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Abstract 

This paper studies optimal control of vibration of a beam excited by a moving mass.  One important 

background of this work is vehicle-bridge interaction. As this is a time-varying system, some methods 

suitable for time-invariant systems are not always effective and will lead to suboptimal solutions 

when applied.  

In this particular vibration problem, the terminal time instant when the moving mass leaves the beam 

and the moving-mass as the source of excitation are known. This particularity allows to express this 

problem in a very simple way as a fixed terminal-time optimal control problem. In this paper the 

limitations of the practical implementation of the control solution are discussed in relation to different 

performance indices and actuation strategies. Numerical results obtained by using several control 

methods (time-invariant, time-variant with or without bounds on the control force) are analysed and 

compared. It is shown that for particular actuator locations the use of time-varying control strategy 

instead of a time invariant strategy is necessary. The approach of formulating the system equation in 

an augmented form put forward in this paper is shown to yield accurate results at lower cost than the 

conventional time-dependent Riccati equation method. This approach is expected to be applicable to 

optimal control of vibration of other more complicated time-variant systems. 
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1. Introduction 

 

Vibration control of flexible structures has gained much attention as the requirement of safety and 

comfort are more difficult to achieve at the same time when dimensional and weight restrictions are 

imposed. With respect to these the control design method needs to take into account all the possible 

information that characterizes the structural dynamic behaviour under particular loading conditions. 

The last decades have seen important achievements in both theoretical and experimental structural 

control. There is a large body of works where different control methods have been investigated and 
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their feasibility in control of flexible structures assessed (Soong, 1990; Preumont, 2002; Alkhatib and 

Golnaraghi, 2003; Tatavolu and Panchumarthy, 2012). Among these the most common are the modal 

control method (Balas, 1978; Inman, 2001), methods based on the linear quadratic formulation 

(Abdel-Rohman et al. 1980), different algorithms for pole relocation or cancellation for symmetric 

(Ram and Mottershead, 2007) and asymmetric systems (Ouyang, 2010) or methods of robust control 

for the case where the uncertainties in the system are taken into account (Liu et al., 2010). A modal 

control method applicable to time-varying systems was presented in (Deng et al., 2010). This method 

was based on real-time identification. The identified model was subsequently used to design the 

controller. 

 

Although the linear quadratic control-based design methods are very popular it has been observed that 

their effectiveness in minimization of the peak-response amplitude is somehow limited (Wu and 

Soong, 1996). Alternative formulations can provide a better response reduction and in this respect Wu 

and Soong (1996) studied the applicability of a bang-bang controller for vibration control. A bang-

bang controller only provides two extreme values of the control force; the maximum or the minimum 

with an abrupt switch action between these two states. For this reason it provides a more rapid action 

than the linear quadratic controller which has to follow the state variation. In fact it has long been 

reported that a modification of the linear quadratic control laws can be beneficial for many control 

objectives. In Kim et al. (1997) a quadratic index designed to minimize the effects of the reaction 

forces on a beam was presented and compared with the effects of a controller designed by using a 

quadratic index in state variables. A non-quadratic performance index for an optimal control problem 

was also studied in Shamma and Xiong (1997). 

 

The vibration control of beams under a moving mass/load is a particular example of control of 

flexible structures. This problem is generally studied in  the context of bridge-vehicle/pedestrian 

interaction and due to particular aspects of the supporting structure dynamics many solutions 

proposed for vibration reduction are passive (Raftoyiannis and Michaltsos, 2012; Pierson et al., 2013; 

Muscolino and Palmeri, 2007; Casado et al., 2011; Younesian et al., 2006) but the background of the 

theoretical model allows wider practical applications, for instance, the stability conditions for 

catenary-pantograph systems (Lee et al., 2012) where the loss of contact creates problems of electric 

energy collection, or simplified models for overhead cranes dynamics. For general moving-load 

problems, please refer to, for example, Ouyang (2011). 

 

Sung (2002) studied the vibration of a beam traversed by a moving mass with two piezoelectric 

actuators at different locations determined by the minimisation of an optimal quadratic cost 

functional. The controller was seen to perform well under unknown disturbances. The control of the 

dynamic interaction of a beam-moving mass system based on a quadratic performance index was 



presented in (Nikkhoo et al., 2007) where a displacement-velocity feedback controller assuming the 

full knowledge of the state variables was synthesised via an algebraic Riccati equation that took into 

account the time variation of the system matrices. A similar problem was treated in (Zarfam et al., 

2012) where based on the same performance index a set of constant gain state feedback controllers 

were designed for minimization of the lateral deflection of a beam resting on an elastic foundation. 

