microspheres with complex morphologies 

and compositions.90-92 Since monodisperse microspheres are thought to increase 

chromatographic performance by improvements in the packing quality, the microfluidic 

method could be very important in developing novel and high performance packing 

materials for chromatography. Conventional emulsification methods, for example stirring, 

homogenisation or sonication, typically produce polydisperse droplets that can be 

transformed into spherical microparticles through chemical or physical consolidation. The 

monodisperse emulsions produced by microfluidics can instead be used to yield highly 

uniform microspheres. Functionalised microspheres with complex morphologies, including 

core-shell structures, have been realised through shaping, compartmentalising, and 

microstructuring.93 

Pickering emulsions, where the droplets are stabilised by small particles, are widely 

used to produce core-shell particles or capsules. An inside-out microfluidic approach was 

developed to produce monodisperse particle-stabilised emulsions and nanoparticle 

decorated microspheres. The nanoparticles are inducted in the droplet phase, thus 

minimising waste.94 However, a double emulsion approach is probably more used in 

producing core-shell particles via the microfluidic approach. After forming a double 

emulsion, the droplets can be crosslinked or condensed to form dry core-shell particles. For 

example, poly(lactide-co-glycolide)-dichloromethane solution was injected through an 

inner capillary into a flow of aqueous alginate solution. The resulting oil in water emulsion 

droplets were then dispersed in a flow of toluene. The crosslinking of alginate and removal 

of dichloromethane produced PLG-alginate core-shell particles.95 

A single emulsion method could also be used to prepare core-shell particles. As 

shown in figure 1.8, uniform droplets of silica sol prepared from TEOS were injected into a 

continuous oil phase containing tetrabutyl titanate (TBT), liquid paraffin, Span 80 and oleic 

acid, via a coaxial microfluidic device. As soon as the droplet was formed, due to water 

diffusion, the hydrolysis of TBT occurred at the water/oil interface to form a thin gel around 

the droplet. Titania-silica core-shell microspheres were obtained after calcination. The 
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dispersity and size of the microspheres could be controlled by changing the microfluidic 

flow parameters.96 

 

 

Figure 1.8 Scheme representing the preparation of silica-titania core-shell particles by 

a microfluidic approach.96 Stages: 1) Silica sol droplet (white) is injected into the continuous 

oil phase (yellow). 2) TBT hydrolyses at the interface to form titanium hydroxide. 3) A thin 

shell forms around the silica sol droplet and water diffuses through the shell to the oil 

phase. 4) Growth of the shell. 

 

A simple T-junction microfluidic device was also used to produce raspberry-like 

silica particles.97 A silica sol formed from TEOS in ethanol and hydrochloric acid solution 

was pumped via one focusing inlet, while a sodium bicarbonate solution was pumped 

through a second inlet. Hexadecane containing a small amount of surfactant was used as 

the continuous phase, allowing the slow diffusion of ethanol from the silica sol precursor 

droplets. The surfactant acted as a stabiliser to the ethanol-rich droplets. Droplets were 

generated at a T-junction and travelled along a channel. By the time the droplets exited the 

device, a significant amount of ethanol had been removed via diffusion into the continuous 

phase, allowing formation of spherical, monodisperse silica gel particles. When solvent was 

fully removed from the gel particles by oven drying, the particle surface became corrugated 

and smaller particles grew outwards from the surface forming the raspberry-like 

morphology. 

Although highly uniform particles can be produced from this method, the 

production rate is very slow due to the extremely small volumes involved. However, recent 

research at The University of Liverpool has led to a method of producing particles using an 

inkjet printer cartridge to produce uniform droplets of destabilised silica sol which were fed 

into liquid nitrogen. After the nitrogen had evaporated, monodisperse particles remained 

in the vessel. Using this method, up to 64000 particles could be produced per second. 
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1.3 The Fundamentals of Core-Shell Particles for HPLC 

The underlying reasons for the advantages and performance benefits associated 

with solid-core porous-shell materials have been the subject of much debate. Initially the 

advantages were associated with the superior particle size distribution and the reduction in 

the resistance to mass transfer terms.2, 31 Although there is an improvement in 

performance due to these physical parameters, the initial claims were not quite accurate. 

The combined effects from the monodisperse size distribution and reduced mass transfer 

effects due to the solid core are not as significant as for other contributing factors. In order 

to better understand how the morphology of core-shell particles improves the 

chromatographic performance, it is necessary to investigate the individual terms of the van 

Deemter equation38 to determine the effect of the dispersion of the solute molecules 

within a packed bed environment. The equation is shown with a schematic van Deemter 

plot in figure 1.9, illustrating the effect of each of the three terms on the plate height. 

 

 

Figure 1.9 The van Deemter equation and plot, where HETP (H) is the height 

equivalent to a theoretical plate and u is the linear velocity of the mobile phase. A, B and C 

are numerical coefficients related to the parameters of the column.38 
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1.3.1  A Term 

The first of the band broadening factors is the A term, eddy diffusion. A single 

analyte molecule within a band of analytes passing through a column can take one of many 

different paths. Multiple paths may arise from inhomogeneity in the column packing, hence 

the A term is often referred to as the packing term as it reflects the quality of the column 

bed. The multiple path effect makes analyte bands broader as they pass through the 

column. Particle diameter also has a pronounced effect on the diffusion. A larger particle 

size will deflect an analyte molecule a further distance compared to a smaller particle 

resulting in a longer path length and thus greater diffusion. The interpretation of the eddy 

dispersion term of the van Deemter equation has been of high interest to researchers and 

has improved substantially, although a certain degree of fitting of experimental data is still 

required to allow for optimisation of the postulated theory. The use of the Knox equation98 

relates an inverse cubic dependency of the linear velocity to the band broadening and has 

proved successful in the modelling of experimentally derived data. 

The dispersion associated with the A term can be considered as an effect from both 

the diameter of the particles and the quality of the packed bed within the column. It has 

been shown that the packing density within a column varies radially as a result of the wall 

effect, which results in increased band broadening. This suggests two distinct components 

to the A term, one which relates to the short range packing effects associated with a 

regular packing of spheres, and the other being a long range effect which occurs due to 

radial inhomogeneity across the column. 

It was suggested in some initial marketing literature of core-shell materials that 

many of the benefits arose simply because of the narrow particle size distribution, resulting 

in better packing of the particles. Although this is an easy concept to visualise, in practice 

the difference in size distribution that is quoted for fully porous and core-shell materials is 

simply not large enough to cause an adverse effect, and the concept is not applicable to the 

observed high efficiencies associated with core-shell materials. A typical core-shell particle 

will have d90/10 of 1.1 compared to a fully porous material with d90/10 of 1.5. It has been 

shown that this is not a significant enough change to allow for deterioration in the column 

performance.99 In fact the data presented by Gritti et al. suggested that the performance of 

any form of sub-3 µm particles could be improved by the addition of small volume fraction 

of larger particles in the range 3-5 µm. 
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It is evident from experimental data however that core-shell materials do provide a 

benefit in terms of the A term. Since this parameter is dependent primarily on the particle 

size and the packing efficiency, the conclusion is that the column packing is better with 

core-shell materials than with fully porous materials. The morphology of core-shell particles 

provides a rougher surface than fully porous spherical particles. As a consequence, there is 

considerably more shear stress applied to the particles when they are packed. During the 

packing process, a solution containing a suspension of particles is compressed into the 

column under high pressure using a specialist packing pump. Once the column is packed, it 

undergoes a period of rest where this pressure is slowly released, after which the frits and 

other end fittings are attached. Although it is difficult to initially pack the core-shell 

material, once the column is packed the amount of shear stress required to overcome the 

frictional forces associated with the roughened surfaces is so great that bed expansion is 

virtually eliminated. By comparison, fully porous materials have a much smoother 

topography resulting in particles that are easier to pack. On consolidation of the bed 

however, the lack of a roughened surface means that these particles have much less 

frictional force between them and are able to slide over each other with relative ease 

compared to the core-shell materials. This results in bed expansion and the creation of bed 

heterogeneity. 

Additionally, the shape of particles may play a part in the packing process. As 

shown in figure 1.6, core-shell particles are not truly spherical in shape and instead may be 

better described as slightly elliptic or irregular. As these particles are pumped into the 

column, the irregular shape experiences unequal force from the solvent flow and thus has 

the ability to rotate and fill any potential voids in the packed bed. Conversely, smooth 

spherical particles do not experience this flow difference as they are symmetrical and will 

therefore travel straight down the column. Voiding in the packed bed is more likely as 

particles have a tendency to stack, rather than rotate into place. 

 

1.3.2 B Term 

The second factor, the B term, is related to longitudinal diffusion and refers to the 

ability of molecules to undergo Brownian motion when placed in a fluid. In HPLC this is 

clearly undesirable, therefore it is important that analytes are not retained within the 

column for a longer amount of time than is necessary. This can be avoided by ensuring the 

capacity factor is kept at a reasonable amount and also by choosing an appropriate mobile 
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phase flow rate. A flow rate that is too low will result in excessive dispersion resulting in a 

broader peak. Simply increasing flow rate however has a negative effect on the C term and 

thus an optimum linear velocity must be established. 

It is also necessary to consider the various zones within the column media that 

exist, since diffusion within these zones will be different. Diffusion can occur within the 

bulk media (interstices between particles, column dead volume) and also within the porous 

media (internal pore system of the particle). One of the biggest advantages to the use of 

core-shell materials is the reduction in the dead volume of the column. A fully porous 

material packed into a column will only occupy about a third of the column volume due to 

the extended pore system, whereas the amount of space occupied by the core-shell 

material is dramatically increased by about 20-30% due to the solid core.100 This reduction 

in the accessible volume results in reduced longitudinal diffusion occurring within the 

column. 

The Garnett-Torquato model can be applied to show the effect that the porous 

layer has on the effective diffusion.101-103 The model is consistent with the structure of 

chromatographic beds made of core-shell particles randomly packed and immersed in a 

bulk eluent matrix. It takes into account both the geometry of the core-shell particles (the 

Garnett model) and their random spatial distribution inside the column (the Torquato 

model). The only approximation made in designing this composite model is that the 

diffusion hindrance caused by the presence of the partially permeable particles in the 

eluent bulk is ignored.104 A plot can be made which shows the variation of the B term with 

respect to the retention of the analyte and also the internal porosity of the particle, which 

can be varied by altering the depth of the porous shell. Ω is the ratio of the effective 

diffusivity in the porous layer of the particle compared to that in the bulk, effectively giving 

an indication of the retention of a compound, with higher values being more applicable to 

more retentive compounds. 

The minimal value for longitudinal diffusion is obtained when there is limited 

retention or when the particle does not have any porosity. The diagram in figure 1.10 

demonstrates the advantages that reducing the volume of the column by increasing the 

ratio of solid core to the whole particle diameter (ρ) has on the longitudinal diffusion within 

the column. It can be seen that there is a significant reduction from B = 7.7 when Ω is 2, 

and ρ is 0 (high retention, totally porous particle), to B = 1.4 when Ω is 0, and ρ is 1 (low 

retention, non-porous particle). Although this is an extreme example, there is still an 



Chapter 1: Introduction 

27 

appreciable change in the longitudinal diffusion when taking a more realistic value for Ω of 

0.14.100 It should be mentioned that the improvement in B term is important only in the 

low flow rate range. Generally around and above the optimal linear velocity, its impact is 

almost negligible. 

 

 

Figure 1.10 The minimal value for longitudinal diffusion (B) is obtained when either 

there is limited retention (Ω = 0) or when the particle does not have any porosity (ρ = 1).47 

 

1.3.3 C Term 

The final term to discuss is the C term, or resistance to mass transfer. One analyte 

molecule passing through the column may diffuse in and out of the porous stationary 

phase many times while another identical molecule may not necessarily spend as much 

time in the pore system and is thus eluted earlier. The rate at which analytes are able to 

diffuse in and out of the pore system dictates the amount of broadening that occurs. As an 

extreme example, one analyte may spend a long time within the pore structure while 

another is eluted almost immediately which would result in significant band broadening. It 

can therefore be seen that increasing the mobile phase velocity also leads to increased 

broadening of peaks. As with the other terms of the van Deemter model, the C term has 
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been reviewed and modified since the original publication,38, 105 for example the inclusion 

of mass transfer effects due to different flow velocities within the mobile phase and not 

just within the stagnant regions of the pore structure. 

Initially, many of the benefits of core-shell technology were thought to be 

associated with reduced mass transfer effects. It has since been shown by Gritti that for 

small molecules this is not the case.106 The major contribution to the reduction in band 

broadening in core-shell materials is associated with the reduction in the A and B term 

dispersion processes through better packing and reduced column dead volume. Using the 

model proposed by Gritti,106 it is possible to simulate large and small molecules and to 

determine the effect that altering the ratio of solid core to the whole particle diameter (ρ) 

will have on the overall chromatographic efficiency. 

Figure 1.11 demonstrates that the porous layer has little effect on the overall H 

value for small molecules, whereas for larger molecules there is a more increased effect. 

The contribution of the B term is inversely proportional to the linear velocity and so does 

not contribute significantly to the overall band broadening at higher linear velocities. It can 

also be seen from figure 1.11 that although there is a difference in terms of the C term for 

small molecules when there are different porous shell thicknesses employed, in this case 

two extremes of ρ = 0.1 and ρ = 0.9 are shown. As an example of current core-shell 

particles, ρ = 1.7/2.7 = 0.63 for a 2.7 μm material with 0.5 μm shell. 

Of greater interest though is the data shown which highlights the difference 

between the dispersion observed due to mass transfer effects for larger molecules where 

the diffusion coefficient is much lower. It is evident that the difference in C terms in this 

scenario is contributing significantly to a difference in the overall dispersion seen with a 

very thin porous layer compared to a virtually fully porous material. Thus it can be 

concluded that for large analytes such as proteins and other biomolecules, a thin porous 

layer should be employed to reduce dispersion effects. 
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Figure 1.11 The plot shows the relationship of B and C terms of the van Deemter 

equation with reduced velocity. For large molecules where there is reduced diffusion, the C 

term has a significant effect as the solid core diameter is reduced. Data obtained from 

Thermo Scientific. 

  

So far the dispersion associated with the use of monolithic columns has not been 

discussed, primarily because the dispersion models that are applicable to the treatment of 

packed bed columns are not directly transferable to monolithic structures. Silica monolithic 

columns consist of a continuous, porous rod that has a bimodal porosity.7 These columns 

are made of a network of through-pores separated by a thin, porous silica skeleton, as seen 

in figure 1.1. The through-pores measured using mercury intrusion porosimetry were 

estimated to be 1.7 µm,6 allowing for unrestricted movement of the mobile phase. 

Mesopores within the silica skeleton walls were measured by nitrogen adsorption to be 14 

nm107 and generate a large surface area that allows sufficient retention of analytes. 

The large interconnected pores in monolithic columns account for their advantages 

over traditional packed columns6, 7, 107, 108 since there is substantially less pressure required 

to obtain the optimal chromatographic efficiency. Due to the reduced pore depths 

associated with monolithic structures, there is also a reduction in the resistance to mass 

transfer term, which allows for use at elevated flow rates without loss of performance. 

However, the first generation monoliths suffer from a lack of radial homogeneity, caused 

by a few factors. The synthesis of a silica monolithic column involves an exothermic 
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condensation reaction, with the heat generated being evacuated radially through the 

monolith and thus generating a temperature gradient. Since the polycondensation reaction 

is temperature dependent, it will proceed faster in the column centre than at the walls, 

which can potentially affect the distribution of the porosity. Shrinkage occurs following the 

synthesis of the monolithic structure, meaning the rod has to be encapsulated by a heat-

shrunk PEEK cladding before it can be used for chromatographic purposes.14, 109 This 

encapsulation compresses the bed which may cause radial stress and strain. It is also 

feasible that during the polymerisation process the monolith is initially attached to the 

column wall, therefore some elastic deformation and breakage may occur as the monolith 

shrinks and detaches from the column wall. 

 

 

Figure 1.12 Comparison of efficiency using van Deemter plots for Accucore 2.6 µm 

core-shell microspheres, monolithic column, fully porous 3 μm microspheres and sub-2 µm 

microspheres. Data obtained from Thermo Scientific. 

 

The radial heterogeneity has been shown to affect the radial distribution of 

analytes and also the chromatographic efficiency of the column. Indeed, some authors 

have demonstrated that the column efficiency can be improved by up to 100% by removing 

this effect.107, 110 The band broadening process occurring within a monolithic column can be 

explained by the general rate model.56, 57, 60, 61 It is therefore possible to produce a value for 

H, allowing for some comparisons with packed bed columns. Figure 1.12 shows an overlay 
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of H plotted against linear velocity for a 2.6 μm core-shell, 3 μm totally porous, sub-2 μm 

totally porous and monolithic column. It can be seen that the overall performance of the 

core-shell material is greater than the other columns under evaluation, providing the 

lowest minimum plate height and a relatively flat plot as the linear velocity is increased. 

The “worst” performance was obtained from the monolithic column, with a plate height of 

double that obtained for the core-shell column. However, this data does not take into 

account the amount of pressure required to drive such a separation. It should also be 

stressed that the van Deemter plot for the monolithic column is much flatter than the core-

shell and fully porous materials. 

 

1.3.4 Kinetic Plots 

An area that needs further investigation is the concept that the back pressure 

generated by core-shell particles is lower than that of conventional, totally porous particles 

of the same column dimension. This is not correct, since the resistive forces exhibited by a 

bed packed with spherical beads are inversely proportional to the square of the particle 

diameter, in accordance with the Kozeny-Carmen model.111 

 

ΔP

L
=
P0𝜂(1 − εT)

2𝜇0

εT
3dp2

 

  

Where ΔP is the pressure drop across the column, L is the length of the column, P0 

is a constant dependent on the topography of the column, η is the mobile phase viscosity, 

εT is the porosity of the packed column, μ0 is the superficial velocity, and dp is the particle 

diameter. 

Pressure-driven flow through the pores in the shell structure does not occur as the 

diameters of the pores are too small relative to the interstitial spaces. Consequently, the 

resistive forces that are present are virtually the same whether the particle is porous or 

non-porous. Figure 1.13 demonstrates this point with the pressure drop obtained when 

using a 3 µm particle compared to that obtained when using a core-shell particle with a 

diameter of 2.6 µm. The observed pressure drop observed with a monolithic and sub-2 µm 

column is also included for completeness. 
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Figure 1.13 Comparison of back pressure for Accucore 2.6 µm core-shell microspheres, 

first generation monolithic column, fully porous 3 μm microspheres and sub-2 µm 

microspheres. Column dimensions 100 × 2.1 mm; mobile phase: acetonitrile/water (1:1); 

temperature 30 °C. Data obtained from Thermo Scientific. 

 

In recent years, kinetic plots have become a highly useful tool by which different 

HPLC columns, particles, and particle sizes have been compared with each other. Kinetic 

plots are ideally suited to compare the performance of differently shaped or sized liquid 

chromatography supports, including monolithic supports which are traditionally difficult to 

compare against spherical particles. The use of kinetic or Poppe plots,112-114 and specifically 

the use of impedance as devised by Knox and Bristow115 demonstrate the performance of a 

column, accounting for the flow resistance or the permeability of the column. Impedance 

(E) is a term that defines the resistance encountered by a compound as it moves down the 

column, relative to the performance of said column. This gives a true measure of the 

performance of the column as it incorporates efficiency, time and pressure. 

 

E =
tΔP

N2𝜂
 

 

Where t is the elution time of the test compound, ΔP is the pressure drop, N is the 

observed plate count and η is the mobile phase viscosity.115 
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 Figure 1.14 demonstrates that the fully porous materials result in higher 

impedance, implying that more pressure is required to get an equivalent separation 

compared to core-shell and monolithic columns. From the data presented in figure 1.14 it is 

observed that the core-shell column provides the best separation per unit measure of 

pressure where a high efficiency is required. However, where a lower efficiency is 

acceptable then the monolithic column outperforms the other three columns. 

 

 

Figure 1.14 Impedance comparison of Accucore 2.6 µm core-shell microspheres, first 

generation monolithic column, fully porous 3 μm microspheres and sub-2 µm 

microspheres. Data obtained from Thermo Scientific. 

 

The data when reviewing A, B and C terms illustrates that core-shell 

chromatographic supports exhibit less band broadening through eddy diffusion and 

resistance to mass transfer than fully porous chromatographic supports and monolithic 

columns. It has been demonstrated that variation of the porous shell can affect the overall 

chromatographic performance of the column and the importance of selecting the correct 

depth of porous layer to optimise the separation for small and large molecules has been 

highlighted. Through the use of kinetic plots and measurement of impedance, direct 

comparisons of the performance of various packed bed columns and, importantly, 

monoliths can also be achieved when a common scaling factor is introduced.115 
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1.4 Core-Shell Silica Microspheres in Liquid Chromatography 

A major challenge in liquid chromatography is to attain fast, efficient separation. 

This can be achieved by reducing particle size and increasing flow rate, but at the expense 

of very high back pressure, placing a huge burden on HPLC instrumentation. 2.7 μm core-

shell particles have shown comparable chromatographic performance to sub-2 μm particles 

while generating only slightly more back pressure than a 3 μm material. This can remove 

the need to use expensive UPLC equipment, while still attaining fast efficient separation. 

Since the introduction of modern core-shell particles many other manufacturers 

have introduced their own core-shell products. A particle diameter of around 2.7 μm was 

initially the only size offered, however manufacturers have since expanded this class of 

particles and columns packed with particles ranging from 1.6 to 5 μm are now 

commercially available in a variety of dimensions. A large range of bonded phase 

chemistries are also available which allows for the use of core-shell particles in various 

modes of liquid chromatography. Some examples of the use of core-shell microspheres in 

liquid chromatography are discussed in this section. 

 

1.4.1 Reversed Phase Chromatography 

Reversed phase analysis is the most frequently used mode of HPLC. When looking 

at the core-shell columns offered by manufacturers, reversed phase bonded chemistries 

are the most abundant, with C18 phases being particularly common. A number of 

comparative studies have been performed to investigate the performance of different 

manufacturers’ core-shell columns. 

Comparing the efficiency of Kinetex C18 with Halo C18, it was reported that the 

Kinetex material resulted in superior performance in the separation of proteins with no loss 

in peak capacity with increasing mobile phase velocity.116 It was concluded that the C term 

in the HETP plot for Halo particles was significantly larger. Another study indicated that this 

increase in performance could be a result of the difference in particles size between the 

Kinetex (2.6 µm) and Halo (2.7 µm).117 The result confirmed the extremely flat HETP curve, 

the very low C term of the Kinetex column and its ability to successfully operate at high 

flow rates while experiencing less efficiency loss than other columns.117 
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 A systematic evaluation was carried out by Oláh et al. to compare the kinetic 

performance on Kinetex and Ascentis Express columns by constructing van Deemter, Knox 

and kinetic plots using test mixture of estradiol, levonorgestrel, bicalutamide, and 

ivermectin.118 These results indicated that the Kinetex column offered faster mass transfer 

with a flatter C term. It was suggested that this difference in performance was due to the 

Ascentis Express column having lower loading capacity and retention factor than even fully 

porous particles. 

Columns packed with core-shell particles have been shown to provide high 

efficiencies with minimum reduced plate height values in the range of 1.7-1.5.36, 119 For low 

molecular weight analytes up to 300 Da, minimum reduced plate heights as low as 1.1 were 

obtained using a Kinetex C18 column.116 

DeStefano et al. reported fast, high resolution separation of naphthalene, 

virginiamycin, pesticides and explosives on Halo C18 and C8 columns.36 The reduced plate 

height plots for virginiamycin obtained from both columns were significantly lower than 3 

µm fully porous particles due to increased mass transfer. Guiochon et al. and others 

worked with the same type of columns, showing improved separation of large molecules 

such as proteins, moderate molecular weight peptides, and proteins digests of insulin, 

lysozyme, myoglobin, and bovine serum albumin.117, 120-122 

Core-shell particles with a different range of pore sizes in the shell have been 

developed by manufacturers to suit different analytes. Particles with pore sizes in the range 

of 8-10 nm are adequate for the routine separation of small molecules.123 Larger molecules 

require larger pores for efficient separation, for example particles with a pore size of 16 nm 

are useful for separating peptides and small proteins with molecular weights up to 

approximately 15 kDa.124 Larger superficially porous particles with a pore size of 40 nm 

allow very large molecules of up to 500 kDa unrestricted access to the bonded phase and 

are optimised for protein separations.125 

The relationship between the shell pore size and thickness was investigated to 

analyse diffusion of molecules.126, 127 The pore size was found to be the major contributor 

toward restricted diffusion of large protein molecules of around 400 kDa, which was 

comparable to previous studies on the effect of pore size in fully porous particles.127 The 

study involved the use of Halo C18 particles with pore sizes of 9, 16 and 40 nm for the 

separation of proteins such as myosin, ferritin, and β-amylase. Mass transfer kinetics can 

also be influenced by the shell thickness. When reducing the shell thickness from 350 to 
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150 nm, the A and B terms were both shown to be significantly reduced. Additionally, the 

analysis time of a reversed phase test mixture was almost halved by reducing shell 

thickness, while showing slightly improved efficiency.126 

 

1.4.2 Hydrophobic Interaction Liquid Chromatography Separation 

Unbonded silica phases and silica functionalised with diol, multiple hydroxyl or 

other polar groups can be used to increase retention of polar compounds such as 

carbohydrates, sugars, glycans, peptides and nucleic acids. This type of support would 

usually be classed as normal phase, however separation can instead be carried out under 

hydrophilic interaction liquid chromatography (HILIC) conditions.128, 129 HILIC 

chromatography can potentially be used for many types of polar compound separations. 

HILIC can be described as a variant of normal phase chromatography that partly 

overlaps with reversed phase. The stationary phase is hydrophilic but the method uses 

reversed phase type mobile phases with a small amount of aqueous content. The aqueous 

portion of the mobile phase forms a layer on the hydrophilic stationary phase, effectively 

creating a liquid/liquid extraction system in which analytes diffuse between the water 

deficient mobile phase and aqueous layer. Analytes are typically separated based on their 

polarity. More polar compounds have stronger interaction with the stationary layer and are 

thus retained for longer. 

A Halo Penta-HILIC column demonstrated fast separation of a mixture of 

nucleosides and bases with excellent peak shapes and efficiency in less than 9 min.130 It was 

also successfully used for the analysis of drugs of abuse such as cocaine, meperidine and 

methamphetamine. A comparative study with fully porous sub-2 µm and porous shell 2.7 

µm was carried out under HILIC conditions. The core-shell column offered faster separation 

time and reduced the backpressure by half, but generated 30% lower efficiency than 

predicted.131 

Core-shell particles can be also used in supercritical fluid chromatography (SFC) 

mode as it offers faster mass transfer and is environmentally friendly. Using supercritical 

CO2 as the mobile phase, a Kinetex HILIC column was used to separate a low molecular 

weight test mix, consisting of a range of small drug-like molecules. When compared with 3 

μm fully porous particles the core-shell column provided close to a 50% increase in 

efficiency and required only half the time to separate the test mix.132 
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1.4.3 Chiral Separation 

Chiral separation accounts for the analysis of more than a third of marketed drugs. 

Around half of all marketed drugs are chiral and of these it is estimated that half of these 

exist as mixtures rather than single enantiomers. As enantiomers of a chiral drug may 

behave differently in vivo, it is advantageous to isolate the biologically active form for 

treatment.133 There are a number of commercially available chiral phases such as 

polysaccharides,134, 135 cyclodextrins,136 and others,137 although there are very few examples 

of core-shell particles used in this capacity. 

One type of chiral core-shell material was discussed earlier, where 2.3 μm particles 

were synthesised with a 100 nm mesoporous shell of silica nanospheres bridged with a 

trans-(1R,2R)-diaminocyclohexane moiety.69 Rapid chiral separation was demonstrated for 

the analysis of racemic binaphthyl derivatives. Another recent study reported the coating 

of 2.6 μm Kinetex particles with polysaccharide chiral selectors.138 Particles were compared 

with a 3 μm totally porous material which had been coated using the same procedure. The 

columns were used for the enantiomeric separation of trans-stilbene oxide, benzoin and 

2,2-dihydroxyl-6,6-dimethylbiphenyl. 

The core-shell material displayed higher resolving ability compared to the totally 

porous material. This was observed for all three test compounds but was most pronounced 

in the case of trans-stilbene oxide. The core-shell column also resulted in significantly 

higher plate counts for all analytes. Although the core-shell material had slightly higher 

chiral selector content this cannot fully explain the observed improvement. An explanation 

could be that the chiral coating is more accessible to analytes when coated onto the 

material with superficial rather than deep through-pores. 

 

1.4.4 Narrow Bore and Capillary HPLC 

In recent years, column miniaturisation has been investigated and tested in order 

to achieve highly sensitive chromatography. Miniaturised columns are more suitable for 

handling minute or dilute samples, especially in areas such as forensic science and drug 

trials. The idea of miniaturisation is to provide higher sensitivity and peak capacity than 

standard columns with minimal dead volume for small sample amounts.139 Although it is 

possible to use narrow bore columns of 1-2 mm i.d. on conventional HPLC systems, the 

instrument typically requires modification to reduce dead volume. This becomes much 
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more difficult when dealing with capillary columns as the pump needs to be adapted to 

accommodate low mobile phase flow valves. On-capillary sample injector and detection 

can be used to reduce dead volume. Studies on the efficiency between narrow bore and 

analytical type columns reveal the same column performance, due to the packing and wall 

effect.140, 141 To overcome some of these issues various packing methods have been 

applied, such as dry packing,142 high-pressure slurry packing,143 and centripetal force 

packing.144 The majority of studies have been performed using conventional 3-5 µm silica 

microspheres. Although improved chromatographic performance can be obtained by 

reducing particle size to 1.7 µm, this results in increased backpressure.8 In this regard, core-

shell particles may be utilised to improve separation efficiency and speed, negating the 

need to use very small particles. 

Comparative studies have been performed to compare the efficiency of narrow 

bore core-shell columns (2.1 mm i.d.) with monolithic columns in the analysis of silybin 

diastereoisomers.145 In the case of one analyte, silybin A, the core-shell Kinetex column 

provided markedly higher efficiency, hmin = 2.8, versus 5.6 for the Chromolith monolithic 

column. The resolution power was found to be comparable, but the Kinetex column 

required higher pressure to achieve the same separation. In contrast the monolith column 

displays higher permeability and significantly lower back pressure at high linear velocities. 

The large pore size also reduces the chance of clogging, which can be problematic during 

the separation of biological samples. 

Omamogho et al. found that the performance of core-shell particles, particularly 

those with a thin shell, could be negatively affected by extra column band broadening 

when packed into narrow bore columns.146 As an example, 2.6 μm Kinetex particles packed 

into 4.6 mm i.d. columns resulted in what is possibly the lowest ever measured reduced 

plate height of 1.1.116 However, when packed into 2.1 mm i.d. columns the reduced plate 

height of 1.9 was the minimum achieved. This suggests that the packing of narrow bore 

columns does not provide comparable packed bed homogeneity to that of the standard 

bore columns. Any voiding in the packed bed within a narrow bore column would perhaps 

be more pronounced than in a standard bore column as it would represent a larger percent 

of the column volume. Gritti et al.147 studied the mass transfer kinetics of the 1.7 μm 

Kinetex material packed in a 2.1mm i.d. column, and found the minimum reduced plate 

height was above 2.0. This suggests that the issue of packing narrow bore columns is 

compounded when the packing materials are finer, such as the sub-2 μm particles. 
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Gritti et al. also carried out systematic studies using different type of core-shell 

particles and investigated the effect of internal diameter of the column on efficiency.148 The 

study showed that 4.6 mm i.d. columns provide larger column efficiencies than 2.1 mm i.d. 

columns packed with the same particle batch. This was the case for four different 

manufacturers’ core-shell particles. Investigation of the mass transfer mechanism showed 

that the long range eddy dispersion HETP term is larger in narrow-bore than in wide-bore 

modern HPLC columns. This can be explained by the fact that radial excursion distance 

from the column centre to the wall is smaller in the case of the 2.1 mm column, hence the 

sample of interest reaches the column wall faster than in a 4.6 mm column. Therefore, the 

dispersive wall effects are smaller in 4.6 mm than in 2.1 mm columns because the former 

are operated in a dispersion regime that is closer to that of an infinite diameter column, 

free from wall and border effects. 

Currently there are few studies published on the application of core-shell particles 

in capillary columns. Most of these involve capillary electrochromatography. Fanali et al. 

used 100 µm i.d. fused silica capillaries packed with 2.6 µm core-shell Kinetex C18 particles 

for the analysis of different brands of green and black tea constituents.149 A method for the 

simultaneous separation of several polyphenols and methylxanthines in a single run, 

employing a nano-HPLC system, was developed. The core-shell material demonstrated 

retention factors and sample loading capacity slightly lower than those observed for the 

sub-2 μm column. However, similar efficiency separations, sharper peaks in the 

chromatogram and shorter analysis time were obtained. Accurate masses of the tea 

constituents were determined by coupling with mass spectrometry detection. Due to the 

use of the capillary column flow splitting was not required, resulting in better signal and 

sensitivity. 

In another study, 2.6 μm phenyl-hexyl core-shell particles were packed into various 

sized capillary columns with internal diameters of 25, 50, 75, 100 and 150 µm. The kinetic 

performance of each was compared and also used to separate a mixture of aromatic 

hydrocarbons.150 Higher plate counts were obtained with decreasing capillary diameter 

without significant decrease of efficiency, with the highest plate number observed for the 

25 µm capillary. This appears to contradict the study by Gritti et al.,148 which concluded 

that larger i.d. columns result in higher efficiency. However in nano-LC, with adequately 

prepared capillary columns, the effects of extra-column dead volumes are minimised due 

to on-capillary sample injection and detection. Indeed, the results indicated that extra band 

broadening observed with narrow bore columns was almost excluded in capillary columns. 
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This was particularly true for the 25 μm i.d. capillary which displayed a virtually flat HETP 

plot for n-butylbenzene, even at high linear velocities.  

  

1.4.5 Capillary Electrochromatography 

Capillary electrochromatography (CEC) is a separation technique in which the 

mobile phase is driven by an electro-osmotic flow rather than pressure. CEC combines the 

separation and selectivity of HPLC and the high efficiency of capillary electrophoresis.151 

The role of stationary phase has been investigated for improved separation. A variety of 

stationary phases has been tested such as silica and polymeric materials with different 

bonded phases.151-153 Core-shell particles have shown a great success in conventional liquid 

chromatography however the use of these particles in CEC is so far rather limited. 

Fanali et al. compared the performance of capillary columns packed with fully 

porous and core-shell silica particles for chiral separation in CEC mode.154 The particles 

were coated with cellulose tris(4-chloro-3-methylphenylcarbanate), a polymer-based chiral 

selector. The capillary column packed with 2.8 µm core-shell particles showed baseline 

separation of warfarin and temazepam with excellent peak shapes compared to 3 µm fully 

porous particles. This study has shown that porous shell particles can perform in CEC mode 

without any loss of resolution or efficiency. It would be interesting if these particles can be 

expanded into separation of other mixtures. 

 

1.4.6 Two Dimensional Liquid Chromatography 

Two dimensional liquid chromatography (2D-LC) is a technique where the injected 

sample is analysed by the use of two separation stages. This is accomplished by injecting 

the eluent from the first column onto a second column. An example schematic of 2D-LC 

instrumentation is shown in figure 1.15. While applications exist which utilise a pair of 

identical phases, the two phases do not necessarily need to be the same. With an alternate 

(orthogonal) phase in the second dimension column, it becomes possible to separate 

analytes that are poorly resolved by the first column or to use the first dimension as a 

clean-up step. The main advantage of this method over conventional one-dimensional 

chromatography is the potential for a large increase in peak capacity. This can be achieved 

without requiring particularly efficient separations from either column as, under ideal 
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conditions, it is possible to obtain a total peak capacity equal to the product of the first and 

second separations.155 The major disadvantage however is the long timescale involved in 

comprehensive 2D-LC. Gradient run times can exceed several hours, however theoretical 

peak capacities in the thousands can be achieved if a longer analysis time is acceptable.156, 

157 

 

 

Figure 1.15 Schematic of instrumentation used for 2D-LC.155 

 

Examples of the use of core-shell particles in 2D-LC include pharmaceutical and 

food analysis. In one study by Alexander et al., the increased resolving power when using 

the reversed phase dual core-shell secondary columns confirmed the presence of minor 

components from the degradation of a drug compound.158 This is particularly relevant for 

pharmaceutical applications as it addresses the problem of separating co-eluting impurities 

that may be hidden within a large peak of the active pharmaceutical ingredient, thus 

escaping detection. Very fast gradient separations were achieved at ambient temperature 

and reasonable operating pressure without compromising optimal first dimension sampling 

rates. The sensitivity of the interface was demonstrated in the analysis of a 1 mg/mL 

standard mixture containing 0.05% of a minor component. 

