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Financial engineering in pricing agricultural 

derivatives based on demand and volatility 

Purpose 

The purpose of this paper is twofold. First, we propose a financial engineering framework to model 

commodity prices based on market fundamentals such as market demand processes and demand 

functions. This framework explains the relation between demand, volatility and the leverage effect of 

commodities. It is also shown how the proposed framework can be used to price derivatives on 

commodity prices. Second, we estimate the model parameters for agricultural commodities and 

discuss the implications of the results on derivative prices. In particular, we see how leverage effect 

(or inverse leverage effect) is related to market demand. 

Design/methodology/approach 

This paper uses a power demand function along with the Cox, Ingersoll and Ross (CIR) mean-

reverting process to find the price process of commodities. Then by using the Ito theorem the constant 

elastic volatility (CEV) model is derived for the market prices. The partial differential equation (PDE) 

that the dynamics of derivative prices satisfy is found and, by the Feynman-Kac theorem, the market 

derivative prices are provided within a Monte-Carlo simulation framework. Finally, by using a 

maximum likelihood estimator (MLE), the parameters of the CEV model for the agricultural 

commodity prices are found. 

Findings 

The results of this paper show that derivative prices on commodities are heavily affected by the 

elasticity of volatility and, consequently, by market demand elasticity. The empirical results show that 

different groups of agricultural commodities have different values of demand and volatility elasticity. 

Practical implications 

The results of this paper can be used by practitioners to price derivatives on commodity prices and by 

insurance companies to better price insurance contracts. As in many countries agricultural insurances 

are subsidised by the government, the results of this paper are useful for setting more efficient 

policies. 

Originality/value 
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Approaches that use the methodology of financial engineering to model agricultural prices and 

compute the derivative prices are rather new within the literature and still need to be developed for 

further applications. 

Keywords: CEV model, demand elasticity, CIR model 

Introduction 

Commodities go through boom and bust cycles. The upward movements and the increased 

volatility of commodity prices have been largely attributed to emerging markets and massive 

capital flows into the commodity markets by institutional investors, portfolio managers and 

speculators. While sometimes demand or supply is unexpectedly higher or lower than usual, 

and inventories can usually stabilize volatility, there are sometimes near-stockouts, and 

inventories can approach their maximum storage capacity. However, as commodities are 

goods, their market prices are strongly affected by market demand. Not only prices, but also 

price fluctuations can thus be affected by demand. More precisely, at market equilibrium, 

once market demand functions and demand processes are known, market price processes can 

be determined. Since price fluctuations are closely related to market prices, there is a natural 

linkage between the market demand function, its elasticity, and price fluctuations (Keynes 

1936, Kaldor 1939, Deaton and Laroque 1992, 1995, 1996, Assa 2015). Therefore, market 

demand affects derivative prices in two ways, first by changing the price dynamics and 

second by changing volatility. Apparently, these effects are different when an option is in the 

money, at the money or out of the money. For instance, if volatility has a reverse relation 

with prices, volatility will offset the rise of a put option price when it is out of the money. 

While commodity derivative pricing typically begins with Black (1976), which is itself a 

variation of Black and Scholes (1973), as we explained above, since both prices and volatility 

are being affected by market demand, a richer model for prices is needed – one that provides 

an explicit link with market demand. 

In this paper, we explore the linkages between commodity demand, price dynamics and 

volatility by setting up the Cox, Ingersoll and Ross (1985) model (CIR) for market demand 

process and the constant elastic volatility (CEV) model for market prices. A simple 

application of the Ito theorem shows that, if market demand process follows a CIR mean-

reverting model and if market demand function is a power function, then price dynamics will 

follow a CEV process, whose elasticity parameter is in close relation with demand elasticity. 

The CEV model is an extension of the Black-Scholes-Merton (BSM) model that was 
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primarily developed in 1973 to estimate derivative prices. Over the years, several researchers 

have noticed the shortcomings of the BSM model and proposed new variations of it. Among 

them, the Cox (1975) CEV model, for which volatility is a power function of market prices, 

quickly drew a lot of attention within academia and industry, due to its simplistic approach to 

model stochastic volatility (for further reading on CEV models see Beckers (1980)). 