Xiong et al. (1999) studied active control of power flow during vibration of a beam under moving 

load. Yau (2007) investigated the dynamic response of a maglev vehicle travelling over a series of 

guideway girders experiencing ground support settlement. Qian and Tang (2008) used a delayed 

controller to address the problem of instability induced by a moving force. A proportional-integral 

controller tuned with Ziegler–Nichols (Z–N) method was used to regulate the electromagnetic forces 

between the magnetic-wheels and guide-rail. Mofid et al. (2012) also simulated optimal control of a 

beam subjected to multiple masses with piezo-ceramic actuators using time-invariant Riccati matrix. 

 

The control problem characteristic of this type of dynamic systems can be split into two subproblems 

(Tsao et al., 2001; Stancioiu et al., 2012): one of these concerns a time-varying system and 

corresponds to the time duration when the mass moves on the beam and the other one results in a 

time-invariant system and models the system after the mass moves off the beam. The first of these 

two subproblems concerning the time-varying vibration control of structures subjected to moving 

loads has some particular characteristics that make the optimal control theory easier to apply as 

compared to a general structural control problem. The equations governing the motion although with 

time-varying coefficients have the advantage of being linear. One other advantage, essential to this 

approach, is the existence of a given terminal time which is the time when the mass leaves the beam. 

The optimal problem can be formulated as a fixed terminal time problem (Naidu, 2003). It is also 

possible to take into account the constraints on the control force magnitude (Kirk, 1970, Kamien et 

al., 1991) due to limitations of the existing actuation devices. 

 

The main idea of this paper is that once a problem of optimal control has been defined, the optimal 

solution associated with it is only optimal with respect to the performance index corresponding to the 

particular problem but it may not be the “optimal solution” a structural engineer looks for. For 

instance a quadratic performance index in output theoretically emphasises the importance of the 

control when the magnitude of the output increases, but for a linear quadratic problem the solution is 

given by a constant gain matrix which is determined beforehand and may not take into account all of 

the specific aspects of the dynamics of the solution. If for a beam-moving mass interaction problem 

the beam’s mid-span displacements are of interest the control engineer may think of a time-varying 

performance index that boosts the effect of the control when the moving mass passes near the middle 

of the span or alternatively may think of a performance index that reduces or boosts the control action 

when the moving mass passes above the actuation point (Stancioiu et al., 2013; Pisarski et al., 2010). 



In this respect a series of optimal control methods that can be applied to active vibration control of 

time-varying systems are analysed with emphasis on the possible performance indexes that define in 

an appropriate manner the optimality conditions as well as the practical implementation of the 

methods. The focus is not only in making the best possible use of the mathematical apparatus that 

underlays the theory in order to define an appropriate performance index which best describes the 

physical problem but also to find a practical mean of implementation of a control solution that is able 

to approach as close as possible the optimal theoretical solution. An optimal solution in this study is in 

the form of a control-output pair and a comparison criterion is established based on the output 

response improvement in relation to the control effort. 

 

2. Theoretical Aspects 

 

One of the aims of this study is to briefly review some concepts and objectives of structural control 

from an optimal control point of view and to set them within a proper mathematical formulation 

specific of optimal control system theory. In this respect the concepts like “bang-bang” control are 

derived from the appropriate objective performance index established based on the control 

requirements. Another reason why this approach is preferred is that most control synthesis methods 

used in structural dynamics are particularly designed or adapted for time-invariant systems but the 

problem of minimization of the vibration response of a beam subjected to a moving mass is a time 

varying control problem. 

 

2.1 Optimal control of differential systems 

The problem of optimal control of a continuous system in a very general formulation consists of 

finding a control 𝐮(𝑡) within a specified function space and the associated state variable 𝐱(𝑡) as 

continuous time functions such that the performance functional: 

𝐽(𝑢) =  𝑓0(𝐱(𝑡f)) + ∫ 𝑓(𝑡, 𝐱(𝑡), 𝐮(𝑡))d𝑡

𝑡f

𝑡0

 

(1) 

subjected to: 

𝐱(𝑡) = 𝐠(𝑡, 𝐱(𝑡), 𝐮(𝑡)) 

𝐱(𝑡0) = 𝐱𝟎 

(2) 

with 𝑓 and 𝐠 continuously differentiable in all the arguments, reaches its minimum. An optimal 

solution of system equations (2) is given by the pair (𝐱∗(𝑡), 𝐮∗(𝑡)) which realizes the minimum of the 

performance index. 