In the analysis of pesticides in food, a fully porous HILIC column provided fast on-

line clean-up of the samples in the first dimension, followed by analysis using either C18 

core-shell or totally porous columns.159 The combination of HILIC and reversed phase 

chromatography provided high orthogonality and was shown to be capable of analysing 
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over 300 compounds with good sensitivity and robustness. For the majority of compounds, 

no significant differences were observed between the second dimension columns. Small 

variations were found for the retention times but not for peak shape or signal intensity. 

The core-shell material produced the best performance in this second dimension, providing 

narrow, well separated peaks and also the best sensitivity. 

 

1.5 Applications of Core-Shell Particle Columns 

Some applications have already been covered in the previous section when 

discussing the types of liquid chromatography employing core-shell particles columns. This 

section will provide further example applications. Although not an exhaustive list, it intends 

to show that columns packed with core-shell particles are routinely used for analysing a 

large variety of samples in different fields. 

 

1.5.1 Proteins, Peptides and Biomolecules 

Kirkland et al. published an overview describing the range of Halo core-shell 

particles and their optimisation in separating particular groups of compounds based on 

their size and properties.130 The first Halo core-shell particles developed by AMT were 2.7 

µm in diameter with a 0.5 µm shell, 9 nm pores and a surface area of 135 m2/g. These were 

developed mainly for separation of small molecules. Due to the poor diffusion by larger 

analytes into the pore system, core-shell particles with 16 nm pores were later introduced 

which were more suitable for the separation of peptides and small proteins up to around 

15 kDa.160 A test mixture of five proteins (6-14 kDa) was analysed on two C18 core-shell 

columns with pore diameters of 9 and 16 nm. As shown in figure 1.16 A, the 16 nm material 

resulted in much sharper peak shapes for all analytes. 

Most recently, core-shell particles with even wider pores were introduced for the 

analysis of large proteins and biomolecules.161 Analytes up to around 400 kDa were 

efficiently separated using this column without observing any restrictive diffusion that 

would hinder the chromatographic performance. When compared with fully porous 

particles, the column packed with core-shell particles provided better chromatographic 

performance in the analysis of carbonic anhydrase (29 kDa). The van Deemter plot in Figure 

1.16 B shows higher efficiency for the core-shell column at the minimum plate height and 
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the also a far smaller increase in plate height as the mobile phase velocity was increased. 

This is a result of the superior mass transfer and reduced C term, facilitated by the thin, 

highly porous shell.123 

 

 

Figure 1.16 Effect of increasing pore size from 9 nm to 16 nm on the separation of a 

protein test mix containing ribonuclease A, bovine insulin, human insulin, cytochrome c and 

lysozyme (A).160 Comparative van Deemter plots for 40 nm core-shell and 30 nm totally 

porous particles for the analysis of carbonic anhydrase (B).123 

 

Wagner et al. systematically investigated the effects of particle size, pore size, shell 

thickness and bonded phase effects on the analysis of biomolecules.127 By altering the 

physical properties of the particles they were able to optimise these parameters to produce 

particles capable of delivering fast, efficient separation of specific molecular sizes. A 

comparison between the stationary phases with differing pore size in figure 1.17 shows 

restricted diffusion for larger molecules such as ribonuclease A (14 kDa) and insulin (6 kDa) 

on the 9 nm C18 phase, and that increasing the pore size to 16 and 40 nm improves the 

peak shape and resolution. The effect is most apparent for the largest analyte, ribonuclease 

A. In a study on shell thickness, 2.7 µm overall diameter particles with 0.35 µm shell 

thickness and 3.4 µm overall diameter particles with 0.2 µm shell were compared, both of 

which had a wide pore size of 40 nm.127 Unusual results were obtained when van Deemter 

plots were produced for the proteins studied, where the larger diameter particle showed a 

smaller plate height, especially at higher mobile phase velocity, which was attributed to the 

reduced shell thickness. When compared with 3 µm totally porous particles, the superior 

mass transfer of the core-shell particles resulted in faster protein separation and improved 

resolution. 
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Figure 1.17 Effect of pore size on peak width and resolution of a protein/peptide test 

mixture. Peak identities: 1) Gly-Tyr, 2) Val-Tyr-Val, 3) methionine enkephalin, 4) angiotensin 

II, 5) leucine enkephalin, 6) ribonuclease A, 7) insulin. Peak widths in minutes measured at 

50% height.127 

 

Staub et al. made comparisons between totally porous sub-2 µm and sub-3 µm 

core-shell particles for the analysis of peptides, proteins and protein digests.162 

Chromatographic performance was found to be similar between the two types of silica. 

Analysis of a test mixture containing six peptides using a selection of C18 core-shell and 

C18 sub-2 µm columns showed comparable results for all in terms of resolution and peak 

capacity. The overlaid chromatograms are shown in figure 1.18. All columns were able to 

fully separate the mixture within 3.5 min. However, the core-shell columns generated little 

more than half the back pressure compared with the sub-2 µm column. Each column was 

also tested using a tryptic digest of four proteins, equivalent to approximately 160 

peptides, with a goal of improving peak capacity and resolution. Again, the results were 

comparable between the four columns and all yielded close to the target number of peaks. 

 



Chapter 1: Introduction 

45 

 

Figure 1.18 Overlaid chromatograms of peptide test mix separated on three core-shell 

columns: Halo C18, 2.7 µm; Poroshell 120 EC-C18, 2.7 µm; Kinetex C18, 2.6 µm and one 

totally porous column: Acquity C18 BEH 120, 1.7 µm. All column dimensions 50 × 2.1 

mm.162 

 

Ruta et al. evaluated the performance of core-shell particles for the separation of a 

range of pharmaceutical compounds.163 A test mixture of 13 analytes including basic drugs 

and acidic compounds was investigated using columns packed with a variety of core-shell 

and sub-2 µm particles. An identical elution order was seen on the four columns tested 

under acidic conditions, as any residual silanols on the surface of the stationary phase were 

neutral at pH 2.7 and a reversed phase mechanism should govern the retention. There 

were some changes observed in selectivity between columns, but with some small 

adjustments it should be possible to transfer a method developed for the sub-2 µm column 

to a core-shell column. Under neutral conditions, surface silanols were deprotonated and 

changes in retention time and selectivity were observed due to differing silanol activity 

between columns. Peaks found to be tailing under acidic conditions showed improved 

width and asymmetry at neutral pH. Selectivity between columns was similar, though there 

were certain peaks where one type of particle provided superior resolving power than the 

other, highlighting the potential for method transfer. 

Fekete et al. described the use of 1.3 µm core-shell particles for separation of small 

molecules and peptides.164 Looking at the kinetic properties of these small particles, the 

van Deemter plot was extremely flat over the entire range of mobile phase velocity. In 

isocratic mode, the new core-shell 1.3 µm particles provided excellent efficiency for 

peptides as the column could be run at the optimal flow rate thus minimising longitudinal 
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diffusion. When analysing peptides in the gradient elution mode, the 1.3 µm particles 

offered the fastest separation up to a peak capacity of 700. 

 

1.5.2 Food Analysis 

As the use of core-shell particles is a comparatively recent trend in 

chromatography, their use in fields such as food analysis is still emerging. Some examples 

include the determination of toltrazuril and its metabolites,165 corticosteroids,166 

chloramphenicol,167 and flavonoids168 in foodstuffs and the detection of neonicotinoids in 

beeswax.169 The latter described a new method to detect a total of 7 neonicotinoids in 

beeswax using liquid chromatography coupled to electrospray ionisation mass 

spectrometry (ESI-MS).169 Initial stock solutions were tested to develop the method before 

samples taken from 30 apiaries located close to fruit orchards were analysed. In total 11 

samples were found to show neonicotinoid residues at low levels (11-153 µg/kg). The 

method demonstrated consistent and reliable results and optimisation of the preparation 

method allowed for good recoveries at different concentrations. 

Another important use of core-shell columns is in the detection of contaminants 

originating from food packaging, such as the migration of compounds.170 One application is 

concerned with detecting bisphenol compounds in soft drinks and canned foods using a 

liquid chromatography-tandem mass spectrometry method (LC-MS/MS).171 Epoxy-based 

laquers are commonly used as a coating on the inside of food containers to reduce food 

spoilage and prevent degradation of the container itself. Some coatings are based on 

polymerisation of bisphenol A-diglycidyl ether (BADGE) or bisphenol F-diglycidyl ether 

(BFDGE) which can release these compounds and derivatives into the packed foods. As well 

as this, hydrolysed and chlorinated derivatives such as BADGE·H2O, BADGE·2H2O, 

BFDGE·H2O, BFDGE·2H2O, BADGE·HCl, BADGE·2HCl and BADGE·HCl·H2O can also be 

produced, especially when the coating is thermally treated or comes into contact with 

acidic and aqueous contents. Current LC-MS/MS methods of analysis use conventional 3-5 

µm particles, leading to long analysis times when detecting both BADGE and BFDGEs in the 

same run. The aim was to develop a faster method using LC-MS/MS. In this study a core-

shell 2.7 μm Ascentis Express C18 column was chosen over a sub-2 µm column as the lower 

back pressure generated (200 versus 513 bar at 600 μL/min) enabled a longer column 

length of 150 mm to be utilised.171 Efficient separation of detected BADGEs in asparagus 

was achieved using the core-shell column, with a run time of under 5 min. Figure 1.19 
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shows the chromatograms in which BADGE·H2O, BADGE·2H2O, BADGE·HCl, BADGE·2HCl 

and BADGE·HCl·H2O were detected. 

A further investigation by the same group was concerned with analysis of 

bisphenols in canned soft drinks.172 Bisphenol A (BPA) is widely used in the production of 

the resin coating of drinks cans, therefore contents may be expected to contain traces of 

BPA derivatives. As there is an abundance of toxicity data for BPA, limits are in place on 

migration limits from coating to food as well as tolerable daily intake. Due to these 

restrictions, other bisphenol compounds are being considered for use in place of BPA, 

however there is significantly less published data on these alternatives and for most, no 

limits have yet been proposed. An online solid phase extraction (SPE) LC-MS/MS method 

was developed using the same core-shell column as in the previous example. The SPE LC-

MS/MS method was then used for the analysis of bisphenols in eleven canned soft drinks. 

BPA was detected in most samples and bisphenol F found in only two. The rest of the 

bisphenol compounds were not identified. The use of a SPE clean-up step allowed the 

analysis of bisphenols at concentrations lower than 100 ng/L and the method was shown to 

be robust and sensitive enough for routine analysis of these compounds. 

 

 

Figure 1.19 LC-MS/MS chromatogram in SRM acquisition mode for the analysis of 

BADGEs in asparagus.171 
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1.5.3 Environmental 

Core-shell technology has also found its way into the analysis of water samples, 

including drinking water, surface water and sewage. Various techniques are used for the 

detection of antibiotics,173 drugs of abuse,174-176 oestrogens,177 bisphenols,178 

pharmaceuticals,179 herbicides, and pesticides. Pesticides are widely used in agriculture to 

protect crops from threats such as weeds, disease and insects, however they can also cause 

environmental pollution in water and wildlife as well as serious health effects in human 

beings. As such, maximum contamination values in drinking water for a number of 

pesticides have been established by several legislative bodies. 

As pesticides are usually detected at low concentrations, highly sensitive 

techniques are required to analyse them. Off-line SPE followed by gas or liquid 

chromatography coupled to mass spectrometry (GC-MS or LC-MS) is the most common 

approach. The downside is that off-line SPE methods are time consuming and typically 

require high sample volumes. Hurtado-Sánchez et al. developed a fast, sensitive method 

utilising on-line SPE coupled with HPLC and tandem mass spectrometry (SPE-LC-MS/MS).180 

The method was initially optimised and validated by spiking water samples with a known 

concentration of a number of pesticides to assess the precision and linearity of the method, 

as well as establish detection limits. Matrix effects were also studied and for most 

compounds were found to be diminished by dilution of samples with pure water. Real life 

surface water samples were then collected and analysed for polar pesticides using this 

method. A 50 × 4.6 mm column packed with 2.7 µm Poroshell 120 EC-C18 particles was 

used. Among the samples tested, the highest number of pesticides were detected in 

irrigation waters from agricultural sources. Six compounds were found at trace levels above 

the detection limit. Additionally during the validation of the method, three compounds that 

were found not to be retained with off-line SPE were also successfully analysed. The 

method was shown to be highly effective and suitable for use in routine analysis. 

Another study by Zhang et al. presented an alternative SPE and LC-MS/MS method 

to analyse a range of herbicides in environmental water.181 The method was validated by 

addition of target herbicides into water samples at two concentrations. The recoveries of 

31 compounds were monitored, the majority of which achieved acceptable values of 

recovery and repeatability. As part of the method validation, limits of detection were 

calculated to be less than 10 ng/L for the majority of compounds. The method was then 

applied to the analysis of storm water samples. 24 of the 31 monitored herbicides were 
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detected in a wide range of concentrations. Comparison of the 2.6 µm Kinetex core-shell 

column to a 5 µm totally porous material showed an improvement in efficiency and the run 

time was halved. 

Chocholouš et al. looked at the advantages of core-shell technology in the 

determination of phenolic acids using a sequential injection chromatography (SIC) 

method.182 These compounds are hydroxylated derivatives of benzoic or cinnamic acid and 

are commonly found in plants. Phenolic acids have attracted considerable interest in the 

past few years because of their potential health benefits. They are powerful antioxidants 

which show antibacterial, antiviral, anti-carcinogenic, anti-inflammatory and vasodilatory 

action. Typical stationary phases used in SIC are monolithic sorbents with C18 or surfactant 

functionalisation. By contrast, core-shell particles are available with many different 

chemistries. The use of alternative phases allows for extended selectivity by increasing the 

number of interactions between the analytes and the stationary phase. Separation 

conditions were optimised for three core-shell columns with alternate functionalisation 

and their ability to separate a total of seven phenolic acids was compared. Using a reversed 

phase amide column provided the highest chromatographic resolution and allowed for 

complete baseline separation of protocatechuic, syringic, vanillic, ferulic, sinapinic, p-

coumaric and o-coumaric acids. Phenyl-hexyl and C18 columns were unable to completely 

separate the tested mixture, with some co-elution observed. The work demonstrated fast 

chromatographic separation as well as a simple, fast and low-cost analysis. 

Vinci et al. developed a liquid chromatography method to determine polycyclic 

aromatic hydrocarbons (PAHs) in rainwater.183 Many PAHs are considered as carcinogens, 

benzo[a]pyrene for example has been categorised as a human carcinogen since 1987. In 

general PAHs are not detected individually, but in mixtures. 16 have been monitored by the 

United States Environmental Protection Agency (EPA) and listed as priority organic 

pollutants due to their environmental effects. The method was optimised by testing a 

standard mixture containing all 16 EPA-PAHs which gave fast separation of all compounds 

with good resolution and sensitivity. Chromatographic performance was comparable to 

columns packed with a 1.8 µm totally porous material in terms of retention time and 

solvent consumption, but with the advantage of far lower operating pressure.184 When 

applied to the analysis of rainwater samples, PAHs were detected in each that were 

analysed and the method was shown to be viable for trace analysis of environmental water 

samples. 
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1.6 Summary 

It has been shown that core-shell particles can possess many different structures 

and morphologies. Core-shell particles, particularly nanospheres, have been widely 

investigated in materials science and are exploited for a very wide range of applications. 

For the majority of chromatographic applications, core-shell microspheres are utilised. This 

literature review has identified different types of core-shell particles and explained their 

preparation methods. The main focus has been on those methods used to produce core-

shell microspheres for chromatographic use. 

The LbL approach is the main method for the preparation of core-shell 

microspheres for use as the packing materials for HPLC columns. However there are 

limitations to this method, mainly the time-consuming multiple-synthesis and classification 

steps.  It has been shown that a monodisperse size distribution is typically preferred for 

packing materials. The microfluidic approach is very effective in producing monodisperse 

particles and therefore may have potential for use in chromatography. The versatility and 

low productivity of this approach have limited its application for production of HPLC 

packing materials so far. To address the time-consuming procedures in the LbL approach, a 

one-pot synthesis method has been developed resulting in the formation of SOS core-shell 

particles. Columns packed with SOS silica have shown promising performance in the 

separation of certain mixtures, although further optimisation is required to achieve 

comparable performance to commercial core-shell columns. 

It has been argued that the excellent performance and low back pressure from 

core-shell particle columns is a result of the monodisperse size distribution. This chapter 

has shown that, although a desirable quality, this is unlikely to be the single reason. It has 

been discussed and evidenced with test data, how these particles perform by means of A, B 

and C terms in the van Deemter equation and kinetic plots. The performance of core-shell 

particles has been compared with that of monolithic columns and totally porous silica 

microspheres, particularly current state of the art sub-2 μm materials. Columns packed 

with core-shell particles are now routinely used in reversed phase HPLC for a wide variety 

of applications. Examples have been discussed where both successful and potential method 

transfer from totally porous particles can be implemented, with comparable or improved 

performance and reduction in operating pressure. Indeed, columns packed with core-shell 

particles have been shown to be an ideal alternative to achieve fast, efficient separation. 

This is especially useful where UPLC instrumentation is not available. Applications in 
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different separation modes have also been discussed, for example HILIC and chiral 

separation, demonstrating the increasingly wide use of core-shell particles in HPLC. 

There is no doubt that core-shell particles will be continuously evaluated and 

investigated for highly efficient separation of new and complex mixtures. The challenges lie 

in the separation of isomers or molecules with very similar structures or properties, chiral 

separation and complex samples from biological, life sciences and proteomics. Researchers 

and manufacturers will need to carefully consider and adjust particle size, shell thickness, 

pore size, porosity and the surface functionalities to address various and specific separation 

needs. It is also vitally important to optimise the packing methods and instrumentation to 

allow the separations to be performed under optimal conditions. 2D-LC in particular is 

currently a fast-growing area of chromatography and it is important that core-shell 

particles play a significant role in this. 

 

1.7 Thesis Overview 

 The work presented in this thesis is focused on developing SOS particles for use in 

the HPLC separation of large molecules such as proteins. The experimental work aims to 

produce near monodisperse particles from the one-pot process without the need for 

classification, which would represent a vast reduction in production time compared to 

current core-shell materials. Resultant particles will then be bonded and the 

chromatographic performance assessed using HPLC. 

Chapter 2 describes the production of SOS particles, initially observing the effects 

of changing reagent type and concentration on the resultant morphology. This is followed 

up by optimisation work to produce near monodisperse particles with a complete shell of 

nanoparticles surrounding the core. Chapter 3 explores the possibility of using microwave 

irradiation as the heating source for the functionalisation of SOS particles. Although 

microwave equipment for scientific use has been available since the 1980s, there are very 

few literature examples where microwave heating has been utilised specifically for 

producing bonded silica materials for chromatographic purposes. In chapter 4 the 

chromatographic performance of SOS particles is assessed by HPLC, particularly for the 

analysis and separation of intact proteins. Finally, chapter 5 discusses a number of 

interesting particle morphologies which have also been discovered during the SOS 

development, through various modifications to the synthesis method. 
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2 Synthesis of Spheres on Sphere Silica Particles 

2.1 Introduction 

As has been discussed in the introduction, core-shell particles for use in HPLC are 

typically prepared by a time-consuming LbL approach. A simpler synthetic process or a one-

pot reaction would be highly advantageous, offering a reduction in reaction time, easier 

quality control and lower material costs. The particles should also have ideal properties for 

use in HPLC, namely spherical microspheres with narrow particle size distribution (PSD). 

The recent discovery of spheres on sphere (SOS) particles1 offers a route to a new type of 

core-shell morphology obtained from a fast, one-pot reaction. 

This chapter will discuss SOS particles, describing the synthesis and morphology. 

The reaction is based around the Stöber method of producing silica spheres,2 therefore it 

will also be important to consider the basis of this reaction and alkyl orthosilicate 

precursors in general within the literature review. 

The aim of the experimental work in this chapter is to investigate the synthetic 

procedure, observing the morphology changes from varying experimental parameters and 

to optimise the reaction conditions to produce SOS particles suitable for chromatographic 

use. 

 

2.2 Literature Review 

2.2.1 Alkyl Orthosilicate Precursors 

Many of the silica particles used in chromatography are produced from alkyl 

orthosilicate precursors. Alkyl orthosilicates have the structure Si(OR)4, where R is an alkyl 

chain typically ranging up to five carbon atoms in length. Tetraethyl orthosilicate (TEOS) is 

frequently used in the synthesis of silica particles.2-5 Alkyl orthosilicates are produced from 

the dropwise addition of silicon tetrachloride (SiCl4) to an anhydrous alcohol.6 The alcohol 

must be present in a 10% excess to ensure completion of the reaction and SiCl4 chilled to 0 

°C to control the reaction. Most of the residual hydrochloric acid is removed by sparging 

the reaction product with dry nitrogen gas, however calcium oxide may also be required to 

minimise the content of acid in the final product.7 Further purification can be achieved 

through vacuum distillation. 
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Silica materials are produced from alkyl orthosilicates firstly via hydrolysis of the 

orthosilicate to orthosilicic acid (H4O4Si), followed by condensation into further higher 

silicic acids with the general formula [SiOx(OH)4-2x]n.8 The reaction proceeds slowly under 

neutral conditions, and may instead be catalysed by the use of acidic or basic conditions. 

Under acidic conditions (figure 2.1), a hydrogen ion attacks oxygen in the orthosilicate 

allowing a water molecule to attack the silicon atom.9, 10 This results in the formation of a 

Si-OH group and the removal of the alkyl group in the form of an alcohol. Under basic 

conditions (figure 2.2), a hydroxide ion attacks the silicon atom directly, allowing a water 

molecule to attack the alkyl group. Again, this results in the removal of the alkyl group in 

the form of an alcohol, plus a new hydroxide ion.5, 9, 10 The net reaction is given as: 

n Si(OR)4  +  2n H2O    (SiO2)n  +  4n ROH 11 

 

 

Hydrolysis 

 

 

Condensation 

 

Figure 2.1 Acid catalysed hydrolysis and condensation.10 
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Hydrolysis 

 

 

Condensation 

 

Figure 2.2 Base catalysed hydrolysis and condensation.10 

 

2.2.2 Stöber Particle Synthesis 

The Stöber process is a commonly reported synthesis of solid monodisperse silica 

spheres.2 This reaction utilises alkyl orthosilicates as the silica precursor, added to a 

solution containing water, a low molecular weight alcohol and is catalysed by a base. The 

reaction scheme is shown in figure 2.2. A key advantage to using basic over acid catalysed 

reactions is the tendency to form monodisperse spheres. Stöber systematically studied the 

reaction and found the resultant particle diameter could be varied between 50 nm and 2 

μm, depending on choice of silica precursor, choice of alcohol and the volume ratios of 

reagents. The reactions were performed at room temperature with constant agitation. The 

use of sonication, shaking and magnetic stirring were all found to be effective at keeping 

particles in suspension during formation. The total amount of solution in each experiment 

was in the range of 50-110 mL, although the reaction volume was increased to 2 L for one 

experiment to assess any change in particle morphology. The scaled up reaction yielded 

identical results to an 80 mL reaction, using the same concentration of reagents. 

The alcohols investigated were methanol, ethanol, n-propanol and n-butanol. The 

reaction rate was found to be fastest when using methanol, which also resulted in the 

smallest particle size. The reaction rate was slowest with n-butanol and led to the largest 

particle size. A broad PSD was also observed when using larger alcohols; however a 1:1 
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mixture of methanol and n-butanol provided more uniform large particles. A similar 

relationship between reaction rate and particle size was observed when changing the 

carbon chain length of the orthosilicate. The alkyl orthosilicates used were tetra methyl 

orthosilicate, tetra ethyl orthosilicate, tetra n-propyl orthosilicate, tetra n-butyl 

orthosilicate and tetra n-pentyl orthosilicate, which were redistilled before use. The fastest 

reaction and smallest particle size were again obtained when using tetra methyl 

orthosilicate while the slowest reaction and largest particle size was observed with tetra n-

pentyl orthosilicate. The PSD was also broadened as the particle size was increased. 

 An investigation into the influence of the concentration of water, ammonia and 

alkyl orthosilicate was made using ethanol and TEOS in the reaction.2 Ammonia had a large 

influence on the morphology and created spherical particles whenever it was present 

during the reaction. In the absence of ammonia, irregularly shaped particles were formed. 

An increase in ammonia concentration led to the formation of larger particles. The largest 

spheres were obtained when the reaction mixture was saturated with ammonia (8 M). 

When the water concentration was varied, a maximum particle size of around 800 nm was 

reached when the concentration of water was around 6 M. Different concentrations of 

TEOS did not have a significant influence on particle size. 

 The work was extended by Bogush et al., who established the ranges of reagent 

concentrations that would result in the production of monodisperse silica particles from 

the reaction composed of water, ethanol, ammonia and TEOS.3 Concentration ranges were 

reported as 0.1-0.5 M for TEOS, 0.5-17 M for water and 0.5-3M for ammonia. The reaction 

volume was varied between 150 mL and 4 L without significant variation in final particle 

size and reactions were left to stir at room temperature for 3-8 hours. The maximum 

particle size achieved was again found to be around 800 nm, which was obtained when 

using concentrations of 0.3 M TEOS, 7 M water and 2 M ammonia. The particle size was 

found to go through a maximum as both water and ammonia concentration were 

increased. 

Additionally, the study established a relationship between the final particle size and 

the initial reagent concentrations. The resultant expression was determined from 

experimental observations of around 100 samples. DP is the average diameter in nm and 

reagent concentrations are shown in mol/L. 
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DP = A[H2O]2 exp(-B[H2O]½) 

A = [TEOS]½ (82 - 151[NH3] + 1200[NH3]2 - 366[NH3]3) 

B = 1.05 + 0.523[NH3] - 0.128[NH3]2 

 

The predicted diameters plotted against the experimentally observed diameters 

found that the majority of the data falls within 20% deviation. Likewise, the resultant 

particle size obtained experimentally from varying water and ammonia concentration 

provide very close values to those predicted by the above relationship. 

Although it is possible to achieve monodisperse particles from the water, ethanol, 

ammonia and TEOS reaction, the maximum diameter appears to be limited to around 800 

nm. Several strategies have been suggested to increase the particle size. Stöber et al. 

performed the reaction with alternative alcohols and alkyl orthosilicates.2 The synthesis of 

particles up to 2 μm in size was reported in this case, however the PSD was significantly 

broadened. Alternative methods are to increase the ionic strength of the reaction,12 or to 

perform the reaction at reduced temperature. For example, when conducting the synthesis 

at -20 °C particles around 1.9 μm in diameter were produced, compared to 0.5 μm at room 

temperature.13 

Another method is to use seeded growth. Bogush et al. conducted experiments 

where a seed suspension is initially prepared using normal Stöber reaction conditions.3 The 

size of the seed was not found to influence the PSD of the final product and was selected 

on the basis of the desired final size. Additional TEOS and water were added to the seed 

suspension in a 1:2 molar ratio after the seed suspension had stopped reacting. Up to twice 

the original amount of TEOS was added in each subsequent addition at an interval of 8 

hours for up to 10 additions. Particles up to 1 μm in diameter were produced using this 

method. 

Similarly, Giesche described the preparation of monodisperse silica particles by a 

controlled growth process.7 Mixtures of TEOS/ethanol and ammonia/water/ethanol were 

added continuously to a suspension of seed particles, with the addition rate controlled by a 

pair of peristaltic pumps. Monodisperse particles up to 3.6 μm in diameter were produced 

by this method. The equipment used however was highly complex and required the TEOS 

to be vacuum distilled and further treated with calcium oxide to remove any residual 
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hydrochloric acid from the synthesis. Additionally it was important to avoid any reaction in 

the TEOS/ethanol droplets before they reached the seed suspension as any pre-hydrolysis 

can result in secondary nucleation. The TEOS/ethanol inlet was therefore adjusted to 

obtain free falling droplets which were added in a flow of dry air to keep any ammonia 

present in the gas phase away from the inlet. 

As another example of continuous seeded growth, Unger et al. described the 

formation of monodisperse silica particles with mean particle diameters between 0.05-10 

μm.14 The particles were produced by a two-step process. Initially a suspension of seed 

particles was prepared, followed by controlled addition of an alkyl orthosilicate until the 

desired particle size was achieved. Of the examples stated in the patent, the largest 

diameter was 3.1 μm. The number of initial seed particles defined the total number of 

spheres produced. No new particles were synthesised from the secondary addition of the 

silica precursor, instead the rate of addition was controlled to the extent that only growth 

upon the initial seeds was observed. 

 

2.2.3 Surfactant Templated Silica 

The particles produced from the Stöber reaction are typically non-porous and 

therefore have low surface area. In many applications, particularly chromatography, 

porosity is important to facilitate retention and efficient separation of analyte molecules. 

Porous materials can be classified into three groups according to their pore size: 

microporous (<2 nm), mesoporous (2-50 nm) and macroporous (>50 nm).15 Porosity may be 

generated by the use of templates present during the synthesis reaction. Micropores and 

mesopores are typically formed by the use of ionic surfactants,16, 17 or block copolymers.18 

Macropores require larger templates and can be formed by emulsion templating,19, 20 

colloidal templating,21, 22 or polymer gel templating.23-25 

Surfactants are organic compounds that are amphiphilic, consisting of a hydrophilic 

head (typically a polar group) and a hydrophobic tail (typically a hydrocarbon chain). They 

are classified according to the polar head group. They may be described as non-ionic, 

anionic, cationic or zwitterionic, depending on the overall charge and functionality present 

on the head. The amphiphilic nature means that they have a tendency to assemble at 

interfaces,26 reducing the system free energy. The surface tension varies strongly with the 

concentration of surfactant and subsequently surfactants are induced to aggregate into 
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micelles. In 1913 McBain described the basic ideas for spherical colloidal micelles, termed 

“colloidal ions”, prepared in soaps and detergents.27 This later led to the introduction of the 

concept of critical micelle concentration (CMC). 

The CMC is an important characteristic of a surfactant. This is defined as the 

surfactant concentration above which micelle formation occurs. In the micelle structure, 

the hydrophobic tails of the surfactant molecules are contained within roughly spherical 

aggregates, while the head portions form an outer layer around which water molecules are 

present.28 Beyond the CMC, self-assembly occurs to form micellar rods.29 Increasing the 

concentration further leads to agglomeration into hexagonal, lamellar or cubic liquid crystal 

structures, depending on concentration and temperature.30 These liquid crystal phases may 

be used as templates to form porous materials. 

There has been extensive interest in the synthesis of mesoporous silica materials 

since the discovery of the M41S materials by the Mobil group in 1992.16, 31 Notable 

examples include MCM-41, MCM-48 and MCM-50, which possess hexagonal, cubic and 

lamellar mesostructures, respectively. The abbreviation MCM refers to Mobil Composition 

of Matter. The synthetic procedure utilised aggregates of surfactant molecules in the form 

of a liquid crystalline phase as structure directing agents. This led to the assembly of an 

ordered mesostructured composite around which the condensation of silica precursors was 

performed under basic conditions. Materials with narrow pore size distribution, high 

surface area and high ordering of mesopores were then obtained by removal of the 

surfactant by calcination or acid extraction. The pore size can be directly controlled by the 

choice of surfactant. Cetyltrimethylammonium bromide (CTAB), containing a C16 

hydrophobic tail, is commonly used in the formation of mesoporous silica materials. Beck 

et al. reported the use of surfactants with shorter tails (C14, C12 and C8), noting that 

reducing the chain length led to the production of MCM-41 with smaller mesopores which 

correlated directly with the size of the micelle.31 Achievable pore sizes were in the range of 

2-15 nm. 

Two mechanisms have been proposed to describe the formation of the M41S 

materials. One possibility is a true liquid crystal templating mechanism, shown in figure 2.3. 

In this case, the concentration of surfactant (CTAB) forms a lyotropic liquid crystalline 

phase without requiring the addition of a silica source (TEOS).32 The silica source, once 

added, then undergoes condensation around the hexagonal CTAB template. Alternatively, 

the second method proposes that addition of TEOS to a CTAB solution induces ordering of 
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silicate-encased surfactant micelles simultaneously, and that micelle formation requires the 

presence of the silicate. 

 

 

Figure 2.3 Formation of the mesoporous silica material MCM-41 via a true liquid 

crystal templating mechanism.32 

 

The initial studies into the M41S family of materials led to other research groups 

developing alternative synthetic methods to obtain mesoporous silica materials. One 

alternative is the Santa Barbara Amorphous (SBA) class of silica materials, synthesised 

under acidic conditions.18, 33 This class of materials, particularly SBA-15, have also earned 

much attention due to their excellent thermal stability, variable pore size, and tailored 

particle morphology. The pore system consists of a mesoporous network formed as a result 

of a liquid crystal template arrangement, using the amphiphilic, non-ionic triblock 

copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) as the 

structure directing agent.34 Pore sizes from 30-100 nm could be obtained via this 

templating method.18 

 

2.2.4 Spheres on Sphere Particles 

Ahmed et al. described a method of producing uniform porous silica microspheres 

from TEOS, using a modified Stöber reaction.35 The addition of CTAB to the reaction was 

found to introduce porosity into the particles. A hydrophilic polymer, poly(vinyl alcohol) 

(PVA), was also introduced which stabilised the particles, prevented aggregation and 

facilitated the production of uniform and well-dispersed particles with high surface area. 

The average pore size of the particles was measured to range from 2.5-3.5 nm when using 

CTAB as the templating agent, depending on the type and concentration of polymer used. 



Chapter 2: Synthesis of Spheres on Sphere Silica Particles 

69 

While small pores are suitable for catalysis, sensors and controlled delivery, silica 

particles for use HPLC typically require mesopores in the range of 6-50 nm to achieve 

efficient separation.36 Ahmed found that the pore size could be increased up to 6.5 nm by 

the use of swelling agents and hydrothermal treatment. The monodisperse PSD and 

resultant mesoporous structure would make them ideal for chromatographic use, however 

the small diameter of the particles, typically less than 1 μm, meant that high backpressure 

would likely prove problematic when packed into HPLC columns and subsequently they 

were not used for this purpose. 

Following on from this work led to the discovery of SOS particles.1 This is a new 

type of core-shell particle produced from an alternative modified Stöber reaction using the 

silica precursor 3-mercaptopropyl trimethoxysilane (MPTMS). Again, CTAB and PVA were 

present in the reaction to act as a template and stabilising agent respectively. Particles 

were formed in a one-pot reaction and were composed of a large core surrounded by a 

single layer of nanospheres up to 200 nm in diameter. The mean particle diameter was 

around 5.5 μm with a broad PSD. Analysis by nitrogen adsorption found the SOS material to 

be microporous, with surface area of around 200 m2/g and peak pore sizes of 0.91 and 1.54 

nm after calcination in air at 600 °C. The SEM image and nitrogen adsorption data are 

shown in figure 2.4. 

 

 

Figure 2.4 Scanning electron microscope (SEM) image of SOS particles (A). Nitrogen 

adsorption data (B) and pore size data (B, inset).1 

 

 



Chapter 2: Synthesis of Spheres on Sphere Silica Particles 

70 

The formation of SOS particles was discussed briefly in the introduction. In a time 

study, the morphology of particles produced at various intervals during the synthesis was 

imaged by SEM. As shown in figure 1.7 in chapter 1, it was found that particles are 

produced via a two-stage nucleation. In the first stage, formation of smooth silica 

microspheres (core particles) occurs within 30 minutes. In the second stage, nucleation of 

nanospheres to form the single layer shell occurs on the surface of the microspheres. No 

further growth was observed after 180 minutes, at which point fully-formed SOS particles 

could be isolated. 