In this paper, we argue that the CEV model from the finance literature can explain the effects 

of market demand on prices and volatility. Like Assa (2015), where the author presents 

market demand process based on market fundamentals, in this paper it is argued that the CVE 

model can be based on market price fundamentals such as market demand function. To the 

best of the author’s knowledge, the only important work using the CEV model for modelling 

commodity prices is Geman and Shih (2009), where the authors use real commodity data to 

describe the differences between seven diffusion processes including the geometric Brownian 

motion (GBM) and the CEV model, but with little explanation of the effects of market 

fundamentals on commodity market prices. In this paper, we consider the CEV model for the 

first time for agricultural commodities, and observe that the CIR model for demand process 

along with power demand function can support the CEV model for the price process of a 

large group of agricultural commodities. 

The relationship between stock prices and volatility has been discussed in several theories. In 

general, this relation is important because of financial leverage on the variance of returns, 

which depends on the firm’s portfolio. For instance, French, Schwert and Stambaugh (1987) 

examine the relation between stock returns and stock market volatility and find evidence that 

the expected market risk premium is positively related to the predictable volatility of stock 

returns. In commodity markets, the leverage effect can vary within different groups of 

commodities. For example, Kristoufek (2014) shows that, while oil prices have a leverage 

effect, gas prices have an inverse leverage effect.  

In this paper, by setting up the CIR model for demand and the CEV model for price processes 

we provide a framework to discuss the leverage (or inverse leverage) effect of prices. 

Interestingly, we observe that agricultural market leverage effect can be categorised by the 

type of commodities. While livestock commodities and orange juice have a leverage effect, 

the non-livestock commodities (except orange juice) have an inverse leverage effect. For the 

non-livestock commodities, except orange juice, one can interpret the inverse leverage effect 

as panic caused by food inflation break out. It is necessary to recall that the Black model (or 
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in principle the BSM model) does not have either a leverage or an inverse leverage effect. 

The CEV model incorporates prices in modelling volatility by using a new elasticity 

parameter. As mentioned earlier, because of a strong linkage between this notion of the 

elasticity and the market demand function, our model can reproduce leverage (or inverse 

leverage) effects similar to the actual agricultural data. 

There are different studies in the literature for estimating the CEV parameters, for instance, 

see a three-step estimation method in MacBeth and Merville (1980) (also Emanuel and 

MacBeth (1982)), Schroder (1989) for using estimation based on non-central chi-square 

distribution and a generalised method of moment (GMM) used in Geman and Shih (2009). 

In this paper, by using the maximum likelihood estimator (MLE) the parameters of a CEV 

model are estimated in a discrete time framework for 13 kinds of daily future agricultural 

commodity prices, within two groups: livestock and non-livestock commodities. Using a 

likelihood-ratio-test we test the goodness of fit of the CEV model against the BSM model and 

we observe that, in most cases, the likelihood-ratio-test rejects the BSM model in favour of 

the CEV model.  

Before closing this section, it is worth mentioning that modelling commodity prices has been 

developed in different strands of the literature. For instance, storage models and factor 

models are among the most well-known models. Storage models were introduced in the mid-

1930s by Keynes (1936) and Kaldor (1939). Gustafson (1958), for policy applications, 

defined a set of optimal storage rules and Deaton and Laroque (1992, 1995 and 1996) 

introduced speculators to the storage model for the first time. For further reading on storage 

models, see Muth (1961), Beck (1993) and Williams and Wright (1991). On the other hand, 

the so-called factor models for commodity prices were first introduced in Brennan and 

Schwartz (1985) and further developed in Gibson and Schwartz (1990) and Schwartz (1997). 