 



The necessary conditions for the existence of solution can be determined using the minimum principle 

(Naidu, 2003; Kirk, 1970). With respect to this the optimization conditions are expressed in terms of 

the Hamiltonian function: 

𝐻(𝑡, 𝐱(𝑡), 𝐮(𝑡), 𝛌(𝑡)) =  𝑓(𝑡, 𝐱(𝑡), 𝐮(𝑡)) + 𝛌T(𝑡)𝐠(𝑡, 𝐱(𝑡), 𝐮(𝑡)) (3) 

where 𝛌(𝑡) is the vector of piecewise continuous functions (costate variables).  

 

The main advantage of introducing the Hamiltonian is that it changes the problem from finding the 

minimum of a functional 𝐽(𝑢) to finding the minimum of a function 𝐻(𝑡, 𝐱, 𝐮, 𝛌) and allows 

expressing the necessary conditions for extremum in a simpler manner as: 

�̇� = −
𝜕𝐻

𝜕𝐱
= −

𝜕𝑓

𝜕𝐱
− 𝛌T

𝜕𝐠

𝜕𝐱
 

(4) 

with terminal costates such that 𝛌(𝑡𝑓) = 𝜕𝑓0(𝐱(𝑡𝑓)) 𝜕𝐱⁄ . 

The optimality condition can be expressed as 

𝐻(𝑡, 𝐱∗(𝑡), 𝐮(𝑡), 𝛌∗(𝑡)) ≥ 𝐻(𝑡, 𝐱∗(𝑡), 𝐮∗(𝑡), 𝛌∗(𝑡)) (5) 

where the optimal values for states 𝐱∗(𝑡) and control 𝐮∗(𝑡) are assumed. 

 

When the differentiability of the control is altered, for instance if the control function is constrained 

within a specified rectangle 𝐚 ≤ 𝐮 ≤ 𝐛 the optimal control of the minimization problem can be 

written as a piecewise continuous function (Kamien, 1991) : 

𝐮∗ =

{
 
 

 
 𝐚

𝜕𝐻

𝜕𝐮
> 0

arg
𝐚≤𝐮≤𝐛

𝜕𝐻

𝜕𝐮
= 0

𝜕𝐻

𝜕𝐮
= 0

𝐛
𝜕𝐻

𝜕𝐮
< 0

 

(6) 

 

2.2 Optimal control of linear systems 

For a linear structural system the plant equations (2) can be expressed in state-space form as: 

�̇�(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝐮(𝑡) + 𝐟(𝑡) 

𝐱(0) = 𝐱0 

(7) 

where the input 𝐟(𝑡) represents a force vector that acts as an input disturbance to the system. 

 

When dealing with flexible structures, the control requirements could be stated as the minimization of 

the dynamic system’s response. In this respect one natural control objective would be the output 

vibration amplitude minimization which will lead to a performance index like in (8).  

𝐽(𝐱, 𝐮) = 𝐱T(𝑡f)𝐒𝐱(𝑡f) +
1

2
∫ 𝐱T(𝑡)𝐐𝐱(𝑡) d𝑡

𝑡f

0

 (8) 



When referring to the structure subjected to the action of a moving mass a control objective 

formulated this way could represent the minimization of the deflection/acceleration response of the 

supporting structure (beam) at certain positions. 

On the other hand the limitations of the practical actuation solutions will constrain the control force 

𝐮(𝑡) within some specified bounds. Therefore the control function that solves problem (7) and (8) 

needs  a constraint on the realizable control input action |𝐮(𝑡)| < 𝐔.  

 

The required output may be a linear combination of some or all of the state variables 𝐲(𝑡) =  𝐂 𝐱(𝑡) 

and thus the weighting performance matrix will become 𝐐 = 𝐂T𝐂. The trade-off between the control 

performance and the control effort is determined by the bounds on the control 𝐔. When the interest is 

directly in the state variables the 𝐂 matrix is the identity matrix. It should be pointed out that for a 

moving load control problem matrix 𝐂 could be a time dependent matrix 𝐂(𝑣𝑡)  corresponding to a 

moving coordinate output reponse 𝐲(𝑡)  =  𝐂(𝑣𝑡) 𝐱(𝑡). 