When using TEOS as the silica precursor, the introduction of CTAB to the modified 

Stöber reaction was found to produce mesoporous particles.35 The SOS material produced 

from MPTMS however was found to be microporous, indicating that CTAB templates were 

absent in the particles. The formation of micropores was instead attributed to the removal 

of residual mercaptopropyl groups during calcination at 600 °C. It was noted however that 

the presence of CTAB was essential to obtain the SOS morphology, as omission of 

surfactant led to the formation of smooth microspheres only. Despite the microporous 

nature of particles, the unique single-layer shell morphology leads to the formation of 

interstitial macropores between the surface nanospheres when packed into a HPLC 

column.37 Initial HPLC testing showed promising results from a range of surface 

functionalities including reverse-phase (C4, C8, C18), normal-phase (silica, diol) and HILIC 

(diol) phases.38 The relatively large particle size and microporous nature resulted in very 

low operating pressure. 

SOS particles were further used as supports onto which an additional layer of 

metal-organic framework (MOF) nanocrystals was synthesised.39 MOFs are a type of 

crystalline porous materials formed via the linkage of metal ions and organic ligands.40 

Most MOFs exhibit microporous structures, although great effort has been made to 

prepare mesoporous MOFs, for example by ligand extension or combining the synthesis 

with surfactant templating. The pore size, pore shape, and pore surface functionality are 

very well defined in MOFs, making them suitable for highly selective separation of gases or 

small molecule liquids.40, 41 

MOFs have previously been packed into columns for liquid phase separation,42 

however low separation efficiency and poor column stability are often observed for such 

columns. An explanation for this is that MOFs are normally prepared as irregularly shaped 

microparticles. The packing of such particles is very difficult, often leading to an unstable 
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packing bed, crushed particles and high back pressure. To address this problem, MOF 

nanocrystals could be synthesised onto silica microsphere supports as a new type of 

packing material. HKUST-1, a thermally stable cubic MOF with a channel pore size of 1 nm 

formed by the ligand 1,3,5-benzenetricarboxylic acid and copper(II) acetate (Cu2(OAc)4) 

units, was used in the study.39 HKUST-1 nanocrystals were formed onto SOS microspheres 

which had been functionalised with surface carboxylate groups. The silica support was non-

porous. The presence of microporous HKUST-1 was confirmed by nitrogen adsorption 

analysis. SEM images and nitrogen adsorption data are shown in figure 2.5. Compared to 

the packed HKUST-1 particles, the composite core-shell column showed fast separation of 

xylene isomers. Similarly, another type of MOF (ZIF-8) shell consisting of nanocrystals was 

formed onto commercially available 3 µm silica microspheres with carboxylic modification. 

The packed columns showed high column efficiency for the separation of endocrine 

disrupting chemicals and pesticides.43 

 

 

Figure 2.5 HKUST-1 nanocrystals synthesised onto SOS silica particles. The resultant 

particles (A) and the surface morphology (B) are shown by SEM imaging. The nitrogen 

adsorption data (C) shows a microporous material with pore size of around 1 nm.39 
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2.2.5 Aims 

The aim of the experimental work in this chapter is to establish optimal conditions 

to obtain reproducible SOS particles from the modified Stöber reaction. It will also be 

important to gain a degree of control over the particle morphology, specifically the particle 

diameter, PSD and coverage of surface nanospheres. Previous studies have suggested that 

this may be achievable through choice of reagent and concentration. 

There are several experimental parameters that can be altered in the SOS reaction 

which will be described in turn, along with the resultant morphology changes. The aim is to 

understand the effect each reagent has on the reaction to ultimately be able to control the 

particle morphology. The SOS material produced should have properties that are desirable 

for use in HPLC; spherical, particle diameter between 2-5 μm and narrow PSD. Previously, 

synthesis has typically been performed on a small scale. Once a reproducible production 

method has been established, scale-up should also be assessed. 

It has been discussed in chapter 1 that reducing the thickness and porosity of the 

shell of core-shell particles leads to improved chromatographic performance, particularly 

for large molecules, due to a reduction in B and C terms of the van Deemter equation. 

Indeed, the HPLC column prepared by Ahmed et al. displayed promising performance in the 

separation of a protein test mix.1, 38 The SOS particles will therefore be prepared with the 

intended application of peptide, protein and large molecule analysis. 

 

2.3 Experimental 

There are five components that can be varied in the synthesis reaction of SOS 

particles: base, surfactant, polymer, solvent and silica precursor. The experimental work in 

this chapter aims to modify each of these reagents in turn, observing the resultant 

morphology changes. Both the choice and concentration of reagent will be assessed, with 

the aim to produce SOS particles with a complete shell of nanospheres and narrow PSD. 

Particles will be characterised by particle sizing, SEM imaging, nitrogen adsorption, mercury 

intrusion and thermogravimetric analysis (TGA). 
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2.3.1 Chemicals 

Ammonium hydroxide (28-30%, NH3 basis), cetyltrimethylammonium chloride 

(CTAC, 25% in water), CTAB (≥98%), MPTMS (95%), n-butanol (>99%), Poly(ethylene glycol) 

(PEG, MW = 10k), Poly(methyl vinyl ether) (PMVE, 50% in water), PVA (MW = 2k, 9-10k, 16k, 

22k, 31-50k), polyvinylpyrrolidone (PVP, MW = 10k, 29k, 40k, 55k), Sodium dodecyl sulfate 

(SDS, 95%), sodium hydroxide (≥98%), tannic acid (ACS reagent), triethylamine (≥99%), 

TWEEN 20 and TWEEN 80 were purchased from Sigma-Aldrich. Acetone (GPR), ethanol 

(ABS), methanol (AR) and isopropanol (HPLC grade) were obtained from Fisher Scientific. 

All chemicals were used as received. Deionised water was prepared in the laboratory. 

 

2.3.2 The Standard Reaction 

A set of standard conditions is described which will be referred to when modifying 

further reactions. This reaction results in well-defined spherical SOS particles with a dense, 

but incomplete surface coverage of nanospheres, shown in figure 2.6. Particles produced 

by this method typically have a mean particle size of 3-4 μm in diameter and a broad PSD, 

with a d90/10 ratio between 1.8 and 2.2. All reactions were performed at room temperature 

on an IKA 15-position magnetic stirrer plate. Stirring was performed using Teflon coated 

stirrer bars. The speed was kept constant at setting 8 (approximately 800 rpm) for all 

reactions and was sufficient to keep resultant particles suspended in the solution. 

The standard conditions are as follows: PVA (0.25 g) and CTAB (0.1 g) were 

dissolved in deionised water (5 mL) with gentle heating to aid dissolution. The 

concentrations of polymer and surfactant were 5% and 2% weight based on water. 

Methanol (8 mL) was added, followed by diluted ammonium hydroxide (2 mL, 5.6%). The 

solution was stirred for 15 minutes before addition of MPTMS (500 μL). The reaction was 

stirred overnight. SOS particles were collected on a sintered glass filter and washed with 

distilled water (5 x 20 mL), then methanol (5 x 20 mL) before drying under vacuum at 60 °C. 

Typically 0.35 g of particles were produced. 

Reactions were performed in new glassware each time. Significant variation in 

particle diameter of Stöber spheres was observed by Ahmed with repeated use of 

glassware, even following a thorough cleaning procedure.44 It is thought that the harsh 

basic conditions in the reaction have a detrimental effect on the walls of the glass vessel 
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and that a reaction occurs at the terminal silanol sites. It was observed in these studies that 

the areas of glassware exposed to the reaction solution became cloudy during the 

synthesis, even at the lowest base concentration, indicating that a reaction does occur on 

the surface and some particles may be attached to the vessel wall. When reusing 

glassware, even after thorough cleaning, some of the previous particles may still be present 

on the walls of the vessel. It is thought that these can act as a seed, promoting growth of 

larger particles and thus accounting for the variation in the diameter. 

 

 

 

Figure 2.6 SOS particles produced from the standard reaction. Particle morphology (A) 

and dispersity (B) are shown by SEM imaging, along with the PSD (C). 
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2.3.3 Characterisation 

 Following drying under vacuum, SOS particles were calcined in a furnace (Carbolite 

CWF1200) to remove the residual mercaptopropyl groups and any components left over 

from the particle synthesis. Conditions: heat in air at 1 °C/min, hold at set temperature for 

12 hours, then allow to cool to room temperature. Particles were calcined between 450 

and 1000 °C for 12 hours to assess the effect on physical properties. The results in table 2.1 

show that sample mass and surface area are reduced as the furnace temperature is 

increased, with the steepest drop in surface area observed between 550-650 °C. There is 

also a small decrease in particle diameter as the furnace temperature is increased. 

 

Table 2.1 Effect of calcination temperature on physical properties of SOS particles. 

Temperature 
(°C) 

% mass loss 
Surface area 

(m2/g) 
Particle diameter (μm) 

450 48.1 288 2.27 

500 49.2 256 2.21 

550 49.9 233 2.30 

600 52.3 138 2.22 

650 54.0 18 2.14 

700 54.4 6.0 2.15 

750 54.7 5.1 2.16 

800 54.7 4.8 2.12 

850 54.8 4.0 2.08 

900 55.2 4.8 2.05 

950 55.2 4.4 2.07 

1000 55.4 3.9 2.04 
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Particle sizing was performed using a Beckman Coulter Multisizer 3 at Thermo 

Scientific, using an electrical zone sensing method based on the Coulter principle.45 In a 

Coulter counter instrument, a tube with a small aperture on the wall is filled with an 

electrolytic solution and immersed in a vessel containing particles that are dispersed at low 

concentration in the same electrolytic solution. Two electrodes are inserted into the 

solution, one inside and one outside the aperture tube. An electric field is applied to form a 

current path provided by the electrolyte, and the impedance between the electrodes is 

measured. Particles pass through a sensing zone provided by the aperture when the 

suspension is drawn from the vessel, and a volume of the electrolyte equivalent to the 

immersed volume of the particle is displaced from the sensing zone. This causes a short 

term change in the resistance across the aperture which is measured as a voltage pulse or a 

current pulse. By measuring the number of pulses and their amplitudes, it is possible to 

collect information about the number of particles and the volume of each individual 

particle. The number of pulses counted during measurement relates to the number of 

particles measured and the amplitude of the pulse is proportional to the volume of the 

particle. From this data it is possible to construct the PSD.46 In this study the number 

distribution is used throughout, where each particle has equal weighting within the PSD 

regardless of the diameter. Alternatively, volume statistics may be used where particles 

with a larger diameter and therefore volume represent a greater proportion of the PSD. 

Measurement of number distribution is preferred here as the mean diameter of SOS 

particles is typically less than 5 μm. 

Different size apertures can be used depending on the size range of interest. A 

range of aperture sizes are available, typically from 20-2000 µm. Each aperture can be used 

to measure particles within a size range of 2 to 80% of its nominal diameter. Therefore, the 

measurement of particle sizes ranging of 0.4 to 1600 µm is possible.46, 47 However, it should 

be noted that the ability of analysing particles is limited to those particles that can be 

suitably suspended in an electrolyte solution. The selection of the most suitable aperture 

size is also dependent upon the particles to be measured. For example a 50 um diameter 

aperture can measure a particle size range of 1-40 μm. 

Samples in this study were prepared by dispersing in Isoton II electrolyte and 

analysed using a 30 or 50 μm diameter aperture for 30000 counts at a current of 800 μA. 

The PSD, defined by the d90/10 ratio, was measured from the sizing data. The value for d90 

is the particle size measured at the 90th percentile of the cumulative PSD, similarly the d10 
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is the particle size measured at the 10th percentile. Division of d90 by d10 gives an 

indication of dispersity, with a smaller value indicating a narrower PSD.48 

Particle morphologies were imaged with a Hitachi S4800 scanning electron 

microscope (SEM). The maximum useful magnification achievable with a conventional 

optical microscope is around 1000×. When imaging samples such as micron-sized particles, 

particularly when the surface morphology is of interest, this level of magnification is 

insufficient. For increased resolution and higher useful magnification, the wavelength of 

the imaging radiation must be decreased.49 The SEM is a type of microscope that utilises a 

focused beam of high energy electrons to generate a variety of signals though interaction 

with the sample of interest. This allows much higher magnification, up to 500000×, and 

provides resolution down to the nanometre scale.50-52 Although SEM is most commonly 

used to provide images of the sample morphology, characterisation may also be 

performed.53 

Samples were prepared for SEM by depositing a thin film of SOS particles onto an 

aluminium SEM stud. This was achieved either by a placing a drop of a dilute suspension of 

particles in methanol onto the stud and allowing the solvent to evaporate, or by placing a 

small amount dried powder onto double-sided carbon tape and removing the loosely held 

excess. For imaging, the sample must be electrically conductive and grounded to avoid 

accumulation of charge at the surface which may result in scanning faults. SOS samples 

were made conductive by coating in gold using an Emitech K550X sputter coater for 2 

minutes at 25 mA. 

Measurement of Brunauer-Emmett-Teller (BET) surface area54 was performed by 

nitrogen adsorption at 77 K, using a Micromeritics ASAP 2420 adsorption analyser. Where 

only surface area measurement was required, a Quantachrome NOVA 4200e adsorption 

analyser was used. The pore diameter was calculated from Barrett-Joyner-Halenda (BJH) 

desorption data.55 Samples were degassed overnight at 120 °C before analysis. 
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Figure 2.7 Nitrogen isotherm plot (A) and mercury intrusion plot (B) for SOS particles 

prepared from the standard reaction. 

 

The nitrogen isotherm for the SOS particles obtained from the standard reaction is 

shown in figure 2.7 A. The BET surface area was measured to be 240.4 m2/g, with an 

average pore diameter of 2.2 nm. The plot suggests a type I isotherm, which is normally 

observed for microporous silica. As the measurement of pore size using nitrogen 

adsorption is limited to around 100 nm, the interstitial pore size between particles was 

measured by mercury intrusion porosimetry56 using a Micromeritics Autopore IV 9500. The 

non-wetting property and high surface tension of mercury means that it does not intrude 

into the pores without external pressure. From the pressure versus intrusion data, the 

instrument can generate pore size distributions using Washburn’s equation.57 The mercury 

intrusion plot is shown in figure 2.7 B, indicating a pore size of around 1 μm. 

TGA is a thermal analysis method in which the mass of a substance is monitored as 

either a function of increasing temperature with constant heating rate, or as a function of 

time with constant mass loss or constant temperature.58 A typical instrument consists of a 

sample pan that is supported by a precision balance. The pan resides within a furnace and 

is heated or cooled while the change in mass is monitored. A purge gas which may be 

reactive or inert controls the sample environment. Additionally, instruments may also have 

means to analyse the volatile components that are produced from the decomposition of 

samples. 

SOS particles were analysed using a TA Instruments Q500 to assess the percent 

mass loss with increasing temperature. The differential thermogravimetric curve, shown in 
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figure 2.8, displays an initial step between 200 and 300 °C due to removal of residual PVA 

and CTAB from the synthesis reaction, accompanied by loss of mercaptopropyl groups up 

to 700 °C. There is limited mass loss beyond 700 °C, above which a maximum value of 54% 

loss is reached. This is consistent with the results obtained in table 2.1. CHNS analysis of as-

prepared SOS particles showed the material to contain 20.44% carbon, 5.51% hydrogen, 

0.75% nitrogen and 23.61% sulfur due to the presence of mercapto groups and residual 

surfactant. After calcination at 1000 °C these values were reduced to zero, indicating the 

organic content had been removed. 

 

 

Figure 2.8 Differential thermogravimetric curve for SOS silica particles. 

 

2.4 Results and Discussion 

 Initially, each of the components in the standard reaction were investigated. The 

resultant changes in particle morphology were assessed by changing each component in 

turn. The concentration of each reagent was considered, as well as alternative chemicals. 

The reaction conditions were then modified further by combining the positive effects of 

each reagent change, with the aim of producing monodisperse particles with a complete 

single shell of nanospheres on the surface. The results section will describe the 

modifications to reaction parameters and the numerous particle morphologies generated 

from this. 
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2.4.1 Effect of Base 

The standard reaction was performed using as-bought ammonium hydroxide 

solution diluted to 5.6% with distilled water. Firstly, an investigation was carried out to 

determine the influence of ammonia concentration on the morphology of the SOS 

particles. It has been shown that as the pH in the Stöber reaction is altered, there is a 

change in particle diameter, with increasing pH leading to larger particles.2, 3 The method 

used to synthesise SOS particles is based on the Stöber reaction with additional 

components and it has previously been shown that ammonia concentration can have a 

large effect on the resultant SOS particle morphology.1 The concentrations of ammonium 

hydroxide used in this study are described in table 2.2 along with the resultant values for 

surface area, particle diameter and PSD. All other parameters were unchanged. 

Particles from each of the reactions were imaged using SEM to observe the 

morphology changes. The images are shown in figure 2.9.  It is clearly shown that as the 

ammonia concentration is reduced, the density of nanoparticles on the surface increases. 

There is a significant difference between 28% (undiluted, reaction solution pH = 11.8) 

which shows barely any surface particles, and 0.7% (reaction solution pH = 10.5) which 

displays a near-complete shell. Another observation made after MPTMS addition was the 

time taken for the solution to turn cloudy, the point at which microspheres (core particles) 

are produced. As ammonia concentration was increased, a shorter time was taken for the 

reaction to display cloudiness. For example, the reaction with 28% ammonia displayed 

cloudiness within 1 minute, but when reducing the concentration to 0.7%, the time 

increased to 20 minutes. 

There is a clear link between reaction pH and surface nanoparticle density. As the 

pH is increased, the density of nanoparticles is much lower. An explanation for this is that 

at high pH particle growth proceeds quickly, driven by base concentration, meaning there is 

less opportunity for nanosphere growth. Less secondary nucleation is observed as the silica 

precursor is rapidly converted to form microspheres, thus resulting in a less densely packed 

shell. At lower pH however, the reduced reaction rate allows for greater nucleation and 

growth of nanospheres, leading to a denser coverage on the surface. Despite the difference 

in morphology, the size of nanoparticles on the surface remained in the range of 50-200 nm 

for all samples. This suggests that ammonia concentration can be used to control particle 

diameter and nanoparticle density, but not nanoparticle size. 
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Surface area measured using nitrogen adsorption was found to be in the region of 

190-240 m2/g for all samples following calcination at 550 °C, with an average value of 207 

m2/g. Despite the various morphologies all samples were found to have pore size around 

the 2 nm microporous boundary, where measured, with a maximum average diameter of 

2.35 nm observed. The similar values for surface area measured for the various 

morphologies makes it difficult to determine how much additional surface area is gained 

from having a denser layer of surface nanoparticles. 

 

Table 2.2 Influence of ammonia concentration on physical properties. 

Ammonia 
concentration (%) 

Surface area 
(m2/g) 

Pore diameter 
(nm) 

Particle diameter 
(μm) 

d90/10 

28 216 2.18 3.90 2.07 

14 190 2.25 3.49 1.80 

7 193 2.30 3.78 1.84 

5.6 240 2.25 3.85 1.82 

2.8 209 * 3.93 1.58 

1.4 206 2.35 4.02 1.92 

0.7 194 * 4.11 1.66 

* not measured 

 

The mean diameter for all SOS products produced was in the range of 3.4-4.2 μm. 

With the exception of one sample, the particle size displayed a trend of increasing particle 

diameter as the reaction pH was decreased. This is consistent with the results obtained by 

Ahmed et al. in the synthesis of SOS particles1 and also the studies on the Stöber reaction 

by Bogush et al.3 An explanation is that when ammonia concentration is higher, the rate of 

both hydrolysis and condensation are increased. Particle formation and precipitation are 

therefore faster resulting in a smaller diameter. Observed values for PSD (d90/10) were quite 

broad, typically above 1.8, although this represents a significantly narrower PSD than silica 

particles manufactured from a sol-gel reaction before they have undergone any 

classification. Following classification a typical core-shell material has a d90/10 ratio of <1.15, 
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and totally porous particles <1.5. The SOS reaction ideally needs to be controlled and 

improved to obtain particles with a narrow PSD, ideally with a d90/10 ratio better than that 

of classified totally porous particles, which would remove the need for a time-consuming 

and inefficient classification process. 

 

 

Figure 2.9 SEM images showing the resultant particle morphology when varying 

ammonia concentration in the standard reaction. 28% (A), 14% (B), 7% (C), 5.6% (D), 2.8% 

(E), 1.4% (F), 0.7% (G). Values based on dilution of as-bought 28% ammonium hydroxide. 
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In one study, homogenisation of the reaction mixture was performed in an effort to 

improve the PSD. It was thought that this would distribute reagents more evenly within the 

solution, leading to the formation of uniform particles. This was performed both before 

and after MPTMS addition. Homogenisation (5 minutes, setting 3, approximately 15000 

rpm) before MPTMS addition led to the formation of SOS particles that were very similar in 

morphology to those from the standard conditions. Homogenisation immediately after 

MPTMS addition (same time and settings) was found to reduce the time taken to form a 

cloudy solution and resultant particles had less surface spheres. No improvement in PSD 

was observed in either case. 

Alternative bases were substituted into the reaction in place of ammonia. The use 

of 0.1 M sodium hydroxide (2 mL) led to the formation of particles that displayed partial 

SOS morphology with a layer of very small nanoparticles, shown in figure 2.10 A. However, 

a significant proportion of the resultant material was present as aggregates, both attached 

and free from the particles. It is also preferable to avoid the use of reagents containing 

sodium in the reaction, as its presence in the final product can adversely affect 

chromatographic results. The use of triethylamine (2 mL) led to the formation of smooth 

spheres with a broad PSD and included a number of broken particles, shown in figure 2.10 

B. It is apparent that ammonia provides the best results for SOS formation and altering the 

concentration allows for an excellent degree of control over the nanoparticle layer. 

 

 

Figure 2.10 SEM images of particles produced when using sodium hydroxide (A) and 

triethylamine (B) as the base in the standard reaction. 
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2.4.2 Effect of Polymer 

 In the standard reaction, PVA with average molecular weight of 9-10k was used in 

5% concentration, based on the initial amount of water. The use of alternative molecular 

weights of 2k and 16k also resulted in the formation of SOS particles with similar sized 

nanospheres on the surface. However, fewer surface spheres were observed compared to 

particles obtained from the standard reaction. SEM images are shown in figure 2.11 A and 

B. Increasing the molecular weight further, using 22k and 31-50k PVA (figure 2.11 C and D), 

saw a significant decrease in the number of surface particles. The use of even higher 

molecular weights led to difficulties in dissolving the polymer in a 5% solution and were not 

used in this study. 

 

 

Figure 2.11 SEM images of particles produced when varying molecular weight and 

concentration of PVA. MW = 2k (A), 16k (B), 22k (C), 31-50k (D). Concentration = 0% PVA (E), 

10% PVA (F). 
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The role of PVA was to stabilise the SOS particles during synthesis and prevent 

growth of aggregates. It was observed that omitting the polymer from the reaction led to 

the formation of large aggregates that were fused together. Increasing the concentration of 

9-10k PVA to 10% led to the formation of SOS with only a low coverage of small surface 

nanoparticles. SEM images are shown in figure 2.11 E and F. The presence of PVA is 

essential in the reaction to produce SOS particles, however if the concentration is too high 

this can have a detrimental effect on the surface topography of particles. 

When replacing PVA with PVP (10k) in 5% concentration in the standard reaction, 

smooth spheres were produced with smaller diameter and narrower PSD. Likewise, the use 

of alternative molecular weight PVP (29, 40 and 55k) in further reactions did not result in 

the formation of an SOS product, instead smooth particles or spheres with small 

protrusions were obtained, again with improved PSD. SEM images are shown in figure 2.12. 

It appears that PVP provides a better stabilising effect in terms of PSD, however the SOS 

morphology is lost when simply replacing the polymer without changing any other 

parameters. 

 

 

Figure 2.12 SEM images showing the effect of PVP molecular weight on particle 

morphology. MW = 10k (A), 29k (B), 40k (C), 55k (D). 
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While replacing PVA with PVP does not produce SOS particles, it does provide an 

improvement in PSD. The d90/10 ratio of the particles produced when using PVP (10k) was 

1.57. An investigation was undertaken using a mixture of PVA and PVP (both 10k) to see if 

this would combine the effects of the two polymers, creating SOS particles with narrower 

PSD in a one-pot process. CTAB was present in each reaction in 2% concentration. The use 

of a 1:1 (by weight) PVA:PVP ratio did not lead to the formation of spherical particles, 

rather a layer of half-formed and fused spheres. Raising the ratio to 4:1 produced spherical 

particles displaying SOS morphology, though the surface nanoparticle size was much 

smaller (20-100 nm) and the PSD showed no improvement. However, when using a 

PVA:PVP ratio of 1:2, partial SOS morphology and a slight improvement in dispersity was 

observed, though surface nanoparticles were still small. 

A second approach was attempted, where two separate polymer solutions were 

premade and mixed into the required ratio before use in the reaction. The PVA solution 

contained 2% CTAB, while the PVP solution contained no surfactant. The overall 

concentration of polymer remained at 5%, based on water. The ratios used are shown in 

table 2.3. At the highest concentration of PVP, the particles formed did not show any SOS 

morphology and the PSD was poor. Increasing SOS character was observed as the ratio of 

PVA:PVP was increased above 40:60, with the greatest nucleation observed when using the 

highest concentration of PVA. 

 

Table 2.3 Ratio of PVA (9-10k):PVP (10k) and particle sizing data. 

PVA solution PVP solution 
Particle diameter 

(μm) 
d90/10 

5 95 2.86 1.90 

10 90 4.19 1.97 

40 60 3.99 1.64 

50 50 2.73 1.43 

60 40 2.77 1.62 

90 10 2.76 2.48 

95 5 2.86 1.90 
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The PSD at both extremes of PVA and PVP concentration was found to be poor. An 

ideal ratio appears to be between 40 and 60% PVA solution, where a minimum value of the 

d90/10 ratio is obtained. Within this range, formation of SOS particles is observed and the 

narrowest PSD is achieved. This method has shown promising results in terms of a one-pot 

reaction yielding spheres on sphere particles with narrow PSD. 

Alternative polymers were substituted into the reaction in place of PVA at 5% 

concentration. The use of PMVE, which differs in structure to PVA by having a methoxy 

group rather than a hydroxyl group, resulted in oval-shaped smooth particles. These were 

less than 1 μm in size with broad PSD. This indicates that a polar group is necessary for 

effective stabilisation of the reaction and formation of SOS or discrete spherical particles as 

seen with PVA or PVP. The use of PEG led to aggregated, irregular spheres. Despite the 

terminal hydroxyl groups, it is likely that the main chain of the polymer does not provide 

the same stabilising effect as the repeating polar hydroxyl group present in PVA. The 

chemical structures are shown in figure 2.13. 

 

                               

Figure 2.13 Chemical structure of polymers studied in the SOS reaction. From left to 

right; PVA, PMVE, PVP and PEG. 

 

2.4.3 Effect of Surfactant 

 In previous studies, the surfactant CTAB has been utilised as a templating agent to 

form mesoporous silica microspheres.16, 17 However in the formation of SOS, the nitrogen 

adsorption data following calcination indicates the presence of micropores, not mesopores. 

This suggests that the CTAB template is not incorporated into the SOS particles and instead 

micropores are formed from the removal of mercaptopropyl groups, present in the final 

product due to the use of the MPTMS precursor. 
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It is shown in the SEM images in figure 2.14 that the concentration of CTAB has a 

significant effect on the particle morphology. At high concentration (5 and 10% weight 

solution) SOS type particles were produced, although the density of the nanoparticle layer 

was low and the diameter of surface spheres was very small. In the case of 10% some 

fusing of particles was also observed. When CTAB was present at low concentration 

(≤0.1%) or omitted entirely from the reaction, small smooth spheres were produced, 

indicating that the presence of surfactant is essential to form SOS particles. The reaction 

begins to produce SOS particles when CTAB is present in ≥0.25% concentration, however 

the best results are observed at a concentration of 1-2%. 

As the concentration of CTAB is reduced, a smaller particle diameter is observed, 

with improved PSD. An explanation could be that the reaction solution is becoming more 

alike to the conditions in an unmodified Stöber reaction when less surfactant is present, 

which would typically lead to the preparation of smaller, uniform smooth spheres. Indeed 

when omitting both polymer and surfactant from the standard SOS reaction, uniform 

smooth spheres were produced that were around 1.5 μm in diameter. 

Cetyltrimethylammonium is a cationic surfactant consisting of a C16 chain attached 

to a quaternary ammonium group which is balanced by an anion, typically bromide (CTAB), 

chloride (CTAC) or hydroxide (CTAOH). Replacing CTAB with 2% CTAC in the standard 

method led to the formation of SOS particles which were very similar in terms of 

morphology and dispersity to those produced when using 1% CTAB. The SEM image is 

shown in figure 2.14 H. As CTAC is supplied as a 25% solution it is preferred to use CTAB 

(supplied in powder form) as the weight can be more accurately measured, particularly in 

the case of the low concentration examples. 
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Figure 2.14 SEM images showing resultant morphology from changing concentration of 

CTAB. Concentration = 0% (A), 0.1% (B), 0.25% (C), 0.5% (D), 1% (E), 5% (F), 10% (G), 2% 

CTAC (H). 

 

TWEEN 20 is a non-ionic polysorbate surfactant. When used as a replacement for 

CTAB at 2% weight in solution, smooth polydisperse spheres were produced. Decreasing 

the amount of surfactant to 0.5% weight however led to protrusions upon the surface of 

the core particles. These did not grow further to form spheres on the surface even after 
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allowing to stir for 48 hours. Reducing the concentration to 0.25% and 0.1% led to greater 

roughness of the particle surface, although again no SOS morphology was produced. 

Images of the particles are shown in figure 2.15. As observed for CTAB, the PSD improved 

significantly as the concentration of TWEEN 20 was reduced. This agrees with the theory 

that reducing the amount of surfactant has a positive effect on the PSD. TWEEN 80 was 

also used in the same study using identical concentrations to TWEEN 20, however no rough 

surface was observed, with all particles having a smooth spherical morphology. 

Other surfactants were tested as replacements for CTAB without success. The 

anionic, amphiphilic surfactant SDS was used at concentrations of 2, 1, 0.5 and 0.25% 

weight in solution, however each of these reactions resulted in smooth spheres which were 

fused together. Likewise, the use of tannic acid in the same concentrations as SDS led to 

the formation of smooth spherical particles, which also included a large amount of 

aggregated pieces. 

 

 

Figure 2.15 SEM images showing resultant morphology from changing concentration of 

TWEEN 20. Concentration = 2% (A), 0.5% (B), 0.25% (C), 0.1% (D). 
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2.4.4 Concentration of Silica Precursor 

The MPTMS concentration in the reaction was found to have a significant effect on 

particle size. The volume of MPTMS was varied between 10 and 250 μL while keeping the 

amounts of all other reagents constant. It can be seen from the SEM images in figure 2.16 

that as the precursor volume is reduced a smaller particle size is obtained. The images 

show that the resultant particle size was less than 500 nm when adding 10 and 20 μL 

MPTMS. Despite this very small size, particles were roughly spherical and not smooth, 

instead displaying a small amount of growth from the surface. In the case of 20 μL some 

irregular structures were also formed. Particle size increased further when adding 30 μL 

MPTMS, although the resultant particles were cluster-like rather than displaying core-shell 

morphology. When 50 μL is added, discrete particles with clear SOS morphology were 

produced. The particle size from this reaction is in the region of 1 μm. The SOS morphology 

is retained when increasing the MPTMS amount further, again with an increase in particle 

size as shown by the images from the addition of 100 and 250 μL. 

It has been shown in this study that well-formed SOS particles of various size can 

be produced when the amount of MPTMS used is equal to or greater than 50 μL. It also 

appears that a two-step formation process is still followed, regardless of the volume of 

MPTMS added. It is interesting that the particle size is reduced, rather than forming fewer 

numbers of larger SOS particles. This suggests that the shell nanoparticles are formed at a 

precursor concentration where the remaining amount of unreacted MPTMS is not present 

in sufficient quantity to form more core spheres. 

Increasing the amount of MPTMS to 600, 700 and 800 μL led to the formation of 

SOS particles which were very similar to those obtained from the standard reaction in 

terms of particle diameter and surface nanoparticle density. However, when increasing the 

amount to 1000 and 2000 μL, fewer, smaller nanoparticles were formed on the surface, 

suggesting that the other reagents were not present in high enough concentration to fully 

stabilise the reaction. Another observation was that no significant increase in particle 

diameter was observed for of the reaction when MPTMS addition was increased beyond 

500 μL. 
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Figure 2.16 SEM images showing morphology changes when varying the amount of 

MPTMS added to the standard reaction conditions. Addition volume = 10 μL (A), 20 μL (B), 

30 μL (C), 50 μL (D), 100 μL (E), 250 μL (F). 

 

2.4.5 Effect of Solvent 

The ratio of methanol and water in the standard reaction was investigated to 

assess the effect on particle morphology. In previous studies of the Stöber reaction the 

water content has been shown to have an effect on the particle diameter.2, 3 In one study, a 

peak particle size of 600 nm was obtained when the amount of water comprised 13% of 

the reaction volume.59 The particle size was rapidly reduced when either increasing or 

decreasing the percentage, instead forming very small nanoparticles. 
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The ratio of methanol:water in the standard SOS reaction was 8:5, with a combined 

volume of 13 mL. The total reaction volume was 15.5 mL, containing 44% water (including 

that of the ammonia solution). In this study the total reaction volume was kept constant 

while varying the ratio of methanol:water. As PVA is insoluble in methanol the ratios of 

13:0 and 12:1 (12.2 and 18.6% water respectively) were achieved by initially dissolving PVA 

in the ammonia solution, however these conditions both led to the formation of large, 

polydisperse smooth spheres. The only ratio in this study that produced SOS particles was 

10:3 (31.5% water) which resulted in well-formed spheres that were very similar in 

morphology to those obtained from the standard 8:5 ratio, although some particles had 

patches where no nanoparticles were present on the surface. The SEM images are shown in 

figure 2.17. 

Increasing the proportion of water resulted in the loss of SOS morphology. Ratios 

of 5:8, 3:10 and 0:13 (63.8, 76.7 and 96.1% water) all produced smooth spheres. Bimodal 

size distributions were observed when the volume of water is increased. For the 5:8 and 

3:10 ratio reactions, microspheres between 2-3 μm are produced along with a large 

number of sub-1 μm particles. When omitting methanol from the reaction, the size of the 

smaller particles is reduced to approximately 300 nm. The SEM images are shown in figure 

2.17. 

It was observed that the time taken for the reaction to turn cloudy was longest at 

the lowest concentration of water, which also produced the largest particles. It was noted 

by Stöber that the condensation rate depends strongly upon the water content of the 

reaction,2 however no data was provided in the article detailing the effects. As the amount 

of water in the SOS reaction was increased, the time was shortened and smaller particles 

were obtained. This is similar to the effect seen when adjusting ammonia concentration, 

which produced the smallest particles at the fastest reaction rate. 

The choice of alcohol was also found to be important to produce SOS particles. 

Ethanol, isopropanol and n-butanol were tested as replacements for methanol, however 

full SOS morphology was not observed in any case. The use of ethanol led to very few 

nanoparticles attached to the surface of polydisperse microspheres. Isopropanol formed 

smooth microspheres only and n-butanol resulted in large numbers of highly fused spheres 

which were around 1 μm in diameter. The PSD was poor for all reactions. 
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Figure 2.17 SEM images showing the effect of the ratio of methanol:water on particle 

morphology. Ratio = 13:0 (A), 12:1 (B), 10:3 (C), 5:8 (D), 3:10 (E), 0:13 (F). 