The rest of the paper is organised as follows. First, we introduce the CEV model and discuss 

the functionality of the parameters of this model. Then we show that, if the market demand 

follows a mean-reverting CIR model and if the demand function is a power function, then the 

resulting price process is a CEV model. In the next section, we will discuss the effect of the 

elasticity parameter on derivative prices. Finally, using a maximum likelihood estimator 

(MLE) we estimate the parameters of CEV models on the prices of agricultural goods and 

discuss the results. 
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 The CEV Model 

In 1975, Cox extended the Black-Scholes-Merton model to the  Constant Elasticity of 

Volatility (CEV) model which uses stochastic volatility to model equities. Cox considered a 

security market consisting of two assets: bonds and stock. Let 𝑊𝑡(0 ≤ 𝑡 ≤ 𝑇) be a standard 

Brownian motion (or Wiener process) on the probability space. According to Cox, the price 

of a bond, 𝑏𝑡, is given by  

(1) 𝑑𝑏𝑡 = 𝑟𝑏𝑡𝑑𝑡, 

where 𝑟 > 0 and is the constant riskless return and the initial price is 𝑏0 = 1.  

The price of stock 𝑆𝑡, follows the following stochastic differential equation 

(2) 𝑑𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎𝑆𝑡
𝛼𝑑𝑊𝑡, 

where 𝜇 is the percentage drift and 𝜎 is the percentage volatility, with the restriction of 𝜇 ∈

ℝ, 𝜎 ≥ 0. Furthermore, 𝛼 is the elasticity of variance, known as the CEV parameter, which 

was originally believed to be in the interval [0,1]. The initial price is 𝑆0 = 𝑠 > 0.  

Under the CEV model, volatility 𝜎(𝑆𝑡, 𝑡), is assumed to be 𝜎𝑆𝑡
𝛼

 whereas under the Black-

Scholes-Merton model it is assumed to be 𝜎𝑆𝑡. As a result, any changes in the volatility move 

randomly with 𝑆𝑡 under the CEV model. To provide meaning to the parameter α , it is 

important to realize that there are two parameters in the CEV model that affect volatility: 

𝜎 and 𝛼. While larger 𝜎 can increase the uncertainty, larger 𝛼 can increase the effect of price 

changes on volatility. To measure this effect, a measure of relative volatility effect (RVE) is 

introduced as follows 

(3) 

𝑅𝑉𝐸 =
𝑆

𝜕𝜎(𝑡, 𝑆)
𝜕𝑆

𝜎(𝑡, 𝑆)
. 

 

For a CEV model with  𝜎(𝑡, 𝑆) = 𝜎𝑆𝛼, one has 𝑅𝑉𝐸 = 𝛼. Therefore, the relative volatility 

effect will increase when 𝛼 increases. However, from the definition of RVE, one realises that 

this is nothing but the elasticity of volatility with respect to changes in prices 

 

(4) 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =

𝜕𝜎(𝑡, 𝑆)
𝜎(𝑡, 𝑆)

𝜕𝑆
𝑆

=
𝑆

𝜕𝜎(𝑡, 𝑆)
𝜕𝑆

𝜎(𝑡, 𝑆)
= 𝑅𝑉𝐸. 
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Since price and volatility become inversely related with a negative volatility when 𝛼 < 1, it 

was assumed by Cox that 𝛼 is in the interval [0,1]. This phenomenon is called the leverage 

effect. When 𝛼 > 1, price and volatility move in the same direction, so if price increases, 

volatility also increases. This phenomenon is called the inverse leverage effect. The 

assumption 𝛼 > 1 was first considered by Emanuel and MacBeth (1982).  

Derivative pricing with CEV model 

In this section, the price of a derivative (option) on commodity prices is developed. But 

before, we need to mention that in Cox and Ross (1985), a closed form formula for call/put 

option prices for 0 < 𝛼 < 1 is provided. However, for three reasons we adopt a Monte-Carlo 

simulation method here. First, we need a general arbitrage free pricing method for all 𝛼 > 0, 

and not only for 0 < 𝛼 < 1. Second, the formula provided in Cox and Ross (1985) consists 

of infinite sums and integrals which make us ultimately to approximate the option prices, 

whereas Monte-Carlo methods seem to be more feasible and accurate. Third, the general 

method we introduce here can be used for pricing derivatives with any underlying asset 

whose prices follow a stochastic diffusion. 