 

Based on the minimum principle given in (5) a solution for this optimal control problem (7-8) can be 

determined by using the Hamiltonian function (3). After simplifications the optimality condition 

becomes: 

𝐮(𝑡) 𝐁T(𝑡)𝛌∗(𝑡) ≥ 𝐮∗(𝑡) 𝐁T(𝑡)𝛌∗(𝑡) (9) 

In the case that on the interval [0, 𝑡𝑓] there exists no subinterval on which the function 𝛌∗(𝑡) 𝐁(𝑡) is 

zero, the optimal control is given by a piecewise constant function of time (bang-bang control) 

𝐮∗(𝑡) = −𝑈 sgn(𝐁T(𝑡) ∙ 𝛌∗(𝑡)) (10) 

and takes only two values ∓𝑈. This control function has the advantage of making direct use of the 

maximum control force required and this way it is possible to produce a significant peak-response 

reduction. The control function (10) is discontinuous and many numerical methods have difficulties 

dealing with this problem.  

 

Although the performance index (8) and the control constraint given above express naturally 

occurring requirements for a quite important number of dynamical systems including some structural 

systems, the possibility of practically implementing a piecewise control solution like the one given in 

(10) depends heavily on the actuation system and even finding a solution presents mathematical 

difficulties. Wu and Soong (1996) presented a suboptimal solution for this problem whereas the 

control is determined via a Lyapunov equation. The solution proposed has the advantage of avoiding 

an off-line solution of the costate system. 

A natural extension of this optimal problem is obtained by using a quadratic performance index both 

in control and state variables in (11). 



𝐽(𝐱, 𝐮) = 𝐱T(𝑡f)𝐒𝐱(𝑡f) +
1

2
∫ (𝐱T(𝑡)𝐐𝐱(𝑡) + 𝐮T(𝑡)𝐑𝐮(𝑡)) d𝑡

𝑡f

0

 (11) 

This performance index (11) represents a trade-off between the requirement of a small state variation 

and a small control effort and it is capable of achieving either a limited control effort or a tight control 

by balancing the values of the elements of the states-weighted matrix 𝐐 and the control-weighted 

matrix 𝐑. In a similar manner to the previously presented case by changing the values of 𝐑 the control 

amplitude levels can be also limited to fit within prescribed bounds |𝐮(𝑡)| < 𝐔. The major difference 

in using the control-weighted matrix 𝐑 to limit the control effort is that the control function is now 

continuous; on the other hand the quick access to high values of the control forces characteristic of the 

bang-bang control is slowed down by the requirement that the control follows first the state variables 

instead of jumping directly to the maximum value possible. 

 

One important advantage when using a performance index with a quadratic term in control is that 

when the control function is unconstrained, for a linear system like (7) the associated Hamiltonian is 

pointwise differentiable with respect to control variable and the optimality condition takes a simpler 

form 

𝜕𝐻

𝜕𝑢
= 𝐑𝐮 + 𝐁T𝛌 = 0 

(12) 

When the control function values are limited to a finite interval, 𝐚 ≤ 𝐮 ≤ 𝐛 the control force that will 

minimize the index in (11) is: 

𝐮∗(𝑡) = {

𝐚 𝐑𝐮(𝑡) + 𝐁T𝛌(𝑡) > 0

−𝐑−1𝐁T𝛌(𝑡) 𝐑𝐮(𝑡) + 𝐁T𝛌(𝑡) = 0

𝐛 𝐑𝐮(𝑡) + 𝐁T𝛌(𝑡) < 0

 

(13) 

 

On the other hand the Hamiltonian associated with this performance index and plant equations (7) is 

pointwise differentiable with respect to costate variables and the necessary conditions for extremum 

(4) can be expressed as 

�̇�(𝑡) =  − 𝐐𝐱(𝑡) − 𝐀T(𝑡)𝛌(𝑡) 

𝛌(𝑡f) = 𝐒𝐱(𝑡f) 

(14) 

Equation (14) along with the state equations (7) and the optimality condition constitute a two-point 

boundary value problem whose solution gives the optimal state variables 𝐱∗(𝑡).  

 

The main disadvantage of both the above control methods is that they rely on an off-line time variable 

solution of the costate equation (14) which should be fed into the controller using a look-up table. 

From a mathematical point of view the state and costate variables are coupled due to the quadratic 

nature of the state term 𝐱T(𝑡)𝐐𝐱(𝑡) in the performance index and this leads to a two-point boundary 

value problem. 