 

2.4.6 Monodisperse Spheres on Sphere Particles 

 So far it has been shown that modifying the reaction conditions can have a 

pronounced effect on resultant particle morphology. It is also clear that the reaction is very 

sensitive to the concentration of reagents. For example the SOS morphology is lost when 

the concentration of PVA or CTAB is increased or decreased outside of the optimal range. It 

is possible to individually control particle diameter, nanoparticle density and PSD by 

changing type and concentration of reagents. It should therefore be possible to combine 

the effects and hence control all of these physical properties by changing two or more 

parameters in the reaction.  



Chapter 2: Synthesis of Spheres on Sphere Silica Particles 

95 

 

 

Figure 2.18 Particles obtained from the reaction using PVP (10k) in the absence of 

CTAB. Particle morphology (A) and dispersity (B) are shown by SEM imaging, along with the 

PSD (C). 

 

Despite not forming an SOS product, the use of 10k PVP in 5% concentration in the 

standard reaction does provide a narrow PSD. Likewise, reducing the amount of CTAB in 

the reaction also improves the PSD. The combination of these yields interesting results. 

When using 5% PVP in the absence of CTAB, spherical particles are produced with a rough, 

irregular surface. The mean diameter was 2.60 μm with a modal size of 2.36 μm. PSD was 

further improved with the d90/10 ratio measured to be 1.40. SEM images and a plot of the 

PSD are shown in figure 2.18. When introducing CTAB into this reaction, partial SOS 

morphology is formed as the surface protrusions instead begin to form nanospheres. CTAB 

is required in very low concentration in this case. The greatest surface growth was 

observed when using 0.25% CTAB, with less SOS character shown as the concentration is 

increased. Beyond 2% concentration, the SOS morphology is almost completely lost and 

smooth spheres are produced. The SEM images are shown in figure 2.19. 
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Figure 2.19 SEM images of particles produced when varying the concentration of CTAB 

in the reaction with 5% PVP (10k). Concentration = 4% (A), 2% (B), 1% (C), 0.5% (D), 0.25% 

(E). 

 

The variation of PVP and CTAB concentration has resulted in particles possessing 

two out of the three desired properties; narrow PSD and a mean diameter ideal for use in 

HPLC. The fact that rough particles were obtained, rather than smooth spheres, indicates 

that surface growth proceeds using these conditions and therefore the formation of 

nanoparticles on the surface should be possible. It has been shown in the individual studies 

that reducing the concentration of ammonia in the reaction lead to much greater 

nucleation on the surface of the resultant SOS particles. This provides a potential route to 

the formation of nanoparticles rather than just surface roughness. 

Reducing the ammonia concentration to 2.8, 1.4 and 0.7% in the reactions where 

5% PVP is present with either 2% or omission of CTAB again led to particles which had 



Chapter 2: Synthesis of Spheres on Sphere Silica Particles 

97 

rough protrusions from the surface, much alike to those in figure 2.18. As previously 

observed, the PSD was much narrower when omitting CTAB from the reaction compared to 

2% concentration. 

As shown in figure 2.19, the greatest surface nucleation when using 5% PVP and 

ammonia at a concentration of 5.6% was observed when using 0.25% CTAB. When reducing 

the concentration of ammonia to 1.4% in this reaction, there is much more time for 

secondary nucleation to occur and leads to the formation of well-defined SOS particles with 

a complete single shell of nanoparticles on the surface. The amount of MPTMS was also 

varied in this reaction, with the best results observed when 400 μL was added. These 

conditions will be referred to as the optimised reaction. SEM images and sizing plot are 

shown in figure 2.20. 

 

 

 

Figure 2.20 SOS particles obtained from the optimised reaction using 5% PVP, 0.25% 

CTAB and 1.4% ammonia concentrations, with the addition of 400 μL MPTMS. Particle 

morphology (A) and dispersity (B) are shown by SEM imaging, along with the PSD (C). 
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The mean particle diameter was 2.83 μm, with a modal size of 2.51 μm. 

Additionally the particles displayed very narrow PSD, with a d90/10 ratio of 1.31. The size 

and dispersity show that these particles have ideal physical properties for use in HPLC 

columns. BET surface area was measured to be 209 m2/g by nitrogen adsorption and the 

interstitial pore size was measured using mercury intrusion with an indicated diameter of 

around 0.9 μm. These values are consistent with standard SOS materials. Nitrogen isotherm 

and mercury intrusion plots are shown in figure 2.21. 

 

  

Figure 2.21 Nitrogen isotherm plot (A) and mercury intrusion plot (B) for SOS particles 

prepared from the optimised reaction. 

 

2.4.7 Large Scale Reaction 

So far, all of the reactions described have been performed on a small scale of 

approximately 15.5 mL, depending on the amount of MPTMS used. Following calcination at 

550 °C, 0.12-0.15 g of material could be produced from the optimised reaction described 

previously. If these particles are to be used in chromatographic applications, clearly the 

yield from such a small reaction will be insufficient and the required number of reactions 

impractical where batches of silica are needed. The optimised reaction conditions were 

therefore scaled up to assess any changes in particle morphology and physical properties. 

The total reaction volume was 770 mL (50 times scale up). The reaction was performed at 

room temperature on a magnetic stirrer plate. Stirring was performed using a Teflon 

coated stirrer bar at a speed of 240 rpm. Brand new glassware was used. 
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 PVP (12.5 g) and CTAB (0.625 g) were dissolved in deionised water (250 mL). The 

concentrations of polymer and surfactant were 5% and 0.25% based on water. Methanol 

(400 mL) was added, followed by diluted ammonium hydroxide (100 mL, 1.4%). The 

solution was stirred for 15 minutes, before addition of MPTMS (20 mL) in 2 mL aliquots at 

even intervals over 10 minutes. The reaction was stirred overnight. SOS particles were 

collected on a sintered glass filter and washed with distilled water (5 x 100 mL), then 

methanol (5 x 100 mL) before drying under vacuum at 60 °C. 14.8 g of particles were 

produced, which was reduced to 7.2 g following calcination at 550 °C for 12 hours. 

The mean particle diameter was 3.02 μm, with a modal size of 2.90 μm. As in the 

small scale reaction a narrow PSD was obtained, with a d90/10 ratio of 1.24. The SEM images 

and sizing plot are shown in figure 2.22. BET surface area was measured to be 205 m2/g by 

nitrogen adsorption. 

 

 

 

Figure 2.22 SOS particles obtained from the scaled up optimised reaction. Particle 

morphology (A) and dispersity (B) are shown by SEM imaging, along with the PSD (C). 
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 As shown in the SEM images for the small and large scale reactions in figures 2.21 

and 2.22, the particle morphologies do not display any significant differences. Both have a 

complete single shell of particles around the core with nanoparticles in the region of 100-

200 nm. The mean particle diameter shows a small increase of 200 nm in the case of the 

scaled up reaction which may be caused by the addition of a larger amount of MPTMS. As 

the size of the surface nanoparticles is the same, this suggests a larger core microsphere. 

The addition of MPTMS was completed in stages over 10 minutes, which introduced an 

appreciable amount of precursor each time. Although the stirring rate was sufficient to 

keep resultant particles in suspension, the reaction mixture does not reach a homogenous 

state immediately after MPTMS addition. It was observed that the precursor accumulates 

at the bottom of the vessel for several seconds before mixing fully into the reaction 

volume. This is likely to result in areas within the reaction volume where the MPTMS 

concentration is initially much higher than expected. It has previously been shown that 

increasing the amount of MPTMS in the reaction forms larger particles, therefore it can be 

assumed that these initial areas of higher concentration may lead to the formation of 

slightly larger microspheres. Once the reaction reaches a homogenous state, the reaction 

proceeds normally and the size and density of nanospheres is as expected. 

The standard reaction conditions with reduced ammonia concentration were also 

scaled up by the same amount and the resulting particles classified by a settling method to 

obtain a narrow PSD. Again, the reaction was performed in brand new glassware at room 

temperature on a magnetic stirrer plate with stirring provided by a Teflon coated stirrer bar 

at a speed of 240 rpm. PVA (12.5 g) and CTAB (5 g) were dissolved in deionised water (250 

mL). Methanol (400 mL) was added, followed by diluted ammonium hydroxide (100 mL, 

1.4%). The solution was stirred for 15 minutes, before addition of MPTMS (25 mL) in 2.5 mL 

aliquots at even intervals over 10 minutes. The reaction was stirred overnight. SOS particles 

were collected on a sintered glass filter and washed with distilled water (5 x 100 mL), then 

methanol (5 x 100 mL) before drying under vacuum at 60 °C. 18.2 g of particles were 

produced, which was reduced to 9.0 g following calcination at 550 °C for 12 hours. 

The calcined particles were classified by a settling method. This is a classification 

process that works on the basis that larger, heavier particles (heavies) will drop out of 

solution faster than smaller, lighter ones (fines). Particles are suspended in solution for 

each classification step. The suspension is allowed to settle for a certain amount of time, 

after which the solution containing the remaining fines is decanted off, leaving the heavies 
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fraction at the bottom of the vessel. Lengthening the settle time allows more heavies to 

elute and leaves fewer fines in the solution, likewise shortening the settle time leads to a 

smaller heavy fraction. Additionally very long or very short settle times allow a smaller cut 

out of the heavy or fine end of the PSD. 

Pre-classification SOS particles had mean particle size of 3.19 μm. However the PSD 

was quite broad, with a d90/10 ratio of 1.88. 9.0 g of unclassified particles were suspended in 

1.8 L of 1% weight SDS solution and allowed to settle for 1 hour to remove the largest 

particles and any aggregates. The resultant solution was decanted into a second vessel, 

particles resuspended with stirring and allowed to settle for 6 hours. This step is required 

to remove the smallest particles, for example any nanospheres that are not attached to 

larger particles. Only one classification step was required to remove the fines (<2 μm) from 

the PSD. The solution was decanted, removing the remaining waste fines that were still 

suspended and leaving the required heavies at the bottom of the beaker. 

The heavy fraction from the 6 hour step was suspended in 1.8 L of fresh SDS 

solution and 1, 2 and 3 hour settling steps performed to take cuts out of the heavy end of 

the PSD. Resultant particles were isolated by filtration and washed thoroughly with water, 

water/acetone (1:1 V/V), then acetone to remove the residual SDS, before drying under 

vacuum at 60 °C. After classification the resultant mean particle diameter was 2.79 μm, 

with a modal size of 2.51 μm. A narrow PSD was obtained, with a d90/10 ratio of 1.24. SEM 

images of the classified particles and the overlaid sizing plots from before and after 

classification are shown in figure 2.23. BET surface area was measured to be 195 m2/g by 

nitrogen adsorption. 

Although the diameter and PSD of the classified material are ideal, the yield of 

particles was significantly reduced due to the classification process. 4.8 g of particles were 

obtained following classification, indicating that 53% of the starting material was removed 

as waste. Another disadvantage is the length of time required to perform the settling. The 

method requires particle sizing after each settling step to assess the effect on PSD. 

Additionally, each step is not guaranteed to provide the desired effect on the PSD and may 

therefore need to be resettled for an alternative length of time. The method described 

above required almost 12 hours settling time in total. This does not include the time in the 

preparative steps such as preparation of SDS solution, sample preparation, particle sizing 

and isolation from the suspension solution by filtration. It is therefore advantageous to 
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synthesise SOS particles from the one pot reaction where an equivalently narrow PSD can 

be obtained. 

 

 

 

Figure 2.23 SOS particles obtained from the standard reaction using 1.4% ammonia 

concentration. Morphology (A) and dispersity (B) of classified particles are shown by SEM 

imaging, along with the PSD before and after classification (C). 

 

2.4.8 Controlled Precursor Addition 

In the synthesis methods so far, the entire volume of MPTMS has been added in 

one step for small scale reactions or stepwise over 10 minutes for large scale studies. 

Addition of MPTMS was performed by pipette in the case of the large scale reactions with 

the rate kept as constant as possible, although steps such as refilling of the pipette leads to 

some variation. 
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Previous studies of the Stöber reaction have made use of controlled addition of the 

silica precursor to good effect. For example Giesche et al. devised a complex reactor 

system which allowed continuous addition of TEOS into a seed solution, enabling synthesis 

of large Stöber particles with controllable diameter and excellent PSD.7 Similarly, Unger 

used a continuous addition method to grow seeded particles.14 Although these examples 

describe methods intended to facilitate particle growth beyond the 800 nm limit, the SOS 

reaction may also benefit from controlled addition of the silica precursor. In the previously 

described large scale reactions MPTMS has initially accumulated at the bottom of the 

vessel. Although this has not appeared to have a detrimental effect on dispersity, with a 

continuous addition method the reaction volume would remain in a homogenous state, 

leading to highly reproducible particle diameter and morphology. 

Initial thoughts were to add the precursor using a HPLC pump. The extremely high 

accuracy would allow excellent control over the addition rate. This method was not 

attempted however due to possible compatibility issues of pump parts with MPTMS, 

particularly the piston seals. Contamination of the tubing and pump internals would also be 

inevitable due to direct contact with the precursor. Additionally, despite the high accuracy, 

the fastest rate of addition would be limited to 2 mL/min, the highest setting of the pump. 

A syringe pump was instead used (Harvard Apparatus 22) as this avoided direct contact of 

any pump parts with MPTMS while still allowing accurate addition over an extended range 

of flow rates, from 0.002 μL/hour to 55 mL/min. 

Reaction solutions were made up in the same concentrations as the scaled up 

optimised method in section 2.4.7. Each reaction volume was 770 mL. All reactions were 

performed in new glassware at room temperature on a magnetic stirrer plate. Stirring was 

performed using a Teflon coated stirrer bar at a speed of 240 rpm. A total of 20 mL MPTMS 

was added directly into the reaction at various flow rates: 8.0, 6.0, 4.0, 2.0, 1.0, 0.75, 0.5 

and 0.25 mL/min. This equated to addition times ranging between 2.5 and 80 minutes. The 

SEM images for each are shown in figure 2.24. 
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Figure 2.24 SEM images of particles produced when changing the addition rate of 

MPTMS into the reaction using a syringe pump. Addition rate (mL/min) = 8.0 (A), 6.0 (B), 

4.0 (C), 2.0 (D), 1.0 (E), 0.75 (F), 0.5 (G), 0.25 (H). 

 

Discrete SOS particles were obtained from all of the reactions, with various 

amounts of surface aggregation observed. Each of the reactions in this study led to the 

synthesis of similar sized particles to the previous optimised reaction, around 3 μm, with 

narrow PSD. As shown in the SEM images, the slowest addition rates (≤1 mL/min) produced 
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the greatest amount of surface aggregation and also the largest surface nanospheres. The 

length of addition time in this case (≥20 min) was sufficient to form core microspheres 

while MPTMS was still being added, which can then promote further growth of shell 

particles. Increasing the rate of addition led to a reduction in both the number and size of 

surface nanospheres as the concentration of MPTMS is much higher during the core 

formation stage and no further MPTMS is added once the core particles have been formed. 

Additionally, when measuring the BET surface areas of the particles, a range of 62-230 m2/g 

was obtained. In general, the slower addition rates led to reduced surface area. This may 

suggest that pore filling is occurring as MPTMS is still being added after core particles have 

been formed, however some samples do not fit this pattern and it can not be stated for 

certain that there is a trend. 

None of the SOS particles produced in this study had a full shell of nanospheres. 

However in the scaled up optimised reaction in section 2.4.7, where the addition rate was 

approximately 2 mL/min, a full shell was obtained. In this case, addition of MPTMS was 

performed in 2 mL steps each time rather than continuous addition suggesting that an 

initial amount of MPTMS may be required to facilitate faster formation of the core 

particles. 

A second method was attempted, which was more alike to the seeded growth 

study by Giesche et al.7 An initial amount of MPTMS was added, immediately followed by 

further addition via syringe pump. The reactions in this study were based on the optimised 

synthesis method in section 2.4.6, scaled up by 10 times to a total volume of 155 mL. The 

total amount of MPTMS added was 4 mL. All reactions were performed in new glassware at 

room temperature on a magnetic stirrer plate. Stirring was performed using a Teflon 

coated stirrer bar at a speed of 200 rpm. 

 Experimental conditions were studied in which the initial amount of MPTMS and 

flow rate were both varied. 0.5, 1 and 2 mL were chosen as the initial volumes and added 

instantly using a pipette. In the first study the remaining amount of MPTMS (3.5, 3 and 2 

mL) was added by syringe pump at a rate of 0.125 mL/min. The pump was started as the 

initial volume was added, ensuring constant addition. The conditions equated to addition 

times that varied between 16 and 28 minutes. In the second study the addition rate via 

syringe pump was reduced to 0.065 mL/min. These conditions equated to addition times 

that varied between 30 and 55 minutes. 
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The particles produced when using a faster addition rate of 0.125 mL/min were 

very similar to the SOS material previously prepared from the optimised reaction, with 

narrow PSD. The SEM images are shown in figure 2.25 A, C and E. The reactions where 0.5 

and 1 mL MPTMS was initially added displayed a full shell of nanoparticles around 250 nm 

in diameter. However, when 2 mL MPTMS was initially added SOS particles with only a 

partial shell were obtained. This reaction had the shortest addition time of 16 minutes and 

only 2 mL secondary addition. Based on previous observations, the shorter addition time 

combined with the smaller secondary volume of MPTMS is likely to be the cause of this 

morphology difference. 

When the rate of secondary addition was reduced to 0.065 mL/min, highly uniform 

SOS particles were produced which showed significant morphology differences to those 

previously observed. The SEM images are shown in figure 2.25 B, D and F. The reactions 

where 0.5 and 1 mL MPTMS was initially added displayed a full shell of nanoparticles 

around 300 nm in diameter, additionally further nanoparticles up to 100 nm in size were 

found to grow upon the shell particles. These particles have been termed fractal SOS, due 

to the self-similar properties of the surface topography. When 2 mL MPTMS was initially 

added, regular SOS particles were obtained and secondary nucleation upon the shell 

particles was not observed. 
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Figure 2.25 SEM images of particles produced using syringe pump addition at 0.125 

mL/min after addition of 0.5 (A), 1 (C) and 2 mL (E) MPTMS; and using syringe pump 

addition at 0.065 mL/min after addition of 0.5 (B), 1 (D) and 2 mL (F) MPTMS. Total MPTMS 

addition was 4 mL for all reactions. 

 

The reaction condition where 1 mL of MPTMS was initially added, followed by 

secondary addition at 0.065 mL/min was investigated further, as this method produced 

what appear to be the most uniform particles plus the greatest surface aggregation. 

Alternative addition rates for the secondary step were studied. 3 mL MPTMS was added via 

syringe pump at flow rates of 0.06, 0.04 and 0.02 mL/min, equating to addition times of 50, 

75 and 150 minutes. SOS particles with very narrow PSD were obtained from all three 

reactions, with partial fractal morphology observed for the particles. The SEM images and 

overlaid sizing plots are shown in figure 2.26. 
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Figure 2.26 Fractal SOS particles obtained via initial MPTMS addition volume of 1 mL, 

followed by syringe pump addition at 0.06 (A), 0.04 (B) and 0.02 mL/min (C) to a total 

volume of 4 mL are shown by SEM imaging, along with the overlaid PSD (D). 

 

Table 2.4 Physical data for particles shown in figure 2.26. 

Addition rate 
(mL/min) 

Surface area 
(m2/g) 

Particle diameter 
(μm) 

d90/10 

0.06 179 2.06 1.21 

0.04 117 2.01 1.23 

0.02 62 2.09 1.24 
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The physical data in table 2.4 shows that particle diameter and PSD appear to be 

unaffected by the addition rate, however the surface area is significantly reduced at lower 

addition rates. This may be due to pore-filling by MPTMS as the precursor is still being 

added after the point where particles have already been formed. The particle diameters 

were measured to be around 2 μm, with d90/10 ratios approaching that of core-shell 

materials (<1.15). Although the particle diameters in this study were smaller than those 

obtained from the optimised reaction in section 2.4.6 and 2.4.7, there was a small 

improvement in PSD observed, indicating that controlled addition appears to be beneficial 

to facilitate the synthesis of monodisperse particles. 

 

2.4.9 Alternative Morphologies 

The experimental work in this chapter has concentrated on the development of the 

synthesis reaction of the SOS material to obtain particles with ideal morphology, diameter 

and PSD. The work so far has described these attempts only, however many alternative and 

unexpected morphologies were also observed when changing reagent type and 

concentration in the reaction. For example the synthesis of fractal SOS particles, which 

display further surface aggregation when compared to regular SOS particles, has been 

described in the previous section and will be further discussed later in this thesis. 

One particularly interesting outcome from the modified synthesis is the possibility 

of forming highly uniform microspheres. If the concentration of ammonia in the optimised 

reaction (section 2.4.6) is increased to 14%, SOS morphology is lost and smooth spherical 

particles with mean diameter of around 3 μm are produced with narrow PSD. The synthesis 

may provide a fast, simple alternative to the current methods of producing spherical, 

mesoporous silica particles for chromatographic use, which typically require many 

classification steps to achieve an acceptable PSD. The diameter and physical properties 

make these particles potentially useful for use in routine HPLC separation of small 

molecules. The synthesis and modification of these particles will also be discussed later. 
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2.5 Conclusion 

In this chapter, each of the reagents in the SOS synthesis method has been 

investigated, with the aim of forming SOS particles with a complete shell of nanoparticles 

and narrow PSD. A range of concentrations and alternative reagents have been discussed, 

and their effects on the resultant particle morphology recorded. 

It is apparent that the synthesis of SOS particles is very sensitive to changes in the 

reaction conditions. If reagents are present outside of an optimal concentration range the 

SOS morphology is either reduced or lost completely. This was observed when modifying 

the concentration of polymer and surfactant. It was found that omitting PVA from the 

standard reaction led to the formation of aggregated smooth particles. Although the 

polymer is required to stabilise the reaction, in too high a concentration it was found to be 

detrimental to the SOS morphology, with very few nanoparticles formed on the surface. A 

reduction in the concentration of CTAB was shown to improve the PSD, but its omission led 

to the formation of uniform smooth spheres only. It is thought that the reduction in 

concentration of these two reagents results in a reaction solution which is more alike to an 

unmodified Stöber synthesis,2 which typically results in the formation of smooth, uniform 

microspheres. A study of the SOS reaction without the addition of polymer or surfactant 

was also found to produce smooth, uniform spheres around 1.5 μm in diameter, which 

supports this theory. 

The concentration of ammonia was shown to provide a large effect on the 

resultant surface topography. It was found that the density of surface nanoparticles could 

be controlled by changing the concentration. The amount of aggregation is directly related 

to the rate of reaction, with an increasing amount of surface particles observed as the 

concentration of ammonia is reduced. An explanation is that at higher concentration the 

reaction rate is much faster, therefore particle growth proceeds quickly and there is less 

opportunity for nanoparticle growth. Reducing the ammonia concentration reduces the 

reaction rate, providing more time for secondary nucleation to occur and resulting in a 

denser shell coverage. The concentration of ammonia also had an effect on the particle 

diameter with the smallest particles formed at the highest concentration. This is consistent 

with the observations of both Ahmed1 and Bogush,3 where decreasing pH led to an 

increase in particle size. This is again linked to the reaction rate, with the higher pH 

providing faster particle formation and precipitation, and thus a smaller particle diameter. 
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The ratio of methanol:water was also found to have a large effect on the resultant 

particle morphology, with an optimal ratio of 8:5 required to produce SOS particles. 

Previous studies of the Stöber reaction have found the water content to have an effect on 

the particle diameter and rate of condensation,2 with a significant reduction in particle size 

obtained either side of an optimum volume.59 In this study however the particle size was 

found to increase when reducing the water content, with loss of the SOS morphology. 

Large, polydisperse smooth spheres were instead formed. Increasing the water content 

also led to the loss of the SOS structure. However, the particle diameter was reduced in this 

case, with a bimodal size distribution observed. The rate at which the reaction turned 

cloudy was found to be longest at the lowest concentration of water, which also resulted in 

the formation of the largest particles. Increasing the amount of water led to smaller 

particles and shortened reaction time. This is similar to the effect seen when adjusting 

ammonia concentration, which produced the smallest particles at the fastest reaction rate. 

Through a combination of effects from changing reagent type and concentration, 

SOS particles around 3 μm in diameter with a complete single layer of nanoparticles were 

successfully synthesised. Additionally, the PSD was significantly improved over the standard 

SOS method, with a d90/10 ratio of 1.31. Scale up of this reaction was performed with 

resultant particles found to have similar mean diameter and identical surface morphology. 

The d90/10 ratio of 1.24 also showed a slight improvement. The particle diameter and PSD of 

these particles potentially make this material ideal for chromatographic use. The use of 

new glassware for each reaction may contribute to obtaining a narrow PSD. It has been 

shown previously that large variation in Stöber particle diameter occurs with repeated use 

of glassware, even after a thorough cleaning procedure,44 due to possible seeded growth 

from residual particles present on the glassware wall from previous syntheses. 

The optimised method allows the formation of SOS particles in a one-pot reaction 

that have comparable diameter and PSD to standard SOS particles that have undergone 

classification via a settling method. The classification process in this work required around 

12 hours of settling time and resulted in 53% mass loss. Other classification methods that 

could be considered to improve the PSD of standard SOS particles include elutriation or air 

classification, however these would also result in mass loss and possibly even longer 

process times to complete. The one-pot method is therefore highly advantageous as it 

removes the need for numerous time-consuming classification steps and leads to a much 

higher yield. 
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Once optimal conditions had been determined, the controlled method of MPTMS 

addition via syringe pump was found to improve the PSD further. The lowest d90/10 ratio of 

1.21 is approaching that of commercial core-shell materials (≤1.15). It was found that an 

initial addition of MPTMS was required to begin particle formation, followed by constant 

addition using the syringe pump. The best results were obtained from an initial volume of 1 

mL followed by further addition of 3 mL at 0.065 mL/min. A new type of SOS structure with 

increased amounts of surface aggregation was obtained from these conditions, which will 

be discussed later in this thesis. 

Aside from the rough surface due to the shell layer, the SOS particles discussed in 

this chapter are highly spherical in nature. This is particularly apparent when comparing to 

core-shell materials produced by the LbL method, for example those shown in figure 1.6, 

chapter 1. As the SOS particles are produced in a one-pot method, the single-layer shell is 

uniform over the whole particle surface, resulting in a highly spherical product. By contrast, 

LbL synthesis adds numerous layers in multiple steps. This inevitably leads to areas of 

uneven coverage and the final product is not spherical. The combination of rough surface, 

high sphericity and narrow PSD of SOS particles may facilitate high quality packing of HPLC 

columns due to ideal packing of spheres and shear effects locking particles in place. 

Further investigation of the optimised SOS reaction should include larger scale up 

of the reaction volume, followed by assessment of the morphology and physical properties. 

The largest reaction described in this chapter was 770 mL total volume, producing 7.2 g of 

material after calcination. This would provide enough material for around 12 HPLC columns 

with dimensions of 100 × 2.1 mm. By contrast, a typical batch size for commercial core-

shell particles can exceed 500 g, although particles may not necessarily all be produced 

from a single reaction and could instead be composed of blends of several batches. 

There has been some interest into SOS silica materials from other university 

research groups and industry, particularly manufacturers of HPLC columns. Although it has 

not been possible to supply material to all who have requested, there are several ongoing 

collaborations with a number of institutions including Thermo Scientific, Novo Nordisk, 

ePrep, the University of Geneva and the University of Dundee. 
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3 Microwave Assisted Bonding 

3.1 Introduction 

While a great deal of interest is shown by manufacturers and researchers in the 

synthesis of new types of silica particles and introduction of new bonded phases, there 

appears to be much less focus on the bonding techniques used to functionalise the 

particles for chromatographic use. 

Until the 1970s the majority of liquid chromatography columns contained a 

hydrophilic stationary phase such as unfunctionalised silica. On this type of column 

analytes are retained based on their affinity for the polar silanol groups on the surface of 

the stationary phase, a method which was later termed normal phase chromatography 

(NPC).1 While this type of interaction is suitable for polar compounds, for non-polar and 

biological samples selectivity is poor and the high organic content of the mobile phase is 

incompatible with many compounds of interest, particularly pharmaceuticals. An 

alternative method is therefore required. 

Reversed phase chromatography (RPC) was introduced in 1950 by Howard and 

Martin2 and was further developed through the 1960s and 70s, the name derived from 

having an opposite “reversed” retention mechanism to NPC. The stationary phase in RPC is 

typically a silica that has been modified with a hydrophobic functional group.3, 4 This allows 

a much greater selection of surface chemistries and many more applications than NPC, as 

such it is now the most routinely used HPLC method. 

The literature review will discuss the various chemical reactions that have been 

employed in the silanisation of silica and the use of traditional/conventional heating 

methods for these reactions. This is followed by discussion about the use of microwave 

irradiation as a heating source for synthesis and the option to perform microwave assisted 

bonding onto silica particles for chromatographic use. 

 

3.2 Literature Review 

There are several reactions that have been used to modify the silica surface with 

functional groups which in turn allow control of the chromatographic properties. As early 

as 1957, studies had been undertaken into the modification of silica powders with aliphatic 
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alcohols via an esterification reaction to produce a hydrophobic surface.5 A detailed 

investigation of this reaction was later published.6 The first attempt to functionalise silica 

gel for chromatographic purposes however was made by Halasz and Sebastian.7 Short-

chain alkoxy groups were attached to the surface, again via an esterification reaction, 

resulting in the formation of a Si)-O-C bond. The bracket denotes a surface silicon atom. 

The reaction overview can be seen in figure 3.1 A. 

One shortcoming of the esterification method is that the silicon-oxygen-carbon link 

is susceptible to hydrolysis, especially in the case of RPC which uses aqueous mobile phase. 

The bonded phase can be readily removed from the surface, leading to regeneration of the 

original silanol groups. Around the same time, an alternative bonding method was 

introduced by Kirkland, involving the use of chlorosilane reagents.8 The chlorosilane reacts 

with a silanol on the silica surface, leading to the formation of a much more stable Si)-O-Si-

C link, shown in figure 3.1 B. 

Methoxy or ethoxy silanes can be substituted for the chloro derivative under 

similar reaction conditions. When using chlorosilanes, a base such as imidazole or 2,6-

lutidine is included, which acts as both a catalyst for the reaction and a scavenger for the 

hydrochloric acid produced. This has the effect of shifting equilibrium to the product side.9 

Two molecules of base are required to activate the organosilane Si-Cl bond to form a 

reactive intermediate and hydrochloric acid.10 The intermediate then reacts with a hydroxyl 

group present on the silica surface, attaching the alkylsilane ligand and reforming a 

molecule of base. The reaction scheme is shown in figure 3.2. Bases such as imidazole are 

also able to form intermediates with the organosilane, forming a pentacoordinate silicon 

atom. This has the effect of lengthening the Si-Cl bond, making it more susceptible to 

nucleophilic attack.9 The use of organosilanes forms the basis of most silanisation reactions 

today due to the stable Si-C bond and wide range of reagents to choose from. 

A different approach is the formation of a direct Si)-C linkage to the silica surface. 

This can be achieved by initial chlorination of the silica surface, followed by treatment with 

a Grignard reagent or organolithium compound, shown in figure 3.1 C.11-13 Another option 

is via reduction of the silanol groups to Si)-H, followed by hydrosilation, shown in figure 3.1 

D.14 The resulting Si)-C bond is very stable at low pH where an organosilane bonded phase 

would perhaps begin to see stripping of the functional groups from the silica. The ease of 

the organosilane reaction however makes it the preferred choice for manufacturers, 
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especially as the majority of HPLC applications are performed within the pH operating 

range of their materials. 

 

 

 

 

 

 

 

 

Figure 3.1 Bonding methods onto the Si-OH surface. Esterification reaction (A); 

organosilane reaction, where X = Cl, OMe, OEt (B); via chlorination and Grignard reagent 

(C); via reduction and hydrosilation (D). 

 

 

Figure 3.2 The role of base in the silanisation reaction.9 
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 Residual silanol groups have been shown to be a cause of peak tailing, reduced 

chromatographic performance and mechanical instability in the column packing.15, 16 The 

concentration of silanol groups on the silica surface may range up to a theoretical 

maximum of 8 μmol/m2, depending upon the type of silica and if any treatment has been 

performed to rehydroxylate the surface.17-19 Depending on the size of ligand being added, 

maximum achievable bonding densities are far lower than this due to steric hindrance 

between the attached groups.20-22 One very high bonding density of 5.43 μmol/m2 was 

reported, which was achieved by the attachment of a small trimethylsilane group.23 

However, to achieve sufficient analyte retention and selectivity, HPLC columns are typically 

bonded with longer alkyl chains (up to 30 carbon atoms) or other bulky ligands, hence the 

maximum density for these is lower. It is therefore apparent that many residual silanols will 

be present, even after an efficient bonding process. It is essential that the number of 

remaining hydroxyl groups is reduced to the greatest degree possible. This is achieved by 

the attachment of a small organosilane ligand, using reagents such as 

bis(dimethylamino)dimethylsilane (BMMS), trimethylsilylimidazole (TMSI) or 

hexamethyldisilazane (HMDS), and is referred to as the endcapping step. These ligands can 

be attached via the same bonding methods as the original ligand. The small size of the 

groups allows the maximum possible amount of residual silanols to be converted, although 

in practice some will remain on the surface. 

The use of traditional reflux methods are employed by most manufacturers when 

producing their bonded phases. Typically the heating is performed by a heating mantle, oil 

bath or hot plate. While this is generally seen as an acceptable form of heating, there are a 

number of drawbacks. The method of heating is slow and inefficient due to initial heating 

of the vessel, dependency on convective currents, thermal loss to the surrounding area, 

and thermal conductivity of the reagents and materials to be heated. The maximum 

achievable temperature is also dictated by the boiling point of the solvent meaning long, 

energy intensive reaction times ranging from 6 up to 24 hours are often required. 

In conventional methods the vessel is exposed to the heating source and the heat 

is then transferred to the reactants by convection. The walls of the vessel often experience 

higher temperatures than the bulk of the reaction solution. This can lead to localised 

overheating, bumping and possible degradation or decomposition of reaction components. 

The bonding method clearly has a very large influence on the batch to batch reproducibility 

of the bonded phase silica.4 Variation in the reaction conditions can cause significant issues 
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when quality control (QC) testing, especially in the case of carbon loading and bonding 

density. Lower than expected results for percent carbon can often lead to reduced 

chromatographic performance and therefore rework of the silica to bring it into required 

specification, costing further time and energy. 

Although microwave technology has been available since the 1950s, it was not until 

1986 that the technology was used in a scientific capacity.24 Early microwave “reactors” 

were often domestic kitchen appliances which did not allow stirring of reactions, 

monitoring of temperature, control over the amount of power applied or direction of the 

microwave field. As a result reproducibility was often very poor and the method proved to 

be very hazardous with explosions reported.25 By contrast, modern laboratory microwave 

reactors allow the user to safely and accurately control the reaction conditions. 

Temperature and stirrer controls are incorporated, as well as pressure monitoring systems 

for sealed vessel methods. Microwaves are directed at the sample using a single mode 

cavity, designed for the length of a single wave. This wave generates high electromagnetic 

field intensity with homogenous energy distribution within the cavity where the synthesis 

takes place, ideal for reproducible heating. 

Unlike traditional heating, microwave irradiation heats the sample by direct 

coupling of the microwave energy to the molecules present in the reaction mixture via 

dipole rotation and ionic conduction. This method of heating has the benefits of extremely 

efficient energy transfer to the reaction mixture instead of the vessel, and reaction 

components are heated at the same rate throughout the vessel.26 

When irradiated, dipoles in the mixture will align themselves in the direction of the 

applied electric field. As the field oscillates, the dipoles in the sample will attempt to realign 

themselves to the alternating electric field releasing energy as heat due to molecular 

friction and dielectric loss. The amount of heat generated depends on how effectively 

dipoles can align to the field. If they align themselves too quickly (irradiation frequency too 

low) or too slowly (frequency too high) then no heating will occur. Microwave reactors 

used for scientific purposes have an allocated frequency of 2.45 GHz which allows enough 

time for realignment, but not enough to follow the field precisely. In ionic conduction, ionic 

molecules in the reaction mixture oscillate under the influence of the magnetic field 

causing collisions with neighbouring atoms and thus creating heat. This effect provides 

greater heat generation than the dipole rotation mechanism. 
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Microwave synthesis is now a common method in the laboratory and there are a 

great number of publications describing its use to drive chemical reactions.27-30 Despite this, 

examples where microwave irradiation has been used for the silanisation of silica are still 

quite limited, and no commercial chromatography column exists where this technology has 

been utilised. 