Let us consider a price process 𝑆𝑡 as follows 

(5) 𝑑𝑆𝑡 = 𝜇(𝑡, 𝑆𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑆𝑡)𝑑𝑊𝑡. 

Let us consider a derivative 𝐷(𝑆𝑇) on the underlying asset 𝑆𝑡. We denote the dynamic of the 

derivative price process with  𝐷(𝑡, 𝑆𝑡) where 𝐷(𝑇, 𝑆𝑇) = 𝐷(𝑆𝑇). Using an arbitrage free 

argument, the dynamic of a derivative has to satisfy the following Merton Black-Scholes 

PDE 

 

(6) 
 
𝜕𝐷

𝜕𝑡
(𝑡, 𝑥) +

1

2
𝜎(𝑡, 𝑥)2

𝜕2𝐷

𝜕𝑥2
(𝑡, 𝑥) + 𝑥

𝜕𝐷

𝜕𝑥
(𝑡, 𝑥) − 𝑟𝐷(𝑡, 𝑥) = 0

𝐷(𝑇, 𝑥) = 𝐷(𝑥)
. 

Using parameters from the CEV model, one gets 

 

(7) 

𝜕𝐷

𝜕𝑡
(𝑡, 𝑥) +

1

2
𝜎2𝑥2𝛼

𝜕2𝐷

𝜕𝑥2
(𝑡, 𝑥) + 𝑟𝑥

𝜕𝐷

𝜕𝑥
(𝑡, 𝑥) − 𝑟𝐷(𝑡, 𝑥) = 0

𝐷(𝑇, 𝑥) = 𝐷(𝑥)
. 

To numerically solve this problem we use the Feynman-Kac theorem. For readers’ benefit the 

Feynman-Kac theorem is repeated here. Consider the following PDE: 



Financial engineering in pricing agricultural derivatives based on demand and volatility 

7 
 

 

(8) 

𝜕𝑢(𝑡, 𝑥)

𝜕𝑡
 +  

1

2
𝜎2(𝑡,  𝑥) (

𝜕2𝑢(𝑡,  𝑥)

𝜕𝑥2
) +  𝜇(𝑡,  𝑥) (

𝜕𝑢(𝑡,  𝑥)

𝜕𝑥
) 

−  𝑉(𝑡,  𝑥)𝑢(𝑡,  𝑥)  +  𝑘(𝑡,  𝑥)   =  0, 

𝑢(𝑇,  𝑥)   =  𝜓(𝑥). 

The Feynman-Kac theorem asserts that the solution u to this equation is given by 

 

(9) 

𝑢(𝑡,  𝑥)  

=   𝐸𝑄 [∫ 𝑒− ∫ 𝑉(𝜏,𝑋𝜏)𝑑𝜏
𝑠

𝑡  𝑘(𝑠, 𝑋𝑠)𝑑𝑠
𝑇

𝑡

 +   𝑒− ∫ 𝑉(𝜏,𝑋𝜏)𝑑𝜏
𝑠

𝑡  𝜓(𝑋𝑇)|𝑋𝑡   =  𝑥] 

where 𝑄 is given as a probability measure for which the following holds 

(10) 𝑑𝑋𝑠   =  𝜇(𝑠, 𝑋𝑠)𝑑𝑠  +  𝜎(𝑠, 𝑋𝑠)𝑑𝑊𝑠
𝑄 𝑠 ∈ [0,  𝑇]. 

Here 𝑊𝑠
𝑄

 is a standard Brownian motion under the probability measure 𝑄. In this paper, the 

derivative prices are 

(11) 𝐷(𝑦,  𝑡)   =  𝐸[𝑒  − 𝑟(𝑇 − 𝑡)𝐷(𝑦𝑇)|𝑦𝑡   =  𝑦], 

where 

(12) 𝑑𝑦𝑠   =  𝑟𝑦𝑠𝑑𝑠  +  𝜎𝑦𝑡
𝛼𝑑𝑊𝑠

𝑄 𝑠 ∈ [0,  𝑇]. 