 

2.3. Linear quadratic regulation 

A particular case arises when the control function is formulated with a quadratic index as (11) and the 

control is not restricted to a specified rectangle. The control can be expressed as a linear function of 

the states 

𝐮(𝑡) = −𝐑−1𝐁T𝐏(𝑡) 𝐱(𝑡) (15) 

where matrix 𝐏(𝑡) is obtained by solving backward the following differential Riccati equation: 

�̇�(𝑡) =  −𝐀𝐏(𝑡) − 𝐀T𝐏(𝑡) + 𝐏(𝑡) 𝐁𝐑−1𝐁T𝐏(𝑡) –𝐐 (16) 

with final condition: 𝐏(𝑡f) = 𝐒. Equation (16) is completely independent of the states of the system 

and can be solved separately. 

 

The most important advantage of this method is that it allows for the control to be expressed as a 

state-feedback function (15) and transforms the system from an open-loop control system into a 

closed-loop control system 

�̇�(𝑡) = (𝐀(𝑡) − 𝐁(𝑡)𝐑−1𝐁T𝐏(𝑡)) 𝐱(𝑡) 

𝐱(0) = 𝐱0 
(17) 

but still the Riccati matrix should be calculated off-line. 

 

By using this approach the control function is synthesised based on the system equations regardless of 

the effect of any force acting at the system input. In section 3.2 a simple change of variable will be 

introduced which will allow for the forcing component 𝐟(𝑡), in this case the time-varying modal force 

to be taken into account during the design process. 

 

2.4. Control method based on step by step calculation of the Riccati equation 

All the control methods considered above require at least an off-line calculation of the Riccati matrix 

equation or of the costate equations. A way around this was suggested by the state-dependent Riccati 

equation technique (Cloutier, 1997; Souza and Gonzales, 2012). This is an on-line method that can be 

applied to particular nonlinear systems and consists of solving an algebraic Riccati equation at 

discrete time steps along the state trajectory. As it cannot take into account the transversality 

conditions it cannot provide a globally optimal solution. 

 

Instead of solving backward off-line the time-varying Riccati equation (16), the algorithm proposed 

here in a manner similar to the state-dependent Riccati equation technique mimics the linear quadratic 

problem solution for time-invariant systems and consists of solving at every time step 𝑡𝑖 the algebraic 

Riccati equation 



𝐏 𝐀(𝑡𝑖) + 𝐀
T(𝑡𝑖)𝐏 − 𝐏𝐁(𝑡𝑖)𝐑

−1𝐁T(𝑡𝑖)𝐏 + 𝐐 = 𝟎 (18) 

which subsequently gives the control force 𝐮(𝑡𝑖) = −𝐑
−1𝐁T(𝑡𝑖)𝐏𝐱(𝑡𝑖) at time instant 𝑡𝑖.  

 

3. Control function synthesis for the moving mass problem 

 

For a general structural dynamic problem where a system given in state-space form (7) is subjected to 

an uncertain external load acting over an indefinite period of time the applicability of the synthesis of 

an optimal control as presented in section 2 is somehow restricted. 

 

When the supporting structure is modelled as a beam under the action of a moving mass the most 

relevant aspect of dynamic interaction is that in modal coordinates, the dynamic system is a time-

varying system and the simple application of a method specific to a time-invariant system will end-up 

with a suboptimal control system whose response although improved may still be far away from the 

optimal one. In this respect any knowledge of a time-varying optimal solution synthesised using an 

appropriate performance index will be of advantage as it lets the control engineer know how close the 

proposed solution is to the optimal one.  

 

From a theoretical point of view the problem of vibration control particularized to a moving load 

problem introduces a fixed terminal time 𝑡f = 𝐿 𝑣⁄  which enables a formulation of the optimal control 

problem in the way it was presented in Section 2. Moreover, the excitation function which depends on 

the moving mass m and moving speed v is known. This allows the synthesis of the control action 

taking the excitation force into account by means of a simple change of variables (26). 

 

As a disadvantage even though an optimal solution (𝐱∗(𝑡), 𝐮∗(𝑡)) exists and it is determined as a 

continuous or piecewise continuous function, depending on the actuation system, it may not be 

practically possible to implement it. In this case the optimal pair (𝐱∗(𝑡), 𝐮∗(𝑡)) provides a theoretical 

solution that solves the problem within a given setup and this optimal pair can be subsequently set as 

a target for a practical realization. 

 

Another aspect concerns the practical difficulty of dealing with a solution based on state variables. 

The state variables are not always completely determined and usually require a state observer 

included within the controller. Some of the control design solutions presented in this study can easily 

take this into account, but this aspect will not be considered herein.  