Procopio et al.31, 32 described a method of attaching alkylsulfonates onto 

mesoporous silica achieving good coverage and short reaction time, however there was no 

comparison with conventional heating methods. Both Garcia et al.33 and Fukuya et al.34 

performed comparison studies between microwave and reflux heating methods onto silica, 

fully characterising the resultant particles. Both publications concluded that a significantly 

increased reaction rate is observed when using microwave bonding. Reaction rate was 

found to be highly dependent upon the length of alkyl group being attached, the leaving 

group of the alkoxysilane and choice of reaction solvent. Percent carbon values were 

comparable between heating methods, although some unexplained structural differences 

in the bonded layer were observed in the NMR characterisation. There is speculation that 

there may be some non-thermal effects occurring when using microwave heating,35 but this 

has been attributed to the method of temperature measurement36 and inhomogeneity of 

the reaction solution resulting in thermal effects.37-39 Nevertheless, the topic of non-

thermal effects is still hotly debated.40, 41 

There is currently only a single publication describing a comparison that also 

includes chromatographic data. Mignot et al. assessed different grafting methods onto 

core-shell silica along with comprehensive characterisation.42 Bonding of a C18 phase was 

performed onto the same silica using both conventional reflux and microwave irradiation. 

Once packed into columns the bonded phases were assessed with the Tanaka test 

protocol43 alongside three commercial core-shell C18 materials. 

It was found that bonding via microwave irradiation resulted in slightly lower 

maximum values for percent carbon (9.5 versus 10.1%) and hence surface coverage when 

compared with conventional heating. However, the reaction time was significantly 

shortened; 30 minutes versus 5 hours. The precise microwave method, specifically details 

of the reaction temperature and vessel type (open or closed), was not disclosed. It is 

therefore difficult to say if the coverage could be improved upon by modification of the 

procedure, either by increasing the reaction temperature or superheating in a sealed 

vessel. The maximum obtained coverage of 3.6 μmol/m2 from the microwave reaction is 
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slightly lower than the theoretical maximum of between 4 and 4.7 μmol/m2, and indicates 

that the process could potentially be improved, although this value still indicates a highly 

efficient bonding process. 

Assessment with the Tanaka test mixtures showed comparable results between 

three different commercial C18 columns and the silica samples bonded via the two heating 

methods. The results from each column can be seen overlaid in figure 3.3. The microwave 

and conventional C18 columns were not endcapped and produced higher values for 

hydrogen bonding capacity (HBC) and ion exchange at pH 7.6 (IEX 7.6). This is likely caused 

by residual silanol groups. Other differences in the chromatographic performance between 

all columns in the study may be attributed to the type of silica used and the exact bonding 

process followed. Importantly, the two samples bonded in-house displayed nearly identical 

values for all test parameters, indicating that microwave irradiation would appear to be a 

viable alternative to traditional heating. 

 

 

Figure 3.3 Radar plot of Tanaka test results and carbon loading for commercial, 

microwave and conventional C18 phases. Figure produced from chromatographic data by 

Mignot et al.42 Parameters: HR - hydrophobic retention; HS - hydrophobic selectivity; SS - 

steric selectivity; HBC - hydrogen bonding capacity; IEX 7.6 - ion exchange capacity at pH 

7.6; IEX 2.7 - ion exchange capacity at pH 2.7; %C - percent carbon loading. 
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This chapter aims to study the suitability of microwave irradiation as a heating 

method for the silanisation of SOS silica. It will firstly be necessary to determine optimal 

reaction conditions to achieve fast and consistent coverage with the attached functional 

group. It will be important to ensure reproducibility of the bonded phases and to compare 

the results from the microwave method with traditional heating. The performance of HPLC 

columns packed with functionalised SOS particles prepared by microwave and traditional 

bonding methods will also be compared. 

 

3.3 Experimental 

SOS silica particles for use in this chapter were produced from the reactions 

described in section 3.3.2. Functionalisation of SOS silica was performed following 

calcination at 550 or 600 °C. Particles were acid washed following calcination to reactivate 

the surface silanol groups. Surface areas of SOS samples were in the range of 68 to 240 

m2/g, and particle diameter 2.9 to 4.0 μm. No classification steps were performed to 

modify the size distribution, which ranged from d90/10 of 1.24 to 2.31. 

The method of bonding via microwave irradiation was optimised and the results 

compared with conventional heating by reflux on an oil bath. The chromatographic 

performance of HPLC columns packed with SOS-C4 particles was then assessed with the 

separation of a protein test mixture. Alternative bonding solvents are also investigated. 

 

3.3.1 Chemicals 

1-(trimethylsilyl)imidazole (TMSI, ≥98%), ammonium hydroxide (28-30%, NH3 

basis), carbonic anhydrase, CTAB (≥98%), dimethylformamide (DMF, >99%), imidazole 

(≥99%), limonene (97%), lysozyme, MPTMS (95%), myoglobin, nitric acid (ACS reagent, 

70%), ovalbumin, PVA (MW = 9-10k), PVP (MW = 10k) and trifluoroacetic acid (TFA, 99%) 

were purchased from Sigma-Aldrich. Butyl(chloro)dimethyl silane (C4 reagent, >97%) was 

purchased from Tokyo Chemical Industry. Acetone (GPR), acetonitrile (HPLC), chloroform 

(AR), dichloromethane (DCM, AR), isopropanol (HPLC), methanol (HPLC) and toluene (HPLC) 

were obtained from Fisher Scientific. Deionised water and Milli-Q water (18 MΩ) were 

prepared in the laboratory. 
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3.3.2 Particle Synthesis 

Method 1: PVA (5.0 g) and CTAB (2.0 g) were dissolved in deionised water (100 mL). 

Methanol (160 mL) was added with stirring, followed by diluted ammonium hydroxide 

(5.6%, 40 mL). The solution was stirred for 15 minutes before addition of MPTMS (10 mL). 

The reaction was stirred overnight. SOS particles were collected on a sintered glass filter 

and washed with distilled water (5 x 50 mL), then methanol (5 x 50 mL) before drying under 

vacuum at 60 °C. Typically 6 g of particles were produced. 

Method 2: PVP (5.0 g) and CTAB (0.25 g) were dissolved in deionised water (100 

mL). Methanol (160 mL) was added with stirring, followed by diluted ammonium hydroxide 

(1.4%, 40 mL). The solution was stirred for 15 minutes before addition of MPTMS (8 mL). 

The reaction was stirred overnight. SOS particles were collected on a sintered glass filter 

and washed with distilled water (5 x 50 mL), then methanol (5 x 50 mL) before drying under 

vacuum at 60 °C. Typically 5 g of particles were produced. 

 Method 1 describes the standard method of producing SOS particles. This results in 

well-defined spherical SOS particles with a relatively dense, though not complete surface 

coverage of nanospheres, shown in figure 3.4 A. Particles produced by this method typically 

have a mean particle size of 3-4 μm in diameter but with broad size distribution, d90/10 ratio 

between 1.8 and 2.4. Method 2 describes the optimised synthesis of SOS particles, 

discussed in the previous chapter. This method typically produces particles around 3 μm in 

diameter with narrow size distribution, d90/10 ratio <1.4 and a complete single shell of 

nanospheres surrounding the core, shown in figure 3.4 B. 

 

 

Figure 3.4 SEM images showing surface morphology of SOS particles. Particles 

produced from method 1 (A). Particles produced from method 2 (B). 
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3.3.3 Silica Pre-Treatment 

SOS silica samples were calcined in a furnace (Carbolite CWF1200) to remove the 

residual mercapto groups and any organic components left over from the particle 

synthesis. Average mass loss was 53%. Conditions: heat in air at 1 °C/min, hold at 550 or 

600 °C for 12 hours, then allow to cool to room temperature. 

SOS samples were then acid washed to rehydroxylate the surface. For 1 g of silica, 

10 mL of 0.02 M nitric acid was added and the resulting slurry heated with stirring at 90 °C 

for 3 hours. Treatment of fully porous, spherical silica would typically use 0.1 M acid, but 

these conditions were found to adversely affect the SOS morphology resulting in loss or 

damage to some surface nanospheres. The acid treated silica was washed on a sintered 

glass filter with five 30 mL aliquots of deionised water so that no trace of acid remained. 

Particles were then washed with methanol followed by acetone and dried under vacuum at 

80 °C. Before bonding, silica was dried at 150 °C under vacuum for 16 hours to remove all 

traces of water and activate the surface silanol groups. 

 

3.3.4 Bonding Using Microwave Irradiation 

All microwave reactions were performed on a CEM Explorer microwave reactor, 

shown in figure 3.5. The associated computer software enables the user to create a heating 

profile allowing complete control over the reaction conditions. The reactor is fitted with an 

autosampler, allowing high throughput of up to 48 (35 mL) or 96 (10 mL) vessels to be 

sequentially run.  This is particularly useful for optimising the bonding method as many 

alternative conditions can be quickly assessed. Another advantage of the microwave 

reactor over conventional reflux is the option to use a closed vessel method where 

specialised glass reaction vessels are sealed with venting caps which are designed to 

release pressure instead of the glass vessel failing in the event of excessive pressure. This 

enables the user to have the reaction proceed at a temperature above the boiling point of 

the solvent, a process known as superheating.28 

For C4 silanisation of SOS particles all glassware was washed with deionised water, 

then acetone and dried at 150 °C before use. 1 g of acid treated silica was dispersed in 

toluene (7.5 mL) with sonication in a 35 mL reaction vessel. A rare earth stirrer bar, 

imidazole (0.1 g) and C4 reagent (0.4 g) were added and the vessel sealed. Reagent 
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amounts were adjusted according to the mass of silica starting material, the ratio was kept 

constant. Typical microwave instrument parameters were as follows: 

Reaction type   Dynamic closed vessel method 

Reaction temperature  120 °C 

Maximum pressure  17 bar 

Maximum power setting 300 W 

Stir speed   High 

Pre-stirring   1 minute 

Reaction time   20 minutes 

 

 

Figure 3.5 CEM Explorer microwave reactor with autosampler. 

 

A high stir speed was applied due to the nature of the SOS material to settle quickly 

in solution. Resultant SOS-C4 particles were washed on a sintered glass filter with toluene 

(30 mL), methanol (30 mL), methanol/water (1:1 V/V, 30 mL) and methanol (30 mL). 

Particles were first dried in air on the filter for 1 hour, then under vacuum at 80 °C 

overnight. Endcapping was performed using the same method with TMSI in place of the 

chlorosilane and the omission of imidazole. 
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3.3.5 Carbon Analysis 

The carbon content of functionalised SOS particles was analysed with a Thermo 

FlashEA 1112 Elemental Analyser. All reported percent carbon values are after the 

endcapping stage. The percent carbon value was used in conjunction with BET surface area 

data to calculate the bonding density of the silica stationary phase using the Berendsen-de 

Galan equation.44 

 

α =
%C × 106

MCnCSBET [100 −  {(
%C

MCnC
) ML}]

 

 

Where α is the bonding density in μmol/m2, %C is the percent carbon of the 

bonded material, MC is the atomic weight of carbon, nC is the total number of carbon atoms 

in the ligand, SBET is the surface area of the silica and ML is the molecular weight of the 

attached ligand. 

 

3.3.6 Column Packing 

As was discussed in chapter 1, core-shell particles exhibit a very stable packing bed 

in the column due to shear force and the rough surface locking particles in place. The 

packing procedure of core-shell particles however is more difficult than for smooth 

spherical particles as this shear force must initially be overcome. Optimisation of the 

packing method was therefore required to pack SOS particles into the HPLC column. Early 

methods of column packing with very large particles (10-30 μm) were to simply pour the 

dry silica media into the column, allow to settle, and repeat until the column was filled 

before adding the end fittings.45 For particles less than 10 μm this method is generally not 

suitable and a slurry method is typically used.46, 47 

To pack a column with the slurry method, the silica material is firstly dispersed in a 

suitable slurry solvent using sonication. It is important for particles to be well dispersed to 

ensure bed homogeneity in the packed column.48 A small excess of the material is required 

to ensure the column is completely filled. Common packing solvents include acetone, 
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chloroform, heptane, isopropanol, methanol, toluene or a mixture of a number of these. 

This is not an exhaustive list and many alternatives may also be used provided they are 

compatible with the bonded phase. The choice of solvent makes a surprisingly large 

contribution to the quality of the packed column.48 Different bonded phases, morphologies 

and even particle sizes often require different slurry solutions to achieve the best possible 

packing. An appreciable amount of work goes into developing column packing procedures 

and column manufacturers do not generally disclose their packing methods. 

An example of equipment used to pack HPLC columns is depicted in figure 3.6. The 

column hardware with outlet frit and end fitting attached is connected to a pre-column 

which in turn is connected to a slurry reservoir. The prepared silica slurry solution, made up 

to the appropriate volume to completely fill this reservoir, is poured into the reservoir and 

the pump adapter attached. A specialised air-driven packing pump is then used to pump 

solvent (the push solvent) through the system at a chosen pressure until a pre-determined 

amount has passed through the column. The push solvent is normally an organic solvent, 

although again this depends on the bonded phase being packed. 

A typical packing pump is capable of up to 1000 bar output pressure and high flow 

rates of up to 1 L/min. As the push solvent is being pumped through the system, the porous 

frit within the HPLC column outlet retains the compressed silica material producing a 

packed structure similar to close-sphere packing. Once the required amount of solvent has 

passed through the column, the pump is switched off and the system allowed to equilibrate 

back to atmospheric pressure. The packed column can then be removed from the pre-

column and the inlet frit and end fitting attached. 

As well as the choice of solvent, the reservoir size also contributes to the quality of 

the packed column. During QC testing, a column may produce peaks which are not 

symmetrical (Gaussian) across the whole chromatogram. Manufacturer specification will 

allow for some variation in this parameter, but in cases where asymmetry is slightly out of 

specification the reservoir size can be adjusted to compensate for this. If peaks are fronting 

(asymmetry <1) it indicates that the column has packed too slowly and that a smaller 

reservoir size should be used. Conversely if peaks are tailing (asymmetry >1), it indicates 

the column may have packed too quickly and the reservoir size should be increased. 
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Figure 3.6 Column packing equipment, composed of packing pump (A), pump adapter 

(B), slurry reservoir (C), pre-column (D) and column to be packed (E). Direction of solvent 

flow is shown by the yellow arrows. 

 

The parameters were carefully considered for packing SOS particles into HPLC 

columns. C4 functionalised SOS particles were packed into 50 or 100 mm stainless steel 

narrow bore columns with 2.1 mm internal diameter, sealed with 0.5 μm porous titanium 

frits. The SOS material has a tendency to settle quickly in organic solvents with low density 

and/or viscosity. This was apparent when attempting to use methanol (d = 0.79 g/mL, η = 

0.545 mPa·s) as the slurry solvent as the initially dispersed particles dropped rapidly to the 

bottom of the measuring cylinder. To address this, a mixed slurry solvent containing 

methanol, chloroform (d = 1.48 g/mL) and isopropanol (η = 1.96 mPa·s) was used to 

increase the density and viscosity. A silica suspension was prepared by dispersing 0.25 g (50 

mm column) or 0.5 g (100 mm column) of the functionalised particles in a solution of 

72:8:20 chloroform:methanol:isopropanol (V/V/V). Experimentation using 15, 30 and 60 mL 
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reservoir sizes found the ideal reservoir size to be 30 mL. This allowed a relatively quick 

packing time of around 30 minutes and resulted in the best peak shape. To pack the silica 

slurry, 60 mL methanol was pumped through the column at 600 bar. 

 

3.4 Results and Discussion 

3.4.1 Optimisation of Microwave Reaction Conditions 

 Firstly a study was performed to observe the difference between heating at 110 °C 

and superheating at 120 °C. Toluene is a non-polar solvent with a boiling point of 110.6 °C, 

and is virtually transparent to the microwave field. The reaction is driven by the dipole 

rotation mechanism, with microwave energy applied directly to the reagents possessing a 

dipole moment, namely the hydroxyl groups on the surface of SOS silica, N-H group present 

in imidazole and the Si-Cl bond in the C4 reagent. 

The SOS silica was produced from the reaction described in method 1, section 3.3.2 

and calcined at 550 °C. The surface area was measured by nitrogen adsorption to be 197 

m2/g. The reaction was held at temperature for 20 minutes and performed in triplicate for 

bonding and endcapping stages. Results for percent carbon and bonding density are shown 

in table 3.1. Despite using a sealed vessel, the pressure remained below 0.5 bar even at the 

higher temperature of 120 °C, safely within the limit of the vessel and equipment. 

 

Table 3.1 Effect of superheating on carbon loading and bonding density. 

Bonding 
method 

Ligand % C 
α 

(μmol/m2) 

Toluene 
Microwave 

110 °C 
C4 

2.57 1.89 

2.45 1.80 

2.32 1.70 

Toluene 
Microwave 

120 °C 
C4 

3.01 2.23 

2.75 2.03 

3.05 2.26 
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Superheating at 120 °C resulted in percent carbon loading (% C) and bonding 

densities that were on average 0.49% and 0.38 μmol/m2 greater than those obtained from 

the reaction at 110 °C. It was decided that all toluene-based microwave reactions should be 

performed at the higher temperature. The superheating method achieved bonding 

densities that are less than those of commercially available C4 columns, typically 2.5-4.0 

μmol/m2 (where manufacturer data is made available). The values therefore seem lower 

than expected for the SOS material, however it is very likely that the microporous structure 

is not fully accessible to all of the bonding reagents and that only the accessible surface 

area is functionalised. By contrast, commercial particles have larger mesopores which allow 

access to reagents and hence bonding over a greater proportion of the particle surface. 

A batch of SOS silica was synthesised via method 1 to assess the effect of reaction 

time on the carbon loading values when using the microwave reactor. Particles were again 

calcined at 550 °C and surface area was measured by nitrogen adsorption to be 180 m2/g. 

Particle size was not obtained. Five reactions were performed using identical amounts of 

silica and reagents. The same conditions were applied to each: reaction performed at 120 

°C using a closed vessel method, high stir speed and 300 W maximum power. The reaction 

hold time was varied between 10 to 120 minutes. The same reaction times were also 

repeated for the endcap stage. Results are shown in table 3.2. It was found that there was 

no benefit in terms of carbon loading by increasing the reaction time beyond 20 minutes, 

unless the duration was increased to 120 minutes. As a shorter reaction time is favoured, 

the optimised method used for further study was decided to be a 20 minute reaction 

performed at 120 °C. 

 

Table 3.2 Effect of microwave reaction time on carbon loading and bonding density. 

Bonding 
method 

Ligand 
Reaction time 

(min) 
% C 

α 
(μmol/m2) 

Toluene 
Microwave 

120 °C 
C4 

10 2.43 1.95 

20 2.57 2.07 

40 2.50 2.01 

60 2.56 2.06 

120 2.76 2.23 
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3.4.2 Comparison of Microwave and Conventional Heating 

 There is currently very little in the literature that directly compares the use of 

microwave irradiation with traditional heating methods. The optimised microwave method 

was therefore performed alongside a reflux reaction using an oil bath as the heating source 

to assess any difference in percent carbon content and bonding density. 

Heating with the oil bath was performed by refluxing for 16 hours in a 50 mL 

round-bottom flask. The microwave bonding was performed in a 35 mL closed vessel at 120 

°C. Both methods used the same amounts of reagents. Two batches of SOS silica were 

prepared via method 2, designated 1 and 2. Surface areas were measured by nitrogen 

adsorption to be 148 and 122 m2/g respectively, after calcination at 550 °C. The mean 

particle size was 3.0 μm for both, with a d90/10 ratio of 1.24 (batch 1) and 1.36 (batch 2). 

Reactions using both heating methods were performed in triplicate on each batch of silica. 

The prefixes MB- and OB- refer to microwave bonding and oil bath bonding. Results are 

shown in table 3.3. 

Percent carbon results for the three samples of each batch were very consistent for 

the microwave method, with relative standard deviation (RSD) of 3.68% (MB-1) and 1.40% 

(MB-2) between each trio. The first set of oil bath samples had higher RSD of 3.81% (OB-1), 

while the second set (OB-2) included a low result which did not allow a representative 

comparison, giving 12.20%. The percent carbon value typically increases with larger surface 

area simply because there are more silanol sites where bonding can occur. The bonding 

density (α) is therefore a better comparison between different batches of silica as it takes 

into account the effect of surface area. In the case of the microwave method the average 

values were identical for both batches, with a measurement of 2.11 µmol/m2. The RSD 

between all six results was 2.57%, compared with 3.57% from the oil bath reaction 

(calculated from five results, 8.38% with low result included). 
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Table 3.3 Comparison of bonding results obtained from microwave and reflux 

heating methods. 

Silica Ligand 
Bonding 
method 

% C 
α 

(μmol/m2) 

MB-1 C4 
Microwave 

120 °C 
20 min 

2.26 2.20 

2.17 2.10 

2.10 2.03 

OB-1 C4 
Oil bath 
Reflux 

16 hours 

2.45 2.39 

2.28 2.22 

2.42 2.36 

MB-2 C4 
Microwave 

120 °C 
20 min 

1.78 2.08 

1.80 2.11 

1.83 2.14 

OB-2 C4 
Oil bath 
Reflux 

16 hours 

1.65 1.93 

2.07 2.44 

2.04 2.40 

 

 

The samples from the microwave method show slightly lower carbon loading than 

those obtained from the oil bath, typically around 0.2%. However the results show 

improved consistency which can be explained by the high degree of reaction control and 

uniform heating provided by the microwave reactor, with energy being applied directly to 

the reactants rather than the vessel. As was discussed earlier, the carbon loading can 

potentially be increased by extending the heating time in the microwave reactor. A 120 

minute reaction still represents a massive reduction in reaction time over a 16 hour reflux. 

A sample from each of MB-1 (% C = 2.17%, α = 2.10 μmol/m2) and OB-1 (% C = 

2.42%, α = 2.36 μmol/m2) was selected for packing into a HPLC column to assess and 

compare the chromatographic performance of microwave and conventionally bonded 

media in the separation of large molecules. The column dimensions were 100 × 2.1 mm and 

particles were packed using the method described in section 3.3.6. A test mixture of four 
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proteins was prepared, containing carbonic anhydrase (65 μg/mL), lysozyme (65 μg/mL), 

myoglobin (65 μg/mL) and ovalbumin (75 μg/mL), made up in Milli-Q water. 

The protein test mixture was separated using a linear gradient method. Mobile 

phase A: water + 0.1% TFA; B: acetonitrile + 0.1% TFA; gradient: 30-65% B in 6 minutes 

(5.83 %/min); flow rate 400 μL/min; temperature: 50 °C; detection: 220 nm; injection 

volume: 20 μL. Maximum back pressure was 176 bar (MB-1) and 180 bar (OB-1). The 

overlaid chromatogram for both columns is shown in figure 3.7. The retention times for 

both columns were virtually identical and both produced narrow, well resolved peaks 

separated within 5 minutes. 

 

 

Figure 3.7 Overlaid chromatogram of protein test mixture separation on microwave 

and oil bath bonded columns. Elution order: lysozyme, myoglobin, carbonic anhydrase, 

ovalbumin. 
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Values for peak capacity (PC) were determined from gradient time (tg), unretained 

peak time (t0) and peak width at 50% height (W50%) using the following equation.49  

 

PC = 1 +  
(tg − t0)

1.7 × W50%
 

 

Inclusion of the unretained peak time in the equation accounts for the fact that no 

component in the test mixture can elute before a time equivalent to the column void 

volume (dead volume). For fast analysis, this time can represent a significant proportion of 

the analysis time, and omission leads to an over estimate of the peak capacity. 

The peak width at 50% height was preferred to avoid any imprecision associated 

with width measurement at the baseline for proteins which often contain closely related 

variants. Measurement at 50% height ensures the value is not affected by any impurities 

that are partially resolved from the main component. Peak width at the baseline is 

achieved by extrapolation, which assumes that peaks are Gaussian in shape.50 Peak width 

at 50% height is defined as 2.35σ, where σ is the standard deviation, and the baseline value 

at 13.4% height as 4.0σ. The peak width at 50% height is therefore multiplied by a factor of 

1.7 (4 ÷ 2.35) to give an estimate of baseline width. 

The value for peak capacity is unitless as gradient time and peak width are both 

measured in minutes. The calculated value provides an indication of the number of 

analytes that can be resolved by the column within the gradient run time. A larger number 

is preferable as this indicates narrower peak widths and hence better performance, 

theoretically allowing more compounds to be analysed during the same run, dependant on 

their relative retention times. Peak capacity results were very similar for both columns, 

with an almost identical average value of 58 (MB-1) and 57 (OB-1), suggesting comparable 

performance between the two. 

A commercial core-shell column, Thermo Scientific Accucore 150-C4 (2.6 μm, 100 × 

2.1 mm), was also used to separate the protein test mixture. This material has a pore size 

of 15 nm and is optimised for the separation of biomolecules, particularly proteins and 

larger peptides. The HPLC gradient was adjusted to match the elution time of the final peak 

to that of the SOS columns. The Accucore column provided longer retention hence the 
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gradient steepness was increased to reduce the run time. The modified gradient used was 

30-68.5% B in 6 minutes which allowed a direct comparison of peak capacity with the SOS 

columns. All other conditions were identical. 

Under these gradient conditions both SOS columns provided slightly better 

performance than the Accucore column, which resulted in an average peak capacity of 54. 

The lower value can be partly explained by the longer unretained peak time of the 

Accucore material (t0 = 0.67 min) due to the thick, highly porous shell. By comparison the 

SOS material (t0 = 0.49 min) has a shallow shell depth with much less accessible porosity 

and therefore fewer possible paths through the column, leading to a shortened unretained 

peak time. Additionally, higher back pressure of 205 bar was seen for the Accucore column 

compared to a maximum of 180 bar for the SOS column. 

It is interesting to note when comparing the two materials the Accucore column 

resulted in a narrower peak width for the first analyte, lysozyme (14 kDa), whereas the SOS 

columns produced narrower peak widths for the two largest proteins, carbonic anhydrase 

(30 kDa) and ovalbumin (45 kDa), indicating that the shallow shell depth and interstitial 

macroporosity provides improved mass transfer as the analyte size is increased. Peak 

widths for myoglobin (17 kDa) were virtually identical for all three columns. 

 

3.4.3 Batch to Batch Reproducibility 

Small differences in the physical properties of batches of silica media are 

unavoidable due to the numerous stages involved in the method of making an amorphous 

product. Particle diameter, size distribution and surface area are controlled as best as 

possible to produce a consistent product, however some variation will always occur. 

Likewise, bonding reactions will always result in some variation in terms of the final 

product carbon loading, and the column packing process also has a large effect on column 

performance. In HPLC it is vital that the results are repeatable, therefore it is essential that 

the entire process is controlled as best as possible and that any differences between 

individual batches of silica do not cause excessive variation in chromatographic 

performance. 

To assess the batch to batch reproducibility of the microwave bonding method, 

three batches of SOS silica were prepared via method 1, designated MB-3, MB-4 and MB-5, 
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followed calcination at 550 °C. Physical properties (surface area, mean particle size, d90/10) 

were as follows. MB-3: 226 m2/g, 3.9 μm, 2.31; MB-4: 240 m2/g, 2.9 μm, 1.82; MB-5: 200 

m2/g, 4.0 μm, 2.06. Each batch of SOS was split into three sub-reactions, all of which were 

functionalised with a C4 group using microwave irradiation. As before, the reaction was 

performed in toluene at 120 °C for 20 minutes and the reaction was repeated for the 

endcapping stage. Results are summarised in table 3.4. 

For the three reactions within each batch, values for carbon content and bonding 

density are closely matched, with the exception of one slightly lower result for MB-5, 

reaction 2. RSD of the percent carbon values from each batch were as follows: MB-3, 

1.45%; MB-4, 2.74%; MB-5, 3.54%. This indicates that the method is highly reproducible for 

samples within each batch. 

Comparison of bonding density between all nine reactions also reveals highly 

consistent results with RSD of 4.56%, indicating that the batch to batch bonding results 

would be acceptable to pass a typical 5% manufacturer specification. Once again this 

highlights the reproducible nature of the microwave bonding method and potential to 

replace conventional heating in a manufacturing capacity. 

 

Table 3.4 Bonding results from batch to batch reproducibility study. 

Batch Ligand Reaction % C 
α 

(μmol/m2) 

MB-3 C4 

1 3.19 2.06 

2 3.10 2.00 

3 3.16 2.04 

MB-4 C4 

1 3.53 2.16 

2 3.60 2.21 

3 3.41 2.09 

MB-5 C4 

1 2.52 2.02 

2 2.36 1.89 

3 2.50 2.01 
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Each of the nine samples from the reproducibility study were packed into a 50 × 2.1 

mm HPLC column using the method described in section 3.3.6. The shorter column length 

was used due to the limited amount of available bonded material from each batch. 

The chromatographic performance of each column was compared in the separation 

of the same protein test mixture described in section 3.4.2, containing carbonic anhydrase, 

lysozyme, myoglobin and ovalbumin, made up in Milli-Q water. The protein test mixture 

was again separated using a linear gradient method. Mobile phase A: water + 0.1% TFA; B: 

acetonitrile + 0.1% TFA; gradient: 30-65% B in 6 minutes (5.83 %/min); flow rate 400 

μL/min; temperature: 40 °C; detection: 220 nm; injection volume: 10 μL. Overlaid 

chromatograms of the three columns from each batch are shown in figures 3.8 (MB-3), 3.9 

(MB-4) and 3.10 (MB-5). 

 

 

Figure 3.8 Overlaid chromatogram of protein test mixture separation on three 

columns from batch MB-3. Inset: SEM image of base silica. 
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Figure 3.9 Overlaid chromatogram of protein test mixture separation on three 

columns from batch MB-4. Inset: SEM image of base silica. 

 

 

 

Figure 3.10 Overlaid chromatogram of protein test mixture separation on three 

columns from batch MB-5. One trace (blue) is partially hidden due to similar retention. 

Inset: SEM image of base silica. 
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The protein text mixture was fully resolved in less than 4 minutes for all nine 

columns, all of which showed identical selectivity. Elution order was lysozyme, myoglobin, 

carbonic anhydrase and ovalbumin. A comparison of retention times for all columns is 

shown in table 3.5. Between the three columns within each batch, very low values for RSD 

were obtained when comparing retention times for all analytes, indicating comparable 

performance. Comparison of retention times between batches displays some differences, 

particularly for MB-5 where the analysis resulted in shorter retention for peaks 2, 3 and 4. 

However assuming a ±5% specification set around the average, all columns would pass 

quality check. The overlaid chromatogram showing the test mixture separation on the first 

column of each batch is shown in figure 3.11. 

 

Table 3.5 Comparison of retention times for analytes on each column. Peak 

identities: 1) lysozyme, 2) myoglobin, 3) carbonic anhydrase, 4) ovalbumin. 

Batch Peak 
Retention time (min) 

RSD (%) 

Column 1 Column 2 Column 3 

MB-3 

1 0.28 0.27 0.27 2.11 

2 2.41 2.35 2.37 1.29 

3 2.78 2.77 2.75 0.55 

4 3.80 3.86 3.79 0.99 

MB-4 

1 0.29 0.28 0.28 2.04 

2 2.46 2.37 2.36 2.30 

3 2.89 2.81 2.80 1.74 

4 3.81 3.73 3.76 1.07 

MB-5 

1 0.27 0.27 0.27 0.00 

2 2.21 2.16 2.21 1.32 

3 2.66 2.60 2.64 1.16 

4 3.61 3.56 3.61 0.80 
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Figure 3.11 Overlaid chromatogram of protein test mixture separation on the first 

column from each batch. 

 

The use of a 50 mm column length led to a shorter gradient time (tg-t0) compared 

to the 100 mm columns in section 3.4.2. Average peak capacity values were calculated as 

before, though the first peak (lysozyme) was omitted from this calculation due to elution 

close to the unretained peak (t0 = 0.25 min). This did not allow accurate measurement of 

the peak width. This led to the conclusion that 100 mm columns should be used for future 

study. The average peak capacity values calculated from the final three peaks were 32 (MB-

3), 40 (MB-4) and 39 (MB-5). 

Since the bonding density values were very similar for all nine columns, an 

explanation for the lower peak capacity for batch MB-3 is likely to be caused by the silica 

media rather than an issue with the bonding process. The sizing data shows this batch to 

have the broadest size distribution. SEM images taken of the three batches, shown inset in 

figures 3.8, 3.9 and 3.10, also show there to be fewer surface nanospheres for MB-3 

compared to the other two batches. The conclusion is that these physical properties will 

have an effect on the quality of column packing and hence the column performance. This 

agrees with the theory discussed earlier where shear force due to the rough surface holds 

particles in place when packed into the column, preventing bed expansion and that a 

narrower particle size distribution aids in providing ideal close-packing of spheres. 
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3.4.4 Alternative Bonding Solvents 

Although toluene has been used throughout the studies in this chapter, alternative 

solvents were also assessed for microwave assisted bonding of SOS particles. The dielectric 

constant of the solvent must be taken into account when using the microwave reactor, as 

energy is supplied via interaction of the electromagnetic field with reagents which can 

potentially lead to high operating pressures within the vessel. Some pressure build up in 

the sealed vessel is inevitable and normal, particularly when working with polar solvents, 

hence the glass reaction vessels are designed to safely withstand up to 30 bar and are 

sealed with a pressure-venting cap. A list of recommended maximum reaction 

temperatures for solvents is also provided by the microwave manufacturer.51 

Kinkel and Unger studied the role of solvent in the bonding of fully porous silica 

with n-octadecyl (C18) groups, using a conventional reflux method.9 Tetrahydrofuran, DMF, 

benzene, diethyl ether, DCM and acetonitrile were included. It was found that the best 

results were obtained when using DCM or DMF, both of which resulted in high bonding 

densities of >3 μmol/m2 after a 28 hour reflux. It should be noted that toluene was not 

included in this study due to the use of benzene, however it is now commonly used in 

many bonding methods as a replacement for benzene as it is much less hazardous to 

health. 

Four solvents were chosen for comparison in the C4 bonding of SOS particles: 

toluene, DCM, limonene (dipentene) and DMF. The first three are non-polar and virtually 

transparent to the microwave field, with energy supplied directly to the SOS silica and 

other reagents. DMF is an aprotic polar solvent and therefore the entire reaction volume 

will experience direct heating. The use of protic solvents was avoided as hydroxyl or amine 

groups can compete with the surface silanol groups for the ligand being attached, leading 

to lower than expected surface functionality and undesired by-products. Limonene was 

included to demonstrate a potentially greener and safer alternative to toluene. 

A batch of SOS silica was prepared via method 2. Particles were calcined at 600 °C 

which resulted in a reduction of surface area compared to samples calcined at 550 °C due 

to closure of the pore system. The surface area was measured by nitrogen adsorption to be 

68 m2/g. Due to the number of required experiments the microwave bonding method 

described in section 3.3.4 was run on a reduced scale. The batch was split between twelve 

10 mL reaction vessels, 0.2 g silica into each.  1.5 mL of comparison solvent, 20 mg 
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imidazole and 80 mg C4 reagent were added to each vessel. Each solvent was run in 

triplicate. Identical microwave reaction parameters to previous studies in this chapter were 

followed: 20 minute reaction at 120 °C (80 °C for DCM) using a closed vessel method. The 

results for carbon loading and surface coverage are shown in table 3.6. 

The best results were observed when using limonene and toluene, both of which 

resulted in bonding densities of ≥3.35 μmol/m2. This value is comparable to commercially 

available C4 materials. This indicates that although the total surface area has been reduced 

compared to particles calcined at 550 °C, the bonding density is increased as a larger 

proportion of the surface area is accessible to bonding reagents. The use of DCM resulted 

in significantly lower values, however the set of reactions were run at a reduced 

temperature of 80 °C due to the low boiling point. Reactions with DCM may therefore 

require the heating time to be extended to achieve equivalent bonding density. 