In Table 1 we illustrate this process, synthetically, using numerical methods to price the put 

option max{𝐾 − 𝑆𝑇 , 0} for different values of elasticity parameter 𝛼. Table 1 reports the 

prices of a put option where 𝑟 = 0.004, 𝜎 = 0.1 for different strike prices and elasticity 

parameters, where the strike price is considered as a measure of moneyness. For each 

simulation we generated 10,000 paths of 120 days. 

Table 1: Put option prices for different alphas, in the money, at the money and out of the money 

Moneyness α =0.5 α =0.8 α =1 α =1.2 α =1.5

K=0.7 ITM 0.0109 0.0091 0.0081 0.0071 0.0058

K=0.8 ITM 0.0225 0.0208 0.0197 0.0186 0.0172

K=0.9 ITM 0.0406 0.0396 0.0389 0.0383 0.0373

K=1.0 ATM 0.0663 0.0662 0.0663 0.0663 0.0665

K=1.1 OTM 0.0995 0.1006 0.1014 0.1022 0.1036

K=1.2 OTM 0.1398 0.1419 0.1433 0.1448 0.1471

K=1.3 OTM 0.1862 0.1888 0.1906 0.1925 0.1956   
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Figure 1: Prices of put options for different 𝜶’s and strike prices K. 

 

 

As one can see, when the parameter 𝛼 increases the value of the put option also increases. On 

the other hand, one can observe that in the money, the larger the 𝛼, the smaller the put prices; 

at the money, all put prices are equal; out of the money, the larger the 𝛼, the larger the put 

prices. In other words, for constant 𝜎 inverse leverage effect implies lower put prices when it 

is more in the money than out of the money. At the money though, leverage effect does not 

have any effect on put prices. Finally, it is clear that because of the put/call parity we have the 

reverse observations for call option prices. 

Demand and the Price Process 

In this section, we discuss that the CEV model for 𝛼 > 1 can be supported from a micro-

economic perspective by showing that the evolution of the price can be derived from the 

demand side of the market. 

Let 𝑥𝑡 denote the demand of a commodity at time 𝑡.  Prices are given by the following power 

demand function 

(13) 𝑆𝑡 = 𝑥𝑡
𝛽 , 

where 𝛽 < 0  is a parameter to measure the demand elasticity. 

0

0.05

0.1

0.15

0.2

0.25

K=0.7 K=0.8 K=0.9 K=1.0 K=1.1 K=1.2 K=1.3

   α =0.5 

   α =0.8 

   α =1 

   α =1.2 

   α =1.5 
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Now we need to give a model for 𝑥𝑡. We assume that the demand process needs to be mean 

reverting because the people’s consumption is a dispersion of a normal average consumption. 

The most popular mean reverting processes in the literature are Ornstein–Uhlenbeck (OU) 

and Cox–Ingersoll–Ross (CIR) processes. However, demand needs to be always non-

negative, which rules out the OU processes. 

Let us consider the following CIR process for 𝑥𝑡 

(14) 
𝑑𝑥𝑡 = (

𝐶2(1 − 𝛽)

𝐵
) (

𝐵

2
− 𝑥𝑡) 𝑑𝑡 + 𝐶√𝑥𝑡𝑑𝐵𝑡, 

where 𝐶 > 0 and 𝐵 are the model parameters, and {𝐵𝑡}0≤𝑡≤𝑇 is a standard Brownian motion. 

In order to make sure that the process is mean reverting, we have to check the Feller 

conditions (see Feller (1951)) 

(15) 𝐵

2
> 0,

𝐶2(1 − 𝛽)

𝐵
> 0, 2 ×

𝐶2(1 − 𝛽)

𝐵
×

𝐵

2
≥ 𝐶2, 𝐶 > 0. 

Given that 𝛽 < 0 and 𝐶 > 0, one can easily see that these conditions hold if and only 

if 𝐵 > 0. 