 



3.1 Dynamic equations of a beam-moving mass system 

In modal coordinates, the general system of equations governing the dynamics of a beam of length 𝐿 

traversed by a mass 𝑚 traveling at constant speed 𝑣 at any time 𝑡 within the interval [0, 𝑡f] with 

𝑡f = 𝐿 𝑣⁄ , modelled using Euler-Bernoulli theory and under the assumption there is no contact loss is 

(Ouyang, 2011; Stancioiu et al., 2011): 

(𝐌 + 𝚫𝐌(𝑡))�̈� + (𝐃 + 𝚫𝐃(𝑡))�̇� + (𝐊 + 𝚫𝐊(𝑡))𝐪 =  −𝑚g𝛙(𝑣𝑡) (19) 

The system is assumed at rest for 𝑡 ≤ 0. 

 

Eq. (19) represents a system with time-varying matrix coefficients. The time-invariant matrices 𝐌, 𝐃 

and 𝐊 can be expressed as functions of the modal shape vectors 𝛙(𝑥), mass per unit length 𝜌𝐴 , 

damping 𝜌𝐴𝑐 and stiffness 𝐸𝐼 (Stancioiu et al., 2011): 

𝐌 =  𝜌𝐴∫ 𝛙(𝑥) ∙ 𝛙(𝑥)d𝑥
𝐿

0
,    𝐃 =  𝜌𝐴𝑐 ∫ 𝛙(𝑥) ∙ 𝛙(𝑥)d𝑥

𝐿

0
,  𝐊 =  𝐸𝐼 ∫ 𝛙(𝑥) ∙ 𝛙′′′′(𝑥)d𝑥

𝐿

0
 (20) 

 

The time dependent matrix coefficients that appear in (19) are explicitly defined by (Stancioiu et al., 

2011): 

𝚫𝐌(𝑡) = 𝑚𝛙(𝑣𝑡)𝛙T(𝑣𝑡),      𝚫𝐃(𝑡) = 2𝑚𝑣𝛙(𝑣𝑡)𝛙′T(𝑣𝑡),      𝚫𝐊(𝑡) = 𝑚𝑣2𝛙(𝑣𝑡)𝛙′′T(𝑣𝑡) (21) 

and depend directly on the moving mass and its position 𝑣𝑡. 

 

The prime symbol defines the derivative of the modal vector with respect to the moving coordinate 

𝑠(𝑡) = 𝑣𝑡: 

𝜓′(𝑡) =
𝜕𝜓

𝜕𝑠

d𝑠

d𝑡
 

(22) 

After time instant 𝑡f the beam vibrates freely and the system of equations governing the dynamics of 

the free vibrations 𝑡 > 𝑡f is: 

𝐌�̈� + 𝐃�̇� + 𝐊𝐪 = 0 (23) 

with (𝐪T(𝑡f) �̇�T(𝑡f) )
Tthe terminal states of system (1) as initial conditions. 

 

3.2. Control problem for a beam-moving mass system 

As already mentioned in section 3.1 the dynamics of the beam subjected to a moving mass and 

accordingly the control problem can be mathematically separated in two subproblems. When the mass 

moves on the beam, the control problem is a time-varying optimal control problem with fixed 

terminal time where methods of optimal control as presented in section 2 can be used. When the mass 

leaves the beam a linear time-invariant control problem for the free beam vibration could be 

formulated and methods like LQR or pole placement can be used. In this study the control objective is 

to minimize the beam’s deflection response during the moving load action. 

 



The dynamic equations associated with the moving mass problem (19) for 𝑡 ≤ 𝑡f when the beam is 

controlled by a set of k controllers positioned at coordinates: 𝑥a1, 𝑥a2,… 𝑥a𝑘 should be modified to 

(𝐌 + 𝚫𝐌(𝑡))�̈� + (𝐃 + 𝚫𝐃(𝑡))�̇� + (𝐊 + 𝚫𝐊(𝑡))𝐪 =  −𝑚g𝛙(𝑣𝑡) −∑𝛙(𝑥a𝑖)𝐮𝑖

𝑘

𝑖=1

 

(24) 

by adding on the right hand side of equation (19) the term describing the control action. 

 

When these equations are written in state-space form (7), the time variable coefficient matrices are: 

𝐀(𝑡)  = [
𝟎𝑛×𝑛 𝐈𝑛×𝑛

−(𝐌+ 𝚫𝐌(𝑡))−1(𝐊 + 𝚫𝐊(𝑡)) −(𝐌 + 𝚫𝐌(𝑡))−1(𝐃 + 𝚫𝐃(𝑡))
]  

𝐁(𝑡)  = [
𝟎𝑛×𝑘

−(𝐌+ 𝚫𝐌(𝑡))−1[𝛙(𝑥a1) … 𝛙(𝑥a𝑘)]
]  

(25) 

with 𝐱T(𝑡)  = [𝐪(𝑡) �̇�(𝑡)]  as state variable. 