 

Table 3.6 Comparison of bonding results when using various reaction solvents. 

Solvent Ligand Temperature % C 
α 

(μmol/m2) 

Toluene C4 120 °C 

1.60 3.35 

1.63 3.42 

1.60 3.35 

Dichloromethane C4 80 °C 

1.15 2.39 

1.15 2.39 

1.10 2.28 

Limonene C4 120 °C 

1.63 3.42 

1.67 3.50 

1.67 3.50 

Dimethylformamide C4 120 °C 

1.48 3.09 

1.49 3.11 

1.44 3.01 
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The use of DMF provided values slightly lower than those from the toluene and 

limonene reactions. The polar nature of the solvent however resulted in extremely rapid 

heating, typically reaching required temperature in around 45 seconds, equating to a 

heating rate of 125 °C/min. The required amount of microwave power to maintain the 

reaction temperature was also reduced. After initial heating, approximately 6 W was 

required compared to 30-40 W for the three non-polar solvents. Despite this, the observed 

pressure within the vessel did not exceed 5 bar, safely within the limit of the equipment. 

The lower bonding densities observed for DMF may be explained by not achieving 

superheating conditions due to the higher boiling point of 153 °C. As discussed earlier in 

the chapter, superheating in toluene at 120 °C versus 110 °C results in higher carbon 

loading, therefore the same approach was applied to DMF. Although superheating was not 

possible as the boiling point of DMF is greater than that of the C4 reagent (138 °C), the 

reaction temperature could still be increased to 135 °C. The elevated temperature resulted 

in carbon loading comparable to that of the toluene reactions, with % C of 1.61% and α = 

3.39, indicating that DMF is also a viable solvent for the functionalisation of SOS particles 

using microwave heating. 

 

3.5 Conclusion 

The suitability of microwave irradiation as the heating source for the silanisation of 

SOS silica has been assessed. A microwave bonding method has been developed which 

facilitates rapid, reproducible C4-functionalisation of SOS silica media, providing a 

considerable reduction in reaction time compared to traditional reflux. 

Heating by microwave irradiation was compared to traditional reflux to assess any 

difference in bonding density. It was firstly found that superheating in toluene at 120 °C 

using the microwave reactor led to carbon loading and bonding density values greater to 

those at 110 °C, therefore all further microwave-based experiments were performed at this 

temperature. The 20 minute microwave reaction in toluene at 120 °C consistently led to 

bonding densities between 2.0-2.1 μmol/m2. The results were slightly lower than obtained 

from a 16 hour reflux which typically produced bonding densities between 2.2-2.4 

μmol/m2, however the latter displayed higher variation between these values. 
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Although there were some differences in the carbon loading and bonding density, 

the SOS-C4 materials produced from both microwave and reflux silanisation methods have 

shown almost identical performance in the HPLC separation of a protein test mixture. High 

values were obtained for peak capacity, which exceeded that of a commercial C4 column 

optimised for protein separation. 

In an assessment of batch to batch reproducibility, three batches of SOS-C4 

particles were prepared. In total, nine columns were tested using the same protein test 

mixture. A small amount of variation was observed in the retention, however if a typical 

manufacturer specification of ±5% was set around the average value for retention time all 

nine columns would be within this limit. One of the batches resulted in lower values for 

peak capacity, however this is attributed to the morphology of the SOS particles rather 

than the bonding process. The SOS synthesis has since been optimised to produce much 

more consistent particles. It was also noted that the shorter column dimension of 50 × 2.1 

mm resulted in reduced retention and did not allow accurate measurement of the first 

peak width. This has been addressed by using 100 × 2.1 mm columns in future experiments. 

A major advantage of the microwave reactor is the vast reduction in experiment 

time. A 20 minute reaction represents a 98% reduction in heating time compared to a 16 

hour reflux. This does not include the time taken to heat the vessel to the required 

temperature, nor the time to cool. The microwave reactor is capable of extremely rapid 

heating, around 45 °C/min for toluene based reactions and as high as 125 °C/min for DMF, 

which again provides a further time advantage. Further investigation shows there to be no 

benefit from increasing the microwave heating time beyond 20 minutes until at least 120 

minutes. Samples tested from the increased microwave reaction time show bonding 

density values similar to that of reflux heating. This lengthened microwave reaction still 

represents an 88% reduction in heating time. 

 Due to the shortened reaction time the microwave reactor also provides a large 

reduction in power consumption. Although the maximum output power of the microwave 

is 300 W, consumption close to this is only required briefly during the initial heating stage. 

As little as 6 W (DMF) is required to maintain constant temperature. By contrast, a hot 

plate rated at 600 W running constantly for 16 hours uses a great deal more electricity. 

While this is perhaps not an important factor in this research project, it may be of more 

interest to manufacturers who are looking to speed up their bonding processes and reduce 

costs. 
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After calcination at 550 °C, lower bonding densities for SOS have been observed for 

both heating methods compared to commercially available core-shell materials. Even 

despite the homogenous heating effect of the microwave reactor which provides energy to 

the entire silica particle, including the internal pores, the microporous properties mean 

that some or all of the bonding reagents cannot penetrate into the pore system and 

silanisation only occurs upon the accessible surface area. This is not necessarily a 

disadvantage of the SOS material, as analytes are also unable to access the pore system 

and the bonding density of the accessible surface area may well be comparable to that of 

commercial materials, although this cannot be directly measured. 

In the investigation into alternative bonding solvents, SOS particles were calcined 

at 600 °C. This had the effect of reducing the total surface area by closing up some of the 

pores. It is presumed that the accessible surface area was not significantly reduced as 

higher bonding densities were measured which were more comparable to that of 

commercial C4 materials. For example the toluene and limonene-based reactions gave an 

average of 3.37 and 3.48 μmol/m2 respectively, compared to 3.5 μmol/m2 for the Accucore 

150-C4 material. 

 In the study conducted by Kinkel et al.,9 DCM and DMF were found to provide the 

best results as the solvent for the C18 silanisation of silica. In the microwave study, the use 

of limonene or toluene was found to provide the greatest bonding density. It should be 

noted however that DCM was heated at a lower temperature and that a longer reaction 

time is likely required to increase the value. A reaction time of 28 hours was used in the 

tests conducted by Kinkel et al. When using DMF, increasing the reaction temperature to 

135 °C provided bonding density values comparable to toluene. The study has shown that, 

if required, alternative solvents can be utilised in the functionalisation of the SOS material. 

The results obtained in this chapter indicate that microwave bonding is capable of 

producing bonded phases that are comparable with those obtained from conventional 

reflux. The microwave method has the additional benefits of improved consistency of the 

carbon loading and bonding density values, significantly reduced reaction time and 

associated reduction in energy consumption. A number of column manufacturers have 

expressed interest into the use of microwave irradiation as the driving force to produce 

their bonded phases, it is expected that commercial columns produced using this 

technology will be introduced in the near future. 
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4 Spheres on Sphere Particles for Chromatography 

4.1 Introduction 

The optimised synthesis and functionalisation of SOS particles by microwave 

irradiation, followed by preliminary HPLC analysis has been discussed in the previous two 

chapters. The experimental work in this chapter will focus on the chromatographic 

performance and applications of functionalised SOS particles that have been packed into 

HPLC columns. If these columns are found to provide comparable performance to 

commercial materials, the SOS synthesis and bonding methods would represent a vast 

reduction in the time, labour and energy required to produce near monodisperse core-shell 

particles for chromatographic use. The performance of fractal particles is also discussed 

and compared to the SOS material. 

HPLC is a widely used technique and an essential analysis tool in laboratories, 

owing to its universal applicability and high assay precision.1 The challenges in HPLC are to 

obtain fast, efficient separation, preferably with low back pressure. The literature review 

will provide a background on early chromatography, the evolution of liquid 

chromatography (LC) leading to modern day HPLC, efficiency in LC and the concept of 

fractal chromatography. 

 

4.2 Literature Review 

4.2.1 Early Chromatography 

Liquid chromatography was first developed in the late 1890s by the Russian 

botanist Mikhail Tswett as a technique to separate and isolate plant pigments.2 Using 

calcium carbonate as adsorbent and petroleum ether/ethanol mixtures as eluent, 

separation of chlorophyll and carotenoids was achieved. This kind of separation is now 

regarded as liquid-adsorption chromatography, where the affinities of compounds for the 

stationary phase determine their retention. It was predicted by Tswett that chlorophyll was 

held to the plant tissue by adsorption, and that stronger solvents were necessary to 

overcome this adsorption. This was demonstrated by the extraction of carotene using non-

polar solvents, followed by the use of polar solvents to extract chlorophyll. 
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Unfortunately, Tswett’s work was not generally accepted, partly due to the 

publication only being available in Russian meaning it was not readily accessible to the 

majority of chemists, but mainly due to subsequent research by Willstätter and Stoll who 

were unable to reproduce his results.3 Warnings by Tswett not to use aggressive 

adsorbents went unheeded, leading to decomposition of the chlorophylls and ultimately 

the experiments failed. As a consequence, the published results rejecting Tswett’s original 

work impeded the development of chromatography by 20 years. 

In the late 1930s Martin and Synge developed a liquid-liquid separation technique 

known as partition chromatography.4 Hydrophilic silica gel was packed into a column as a 

support for the stationary phase, in this case water. An organic solvent acted as the mobile 

phase, flowing through the column. It was found that polar analytes diffuse into the 

stationary phase and are retained.  The separating power was demonstrated by the 

separation of acetyl amino acids, where the stronger the interaction between analyte and 

stationary phase the longer the elution time. It was also observed that increasing the 

polarity of the mobile phase resulted in a decrease in retention time. 

Their publication recommended the replacement of the liquid mobile phase with a 

suitable gas which should accelerate the transfer between phases and provide more 

efficient separation.4 This formed the concept of gas chromatography (GC). In the same 

paper it was also predicted that the use of small particles and high pressure in LC columns 

would improve efficiency and separation. This was a key factor in the development of 

modern HPLC. 

One of the most important developments in liquid chromatography was the 

introduction of reversed phase chromatography (RPC) by Howard and Martin in 1950.5 This 

technique requires the mobile phase to be more polar than the stationary phase and was 

used to solve the problem of separating long-chain fatty acids. Normal phase 

chromatography (NPC) was the only available option at the time, however analytes were 

found to favour the less polar mobile phase and could not be separated by this approach. 

Their solution was to decrease the polarity of the stationary phase. This was achieved by 

the treatment of kieselguhr (diatomaceous earth) with hydrophobic groups, rendering the 

surface unwettable for aqueous mobile phases. The rapid development of RPC continued, 

as it was found to allow a much greater selection of surface chemistries and many more 

applications than NPC. As such it is now the most routinely used HPLC method. 
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4.2.2 Evolution of Liquid Chromatography 

Despite the suggestions of Martin and Synge who (correctly) suggested that smaller 

particle size and higher pressure would provide improved LC separation, the development 

of LC was largely overlooked until the 1960s due to the favoured technique of GC. 

Following on from the work of Martin and Synge, it was predicted by Giddings,6 Huber7 and 

others that LC could be operated in the high efficiency mode by reducing the packed 

particle diameter substantially below the typical size of 150 µm at the time, and using 

pressure to increase the mobile phase velocity.8 Extensive experimentation into the 

improvement of column packings was performed throughout the 1960s and 70s9 and has 

continued to the present day with the introduction of sub-2 μm and core-shell materials.10 

The evolution of packed particles has been described in table 1.1, chapter 1. Reducing the 

particle size places increasingly larger demands on the LC equipment due to higher 

operating pressures, as the pressure drop is inversely proportional to the particle 

diameter.11 As such, the development of HPLC instrumentation has had to keep pace to 

meet these pressure requirements, particularly for sub-2 μm particles, resulting in the 

modern HPLC and UPLC systems available today, some of which are designed to operate at 

pressures of up to 1500 bar. 

A typical modern HPLC system consists of a pump, mobile phase degasser, 

autosampler, injection system, column compartment and detector. The pump is capable of 

extremely high precision over a large range of flow rates which may extend up to 10 

mL/min in some cases. The pump may have a single channel (isocratic), or multiple 

channels (binary, ternary, quaternary) which allows the user to easily change mobile phase 

composition and also perform gradient separation. The autosampler and injection system is 

automated and designed to quickly and accurately load samples to be analysed using the 

LC system. The autosampler compartment may hold as many as 1000 sample vials under 

controlled temperature conditions, facilitating high throughput analysis. 

The column compartment allows control over the operating temperature of the 

column, which can have a large effect over the retention time and behaviour of samples, 

particularly for large biomolecules.12, 13 The latest LC systems allow control of the 

temperature over a range of 10 °C below ambient to 120 °C with accuracy and stability 

stated as ±0.5 °C. The column compartment may also allow pre-heating of the mobile 

phase and various methods of temperature control, for example still air or forced air mode, 
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depending on the application. Despite this precise control, the use of temperature 

programming is still an underused variable in HPLC analysis. 

Sample detection may be performed by many techniques including refraction,14 

fluorescence,15 conductivity,16 electrochemistry17 and light-scattering.18 The most common 

type of detector used in HPLC is the ultra violet (UV) detector, first introduced in the 

1960s,19 which provides high sensitivity for light absorbing compounds. The UV detector 

operates at a single wavelength over the range of 195-370 nm, and can be adjusted to suit 

the compounds of interest. Most detectors now provide wider wavelength selection, 

covering both the UV and visible spectrum (195-700 nm), and are therefore named UV/VIS 

detectors. The photo diode array (PDA) detector works on the same principle, but is able to 

scan the entire spectrum during analysis. This is convenient to determine the most suitable 

wavelength without repeat analysis.20 

Mass spectrometry may also be used as a detection technique when coupled to the 

LC system,21 and has been developed as such since the introduction of electrospray 

ionisation in the late 1980s.22 Liquid chromatography-mass spectrometry (LC-MS) is now a 

routinely used analytical technique, competing with conventional LC detection due to the 

high sensitivity, specificity and the ability to analyse complex mixtures.23 

 

4.2.3 Efficiency in Liquid Chromatography 

In their 1941 paper, Martin and Synge adopted the theory of theoretical plates to 

describe the efficiency of a chromatographic column.4 This was taken from comparison to a 

distillation column which divides the total length into a number of layers, each of which is 

equivalent to one theoretical plate.24 The higher the plate number, the more efficient the 

column. In HPLC the number of theoretical plates (plate count, N) can be determined by 

the retention time (tR) and the peak width at the base (WB) of an analyte peak in the 

chromatogram using the equation:25 

 

N = 16 (
tR

WB
)

2
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From this equation it can be seen that high efficiency is dependent upon narrow 

peak widths throughout the chromatogram. As an analyte passes through the packed 

column it experiences dispersion effects resulting in broadening of the detected peak. Band 

broadening effects have been discussed by van Deemter26 who described a relationship 

between dispersive effects in the column and the height equivalent to a theoretical plate 

(HETP or H), calculated from column length (L) and plate count (N) using the equation: 

 

H =  
L

N
 

 

van Deemter described three terms responsible for band broadening: A term, eddy 

diffusion; B term, longitudinal diffusion; and C term, resistance to mass transfer. The 

effects of each have been discussed in chapter 1. The three effects are related to H using 

the van Deemter equation:26 

 

H = A +  
 B 

 u 
 +  Cu 

 

A plot of H versus the mobile phase linear velocity (u) results in a van Deemter 

curve, shown in figure 4.1. The minimum point on the curve, known as the minimum plate 

height (Hmin), is where the highest efficiency is obtained and can also be used to determine 

the optimum linear velocity at which the highest efficiency can be achieved. 

The van Deemter plot has some limitations however, as it does not account for 

analysis time or operating pressure and therefore does not consider the flow resistance or 

permeability of the column. Kinetic plots provide an alternative method of plotting the 

same data, taking into account the permeability of the material from a measure of column 

length, mobile phase viscosity and maximum pressure drop across the column.27-29 As was 

briefly discussed in chapter 1, kinetic plots are very useful when comparing the 

performance of differently sized and shaped stationary phases, providing information such 

as efficiency per unit time or efficiency per unit length of column. 
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Figure 4.1 van Deemter plot showing the contribution of individual terms to band 

broadening and the area where optimum efficiency is obtained. 

 

One type of kinetic plot, devised by Bristow and Knox,12 plots impedance against 

efficiency to demonstrate the performance of a column. Impedance (E) defines the 

resistance encountered by a compound as it passes through the column relative to the 

performance of the column. This gives a true measure of the chromatographic 

performance as it incorporates efficiency, time and pressure. Impedance can be calculated 

using the following equation: 

 

E =  
tΔP

N2𝜂
 

 

Where t is the elution time of the test compound, ΔP is the pressure drop, N is the 

observed plate count and η is the mobile phase viscosity.12 

In isocratic study, where the composition of the mobile phase remains constant 

during the analysis, plate height or plate count are used as measures of chromatographic 

performance. This is not applicable to gradient elution, where the composition of the 

mobile phase is changed continuously or stepwise during the analysis. Instead, an 
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alternative measure of efficiency, peak capacity is used. This is a concept first introduced by 

Giddings30 and represents the number of component peaks that can be resolved within the 

chromatographic run time. Values for peak capacity (PC) can be calculated using gradient 

time (tg) and baseline peak width (WB) using the following equation:31 

 

PC = 1 +
tg

WB
 

 

The equation can be modified to include the unretained peak time (t0), accounting 

for the fact that no component in a test mixture can elute before this time.32 For fast 

gradient analysis, t0 may represent a significant proportion of the analysis time, and its 

omission leads to overestimation of the peak capacity. Additionally, peak width at 50% 

height (W50%) is commonly used in the peak capacity calculation when analysing 

biomolecules. As discussed in chapter 3, this avoids imprecision associated with measuring 

the width at the baseline, for example in the analysis of proteins which may contain closely 

related variants that are partially resolved from the main component. Peak width at 50% 

height is defined as 2.35σ, where σ is the standard deviation. The peak width at the 

baseline is defined as 4.0σ. The peak width at 50% height is multiplied by a factor of 1.7 (4 

÷ 2.35) to give an estimate of baseline width. The equation therefore becomes: 

 

PC = 1 +
tg − t0

1.7 × W50%
 

 

For the analysis of peptides and proteins this equation will be used throughout the 

chapter to measure peak capacity. 

For the HPLC analysis of large molecules such as proteins and other biomolecules, 

gradient elution is almost exclusively used. The behaviour of such samples is often complex 

with common effects such as changes in molecular conformation,33 sample carryover34 and 

peak tailing observed, particularly in reversed phase mode.35 Although the 

chromatographic theory developed for small molecules (<500 Da) may be applied to large 
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molecules, the isocratic retention of the latter is extremely sensitive to changes in the 

mobile phase composition and elution strength.36, 37 The isocratic separation of proteins 

and biomolecules is therefore difficult,35 and there are few reports found in the literature 

describing the isocratic study of large molecules.38-40 The HPLC analysis of peptides and 

proteins in this chapter will therefore be performed using gradient elution. 

 

4.2.4 Fractal Chromatography 

In recent years there has been a renewed interest in particle technology for both 

HPLC and UPLC, due to the introduction of solid core technology.41 Prior to this there was 

little novel development in particle morphology since the changes related to reducing the 

particle diameter from 5 and 3 μm down to sub-2 μm,10 or the introduction of hybrid 

phases to aid pH stability.42, 43 The patents associated with solid core technology have 

resulted in manufacturers and researchers having a much greater level of interest in the 

basic production of silica particles, particularly since the current manufacturing processes 

are known to be fairly time consuming. 

This has led to the development of SOS particles; a completely new type of core-

shell silica material which is manufactured using a one-step synthesis.44 Using an optimised 

synthesis method developed in chapter 2, near-monodisperse particles can be produced 

without the need for further modification or classification. The morphology of the particle 

has been designed to deliver the real advantages of the core-shell particles, with a range of 

synthesis parameters allowing control over the particle morphology. 

Investigation of some of the morphologies produced reveals that the structure of 

the SOS particles closely resembles a true fractal structure. Fractal structures have been 

associated with chromatographic media for some time, although they have been more 

associated with the concept of a fractional dimension rather than having a degree of self-

similarity. A fractional dimension compares how detail in a pattern changes with the scale 

at which it is measured. A commonly used example describes how the measured length of 

a coastline changes depending on the length of the measuring stick used, with a smaller 

measuring stick able to more accurately follow the coastline. The fractional dimension 

quantifies how the number of measuring sticks required to measure the coastline changes 

with the scale applied to the stick. 
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SOS particles demonstrate not only a fractional dimension, but also a degree of 

self-similarity, creating the possibility of having a surface topography which is essentially 

homogeneous to solute molecules. This potentially eliminates one of the issues associated 

with traditional porous structures in which individual analyte molecules do not experience 

the same surface topography, resulting in a larger C-term in the van Deemter equation.26 

This is particularly relevant for large molecules where diffusional processes related to the 

different pore depths can result in poor peak shape, either through equilibration effects or 

because molecules effectively get stuck between the walls of the pores. 

The concept of fractals was first introduced in the 17th century by Leibniz, who was 

investigating the possibility of repeating self-similarity. The concept of fractals was not 

followed for another century until it was studied by Weierstrass,45 Cantor,46 Klein,47 

Poincaré48 and Koch49 who developed the first mathematical understanding in terms of 

self-similarity and the concept of a fractional dimension. Koch also presented the first 

illustrative representations of a fractal shape, in particular the Koch curve shown in figure 

4.2. Soon after, the first mathematical models were developed which involved the use of 

mapping of complex number systems by Julia and Fatou.50, 51 This was extended further by 

Mandelbrot,52 with the discovery of the Mandelbrot mapping function and the resulting 

fractal pattern that this generated.53 

 

 

Figure 4.2 An example of a scalable fractal, the Koch curve. The curve is formed by 

self-replicating the original structure, resulting in a surface that looks the same no matter 

what the scale.49 
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In terms of applying this to real world scenarios, the concept of fractals has been 

applied to porous structures, although there is a limitation in transferring the concept of 

fractals from a mathematical perspective to reality. In a mathematically generated fractal 

there is a degree of self-similarity upon dilation, thus the same structures are visible at 

different length scales. With a real structure this degree of self-similarity in general does 

not exist therefore it is necessary to define two or more length scales that will allow for the 

concept of self-similarity. However it is possible to use the concept of a fractional 

dimension and apply this to determine the dimensionality of the porous structure. There 

are different approaches to measuring the fractional dimension of a porous structure with 

the most common being a box or tiling method.54, 55 

This approach has been successfully applied to the analysis of chromatographic 

grade silica with a dimensional value of 2.68 obtained for the analysis of LiChrospher 300.56 

However, the concept of self-similarity upon dilation is clearly not applicable to structures 

which are more random than deterministic in nature, and hence the manufacture of SOS 

particles allows for better control of the fractional dimension as well as allowing for self-

similarity. This has interesting consequences as there is an implication that the structure is 

self-similar, thus there is no unique point on the surface that will display significantly 

different mass transfer kinetics. This cannot be said for traditional fully porous media, due 

to the issue of non-self-similarity associated with the process by which the silica is 

generated. In this scenario the dispersion due to a lack of radial concentration 

homogeneity will be reduced, which potentially has a greater significance for larger 

molecules due to the lower diffusion coefficients. 

The development of SOS technology has led to the possibility of generating 

particles with a fractal structure, with the single-layer shell morphology providing a degree 

of self-similarity. A truly fractal structure with both a fractional dimension and self-

similarity would offer increased surface capacity without the disadvantage of increased 

mass transfer equilibration effects. SOS particles appear to be capable of providing this. 
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4.3 Experimental 

The experimental work in this chapter describes the synthesis of SOS particles, 

surface functionalisation and subsequent packing into columns for use in HPLC. SOS 

particles are produced from the optimised synthesis reaction developed in chapter 2 and 

functionalised using the microwave irradiation method developed in chapter 3. 

 

4.3.1 Chemicals 

Ammonium hydroxide (28-30%, NH3 basis), angiotensin II, bovine serum albumin 

(BSA), butylparaben (>99 %), carbonic anhydrase, chloro(dimethyl)octylsilane (C8 reagent, 

97%), CTAB (≥98%), HPLC peptide standard mixture, imidazole (≥99%), insulin, leucine 

enkephalin (leu-enk), lysozyme, methionine enkephalin (met-enk), MPTMS (95%) 

myoglobin, nitric acid (ACS reagent, 70%), ovalbumin, potassium dihydrogen phosphate 

(≥99%), PVP (MW = 10k), ribonuclease A, thyroglobulin, TFA (99%), TMSI (≥98%), transferrin, 

uracil (≥99%) and valine-tyrosine-valine (VYV) were purchased from Sigma-Aldrich. 

Butyl(chloro)dimethyl silane (C4 reagent, >97%) and glycine-tyrosine (GY) were purchased 

from Tokyo Chemical Industry. HPLC reversed phase test mixture was obtained from 

Thermo Scientific (Runcorn). Acetonitrile, chloroform, methanol, isopropanol and toluene 

(all HPLC grade) were obtained from Fisher Scientific. All chemicals were used as received. 

Deionised water and Milli-Q water (18 MΩ) were prepared in the laboratory. 

 

4.3.2 Particle Synthesis  

 Particles were synthesised using the optimised method described in chapter 2, 

section 2.4.7. The large scale was required to produce sufficient amounts of particles for 

subsequent bonding and packing into HPLC columns. The reaction was performed at room 

temperature on a magnetic stirrer plate. Stirring was performed using a Teflon coated 

stirrer bar at a speed of 240 rpm. Brand new glassware was used for each experiment. 

PVP (12.5 g) and CTAB (0.625 g) were dissolved in deionised water (250 mL). 

Methanol (400 mL) was added, followed by diluted ammonium hydroxide (100 mL, 1.4%). 

The solution was stirred for 15 minutes, before addition of MPTMS (20 mL) in 2 mL aliquots 

at even intervals over 10 minutes. The reaction was stirred overnight. SOS particles were 
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collected on a sintered glass filter and washed with distilled water (5 x 100 mL), then 

methanol (5 x 100 mL) before drying under vacuum at 60 °C. Example SEM images of the 

particles are shown in figure 4.3. 

 

 

Figure 4.3 SOS particle morphology (A) and dispersity (B) shown by SEM imaging. 

 

4.3.3 Bonding Using Microwave Irradiation 

Two separate batches of particles were produced and calcined at temperatures of 

550 and 1000 °C. The physical properties of the particles are shown in table 4.1, along with 

the data following microwave bonding. Data for a commercial core-shell material (Thermo 

Scientific Accucore 150-C4) is also included for comparison purposes. It should be noted 

that no classification was performed on any SOS materials. Particles were rehydroxylated 

using nitric acid as in the method described in section 3.3.3, chapter 3. All microwave 

reactions were performed on a CEM Explorer microwave reactor in 35 mL reaction vessels. 

2 g of silica was dispersed in toluene (15 mL) with sonication in a 35 mL reaction 

vessel. A rare earth stirrer bar, imidazole (0.2 g) and chlorosilane reagent (0.8 g) were 

added and the vessel sealed. Reagent amounts were adjusted according to the mass of 

silica starting material, the ratio was kept constant. As in previous studies a dynamic closed 

vessel method was used. The reaction was run at 120 °C for 20 minutes using a high stir 

speed. Resultant particles were washed on a sintered glass filter with toluene (60 mL), 

methanol (60 mL), methanol/water (1:1 V/V, 60 mL) and methanol (60 mL). Particles were 

first dried in air on the filter for 1 hour, then under vacuum at 80 °C overnight. Endcapping 

was performed using the same method with TMSI in place of the chlorosilane and the 

omission of imidazole. 
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Table 4.1 Physical properties of bonded SOS and core-shell materials. Accucore 150-

C4 data obtained from the Thermo Scientific Phase Overview brochure. 

Material 
Calcine 

temperature 
(°C) 

Surface 
area 

(m2/g) 

Particle 
diameter 
(μm) 

d90/10 % C 
α 

(μmol/m2) 

SOS-C4-1 1000 4.3 2.90 1.36 0.13 4.20 

SOS-C4-2 550 148 3.00 1.24 2.17 2.10 

SOS-C8 550 155 3.00 1.24 2.99 1.68 

Accucore 150-C4 - 80 2.6 1.12 2 3.57 

 

 

4.3.4 Column Packing 

Functionalised SOS particles were packed into 100 mm stainless steel narrow bore 

columns with 2.1 mm internal diameter, sealed with 0.5 μm porous titanium frits. A silica 

suspension was prepared by dispersing functionalised particles (0.5 g) in a solution of 

72:8:20 chloroform:methanol:isopropanol (V/V/V, 30 mL). The column was packed at 600 

bar using methanol (60 mL). 

 

4.4 Results and Discussion 

The SOS morphology appears to be ideal for the separation of large molecules and 

proteins due to the shallow shell depth. Although micropores in the silica surface are 

effectively inaccessible to analytes, the single layer of nanoparticles that make up the shell 

provide interstitial macroporosity. Additionally the shell is relatively shallow, in the region 

of 200 nm. This potentially reduces the mass transfer of large molecules such as proteins, 

as the intraparticle diffusivity depends on the ratio of diameters of solid core to the whole 

particle. As this ratio increases, mass transfer kinetics become faster across the particles.57 

 The performance of SOS particles has been assessed under isocratic conditions to 

determine efficiency, permeability, porosity and impedance. The SOS material has then 
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been assessed under gradient conditions for the separation of a range of peptides and 

proteins. Chromatographic data was obtained using a Thermo Scientific Accela UPLC 

system, with data analysis performed using ChromQuest 5.0 software, version 3.2.1. 

As a comparison to commercially available materials, the gradient testing has been 

performed along with a core-shell column (Thermo Scientific Accucore 150-C4, 100 × 2.1 

mm) which is optimised for the separation of proteins and larger peptides. The assessment 

of fractal SOS particles under isocratic and gradient conditions is also discussed and the 

results compared with the regular SOS material. 

 

4.4.1 Isocratic Study 

The efficiency, porosity, permeability and impedance of SOS-C4-1 particles were 

assessed in isocratic mode. Test compounds uracil (10 μg/mL) and butylparaben (100 

μg/mL) were made up in Milli-Q water. The efficiency of the SOS-C4-1 material was first 

investigated by plotting reduced plate height versus reduced linear velocity for 

butylparaben. Uracil was used to determine t0 values. Reduced plate height and linear 

velocity were used as they take into account the particle diameter and allow comparison 

with differently sized materials. The mobile phase was composed of 85:15 (V/V) 

water:acetonitrile and the flow rate varied between 25 μL/min and 1000 μL/min. The 

column oven was set at 30 °C to ensure constant temperature and injection volumes of 1 

μL were used. Detection was set at 240 nm. The values for reduced plate height (h), linear 

velocity (u) and reduced linear velocity (v) were calculated using the following equations: 

 

h =
H

dp
 

u =
L

t0
 

𝜈 =  
udp

Dm
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Where H is the theoretical plate height, dp is the particle diameter, L is the column 

length, t0 is the column dead time and Dm is the solute molecular diffusion coefficient, 

determined using the Wilke-Chang equation.58 The obtained reduced plate height-reduced 

linear velocity plot is shown in figure 4.4. 

 

 

Figure 4.4 Plot of reduced plate height versus reduced linear velocity (A) and 

impedance plot (B) for the analysis of butylparaben on the SOS-C4-1 column. 

 

The minimum reduced plate height (hmin) observed for butylparaben was 2.90. This 

is higher than might be expected, considering that hmin values of 1.2-1.8 are typically 

observed for core-shell materials, depending on experimental conditions and particle 

structure.57, 59-61 The high hmin value for the SOS material may be partly caused by the short 

retention times observed for small analytes, due to the low surface area and non-porous 

silica surface. The short retention time results in a lower plate count and therefore higher 

reduced plate height. 

It was discussed in chapter 1 that the quality of packing has a large effect on the A 

term, and therefore hmin. The packing method for SOS particles was discussed in chapter 3. 

Experimental work was conducted to optimise the composition of slurry solvent to keep 

particles in suspension during the packing process. Columns packed using this method have 

shown good peak shape and consistent performance, however there are still some 
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limitations due to the equipment used. A 50 bar drop in pressure was observed at regular 

intervals during the packing procedure due to the mechanism of the packing pump, which 

may have affected the column bed. Additionally the lack of an inline valve on the packing 

equipment to reduce bed expansion during the rest period could have also had an adverse 

effect on the column packing. With further optimisation of the packing process, improved 

performance should be seen. 

From the data obtained from the efficiency study, it was possible to determine 

values for column permeability (KV) and total column porosity (εT) using the following 

equations:28, 62 

 

KV =  
u𝜂L

ΔP
 

εT =  
4F

dc
2πu

 

 

Where u is the mobile phase linear velocity, η is the mobile phase viscosity, L is the 

column length, ΔP is the backpressure (after correction for system operating pressure), F is 

the mobile phase flow rate and dc is the column diameter. 

The total column porosity was calculated as 0.57 based on the elution time of the 

unretained analyte (uracil), which is slightly lower than current commercial core-shell 

materials due to the highly porous shell. The permeability of a packed column is defined as 

the proportionality factor in the relation between velocity of the solvent in the column and 

pressure drop. The column permeability of the SOS-C4-1 material was determined to be 

2.07×10-10 cm2, which is higher than observed for typical sub-3 μm core-shell materials. This 

is mainly facilitated by the lower back pressure of the SOS column due to the larger particle 

diameter. The pressure at 1000 μL/min was measured to be 354 bar after correction for the 

system pressure (34 bar). As a comparison, the back pressure of the Accucore 150-C4 

column was 486 bar. Despite being marketed as 2.6 μm nominal diameter, particle sizing 

reveals the mean diameter to be 2.45 μm, accounting for the increase in pressure. 
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The separation impedance is a term that defines the resistance encountered by a 

compound as it moves down the column, relative to the performance of said column. This 

gives a true measure of column performance as it incorporates the plate count, analysis 

time and operating pressure. The lowest observed value (Emin) for butylparaben was 3440, 

calculated using the equation in section 4.2.3. This is again comparable to current HPLC 

columns which typically have Emin values between 2000 and 5000. The impedance-

efficiency plot for the SOS-C4-1 material is shown in figure 4.4. 

The column packed with SOS-C4-1 particles was also assessed under isocratic 

conditions using a reversed phase test mixture containing acetophenone (35 μg/mL), 

benzamide (6 μg/mL), benzophenone (7 μg/mL) and biphenyl (10 μg/mL). The mobile 

phase was composed of 70:30 (V/V) methanol:water at a flow rate of 250 μL/min. The 

column oven was set at 30 °C and an injection volume of 5 μL was used. Detection was set 

at 254 nm. The chromatogram is shown in figure 4.5. 

 

 

Figure 4.5 Separation of reversed phase test mixture on the SOS-C4-1 column under 

isocratic conditions. 

 

Retention was determined by the polarity of the compounds. The elution order was 

benzamide (highly polar), acetophenone, benzophenone and biphenyl (non-polar). Short 

retention times were observed, resulting in coelution. This is likely to result from the low 
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accessible surface area and short alkyl chains providing limited retention for small 

molecules. However, the plate count could be measured for biphenyl, with a value of 

35000 plates/metre obtained. 

 

4.4.2 Gradient Study: Peptide Analysis 

 HPLC columns packed with C4 and C8 functionalised SOS particles were used to 

separate a peptide standard mixture containing angiotensin II, GY, leu-enk, met-enk and 

VYV, each in 80 μg/mL concentration. The mixture was separated using a linear gradient 

method. Mobile phase A: 0.02 M KH2PO4, pH 2.70; B: acetonitrile; gradient: 10-40% B in 4 

minutes; flow rate 300 μL/min; temperature: 40 °C; detection: 220 nm; injection volume: 

10 μL. Chromatograms are shown in figure 4.6. 

 

 

Figure 4.6 Chromatograms obtained from the separation of the peptide standard 

mixture on SOS-C4-1 (A) and SOS-C8 (B) columns. 