Now by Ito calculus one can find the price process as follows 

 

 

 

 

(16) 

𝑑𝑆𝑡 = 𝛽𝑥𝑡
𝛽−1

𝑑𝑥𝑡 +
1

2
𝛽(𝛽 − 1)𝑥𝑡

𝛽−2(𝑑𝑥𝑡)2

= 𝛽𝑥𝑡
𝛽−1

(
𝐶2(1 − 𝛽)

𝐵
(

𝐵

2
− 𝑥𝑡) 𝑑𝑡 + 𝐶√𝑥𝑡𝑑𝐵𝑡)

+
1

2
𝐶2𝛽(𝛽 − 1)𝑥𝑡

𝛽−1
𝑑𝑡

= (
𝛽(𝛽 − 1)𝐶2

𝐵
) 𝑥𝑡

𝛽
𝑑𝑡 + 𝛽𝐶𝑥𝑡

𝛽−
1
2𝑑𝐵𝑡

= (
𝛽(𝛽 − 1)𝐶2

𝐵
) 𝑆𝑡𝑑𝑡 + 𝛽𝐶𝑆𝑡

𝛽−
1
2

𝛽
𝑑𝐵𝑡. 

Therefore, one can rewrite the dynamics of the price as 

(17) 𝑑𝑆𝑡  = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡
𝛼𝑑𝑊𝑡, 

where μ =  (
𝛽(𝛽−1)𝐶2

𝐵
), 𝜎 = −𝛽𝐶, 𝛼 = 1 −

1

2𝛽
 and 𝑊𝑡 = −𝐵𝑡. This is apparently a CEV 

process.  
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Furthermore, one can easily see that 𝛽 =
1

2(1−𝛼)
, 𝐶 =

−𝜎 

𝛽
 and 𝐵 = (

𝛽(𝛽−1)𝐶2

𝜇
).  Note that 

since 𝛽 < 0, the Feller conditions hold if and only if  𝜇 > 0 and 𝛼 > 1. 

Now observe that the demand elasticity parameter |𝛽| is in reverse relation with the CEV 

elasticity parameter 𝛼. That means, the higher the demand elasticity parameter |𝛽|, the lower 

the value of 𝛼 and therefore, the lower the inverse leverage effect. Based on our observation 

from the simulations that are reported in Table 1, higher demand elasticity implies higher put 

option prices in the money, and lower put prices out of the money. 

Data and Estimations  

In this paper a Maximum Likelihood Estimator (MLE) is used to estimate the parameters of 

the CEV model. In order to find the likelihood function first one needs to discretize the price 

dynamics.  Here is the discretization 

(18) 𝑑𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎𝑆𝑡
𝛼𝑑𝑊𝑡 ⟹  𝑆𝑡+𝛿 − 𝑆𝑡 = 𝜇𝑆𝑡𝛿 + 𝜎𝑆𝑡

𝛼(𝑊𝑡+𝛿 − 𝑊𝑡) 

⟹  𝑆𝑡+1 − 𝑆𝑡 = 𝜇𝑆𝑡 + 𝜎𝑆𝑡
𝛼𝑒𝑡+1√𝛿 

where 𝑒𝑡+1 = 𝑊𝑡+1 − 𝑊𝑡~𝑁(0,1) is a standard normal random variable, and 𝛿 is the time 

step. Therefore, we have to minimize the minus of the log-likelihood function:  

(19) 

min
𝜇,𝜎,𝛼

∑
1

2𝛿

𝑇

𝑡=0

(
𝑆𝑡+1 − 𝑆𝑡 − 𝜇𝑆𝑡𝛿

𝜎𝑆𝑡
𝛼 )

2

. 

In this paper, we use commodity daily futures prices for a set of 13 agricultural commodities 

across two groups of livestock and non-livestock commodities, as described in Table 2. The 

first column in Table 2 lists the varieties of commodities and briefly presents data sources. 