 

Another particularity of the moving mass problem is that the excitation term which is given by the 

modal force 𝑚g𝛙(𝑣𝑡) is known and can be considered when the control law is determined. Working 

with the state-space system determined by the matrices described in (25) will not allow taking this 

advantage into account but using a change of variables the system matrices can be augmented to 

𝐀(𝑡) = 

[

𝟎𝑛×𝑛 𝐈𝑛×𝑛 𝟎𝑛×1
−(𝐌+ 𝚫𝐌(𝑡))−1(𝐊 + 𝚫𝐊(𝑡)) −(𝐌 + 𝚫𝐌(𝑡))−1(𝐃 + 𝚫𝐃(𝑡)) −(𝐌 + 𝚫𝐌(𝑡))−1𝛙(𝑣𝑡)

𝟎1×𝑛 𝟎1×𝑛 0
] 

𝐁(𝑡)  = [
𝟎𝑛×𝑘

−(𝐌+ 𝚫𝐌(𝑡))−1[𝛙(𝑥a1) … 𝛙(𝑥a𝑘)]
0

]  

(26) 

This formulation includes the right hand side of the equation (19) as a new state variable 𝑞1. The state 

variable vector becomes 𝐱T(𝑡)  = [𝐪(𝑡) �̇�(𝑡) 𝑞1] and in S.I. has [𝐪(0) �̇�(0) 9.81 × 𝑚 ] as 

initial conditions. It can be seen that the newly introduced state-variable 𝑞1 is a constant and equals 

9.81 × 𝑚 which represents exactly the weight of the moving mass m. The advantage of working with 

the augmented system (26) is that the required control action will now take into account directly the 

excitation force rather than considering it as a disturbance. At this point it should be made clear that 

matrix 𝐁 in both representations depends on the location of the actuators and this not only affects the 

design process but also can affect to a large extent the controllability of the system.  

 

One other aspect relating to deflection control of a beam subjected to a moving load is that not only it 

is a time-varying problem but also the control requirements may ask for time dependent weighting 

matrices. For instance, the objective may be formulated in terms of beam’s deflection at the moving 

coordinate. In this case the output is 𝐲(𝑡) = 𝐂(𝑣𝑡)𝐪(𝑡) with 𝐂(𝑣𝑡)  = 𝛙(𝑣𝑡) and 𝐐 = 𝐂T(𝑣𝑡) 𝐂(𝑣𝑡). 

A similar case was studied in (Stancioiu and Ouyang, 2013) where the weighting matrices were 



allowed to vary following the position of the mass on the beam in order to make a better use of the 

control effort. 

 

4. Numerical Example 

 

In order to assess the performance indexes presented in section 2 and their suitability to address a 

structural control problem of the type presented in section 3, the methods of optimal control are 

theoretically tested for the minimization of deflection response of a single span simply-supported 

beam subjected to the action of a point mass m moving at a constant speed v along the span length. 

The geometrical and dynamical characteristics of the beam structure are: span length L=1m, mass per 

length unit 𝜌𝐴=0.22 kg×m
-1

 and flexural rigidity 𝐸𝐼=3.66 Nm
-2

. A constant modal damping 

coefficient 𝜁=0.01 is assumed throughout. For a simply-supported beam, the i
th
 mode 𝜓𝑖(𝑥) =

sin (𝑖 π 𝑥/𝐿).  

 

In the following analysis only the first three modes are used as increasing the number of modes 

considered for analysis over two do not improve the accuracy of the beam deflection results. The 

addition of the third mode was necessary for control function 𝐮(𝑡) convergence but even so this has 

no real implications on the accuracy of the deflection response. 

 

The assessment of the control action improvement on the response will be based on the level of 

reduction of the mid-span deflection amplitude of the supporting structure. Unfortunately a 

comparison criterion is not easy to define even though the control methods are based on similar 

performance indexes. In what follows different design methods will be compared by inspection of 

both time histories of the response and required control force action to achieve this response. For 

instance, if the same order of the amplitude response reduction will be obtained with different levels 

of control effort the better method will be considered the one with the lowest level of control effort. 