 

The five components were fully resolved within 3 minutes on the SOS-C4-1 material 

and 3.5 minutes on the C8 material, with identical elution orders of GY, VYV, met-enk, leu-

enk and angiotensin II. The elution order was confirmed by analysis of the individual 

components. Sharp, well-defined peaks were observed, particularly for the SOS-C8 column. 
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The average peak capacities were 52 (SOS-C4-1) and 64 (SOS-C8). The same test mixture 

was separated using the Accucore 150-C4 column. The retention time was increased 

beyond 4 minutes therefore the gradient time was increased with the steepness kept 

identical. A change in selectivity was observed, with the final two peaks reversed resulting 

in an elution order of GY, VYV, met-enk, angiotensin II and leu-enk. The average calculated 

peak capacity was 60. The chromatogram is shown in figure 4.7 A. 

Additionally the gradient and flow rate were modified to provide full separation of 

the peptide mixture in under 1.5 minutes using the SOS-C4-1 column. Mobile phase A: 0.02 

M KH2PO4, pH 2.70; B: acetonitrile; gradient: 10-14% B in 0.5 minutes, 14-60% B in 0.5 

minutes, hold at 60% B for 0.5 minutes; flow rate 600 μL/min; temperature: 40 °C; 

detection: 220 nm; injection volume: 10 μL. The chromatogram is shown in figure 4.7 B. 

The peak capacity was reduced due to the short gradient time, with an average value of 37 

obtained. 

 

 

Figure 4.7 Chromatograms obtained from the separation of the peptide standard 

mixture on Accucore 150-C4 (A) and SOS-C4-1 (B, with modified gradient) columns. 

 

The SOS material has shown rapid separation of the peptide mixture with excellent 

results for peak capacity, providing comparable performance to the commercial core-shell 

column. The maximum observed back pressure was also lower for the SOS columns; 120 

bar (SOS-C4) and 128 bar (SOS-C8) versus 166 bar for the Accucore column. 
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4.4.3 Gradient Study: Protein Analysis 

 The SOS-C4-1 and Accucore 150-C4 columns were used to analyse a number of 

proteins with molecular weights in the range of 6-45 kDa. The test proteins carbonic 

anhydrase (30 kDa), insulin (6 kDa), lysozyme (14 kDa), myoglobin (17 kDa), ovalbumin (45 

kDa) and ribonuclease A (14 kDa) were prepared in 1 mg/mL concentration in Milli-Q 

water. Each protein was analysed individually using a linear gradient method. Mobile phase 

A: water + 0.2% TFA; B: acetonitrile + 0.2% TFA; gradient: 30-66% B in 8 minutes (gradient 

steepness 4.5 %/min); flow rate 400 μL/min; temperature: 50 °C; detection: 220 nm; 

injection volume: 1 μL. Chromatograms for both columns are shown in figure 4.8. 

The use of elevated temperatures is beneficial as it reduces the secondary 

interactions between residual silanols and charged biomolecules. High temperatures have 

also been shown to enhance analyte diffusion for large molecules.12, 13 Additionally TFA was 

added to the mobile phase to increase the efficiency of protein separation.63-65  

 

 

Figure 4.8 Overlaid chromatograms of individual protein separation on the SOS-C4-1 

(A) and Accucore 150-C4 (B) columns. Baselines trimmed for clarity. 
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 The two columns displayed identical selectivity and retention times of the final 

peak were similar. The elution order was ribonuclease A, insulin, lysozyme, myoglobin, 

carbonic anhydrase and ovalbumin. The peak capacities for each analyte were calculated, 

with an average value of 72 obtained for the SOS-C4-1 column. The Accucore column 

showed comparatively better performance, with an average peak capacity of 81. The major 

difference between the two materials was the analysis of insulin, with the SOS material 

providing lower performance. If the average peak capacity is calculated with the omission 

of insulin, the values are very similar for both materials (74 versus 77). 

When comparing the analyses of the largest proteins (myoglobin, carbonic 

anhydrase and ovalbumin) the performance of the two columns is very similar, with the 

SOS material outperforming the commercial column in the case of carbonic anhydrase. This 

suggests that the SOS material is more suited to the analysis of larger molecules, which is 

expected due to the macroporosity provided by the interstitial spaces in the shell structure. 

To ensure that no interactions between intact proteins within a mixture affect the 

chromatographic performance, a test mixture of four proteins was prepared containing 

carbonic anhydrase (65 μg/mL), lysozyme (65 μg/mL), myoglobin (65 μg/mL) and 

ovalbumin (75 μg/mL), made up in Milli-Q water. The protein test mixture was separated 

using a linear gradient method. Mobile phase A: water + 0.1% TFA; B: acetonitrile + 0.1% 

TFA; gradient: 30-65% B in 6 minutes (5.83 %/min); flow rate 400 μL/min; temperature: 50 

°C; detection: 220 nm; injection volume: 20 μL. 

The separation of this protein mixture has previously been discussed in the 

microwave bonding chapter, where the performance of SOS particles functionalised by 

microwave and conventional heating methods was compared alongside the Accucore 150-

C4 material. The SOS column from the microwave study (SOS-C4-2) was based on a batch of 

silica calcined at 550 °C and thus has a microporous surface. The physical properties are 

included in table 4.1 for comparison purposes. This column was found to perform slightly 

better than the Accucore column with an average peak capacity of 58 versus 54. 

 Interesting results were observed when comparing the microporous and non-

porous SOS materials. The very low surface area of the non-porous material leads to much 

lower percent carbon results, as there are simply less silanol sites to bond to. Despite the 

low percent values, the bonding density is double that of the microporous material. As 

discussed in the microwave bonding chapter, it is likely that the micropores are inaccessible 
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to the bonding reagents and therefore lower than expected bonding densities are observed 

for the microporous material. 

The protein test mixture was fully resolved within 5 minutes on the SOS-C4-1 

column with an average peak capacity of 52. The chromatogram of the separation is 

overlaid with those of the SOS-C4-2 and Accucore columns in figure 4.9. The elution order 

was lysozyme, myoglobin, carbonic anhydrase, ovalbumin for all three columns. The 

gradient steepness was modified for the Accucore column (30-68.5% B in 6 minutes, 6.42 

%/min) to match the retention times of the final peak. Once again the back pressures of the 

SOS-C4 columns were lower than that of the commercial column, with observed values of 

170 bar (SOS-C4-1), 176 bar (SOS-C4-2) and 205 bar (Accucore 150-C4). 

Of the two SOS materials the retention time of the final peak was actually found to 

be greater on the non-porous SOS column. The greater bonding density of the non-porous 

material is likely to have provided this increase in retention. This observation backs up the 

theory that the micropores are inaccessible to analytes and that they do not have a 

significant effect on the retention of large molecules. 

 

 

Figure 4.9 Overlaid chromatograms of protein test mixture separation on SOS-C4-1, 

SOS-C4-2 and Accucore 150-C4 columns. 
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The SOS-C4-1 and Accucore 150-C4 columns were also used to analyse two large 

proteins, bovine serum albumin (BSA, 66 kDa) and thyroglobulin (669 kDa). The test 

proteins were prepared in 1 mg/mL concentration in Milli-Q water and analysed 

individually using a linear gradient method. Mobile phase A: water + 0.2% TFA; B: 

acetonitrile + 0.2% TFA; gradient: 30-75% B in 10 minutes (4.5 %/min); flow rate 400 

μL/min; temperature: 50 °C; detection: 220 nm; injection volume: 1 μL. Chromatograms are 

shown in figure 4.10. 

 

 

Figure 4.10 Overlaid chromatograms of large protein separation on SOS-C4-1 (A) and 

Accucore 150-C4 (B) columns.  

 

Under these short gradient times, the SOS column provided faster elution and 

greater values for peak capacity than the Accucore column. Calculated values for peak 

capacity were 56 versus 48 for BSA and 25 versus 16 for thyroglobulin. These results 

highlight the advantages of the shallow, single layer shell which provides macroporosity 

and reduces mass transfer resistance, particularly for very large analytes. When considering 

the ratio of the solid core to the overall particle diameter (ρ), the SOS material has a ratio 

of 0.86 versus 0.62 for Accucore. The effects of this were discussed in chapter 1, where it 
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was shown that a higher value, corresponding to a thin porous layer, is advantageous when 

analysing large molecules and provides a large reduction in mass transfer effects. 

BSA is ellipsoid in shape, approximately 7 × 2 nm in diameter. This size of analyte is 

able to diffuse into the pore system of the Accucore material as the average 15 nm pore 

size is sufficiently large to allow access. However, the large size of the protein leads to 

slower diffusion and hence comparatively lower value for peak capacity against the SOS 

column. Thyroglobulin is larger still, with a radius of approximately 9 nm. When also 

accounting for the space filled by the surface functionality within the pores of the packing 

material, it is likely that this analyte is simply too large to efficiently separate with the 

Accucore column due to poor diffusivity. The SOS material however has been shown by 

mercury intrusion to have pore size in the region of 1 μm, reducing these diffusive effects 

and resulting in higher performance. 

 

4.4.4 Efficiency in Gradient Elution Mode 

A study was conducted to determine the achievable peak capacity of the SOS-C4-1 

column. Peak capacity values were calculated at two flow rates (250 and 400 μL/min) for 

three proteins: myoglobin, carbonic anhydrase and transferrin. The test proteins were 

prepared in 1 mg/mL concentration in Milli-Q water and analysed using a linear gradient 

method. Mobile phase A: water + 0.1% TFA; B: acetonitrile + 0.1% TFA. The gradient used 

was 20-60% B, with the time varied between 10 and 90 minutes (60 minutes for 

transferrin). The column temperature was 50 °C with detection at 220 nm and injection 

volume of 1 μL. 

 The peak capacity values for the SOS-C4-1 column were calculated and plotted 

against the gradient time. The results show how the achievable peak capacity is affected by 

the experimental conditions and show the column performance for different types and 

sizes of proteins. The peak capacity plot is shown in figure 4.11. 

 For the analysis of myoglobin, the peak capacity varied between 66-130 at 250 

μL/min and 70-136 at 400 μL/min. For carbonic anhydrase, peak capacities of 67-114 at 250 

μL/min and 73-118 at 400 μL/min were observed. The difference between values at both 

flow rates was calculated to be less than 5%, due the reduced intraparticle mass transfer 

resistance facilitated by the structure of the SOS particles. The peak capacity at 600 μL/min 
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was also calculated for a 90 minute gradient time with values of 141 for myoglobin and 118 

for carbonic anhydrase. The small difference in peak capacity suggests that the columns are 

able to work over a large range of flow rates without a significant variation in performance, 

indicating that fast protein separation can be performed. 

The analysis of the largest protein, transferrin (80 kDa), resulted in peak capacities 

of 49-88 at 250 μL/min and 54-88 at 400 μL/min. Again, no significant variation between 

flow rates was observed, even when increasing to 600 μL/min and a 60 minute gradient 

time, which resulted in a peak capacity of 90. This again suggests decreased mass transfer 

resistance and the ability to work over a large range of flow rates. 

 

 

Figure 4.11 Peak capacity plot for the SOS-C4-1 column. 

 

The achievable peak capacity of the SOS-C4-1 column was also compared to the 

Accucore 150-C4 column over the same gradient span. Figure 4.12 shows the overlaid peak 

capacity plots for the analysis of myoglobin, carbonic anhydrase and transferrin on both 

columns at flow rates of 250 and 400 μL/min. 
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Figure 4.12 Comparison of peak capacity values obtained with myoglobin, carbonic 

anhydrase and transferrin on SOS and Accucore columns at 250 and 400 μL/min. 
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For the analysis of myoglobin the SOS column provided similar performance to the 

Accucore column at short gradient times for both flow rates studied. However, higher 

performance was observed for the Accucore column throughout the whole range of 

gradient times, particularly for the longest analyses. Similarly, the Accucore material 

provided higher performance at the longest gradient times for carbonic anhydrase, though 

in this case the SOS column provided comparable performance when the gradient was less 

than 30 minutes at a flow rate of 250 μL/min and less than 20 minutes at 400 μL/min. The 

SOS column provided higher peak capacity for a 10 minute gradient span at both flow rates. 

For the analysis of transferrin, the performance of both columns was comparable across 

the whole gradient span at both flow rates, with the performance of the SOS material 

surpassing that of the core-shell column at the longest gradient times. 

These results show that the SOS column is capable of matching the performance of 

the commercial core-shell column when performing fast gradient separation. It has also 

been observed that the achievable peak capacity becomes more comparable over a longer 

gradient span when increasing the molecular weight of the analyte, as mass transfer effects 

are reduced for the SOS material. The peak capacity attained from the SOS column for 

proteins up to a molecular weight of 30 kDa is therefore mostly beneficial when a fast 

gradient (≤20 min) is applied. For the analysis of larger molecules, the SOS column is 

capable of efficient performance across the whole gradient span. 

 

4.4.5 Applications 

In collaborative work with the School of Pharmaceutical Sciences, University of 

Geneva, a 100 × 2.1 mm HPLC column packed with SOS C4 particles was supplied to assess 

the performance when analysing monoclonal antibody (mAb) and antibody-drug conjugate 

(ADC) fragments.66 Characterisation of mAbs and other biopharmaceuticals provides useful 

information on purity and stability of the compound. As antibody heterogeneity is related 

to the conformational isoforms the reduction of the disulphide bonds, followed by reversed 

phase analysis of these reduced fragments is routinely used to determine if conformational 

variants are disulphide-related or not. 

The SOS particles provided for this study had a mean diameter of 2.13 μm and 

d90/10 ratio of 1.44. BET surface area was measured to be 248 m2/g by nitrogen adsorption. 
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C4 bonding was performed by microwave irradiation using the previously described 

method, with obtained carbon loading values of 4.11% and 2.46 μmol/m2. 

The intramolecular disulphide bonds of the mAb rituximab were reduced using 

dithiothreitol (DTT), converting the protein into the light chain (Lc) and heavy chain (Hc) 

fragments. The intact mAb has molecular weight of around 150 kDa, with the Lc and Hc 

fragments having weights of 25 and 50 kDa respectively. Analysis of both intact and 

reduced forms was performed using the SOS column alongside three other commercial 

columns designed for protein analysis: Halo Protein C4 (AMT), Acquity BEH300 C18 

(Waters) and Aeris Widepore C18 (Phenomenex). The commercial columns had dimensions 

of 150 × 2.1 mm and therefore chromatograms have been plotted against the apparent 

retention factor (kapp) to allow direct comparison with the shorter SOS column. A linear 

gradient method was used with the conditions scaled for the different column lengths. 

Mobile phase A: water + 0.1% TFA; B: acetonitrile + 0.1% TFA; gradient: 24-37% B in 5 min 

(SOS), 27-40% B in 7.5 min (others); flow rate: 400 μL/min. The column temperature was 80 

°C with detection at 280 nm. Overlaid chromatograms for the analysis of intact and 

reduced rituximab are shown in Figure 4.13. 

 

 

Figure 4.13 Chromatograms from the analysis of intact (A) and reduced rituximab (B) 

on SOS C4 and three commercial wide-pore test columns.66 
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It can be seen from the chromatograms that the heterogeneity of rituximab is 

related to the Hc due to the fine structure observed on the reduced protein. The quality of 

separation on the SOS column was found to be comparable to that of the commercial 

materials with peak capacities of 45 and 68 obtained for the intact and reduced mAb 

respectively. It can be seen however that the fine structure of closely related species is 

clearer for the commercial columns, particularly for the intact protein. 

 The same selection of columns was also used to analyse the ADC brentuximab 

vedotin. The protein was again reduced using DTT, converting the structure into various Lc 

and Hc fragments. The molecular weights of the intact and reduced analytes are similar to 

the previous example. An important attribute of ADCs is the average number of drugs that 

are conjugated, as this determines the amount of drug that can be delivered to the target 

cell and directly affects both safety and efficacy. Reversed phase chromatography is 

commonly used to measure the amount of conjugation. 

Again, a linear gradient method was used with the conditions scaled for the 

different column lengths. Mobile phase A: water + 0.1% TFA; B: acetonitrile + 0.1% TFA; 

gradient: 24-42% B in 12 min (SOS), 30-45% B in 18 min (others); flow rate: 400 μL/min. The 

column temperature was 80 °C with detection at 280 nm. Overlaid chromatograms for the 

analysis of reduced brentuximab vedotin are shown in Figure 4.14. 

 

 

Figure 4.14 Chromatograms from the analysis of reduced brentuximab vedotin on SOS 

C4 and three commercial wide-pore test columns.66 
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An average peak capacity of 117 was measured for the reduced ADC when using 

the SOS C4 column. The peak capacity values were comparable to those obtained with the 

commercial wide pore columns. The chromatogram for the SOS column is comparable to 

what is typically observed for the analysis of IgG1 type ADCs67 and shows excellent 

separation of the L0, L1, H0, H1, H2 and H3 fragments (where L and H denote Lc and Hc, 

and the number denotes the number of drugs attached to each chain). Additionally a 

number of isomers were resolved from the H1, H2 and H3 peaks. 

 

4.4.6 Fractal Chromatography 

 As discussed in chapter 2, the development of the SOS synthesis method has led to 

the formation of discrete particles with a complete single layer of shell particles. Further 

modification of the method by initial addition of MPTMS precursor, immediately followed 

by controlled addition of precursor via syringe pump has led to the production of SOS 

particles displaying growth of smaller nanoparticles upon the shell surface. These particles 

are termed fractal SOS as they possess a structure with a higher degree of self-similarity. 

 Fractal SOS particles were produced from the method in section 2.4.8, chapter 2. 

PVP (2.5 g) and CTAB (0.125 g) were dissolved in deionised water (50 mL). Methanol (80 

mL) was added, followed by diluted ammonium hydroxide (20 mL, 1.4%). The solution was 

stirred for 15 minutes, before addition of MPTMS (4 mL total). An initial volume of 1 mL 

was added, followed by a further 3 mL at 0.06 mL/min (50 minute addition). The reaction 

was stirred overnight. SOS particles were collected on a sintered glass filter and washed 

with distilled water (5 x 40 mL), then methanol (5 x 40 mL) before drying under vacuum at 

60 °C. SEM images of the particles are shown in figure 4.15, showing the additional surface 

growth compared to SOS particles discussed in chapter 2. 

Following calcination at 550 °C, the mean particle diameter was measured to be 

2.06 μm with a d90/10 ratio of 1.21. The BET surface area was measured to be 179 m2/g by 

nitrogen adsorption. Particles were functionalised with a C4 group and endcapped using 

the microwave bonding method described in the experimental section. Carbon loading was 

measured to be 2.42 %, equating to coverage of 1.95 μmol/m2. Particles were packed into a 

100 × 2.1 mm column. 
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Figure 4.15 Fractal particle morphology (A) and dispersity (B) shown by SEM imaging. 

 

As with the SOS particles, the fractal-C4 material was assessed in isocratic mode to 

determine efficiency, porosity, permeability and impedance. Test compounds uracil (10 

μg/mL) and butylparaben (100 μg/mL) were made up in Milli-Q water. Reduced plate 

height versus reduced linear velocity was plotted for butylparaben, with uracil used to 

determine t0 values. The mobile phase was composed of 85:15 (V/V) water:acetonitrile and 

the flow rate varied between 25 μL/min and 1000 μL/min. The column oven was set at 30 

°C to ensure constant temperature and injection volumes of 1 μL were used. Detection was 

set at 240 nm. The values for reduced plate height (h), linear velocity (u) and reduced linear 

velocity (v) were calculated using the equations in section 4.4.1. The obtained reduced 

plate height-reduced linear velocity plot is shown in figure 4.16 A. 

The value of hmin observed for butylparaben on the fractal-C4 column was 2.38. 

This shows greater efficiency compared to the SOS-C4-1 column, where hmin was measured 

to be 2.90. However this value is still higher than might be expected, particularly when 

compared to commercial core-shell materials. From the data obtained from the efficiency 

study, values for column permeability (KV), total column porosity (εT) and impedance (E) 

were calculated. 

KV for the fractal-C4 material was determined to be 1.96×10-10 cm2. εT was 

calculated as 0.55 based on the elution time of uracil. These values are very similar to those 

measured for the SOS-C4-1 column. The pressure at 1000 μL/min was measured to be 386 

bar after correction for the system pressure (34 bar). The operating pressure is higher than 

for the SOS column due to the smaller particle size. 

Emin for butylparaben on the fractal column was 2990 compared to 3440 for the 

SOS material. The impedance values across the whole plot were lower for the fractal 
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column, suggesting increased performance compared to the SOS material. The impedance-

efficiency plot for the fractal-C4 column is shown in figure 4.16 B. 

 

 

Figure 4.16 Plot of reduced plate height versus reduced linear velocity (A) and 

impedance plot (B) for the analysis of butylparaben on the fractal-C4 column. 

 

Based on this data, the fractal-C4 column performs comparatively better than the 

SOS-C4-1 material. Although the smaller particle size of the fractal material resulted in 

higher operating pressure, the increased plate count led to lower hmin. The obtained value 

however is still higher than expected for this type of packing material. As previously 

discussed this may be due to packing effects and the short retention observed for small 

analytes. Values for column permeability and total porosity are both very close to those 

obtained for the SOS column, which is to be expected due to the similar morphologies of 

the two materials. 

The performance of the fractal-C4 column was assessed in gradient elution mode 

for the analysis of individual proteins with molecular weights in the range of 6-45 kDa. As 

before, the test proteins carbonic anhydrase, insulin, lysozyme, myoglobin, ovalbumin and 

ribonuclease A were prepared in 1 mg/mL concentration in Milli-Q water. Each protein was 

analysed individually using a linear gradient method. Mobile phase A: water + 0.2% TFA; B: 
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acetonitrile + 0.2% TFA; gradient: 30-66% B in 8 minutes (4.5 %/min); flow rate 400 μL/min; 

temperature: 50 °C; detection: 220 nm; injection volume: 1 μL. 

The large proteins BSA and thyroglobulin were also individually analysed on the 

fractal-C4 column. These were also prepared in 1 mg/mL concentration in Milli-Q water and 

analysed using the same chromatographic conditions as above, but with an increased 

gradient time of 30-75% B in 10 minutes. The gradient steepness was kept at 4.5 %/min. 

Overlaid chromatograms for the analyses are shown in figure 4.17. 

 

 

Figure 4.17 Overlaid chromatograms for separation of individual proteins (A) and large 

proteins (B) on the fractal-C4 column. Baselines trimmed for clarity for the protein traces. 

 

 The fractal column displayed identical selectivity to the previously analysed SOS-

C4-1 and Accucore 150-C4 columns, with an elution order of ribonuclease A, insulin, 

lysozyme, myoglobin, carbonic anhydrase and ovalbumin for the 6-45 kDa analytes. The 

peak capacities for each protein were calculated, with an average value of 85 obtained. 

Narrow peak widths were observed, with W50% ≤ 0.05 min for all peaks apart from insulin, 

and the peak capacity values for all analytes surpassed those of the Accucore column. The 

retention times were shorter on the fractal column than for the SOS and Accucore columns 
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which may be explained by the lower values of bonding density (1.95 versus 4.20 and 3.57 

μmol/m2). This does not appear to be disadvantageous however, as all peaks were well 

resolved and high performance was achieved. 

The two large proteins were also successfully analysed on the fractal-C4 column. 

Calculated values for peak capacity were 64 for BSA and 18 for thyroglobulin. As in the case 

of the other proteins, the peak capacity for BSA is higher than for the other columns tested 

indicating higher performance. However, when compared against the values obtained for 

the other analytes, the peak capacity for thyroglobulin was lower than expected. When 

analysing the chromatogram, a peak associated with an aggregate of thyroglobulin is partly 

co-eluting before the main peak which may have caused interference with the peak width 

measurement. The aggregate peak is not clearly observed on the SOS or Accucore 

chromatograms and it is likely that the smaller particle size of the fractal material provides 

greater resolution as opposed to any morphology differences. 

 

4.5 Conclusion 

 The chromatographic performance of SOS particles has been assessed in both 

isocratic and gradient elution mode. It was theorised that the SOS morphology should be 

ideal for the separation of large molecules, due to the shallow shell depth and interstitial 

macroporosity. Experimental studies have been conducted to determine this by HPLC 

analysis of a range of protein samples. 

 In isocratic mode, values for efficiency, permeability, porosity and impedance were 

determined for SOS particles functionalised with a C4 ligand. The minimum reduced plate 

height obtained using the SOS column was higher than expected when compared to 

commercial core-shell materials. There are two possible contributing factors. The first is 

that short retention times are observed for small analytes on the SOS material, as shown by 

the analysis of the reversed phase test mixture. The short retention time leads to a lower 

theoretical plate count, and therefore increased plate height. The second factor is the 

quality of column packing. Work was undertaken in chapter 3 to optimise the packing 

conditions such as the packing pressure, reservoir size and slurry solution composition. 

Despite this there are limitations due to the equipment used, for example a 50 bar drop in 

pressure was observed at regular intervals due to the packing pump mechanism which may 

lead to homogeneity in the packed column bed. The lack of an inline valve on the packing 



Chapter 4: Spheres on Sphere Particles for Chromatography 

184 

equipment could have also had an effect on the column packing due to potential bed 

expansion during the rest period. 

The calculated value for total column porosity was found to be slightly lower than 

for commercial core-shell materials. This is to be expected due to the shallow shell depth of 

the SOS particles. The permeability of the SOS material was higher than observed for core-

shell materials due to the low porosity and also the larger SOS particle diameter providing 

lower column back pressure. Finally the SOS column also demonstrated favourable 

impedance values, which are comparable to current commercial columns. 

 A large range of compounds have been analysed under gradient conditions, from 

small peptides to large proteins. Fast, efficient separation of a standard peptide mixture 

was observed on columns packed with C4 and C8 SOS materials, with particularly high 

performance observed when using the SOS-C8 column. Obtained peak capacity values were 

comparable to the Accucore 150-C4 column. Using a modified gradient, the SOS-C4-1 

column was also capable of separating the mixture in under 1.5 minutes although the peak 

capacity was lower due to the reduced gradient span. The observed back pressure was 

lower for the SOS materials, which is explained by the smaller diameter of the commercial 

core-shell particles. In future study it would be interesting to analyse protein digest 

mixtures using the SOS column and compare the results with commercial core-shell 

materials. 

 In comparison studies with the Accucore 150-C4 column over a range of gradient 

times and flow rates, the SOS material provided lower peak capacity across the whole 

gradient span for the analysis of myoglobin, although performance was comparable for a 

10 minute run time. Similarly for carbonic anhydrase, performance was only comparable 

when the gradient span was less than 30 minutes. This indicates that the attainable peak 

capacity from the SOS material is mostly beneficial when performing fast gradient analysis. 

This has been shown to be the case when analysing individual proteins over a gradient span 

of 8 minutes where values for peak capacity (with the exception of one analyte) were 

comparable on both SOS and Accucore columns. Similarly the SOS materials provided 

comparable or better performance when separating a test mixture of proteins over a 

gradient span of 6 minutes. 

 From the results obtained in this study, the advantages of the SOS material are 

mostly observed in the separation of the largest proteins. The performance when analysing 
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transferrin was comparable to the Accucore column at both flow rates studied. The SOS 

column also provided higher performance when analysing BSA and thyroglobulin. It can be 

concluded from these results that the shallow shell depth does make the SOS morphology 

highly suitable for the analysis of large molecules, with the large ratio of core:total 

diameter providing a reduction in mass transfer effects. The isocratic study has also shown 

the particles to have low porosity and high permeability, both of which are also beneficial 

when reducing mass transfer effects of large molecules. 

 The SOS material also performed well in the analysis of mAb and ADC samples 

performed in collaboration with the School of Pharmaceutical Sciences at the University of 

Geneva. These proteins are based on IgG1 structures with intact molecular weights around 

150 kDa and reduced fragments of 25 and 50 kDa. The performance of the supplied SOS C4 

column was found to be comparable to current state of the art wide-pore materials 

designed for protein and biomolecule analysis, both in terms of peak capacity and 

resolution. mAbs and ADCs are currently of high interest for use as therapeutic agents and 

it would be interesting to conduct further analysis with SOS materials on these types of 

compounds. 

 A new type of fractal SOS morphology was also assessed in isocratic and gradient 

elution mode. The calculated values for permeability and total porosity are very similar to 

those obtained for normal SOS particles. This is to be expected due to the closely related 

morphology of the two materials. While a lower value for hmin was observed for the fractal 

material, it is likely that this is a result of the smaller particle diameter of the fractal 

material providing higher plate count. The higher efficiency also contributes to lower Emin, 

despite the higher operating pressure. 

The fractal column performed well for the gradient analysis of individual proteins 

with peak capacity values exceeding those of the SOS-C4-1 and Accucore 150-C4 columns in 

most cases. The improvement in performance may again be attributed to the smaller 

particle diameter, and it is therefore difficult to determine whether the fractal morphology 

has any additional benefit over normal SOS particles. However it does appear that fractal 

particles share the inherent advantage of SOS particles when considering the reduction in 

mass transfer effects for large analytes. Additionally the synthesis method using controlled 

precursor addition provides a useful route to achieve an alternative particle diameter while 

maintaining narrow PSD, without any subsequent classification. 
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 In future work it would be beneficial to create and assess SOS particles modified 

with alternative surface functionality, for example ion exchange, HILIC or diol phases which 

would provide alternative modes of separation for protein samples. Preliminary work 

towards this has been initiated through collaboration with the Centre for Gene Regulation 

and Expression, University of Dundee. HPLC columns packed with SOS particles bonded 

with diol and anion exchange phases were supplied for the analysis of proteins and other 

large biomolecules, although no results have yet been reported. 
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5 Alternative Morphologies 

5.1 Introduction 

In chapter 2 the role of each reagent within the one-pot SOS reaction was 

investigated to assess the effect on resultant particle morphology by changing reagent 

type, concentration or molecular weight. In these studies many alternative structures have 

been observed, for example aggregated and irregular particles, smooth spheres of various 

diameter, particles with rough surface and cluster-type particles. 

So far, the experimental work in this thesis has been focussed on the production, 

optimisation and assessment of SOS-type materials, with less emphasis on the other 

morphologies that have been synthesised. The experimental work in this chapter will 

describe the formation of several interesting alternative particles structures and 

chromatographic applications of these, where applicable. 

 

5.2 Experimental 

5.2.1 Chemicals 

Ammonium fluoride (≥98%), ammonium hydroxide (28-30%, NH3 basis), BSA, 

carbonic anhydrase, CTAB (≥98%), HPLC peptide standard mixture, imidazole (≥99%), 

insulin, lysozyme, MPTMS (95%), myoglobin, nitric acid (ACS reagent, 70%), ovalbumin, 

potassium dihydrogen phosphate (≥99%), PVP (MW = 10k, 29k, 55k), ribonuclease A, TEOS 

(98%), TFA (99%), thyroglobulin, TMSI (≥98%) and tridecane (>99%) were purchased from 

Sigma-Aldrich. Butyl(chloro)dimethyl silane (C4 reagent, >97%) was purchased from Tokyo 

Chemical Industry. Acetonitrile, chloroform, methanol, isopropanol and toluene (all HPLC 

grade) were obtained from Fisher Scientific. All chemicals were used as received. Deionised 

water and Milli-Q water (18 MΩ) were prepared in the laboratory. 
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5.2.2 Particle Synthesis 

 All reactions were performed at room temperature on a magnetic stirrer plate. 

Stirring was performed using a Teflon coated stirrer bar. Brand new glassware was used for 

each reaction. The specific modifications compared to the optimised reaction will be 

described in the results section of this chapter, however the optimised synthesis method 

for SOS particles is also included below for reference. 

PVP (MW = 10k, 0.25 g) and CTAB (0.0125 g) were dissolved in deionised water (5 

mL). Methanol (8 mL) was added, followed by diluted ammonium hydroxide (1.4%, 2 mL). 

The solution was stirred for 15 minutes, before addition of MPTMS (400 μL). The reaction 

was stirred overnight. SOS particles were collected on a sintered glass filter and washed 

with distilled water (5 x 20 mL), then methanol (5 x 20 mL) before drying under vacuum at 

60 °C. Particles were calcined using a Carbolite CWF1200 furnace. Conditions: heat in air at 

1 °C/min, hold at set temperature for 12 hours, then allow to cool to room temperature. 

 

5.2.3 Bonding Using Microwave Irradiation 

Prior to bonding, calcined particles were rehydroxylated using nitric acid as in the 

method described in section 3.3.3, chapter 3. All microwave reactions were performed on a 

CEM Explorer microwave reactor in 35 mL reaction vessels. 

For 1 g of material, the particles were dispersed in toluene (7.5 mL) with sonication 

in a 35 mL reaction vessel. A rare earth stirrer bar, imidazole (0.1 g) and C4 reagent (0.4 g) 

were added and the vessel sealed. Reagent amounts were adjusted according to the mass 

of silica starting material, the ratio was kept constant. As in previous studies a dynamic 

closed vessel method was used. The reaction was run at 120 °C for 20 minutes using a high 

stir speed. Resultant particles were washed on a sintered glass filter with toluene (40 mL), 

methanol (40 mL), methanol/water (1:1 V/V, 40 mL) and methanol (40 mL). Particles were 

first dried in air on the filter for 1 hour, then under vacuum at 80 °C overnight. Endcapping 

was performed using the same method with TMSI in place of the C4 reagent and the 

omission of imidazole. 

 

 



Chapter 5: Alternative Morphologies 

192 

5.2.4 Column Packing 

Functionalised particles were packed into 50 mm stainless steel narrow bore 

columns with 2.1 mm internal diameter, sealed with 0.5 μm porous titanium frits. The silica 

suspension was prepared by dispersing functionalised particles (0.3 g) in a slurry solution. 

The column was packed at 600 bar using methanol (60 mL). 

 

5.2.5 Characterisation 

Particle sizing was measured using a Beckman Coulter Multisizer 3. Particle images 

were obtained using a Hitachi S4800 SEM. Measurement of BET surface area1 was 

performed by nitrogen adsorption at 77 K, using a Micromeritics ASAP 2420 or 

Quantachrome NOVA 4200e adsorption analyser. Pore size distributions were calculated 

from BJH desorption data.2 Samples were degassed overnight at 120 °C before analysis. 

Chromatographic data was obtained using a Thermo Scientific Accela UPLC system, with 

data analysis performed using ChromQuest 5.0 software, version 3.2.1. 

 

5.3 Results and Discussion 

5.3.1 Incorporation of TEOS 

 The synthesis of particles so far has discussed only a single silica precursor, MPTMS. 

However there are numerous examples in the literature where TEOS is commonly used to 

prepare silica particles using the Stöber reaction.3-6 A set of reaction conditions was 

attempted where TEOS was added in a second step after the initial volume of MPTMS to 

assess any difference in particle morphology, specifically if any additional nanoparticle 

growth occurs on the surface. Each reaction was prepared using the optimised method 

above, followed by the secondary addition of 100 μL TEOS after 10, 20, 30 and 60 minutes. 

The SEM images of resultant particles are shown in figure 5.1. 
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Figure 5.1 SEM images of particles produced from the optimised reaction plus 

secondary addition of 100 μL TEOS after 10 (A), 20 (B), 30 (C) and 60 minutes (D). 

 

 

Figure 5.2 SEM images showing detail of surface morphology following secondary 

TEOS addition after 20 minutes. 

 

High surface aggregation was observed for the three reactions when TEOS was 

added after 10, 20 and 30 minutes. The close-up SEM images in figure 5.2 show the surface 

morphology in detail for one reaction where TEOS is added after 20 minutes. TEOS addition 

after 60 minutes led to a small amount of additional growth but these particles were more 

alike to regular SOS particles. An observation from this study is that the nitrogen BET 

surface areas after calcination at 550 °C for the shortest addition times were found to be 
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significantly lower than for the 60 minute addition: 10 min, 27.7 m2/g; 20 min, 32.5 m2/g; 

30 min, 24.4 m2/g; 60 min, 233.6 m2/g. 

A second set of reactions was performed, similar to the previous study however in 

this case a mixture of TEOS and MPTMS (100 μL, 50:50 V/V) was added in the second step. 

The SEM images are shown in figure 5.3. Again, the greatest surface aggregation was 

observed for the shortest secondary addition times of 10 and 20 minutes. An explanation 

for this is that the shell growth is still proceeding at this time and further precursor addition 

at this point is providing more reagent to grow more shell particles. 