CME: Chicago Mercantile Exchange, CBOT: Chicago Board of Trade, NYBOT: New York 

Board of Trade, WCE: Winnipeg Commodity Exchange. The second column lists the period 

of commodity prices data. 
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Table 2: Data description and Source 

Commodities Date

Real W (CBOT Wheat Future) 1971/12/9 - 2015/6/1

Real BO (CBOT Soybn Oil Future) 1972/12/23 - 2015/6/1

Real S (CBOT Soybn Future) 1970/1/2 - 2015/6/1

Real O (CBOT Oats Future) 1970/1/2 - 2015/6/1

Real C (CBOT Corn Futrue) 1970/6/26 - 2015/6/1

Real WC (WCE Canola Futrue) 1982/1/4 - 2015/6/1

Real SB (NYBOT Sugar Future) 1970/6/26 - 2015/6/1

Real JO (NYBOT Or juice Futrue) 1970/6/26 - 2015/6/1

Real CC (NYBOT Cocoa Future) 1970/6/26 - 2015/6/1

Real KC (NYBOT Coffee Future) 1972/8/26 - 2015/6/1

Real LH (CME Lean Hogs Future) 1986/4/1 - 2015/6/1

Real LC (CME Live Cattle) 1982/06/24-2015/6/1

Real FC (CME Feeder Cattle) 1989/11/8 - 2015/6/1  

Since our data set consists of daily future prices, we choose 𝛿 = 1/250, for considering 250 

trading days within a year (the results do not change a lot if we change 250 to 365 trading 

days). 

In order to test the goodness of fit of the CEV model (compared to the BSM model) we run a 

likelihood-ratio test. For that, we need to set  𝛼 = 1 for the restricted model, find the 

restricted log likelihood function, and form the following test statistics: 

(20) 𝐷 = 2 × (log(𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ) − log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑤𝑖𝑡ℎ 𝛼 = 1)). 

Given that the unrestricted model has 3 degrees of freedom and the restricted model has 2 

degrees of freedom, the distribution of 𝐷 is 𝜒2 with degrees of freedom 1. 

In order to verify the stability of the estimations, we divide the time interval of any 

commodity prices into two equal time intervals and then we estimate the parameters of a 

given commodity for the 1
st
 half, 2

nd
 half and the total data. We report the results of the 

estimations in Table 3 and visualise the results for the 𝛼 estimations in Figure 2. In order to 

ensure robustness of our estimations and that we do not report the local minimums, we have 

used several initial values for 𝛼: 0.001, 0.01, 0.75, 1, 2, 3, 4 and 10. We observed that beyond 

values of 0.75, estimations become more stable and the optimal likelihood increases until 4. 

Thus, we chose an initial value of 3 for estimation of 𝛼.  

https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
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Table 3: Estimations of the CEV model parameters. Estimations in bold indicate rejection of the null hypothesis BS 

model against the CEV model at 5 % significant level. 

Commodities 1st half 2sd half Total

μ σ α μ σ α μ σ α

Wheat -0.15 0.032 1.368 0.099 0.032 1.369 0.047 0.04 1.336

Soybn Oil 0.035 0.18 1.112 0.072 0.039 1.634 0.041 0.174 1.089

Soybn 0.123 0.085 1.169 0.147 0.08 1.188 -0.034 0.139 1.088

Oats 0.103 0.118 1.202 0.144 0.16 1.138 0.164 0.097 1.245

Corn 0.089 0.024 1.424 0.016 0.123 1.135 0.097 0.058 1.269

Canola 0.02 0.184 1.017 0.036 0.049 1.233 0.098 0.127 1.082

Sugar 0.113 0.425 1 0.171 0.436 1.057 0.072 0.332 1.01

Or juice 0.067 0.427 0.933 0.059 0.465 0.897 0.07 0.49 0.918

Cocoa 0.094 0.284 1.016 0.197 0.253 1.038 0.095 0.694 0.888

Coffee 0.11 0.183 1.15 0.119 0.172 1.149 0.099 0.218 1.125

Lean Hogs 0.082 1.459 0.635 0.005 3.326 0.406 0.011 2.635 0.51

Live Cattle -0.01 0.618 0.703 0.016 5.524 0.172 0.04 0.65 0.699

Feeder Cattle 0.067 0.18 0.935 -0.017 5.343 0.107 0.086 0.627 0.697   

Figure 2: Estimated 𝜶’s for different data sets. 

 

As one can see, the results are relatively stable for different time intervals. Estimated 

parameters in bold indicate the rejection of the BSM model in favour of the CEV model at 

the 5% significance level. The estimations for the BSM model are also reported in Table 4. 
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Table 4: Estimations of the BSM model parameters. 

Commodities 1st half 2sd half Total

μ σ μ σ μ σ

Wheat 0.07 0.295 0.066 0.276 0.074 0.313

Soybn Oil 0.028 0.258 0.02 0.281 0.036 0.233

Soybn 0.064 0.259 0.072 0.268 0.056 0.25

Oats 0.088 0.338 0.089 0.318 0.086 0.356

Corn 0.061 0.27 0.054 0.258 0.068 0.282

Canola 0.035 0.202 0.027 0.191 0.043 0.212

Sugar 0.113 0.425 0.156 0.496 0.071 0.34

Or juice 0.076 0.313 0.072 0.291 0.079 0.334

Cocoa 0.092 0.32 0.08 0.336 0.105 0.302

Coffee 0.089 0.375 0.095 0.351 0.081 0.398

Lean Hogs 0.074 0.335 0.07 0.334 0.079 0.336

Live Cattle 0.039 0.17 0.011 0.171 0.067 0.169

Feeder Cattle 0.046 0.132 0.005 0.115 0.088 0.148  

As one can see, except sugar 1
st
 half and total, cocoa 1

st
 half and total, and Feeder Cattle 1

st
 

half, CEV model is a better fit. Another important observation is that all livestock 

commodities and orange juice have 𝛼’s less than 1, whereas the other commodities have  𝛼’s 

greater than or equal to 1. This is interesting since it indicates that the livestock and orange 

juice prices behave more like stock prices; see Beckers (1980). 

Here we discuss some important implications form the observations: first livestock 

commodities and orange juice have leverage effect, whereas the rest have inverse leverage 

effect. However, as it is shown in Figure 3, there is a reverse relation between 𝜎 and the 

elasticity parameter 𝛼. This shows that for agricultural commodities, inverse leverage effect 

is associated with lower uncertainty. Note that larger 𝛼’s are associated with smaller |𝛽|’s; 

therefore, commodities with larger 𝛼 are more inelastic. This means that for more inelastic 

commodities, there is less uncertainty in prices, whereas prices themselves can have larger 

effect on volatility. 

The second implication is that the put option prices can be dependent on the type of the 

commodities. As it has been discussed earlier, since the estimated 𝛼 for livestock 

commodities and orange juice is less than one, theses commodities have leverage effect and 

as a result their put option prices in the money are expected to be higher than the other 

commodities with equal 𝜎. 

Figure 3: Estimation 𝜶’s versus 𝝈‘s for different data sets. 
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Finally, the last implication we want to discuss here is that for all non-livestock commodities, 

except orange juice and cocoa-total, we can provide a proper demand function. In Table 5 we 

report the estimated β’s. Note that only the negative β’s can be considered valid. 

Table 5: Estimated β 

β

1st half 2sd half Total

Wheat -0.184 -0.185 -0.168

Soybn Oil -0.056 -0.317 -0.045

Soybn -0.084 -0.094 -0.044

Oats -0.101 -0.069 -0.122

Corn -0.212 -0.068 -0.134

Canola -0.008 -0.116 -0.041

Sugar 0 -0.028 -0.005

Or juice 0.034 0.051 0.041

Cocoa -0.008 -0.019 0.056

Coffee -0.075 -0.074 -0.063

Lean Hogs 0.182 0.297 0.245

Live Cattle 0.149 0.414 0.15

Feeder Cattle 0.032 0.447 0.151  

Conclusion  

In this paper, the CEV model was adopted to model options on commodity prices. It was 

argued that the CEV model for commodity prices can be supported by the mean reverting 

CIR model for demand process and a power demand function. We then examined the effect 

of the CEV elasticity parameter on the derivative prices. In addition, the parameters of the 
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CEV model for agricultural commodities were estimated and the implications on derivative 

prices were discussed. Finally, we observed that all non-livestock commodities, except 

orange juice, have an inverse leverage effect on prices, whereas livestock commodities and 

orange juice have leverage effect. 
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