This set of reactions was then repeated, with the volume of the secondary addition 

increased to 200 μL. SEM images are shown in figure 5.4. In this case a degree of particle 

aggregation was observed for the 10 and 20 minute reactions while the longer additions 

times of 30 and 60 minutes led to a number of broken and irregular particles. In the case of 

addition after 10 and 20 minutes this shows that further addition is detrimental to the 

morphology as excessive growth may cause particles to fuse together. In the case of 30 and 

60 minutes it shows that excessive addition may also destabilise the reaction. 

 

 

Figure 5.3 SEM images of particles produced from the optimised reaction plus 

secondary addition of 100 μL TEOS:MPTMS (50:50, V/V) after 10 (A), 20 (B), 30 (C) and 60 

minutes (D). 
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Figure 5.4 SEM images of particles produced from the optimised reaction plus 

secondary addition of 200 μL TEOS:MPTMS (50:50, V/V) after 10 (A), 20 (B), 30 (C) and 60 

minutes (D). 

 

The BET surface area measurements after calcination at 550 °C for these particles 

show the same trend as the first study where the 60 minute secondary addition time 

results in a much larger value. 100 μL secondary addition: 10 min, 24.5 m2/g; 20 min, 34.1 

m2/g; 30 min, 18.4 m2/g; 60 min, 216.3 m2/g. 200 μL secondary addition: 10 min, 18.6 m2/g; 

20 min, 28.1 m2/g; 30 min, 34.4 m2/g; 60 min, 159.4 m2/g. From these experiments alone 

the cause of this is unclear. 

TEOS was also tested as a direct replacement for MPTMS using the optimised 

reaction conditions to determine whether SOS particles could be produced from this 

precursor alone. SOS morphology was not observed, but instead partially fused, smooth 

spheres were produced, shown in figure 5.5 A. A mixture of precursor was instead 

attempted, with ratios of 75:25, 50:50 and 25:75 TEOS:MPTMS (V/V) used, added in a 

single addition step. The total volume of precursor used in each reaction was 400 μL. The 

SEM images are shown in figure 5.5 B-D. Instead of an SOS-type morphology as seen in the 

previous examples, there are irregular protrusions surrounding the core microsphere. The 

clearest examples of this were seen when using a mixture containing 50 or 75% MPTMS. 

The surface morphology is shown in figure 5.6. 
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Figure 5.5 SEM images of particles produced from the optimised reaction, with 

varying ratio of TEOS:MPTMS (V/V). TEOS only (A), 75:25 (B), 50:50 (C) and 25:75 (D). 

 

 

Figure 5.6 SEM images showing detail of surface morphology from addition of 50:50 

TEOS:MPTMS (A) and 25:75 TEOS:MPTMS (B). 

 

As in the previous reactions the BET surface area following calcination at 550 °C 

was found to be lower than expected for all samples, with values between 18 and 35 m2/g 

obtained. One explanation is that TEOS may fill the largest of the pores formed during 

particle synthesis. A set of reactions were prepared to test this theory, where 400 uL 

MPTMS was initially added, followed by a varied amount of TEOS in a second step after 10 

minutes. The results of the measured BET surface area after calcination at 550 °C are 

shown in figure 5.7, displaying a trend of decreasing surface area with increasing TEOS. 
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Figure 5.7 Reduction in surface area with increasing secondary addition of TEOS. 

 

5.3.2 Cluster Particles 

Interesting results were observed when changing the molecular weight of PVP in 

the reaction where a 50:50 mixture of TEOS and MPTMS precursor was used. A change 

from 10k to 29k PVP in 5% concentration led to particles with long protrusions from the 

surface. Additionally many of the particles were fused together due to the surface growth. 

Reducing the concentration of PVP (29k) to 2 and 1% led to smaller particles which were 

more irregular and cluster-like. The morphologies are shown in figure 5.8 A-C. 

Increasing the molecular weight of PVP to 55k led to difficulties in dissolving the 

polymer in 5% concentration, therefore the reactions were performed using 2, 0.5 and 

0.25%. The SEM images in figure 5.8 D-F again show that irregular cluster-like particles are 

produced, with the morphology becoming smoother and more spherical with a reduction in 

polymer concentration. The most interesting result from this particular study however was 

observed when using PVP (55k) in 1% concentration. The cluster-type particles that are 

produced from these conditions resemble a monolithic silica column which has been 

crushed into smaller pieces. The SEM images are shown in figure 5.9. 
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Figure 5.8 SEM images of particles produced from TEOS:MPTMS when changing 

molecular weight and concentration of PVP. MW = 29k: 5% (A), 2% (B), 1% (C). MW = 55k: 2% 

(D), 0.5% (E), 0.25% (F). 

 

 

Figure 5.9 SEM images of cluster-type particles produced when using PVP (55k) in 1% 

concentration in the optimised synthesis reaction. 
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 Due to the particle morphology resembling that of a broken up monolith, it was 

predicted that the material may form a monolithic structure when packed into a HPLC 

column, potentially creating a macroporous network. The reaction conditions to form the 

cluster particles shown in figure 5.9 were scaled up by 50 times to produce sufficient 

material for bonding and packing into HPLC columns. The resultant cluster particles were 

functionalised with a C4 ligand and endcapped using the microwave bonding method 

described in section 5.2.3. The BET surface area following calcination at 550 °C was 

measured to be 137 m2/g. Carbon loading was 3.06%, equating to surface coverage of 3.26 

μmol/m2. Particles were packed into 50 × 2.1 mm HPLC columns using a slurry solution of 

72:8:20 chloroform:methanol:isopropanol (V/V/V, 30 mL). 

 One column was carefully unpacked as a cylindrical rod, then cut into smaller 

sections to provide images of the packing structure and to confirm if the material forms a 

macroporous network as predicted. The SEM images are shown in figure 5.10. It can be 

seen in the close-up images that some large pores between particles are visible although 

the pore size was impossible to directly measure by mercury intrusion due to the fragile 

nature of the rod. 

 

 

Figure 5.10 SEM images showing packing structure of clusters in the HPLC column. The 

packed rod is imaged at various zoom levels to show rod structure (A), overview of packing 

structure (B) and close-up of the pore system generated (C, D). 
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The HPLC column packed with Cluster-C4 particles was used to separate the 

peptide standard mixture using a linear gradient method. The test mixture contained 

angiotensin II, GY, leu-enk, met-enk and VYV, each in 80 μg/mL concentration, made up in 

Milli-Q water. Mobile phase A: 0.02 M KH2PO4, pH 2.70; B: acetonitrile; gradient: 10-40% B 

in 4 minutes; flow rate 300 μL/min; temperature: 40 °C; detection: 220 nm; injection 

volume: 10 μL. The chromatogram is shown in figure 5.11. 

The mixture was separated within 2.5 minutes, however the first two peaks (GY 

and VYV) were found to be coeluting due to their similar retentivity and short length of the 

column. The elution order was GY/VYV, met-enk, leu-enk and angiotensin II. 

 

 

Figure 5.11 Chromatogram showing separation of the peptide standard mixture on 

Cluster-C4 column. 

 

Due to the potential macroporous interstitial network between particles, it was 

predicted that the column could provide high performance for the separation of large 

analytes. The Cluster-C4 column was therefore used to analyse the same individual 

proteins as tested on the SOS columns, with molecular weights in the range of 6-45 kDa. 

The test proteins carbonic anhydrase (30 kDa), insulin (6 kDa), lysozyme (14 kDa), 

myoglobin (17 kDa), ovalbumin (45 kDa) and ribonuclease A (14 kDa) were prepared in 1 

mg/mL concentration in Milli-Q water. Each protein was tested individually using a linear 

gradient method. Mobile phase A: water + 0.1% TFA; B: acetonitrile + 0.1% TFA; gradient: 
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30-66% B in 8 minutes (gradient steepness 4.5 %/min); flow rate 400 μL/min; temperature: 

50 °C; detection: 220 nm; injection volume: 1 μL. The overlaid chromatogram is shown in 

figure 5.12 A. The column was also used to analyse two large proteins, BSA (66 kDa) and 

thyroglobulin (669 kDa). The test proteins were prepared in 1 mg/mL concentration in Milli-

Q water and analysed individually using the same linear gradient method as above. The 

chromatogram is shown in figure 5.12 B. 

 

  

Figure 5.12 Overlaid chromatograms of individual protein separation (A, baselines 

trimmed for clarity) and large protein separation (B) on the Cluster-C4 column. 

 

The elution order for the 6-45 kDa range of proteins was identical to that obtained 

with the SOS-C4 columns discussed in the previous chapter. The elution order was 

ribonuclease A, insulin, lysozyme, myoglobin, carbonic anhydrase and ovalbumin. The 

retention time of the final peak was shorter compared to the SOS materials, however this 

can be attributed to the 50 mm column length used in this study. Comparatively shorter 

retention was also seen for the large proteins BSA and thyroglobulin. The 50 mm column 

length was chosen due to the size of the particles as it was thought that the small size may 

result in high operating pressures. However the maximum observed pressure was 90 bar. 
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This may be expected to double with the column length, resulting in operating pressure 

similar to the previously tested SOS and core-shell columns (170 and 205 bar). 

The peak capacities for the 6-45 kDa proteins were calculated, with an average 

value of 72 obtained. This is comparable to the SOS-C4-1 material assessed in the previous 

chapter (PC = 72), however the resolution between peaks on the SOS column was better, 

particularly for the first two peaks. This could be improved by using a longer column length. 

The analysis of the two large proteins resulted in peak capacities of 48 for BSA and 22 for 

thyroglobulin. This is a little lower than the values obtained from the SOS-C4-1 column (PC = 

56 and 25) but comparable to the Accucore 150-C4 column (PC = 48 and 16), indicating that 

there are sufficiently sized pores for large molecule separation. 

 

5.3.3 Uniform Silica Microspheres 

In the optimised SOS synthesis method described in section 5.2.2 ammonium 

hydroxide is used in a low concentration of 1.4% to allow sufficient time for shell formation 

to occur. Increasing the concentration to 14% significantly increases the reaction rate and 

prevents secondary nucleation from occurring. In this case, smooth microspheres are 

instead produced which retain the uniformity observed for SOS particles. The reaction was 

scaled up by 10 times to form enough material for characterisation and subsequent 

modification. The mean diameter was measured to be 3.19 μm with a d90/10 ratio of 1.49. 

The SEM images and PSD are shown in figure 5.13 A-C. 

The size and dispersity of these particles are ideal for use in HPLC, however after 

calcination at 600 °C the BET surface area was measured to be 42 m2/g by nitrogen 

adsorption, with the isotherm plot in figure 5.13 D suggesting a microporous structure.7 For 

routine HPLC analysis of small molecules, the packing material should have sufficient 

surface area to allow high loading capacity and mesopores greater than 6 nm which allow 

analytes to diffuse into the pore structure. The particles produced from this reaction 

therefore require further modification if there are to be used for chromatographic 

purposes. 
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Figure 5.13 Smooth spheres produced from the reaction with increased ammonia 

concentration. Particle morphology (A) and dispersity (B) are shown by SEM imaging, along 

with the PSD (C) and nitrogen adsorption plot (D). 

 

 To increase the surface area and pore diameter of these particles, a templated 

dissolution procedure was applied.8 This method was developed by Dong et al. to form 

mesoporous core-shell particles from non-porous microspheres using CTAC as a template 

and tridecane as a swelling agent. In this study it was found that the surface area could be 

increased beyond 1100 m2/g depending on the reaction time, with typical pore diameters 

of around 4.5 nm achieved. The pore size did not increase significantly beyond this point 

regardless of the reaction time due to the size of the templating agent.8 

The microspheres prepared in this study were treated using the templating method 

under the following reaction conditions. Calcined particles (1 g) were added to water (100 

mL) along with CTAB (1 g) and tridecane (6 mL). The solution was sonicated for 1 hour. 

Ammonium hydroxide (28%, 6 mL) and ammonium fluoride (25 mg) were added and the 
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solution heated at 90 °C for 24 hours with stirring. Resultant particles were washed 

thoroughly with water, then acetone before drying under vacuum at 80 °C. 

 Following the pore expansion treatment the BET surface area of the modified 

particles was increased from 42 to 377 m2/g. The nitrogen isotherm plot in figure 5.14 A 

shows a type IV curve, typically seen for mesoporous materials.7 The plot of pore size 

distribution shown in figure 5.14 B confirms the presence of mesopores, with an indicated 

pore size of 4 nm. 

 

 

Figure 5.14 Nitrogen isotherm (A) and pore size distribution (B) of silica particles 

following pore expansion treatment. 

 

The synthesis and subsequent modification to these particles has potential to 

provide a fast, simple alternative to the current methods of producing mesoporous silica 

suitable for chromatographic use. Acceptable PSD (d90/10 <1.5) is achieved in a one-pot 

reaction which removes the need for time-consuming and wasteful classification steps, 

while the particle diameter of around 3 μm is ideal for use in HPLC. Although the pore size 

of 4 nm is possibly too small for routine HPLC analysis, the templating method was 

successful in introducing porosity into the particles. Modification to the method, for 

example with larger templates, may allow formation of larger mesopores in future study. 
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5.4 Conclusion 

While the use of TEOS as a direct replacement for MPTMS in the SOS synthesis 

method leads to the formation of smooth spheres only, its inclusion in a secondary addition 

step or as a mixture with MPTMS has led to a number of alternative morphologies. When 

TEOS is introduced in a secondary addition step, fractal-type particles with high amounts of 

surface growth were obtained up to a secondary addition time of 30 minutes. Likewise the 

secondary addition of 100 μL TEOS:MPTMS also formed fractal particles. In both cases less 

surface growth was observed with increasing time between initial and secondary addition. 

When increasing the amount of secondary addition to 200 μL, the resultant 

particles displayed a similar amount of surface growth for intervals of 10 and 20 minutes. 

However several particles were fused together, particularly for the 20 minute reaction 

indicating that the increased volume of additional precursor is detrimental to the 

morphology, causing fusing rather than growth onto discreet particles. Increasing the time 

for secondary addition to 30 and 60 minutes led to the formation of broken and irregular 

particles suggesting that excessive addition may also have a destabilising effect on the 

reaction. 

An observation from these reactions is that the surface area after calcination at 

550 °C is quite low (18-35 m2/g) for all reactions where the secondary addition is 

performed within 30 minutes. For the 60 minute reactions the surface area is significantly 

higher (159-234 m2/g). A further set of reactions was performed with increasing secondary 

TEOS addition after 10 minutes which showed a trend of decreasing surface area as the 

amount of TEOS was increased. An explanation is that TEOS blocks some of the pore 

structure during early stages of particle synthesis, but is not able to do so after 60 minutes. 

This is perhaps due to the stage of particle formation. It would be beneficial in future study 

to isolate samples of the particles at intervals during the reaction for SEM imaging and 

assess any morphology difference between 30 and 60 minutes to explain this further. 

Mixtures of TEOS and MPTMS were also used in place of MPTMS in the optimised 

SOS reaction conditions, added in a single step. Formation of a core microsphere is still 

observed, but unlike SOS particles the shell structure is made up of irregular clustered 

structures rather than nanospheres. This is interesting as there may be additional porosity 

created by these surface growths. Further modification to this reaction using alternative 

molecular weights of PVP at different concentrations led to the formation of various types 
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of cluster particles. The most interesting of these was obtained when using 1% PVP (MW = 

55k) and a 50:50 mixture of TEOS:MPTMS. In this case small irregular clusters were formed 

which were further assessed for functionalisation and packing into HPLC columns. 

From the SEM images it appears that the structure of the packed cluster particles 

leads to the formation of large through-pores within the column, alike to a monolithic 

material. When functionalised with a C4 group the column provided fast analysis of a 

variety of proteins, with comparable peak capacity values to the previously tested SOS 

materials. The material is interesting as an alternative to monolithic columns as cluster 

particles are easily generated from a one-pot reaction as opposed to formation of a 

monolith within the column itself. This removes the issue of shrinkage and detachment 

from the column wall and also the need to clad the monolithic rod. Instead, a slurry packing 

method can be employed which ensures there are no significant voids between the packed 

material and column wall. The synthesis method provides a degree of control over the 

particle morphology and with further development could potentially lead to reproducible 

packed monolith columns. 

A method of producing uniform smooth microspheres has also been described. By 

increasing the concentration of ammonia in the optimised SOS synthesis, the reaction rate 

is increased and shell growth is prevented, leading to the formation of smooth particles 

only. The size and dispersity of these particles is ideal for use in HPLC and the scale up of 

this reaction should be assessed as this method has the potential to produce uniform silica 

microspheres from a one-pot reaction. In the commercial manufacture of porous silica 

particles, reaction sizes may be as large as 50 litres in volume, producing kilogram scale 

batches of unclassified particles. However, following subsequent washing, treatment and 

classification, the yield is significantly reduced. This highlights the advantage of a one-pot 

method which does not require classification, which may lead to a faster production 

process with reduced waste. 

The particles produced from this method have been shown to be microporous. 

However treatment with templating and swelling agents has been shown to increase the 

pore size into the mesoporous range. The obtained pore size in this study was limited to 

around 4 nm by the template and swelling agent which may be too small for use for HPLC 

applications. In future study, larger templates and alternative swelling agents could 

therefore be assessed in this method. For example dihexadecyldimethylammonium 

bromide (DiCTAB) has successfully been used as a templating agent with 1,3,5-
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trimethylbenzene and N,N-dimethyldecylamine as swelling agents in previous studies,6 

leading to pore diameters up to 6.5 nm. Similarly, pore sizes of up to 9.6 nm could be 

obtained using high molecular weight Jeffamine type surfactants.9 
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6 Conclusion 

In recent years there has been renewed interest in particle technology for HPLC, 

mainly due to the introduction of modern core-shell particles in 2007. Prior to this there 

was little development in the morphology of silica particles beyond reducing the particle 

diameter from 10 μm and 5 μm through the 1970s and 3 μm in the 1980s to sub-2 μm 

materials in the 2000s. As such there has been no significant evolution in the basic 

structure of particles, only modification of properties such as the pore size, surface area 

and bonded phases. Even when examining core-shell particles, the pore structure is found 

to be very similar to that of totally porous materials, the only difference being that the total 

porosity is much lower due to the solid core. 

Many of the advances in chromatographic performance have been reliant on 

reducing the particle size with the expectation that LC instrumentation should also evolve 

to be able to utilise such materials. The modern generation of core-shell particles broke this 

trend with the introduction of 2.7 μm particles, released to the fanfare of sub-2 μm 

performance with the operating pressure of 3 μm materials, allowing their use on regular 

HPLC instruments. However the latest advancements in core-shell technology appear to be 

following the same evolution path as for totally porous particles, with the recent 

introduction of sub-2 um core-shell materials. There is clearly a limit on how far this can be 

taken: either how far the particle size can be reduced, or the ability and cost-effectiveness 

of developing instrumentation capable of handling the operating pressures associated with 

smaller particles. 

It is clear that the development of entirely new materials is required in order to 

create the next generation of particles for LC. Whether these materials are based on silica, 

polymer, MOF, or a combination of these remains to be seen. The discovery of SOS 

particles is interesting as it represents a move away from the typical porous structure 

found in core-shell and totally porous silica. Instead the unique morphology provides an 

alternative type of interstitial porosity despite the silica surface itself being effectively non-

porous to analytes. 

The experimental work in chapter 2 has investigated the basic production of SOS 

materials, observing the various effects on morphology from changing the reaction 

conditions. It became apparent that the resultant morphology is extremely sensitive to 

concentration and type of reagent used. Polymer (PVA or PVP) and surfactant (CTAB) were 
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both found to be essential in the reaction to produce SOS particles, however when used in 

a concentration outside of an optimal range the SOS morphology was either significantly 

reduced or lost completely. Likewise, changing the type of reagent also led to a loss of SOS 

structure. Only two polymers (PVA and PVP) were found to form SOS particles, while the 

choice of molecular weight was also found to be important, with the best results obtained 

when using molecular weights of around 9-10k (PVA) and 10k (PVP). The only surfactants 

that were found to form SOS particles were cetyltrimethylammonium derivatives, with the 

use of CTAB powder preferred due to the ease of handling. 

A key observation is that the PSD showed improvement as the concentration of 

CTAB was reduced although this also caused a loss of SOS morphology, with smooth 

spheres formed when CTAB was omitted from the reaction. Likewise the omission of 

polymer from the reaction also led to small smooth particles, many of which were 

aggregated. One theory is that the reduction in concentration of these two chemicals 

results in a reaction solution which is more alike to a Stöber type synthesis, which typically 

results in the formation of smooth, uniform microspheres. This theory was confirmed with 

the study of the SOS reaction when omitting both polymer and surfactant, leaving just the 

four required components of a Stöber reaction: water, alcohol, base and silica precursor. In 

this case smooth, uniform spheres around 1.5 μm in diameter were produced. 

The concentration of ammonium hydroxide was found to have a large effect on the 

reaction rate, with higher concentration resulting in faster particle formation. The density 

of the nanoparticle shell was also found to be directly related to the rate of reaction, with 

increasing shell coverage observed as the concentration of ammonia was reduced. With 

high ammonia concentration and therefore a fast reaction rate, particle growth proceeds 

quickly and there is less opportunity for nanoparticle growth upon the core microspheres. 

Reducing the concentration reduces the reaction rate and provides much more time for 

surface nucleation to occur, resulting in a denser shell structure. 

 Through a combination of the effects of changing reagent type and concentration, 

reaction conditions were determined that allowed the formation of SOS particles around 3 

μm in diameter, with a complete single layer shell of nanoparticles around 200 nm in size. 

Additionally a narrow PSD was obtained with a d90/10 ratio of 1.31, well within the target 

value of <1.5. Scale up of the reaction by 50 times led to formation of particles with near 

identical surface morphology, mean diameter and equally narrow PSD, highlighting the 

potential to increase reaction size further and produce SOS materials on a commercial 
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scale. One key advantage of this optimised method is that there is no need to improve the 

size distribution with time-consuming classification steps, leading to faster production and 

improved product yield. 

 Another observation of the particles produced by this optimised method is the 

highly spherical nature, aside from the rough surface due to the nanoparticle shell. This can 

clearly be seen when directly comparing SOS to core-shell particles produced by the LbL 

method. For core-shell particles produced by numerous layers of nanoparticles being 

added in multiple steps, it is inevitable that some areas of uneven coverage will occur and 

result in a non-spherical product. By contrast, the one-pot process for SOS particles results 

in a uniform shell over the entire core, providing high sphericity. 

 The optimised synthesis could be further investigated in future work to scale up the 

reaction to a manufacturing scale to assess the feasibility of a large-scale reaction and 

observe any morphology changes that may occur. The largest reaction described in this 

work had a total volume of 770 mL, resulting in a yield of 7.2 g following calcination. 

Importantly, particles did not show any significant difference in size or morphology from 

the smaller sized reaction. Final batch sizes for core-shell silica may exceed 500 g, although 

this may be composed of a blend of different batches. The equipment required for large-

scale synthesis of SOS particles would be relatively simple to set up, and a 50 L reaction 

vessel would allow production of a batch of SOS particles around 450 g in size, although it 

would be uneconomical to use new glassware each time and a thorough cleaning 

procedure would need to be developed and applied. 

A controlled method of MPTMS addition was attempted using a syringe pump 

which also led to the formation of highly uniform SOS particles. It was thought that with 

constant controlled addition the reaction volume would be kept in a homogenous state, 

resulting in more reproducible particles. In scaled-up reactions pooling of the precursor at 

the bottom of the vessel had previously been observed for several seconds due to large 

addition steps via pipette, which may have had an effect on the resultant particle size. 

While the pipette addition method provided uniform particles, the syringe pump addition 

was found to improve the PSD further with the lowest observed d90/10 ratio of 1.21. 

For the controlled addition reactions it was found that to obtain the clearest SOS 

morphology an initial addition of MPTMS was required to begin particle formation, 

immediately followed by constant addition using the syringe pump. The best results were 
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obtained when using an initial volume of 1 mL followed by further addition of 3 mL at 0.065 

mL/min. In this case a new type of SOS structure, described as fractal SOS particles, are 

produced with increased amounts of surface aggregation. Fractal particles are interesting 

as they possess a degree of self-similarity, creating the possibility of having a surface 

topography which is essentially homogeneous to solute molecules and potentially 

increasing the accessible surface area for analytes when bonded and packed into HPLC 

columns. 

The use of TEOS in the synthesis reaction led to further interesting morphologies, 

discussed in chapter 5. While the use of TEOS alone as a direct replacement led to the 

formation of smooth spheres, alternative SOS structures were produced with its inclusion 

as a secondary addition step or as a mixture with MPTMS. For example, fractal SOS 

particles with high amounts of surface growth could be produced with either TEOS or a 

mixture of TEOS:MPTMS added in a secondary addition step within 30 minutes of the initial 

MPTMS addition. 

Not all of the products from modification to the reaction possess SOS morphology, 

and many fascinating alternative structures have been observed. One notable example was 

the formation of cluster-type particles, created when changing molecular weight and 

concentration of PVP, and using a mixture of TEOS and MPTMS in a single addition step. 

The resultant cluster morphology resembled a monolith that had been broken into smaller 

pieces. It was thought that when packed into a HPLC column the resultant bed structure 

would form a network of pores, much like a monolith. This was confirmed by SEM imaging 

of a carefully unpacked rod from the column, which showed a number of large pores 

between particles. The packing procedure for monoliths is generally quite difficult due to 

shrinkage and detachment from the column wall, resulting in the requirement to clad the 

monolithic rod. This type of particle may provide an interesting alternative to monolithic 

materials, as they can be easily formed from a one-pot reaction and slurry packed into the 

column ensuring there are no voids between the stationary phase and column wall. 

Another interesting outcome from modification to the reaction is the possibility of 

forming uniform smooth spheres with a mean diameter of 3.19 μm. Large particles are 

typically difficult to achieve via Stöber synthesis methods, with a maximum particle size of 

around 800 nm reported. Although the particles are initially microporous, modification 

using a templating method with CTAB has been shown to increase the pore size into the 

mesoporous range, with a mean diameter of 4 nm. This synthesis method represents a 
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potential route to producing totally porous silica particles with narrow PSD without the 

need for a time-consuming and wasteful classification process. Particles straight out of the 

reaction have comparable PSD to totally porous particles that have undergone extensive 

classification, with a d90/10 ratio of 1.49. Further investigation into the templating method is 

required to increase the pore diameter, as pores larger than 6 nm are typically required for 

routine HPLC analysis of small analytes. This should be possible by using larger templates 

and swelling agents. 

In chapter 3 the suitability of microwave irradiation was assessed as an alternative 

heating method for the production of silica bonded phases. This has led to a bonding 

method which facilitates fast, reproducible functionalisation of SOS particles, providing a 

considerable reduction in reaction time compared to commonly used reflux methods. A 

reaction time of 20 minutes was found to be optimal for toluene-based reactions, with no 

increase in carbon loading observed until the reaction time was increased beyond 2 hours. 

Additionally it was possible to use a technique known as superheating for the microwave 

reactions, where the reaction can be performed at a temperature above the boiling point 

of the solvent due to the use of a sealed reaction vessel. It was found that superheating in 

toluene at 120 °C provides an increase in carbon loading and bonding density compared to 

reactions at 110 °C. 

The C4 bonded SOS particles produced from a 20 minute microwave method were 

found to have slightly lower bonding densities than those from a 16 hour reflux. However, 

the variability between repeat reactions was greater for the reflux method. Despite the 

differences in bonding density, the SOS-C4 materials produced from both microwave and 

reflux methods provided almost identical performance in the HPLC separation of a protein 

test mixture. This highlights the vast reduction in reaction time, with a 20 minute reaction 

representing a 98% reduction in heating time alone. This does not consider the time 

required to heat the vessel to temperature. The microwave reactor is capable of extremely 

rapid heating, as high as 125 °C/min was observed for DMF based reactions, which again 

provides a further time advantage. 

As the heating time is significantly reduced, the microwave reactor also provides a 

massive reduction in power consumption. Although the maximum power output is 300 W, 

the reactor only requires this amount of power for initial heating. As little as 6 W is 

required to maintain constant temperature. By comparison, a 600 W hot plate running for 

16 hours requires a great deal more power. 
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The microwave bonding method has been shown to be highly reproducible, both in 

terms of individual reactions on the same batch of silica and when comparing bonding 

density between batches. The highest measured RSD for bonding density within each batch 

was 3.54%, while the RSD between all samples was 4.56%. The reproducibility of these 

particles when packed into columns was also assessed with HPLC, using a protein test 

mixture. In total nine columns from three different batches were used. Some variation was 

observed in the retention times, particularly between batches, however all fell within ±5% 

of the average for each peak. Differences in the particle morphology were likely to have 

caused this, as the materials used were produced from the standard reaction rather than 

the optimised synthesis method that was developed later. 

One observation is that lower bonding densities were obtained for SOS-C4 particles 

compared to commercially available C4 materials. This was noted for both heating methods 

applied to the SOS material. An explanation is that after calcination at 550 °C micropores 

are present within the SOS surface, many of which may be inaccessible to bonding 

reagents. Therefore silanisation only occurs upon the accessible surface area and lower 

than expected values for carbon loading are seen. This theory can be confirmed by 

analysing the results from the investigation into alternative bonding solvents. In this case 

SOS particles were calcined at 600 °C, closing up much of the microporous structure. The 

accessible surface area did not appear to be reduced as higher bonding densities were 

achieved, which were directly comparable to commercial materials. For example the 

highest value obtained for SOS-C4 was 3.48 μmol/m2, compared to 3.57 μmol/m2 for the 

Accucore 150-C4 material. 

The experimental results in chapter 3 suggest that microwave bonding is a suitable 

replacement for conventional reflux heating, with the added benefits of significantly 

reduced reaction time, associated reduction in energy consumption and improved 

reproducibility of carbon loading and bonding density values. It has also been shown that 

depending on the properties and pre-treatment of the SOS silica to be bonded, comparable 

bonding densities to commercial materials can be achieved. Microwave reactors large 

enough to accommodate 5 litre vessels are available, and therefore further investigation 

should be undertaken to increase the reaction size to commercial scale as the method 

would be highly advantageous in a manufacturing capacity. 

The use of SOS particles in HPLC was discussed in chapter 4, where functionalised 

particles were assessed under isocratic and gradient conditions. In isocratic mode, values 
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for efficiency, permeability, porosity and impedance were determined for SOS-C4 particles 

packed into 100 × 2.1 mm HPLC columns. The minimum plate height of 2.90 for 

butylparaben was higher than expected, especially when compared to commercial core-

shell materials which typically have hmin of 1.2-1.8. There are two reasons that this may 

occur. Firstly the retention time for small analytes was found to be very short on the SOS 

material due to the lack of porosity, demonstrated by the separation of a reversed phase 

test mixture, leading to a low theoretical plate count. Secondly the quality of column 

packing could be improved due to limitations of the equipment used. 

Total column porosity of the SOS material was found to be slightly lower than for 

commercial core-shell materials, while the permeability of the packed column was higher. 

These observations can be attributed to the shallow shell depth, low porosity and the 

larger particle diameter which results in lower operating pressure than sub-3 μm core-shell 

materials. The minimum value for impedance was 3440, which is comparable to both 

commercial core-shell and totally porous materials which typically have values of 2000-

5000. The values all suggest that SOS particles are capable of efficient separation. The 

combination of low porosity and high permeability is beneficial in terms of reducing mass 

transfer effects of large molecules, which has been shown in the gradient analysis of 

proteins. The HPLC column packed with fractal-C4 particles was also assessed in isocratic 

mode, with calculated values for total porosity and permeability that were close to those 

obtained for normal SOS particles. This is not surprising, given the similarity of the 

morphology of the two materials. However, lower values for hmin and Emin were obtained on 

the fractal column. This is likely to be a result of the smaller particle diameter which 

provides higher plate count. 

The separation of a range of peptides and proteins using gradient conditions was 

performed using columns packed with SOS particles. In particular the SOS-C8 column 

provided fast separation of the peptide standard test mixture with sharp, narrow peaks and 

comparable peak capacity values to the commercial Accucore 150-C4 column. With a 

modified gradient it was also possible to reduce the analysis time to less than 1.5 minutes 

on the SOS-C4-1 column, while still maintaining resolution between all peaks. 

 Comparison studies of SOS-C4-1 and Accucore 150-C4 columns were performed for 

three test proteins over a range of gradient times between 10 and 90 minutes, and at two 

flow rates of 250 and 400 μL/min. It was found that the SOS material provided lower peak 

capacities for myoglobin over the whole gradient span, with most comparable performance 
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achieved at the shortest gradient time of 10 minutes at both flow rates. Similar results 

were achieved for carbonic anhydrase, although the SOS material provided similar 

performance up to a gradient time of 20 minutes. However when testing the largest 

protein, transferrin, the SOS column was shown to provide peak capacity values that were 

comparable across the whole gradient span at both flow rates. In a separate study the SOS 

column was also found to provide higher peak capacity values for other large proteins, BSA 

and thyroglobulin. It appears that the large ratio of core:total particle diameter due to the 

shallow shell depth provides a reduction in mass transfer effects for the largest molecules. 

The results have shown that the advantages of the SOS materials are mainly 

observed for the study of the largest proteins, or when fast gradient times are applied. The 

analysis of individual proteins and a protein test mixture at short gradient times of up to 10 

minutes confirm this, with peak capacity values of the SOS material close to those obtained 

using the Accucore column. The observed back pressure was lower for the SOS column, 

which is explained by the larger particle diameter compared to the commercial core-shell 

material. The column packed with fractal-C4 particles also provided high performance in 

the analysis of individual proteins under short gradient conditions, with peak capacity 

values exceeding those of the SOS-C4-1 and Accucore 150-C4 columns in most cases. It is 

difficult to determine if the fractal morphology has any additional benefit over normal SOS 

particles, as the improvement in performance may be attributed to the smaller particle 

diameter, however it can be concluded that the fractal material shares the advantage of 

SOS particles in terms of reducing mass transfer effects, particularly for large molecules. 

A column packed with SOS-C4 particles was supplied to the School of 

Pharmaceutical Sciences at the University of Geneva. The material was used to analyse 

mAb and ADC samples alongside several state of the art wide-pore materials designed for 

protein analysis. The SOS column performed well, in some cases providing performance 

equal to or greater than some of these materials. mAbs and ADCs are of high interest for 

use as therapeutic agents, with many drugs already marketed. SOS materials have been 

shown to be effective for the analysis and characterisation of these types of compounds 

and future work should be undertaken into this type of application. 

The experimental work detailed in this thesis has outlined the development of SOS 

silica particles. This has included the optimisation of the reaction conditions to provide 

particles with the desired physical properties for HPLC, development of a microwave 

bonding method to functionalise the surface, and the HPLC assessment of these particles 
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for a range of compounds, particularly for the analysis of large molecules. However, there 

are still a number of areas where further study could be undertaken, for example the 

increase of the reaction volume to a manufacturing scale would be beneficial to assess if 

there are any changes to the morphology. 

The range of bonded phases should be expanded in future work. The method of 

bonding via microwave irradiation can be easily applied to functional groups other than 

alkyl chains and initial work into the bonding of SOS particles with ion exchange and diol 

phases has been attempted, although the results are not reported here. The use of these 

phases can provide alternative retentive mechanisms to the reversed phase materials 

described in this thesis which may result in different selectivity or improve the analysis of 

proteins and other large molecules, however no HPLC analysis has yet been performed 

with columns packed with these materials. 

Further experimentation into fractal SOS particles should also be undertaken. The 

materials formed when including TEOS along with MPTMS as the precursor show greater 

amounts of surface growth than when using MPTMS alone. This may provide additional 

surface area and porosity, and therefore increased retention for analytes. Short HPLC 

gradient analysis has been conducted, with excellent results obtained for the analysis of 

individual proteins. This work should be continued with the separation of protein mixtures 

and also study into the use of longer gradient spans, as was conducted on the SOS-C4 

material, to determine the achievable peak capacity. This work could also be performed on 

the cluster-type particles to provide comparison between all materials produced from this 

work. 