 

4.1. Unbounded control action 

The methods presented in section 2 for time-varying systems are used for the first part of the motion 

𝑡 ≤ 𝑡f to obtain the deflection response of the controlled system (24). The solution is completed for 

the free vibration part of the motion with the deflection response obtained for the time-invariant part 

of the beam’s dynamics with a control function synthesised from the linear quadratic control problem 

as 𝐮(𝑡) = 𝐊g 𝐱(𝑡). The constant gain control matrix 𝐊g is determined for the time-invariant system 

with matrices: 



𝐀(𝑡)  = [
𝟎𝑛×𝑛 𝐈𝑛×𝑛
−𝐌−𝟏𝐊 −𝐌−𝟏𝐃

];           𝐁(𝑡)  = [
𝟎𝑛×𝑘

−𝐌−𝟏[𝛙(𝑥a1) … 𝛙(𝑥a𝑘)]
] 

(27) 

and then used to control the beam’s dynamic response from time instant 𝑡f when the mass steps off the 

beam until 𝑡=2.5𝐿 𝑣⁄ . 

 

In most of the cases considered the actuation points are located at two fixed positions on the beam 

𝑥a1= 0.157 m and 𝑥a2=0.811 m (Fig 1A). The effects of the controller action on the deflection 

response are shown at the mid-span position 𝑥 = 𝐿 2⁄ . Another case when the actuators are positioned 

due to constructive restrictions on one side of the beam at 𝑥a1= 0.11 m and 𝑥a2=0.15 m is studied for 

some of the control methods, as well as a case when only one actuator is positioned at 𝑥a1= 0.13 (Fig. 

1B). 

 

Figure 1. Actuators positions for a single span beam example 

A. two actuators positioned on both sides at locations 𝑥a1 and 𝑥a2 

B. one actuator positioned at 𝑥a 

 

By defining the error and control weighting matrices given in the quadratic performance index as 

𝐐 = diag(1000,100,10,10) and 𝐑 = diag(0.1, 0.1) for the time interval when the mass is on the 

beam the constant gain matrix obtained for a time-invariant linear quadratic formulation is given by 

𝐊g(𝑥a1, 𝑥a2) =  [
8.6 2.6 7.1 6.64
9.1 2.4 7.04 −6.59

] (28) 

Based on the knowledge of the particular dynamic behaviour exhibited by a single-span supporting 

structure whereas the response in displacements is mainly influenced by the first mode, in defining the 

weighting matrix 𝐐 the aim is to emphasise the importance of the first mode. The control weighting 

matrix 𝐑 is made small enough to allow for the required control action.  

 

Formula (28) shows that although the gain matrix is constant, it is determined based on given 

actuation positions and any change of the actuation set of points {𝑥a1, 𝑥a2} will alter the elements of 

matrix 𝐁 and implicitly the constant gain values. Using this matrix a constant gain feedback control 

for system (27) can be determined as 𝐮(𝑡, 𝑥a1, 𝑥a2) = 𝐊𝑔(𝑥a1, 𝑥a2) 𝐱(𝑡). 

 

For the time-varying system, gain matrix 𝐊g(𝑥a1, 𝑥a2, 𝑡) = 𝐑
−1𝐁T(𝑥a1, 𝑥a2)𝐏(𝑡) has a time 

dependency and is determined after solving backward the matrix Riccati equation (16) for 𝐏(𝑡) with 

terminal conditions given by the terminal cost matrix 𝐒 = diag(280,2900,0.25,0.1). Considering the 

augmented system (26) matrices 𝐐 and S are also augmented with a new line and a new column 

𝐐 = diag(1000,100,10,10,0) and 𝐒 = diag(280, 2900, 0.25, 0.1, 0.12). In what follows the 

dependency of the gain matrix on the positions will not be explicitly shown. 



 

Figure 2 compares the variable time control gain matrix 𝐊g(𝑡) corresponding to the two actuators, 

obtained for the augmented system (26) with weighting matrices 𝐐 and 𝐑, and terminal cost matrix 𝐒 

as given above  with constant gain matrix 𝐊g obtained for the time-invariant system (27).  The last 

column takes into account the effect of the moving constant force −𝑚g𝛙(𝑣𝑡) from (19) which for the 

new state-space representation becomes a state-variable. 

 

Figure 2. Time varying 𝐊g(𝑡) (blue) vs. time-invariant (green) control gain matrix 𝐊g; and mean 

values of the time varying elements of  𝐊g(𝑡) (red dashed line). 

 

The mean values for the time-varying gain matrix are plotted along with the constant gain matrix 

obtained for the time-invariant system. It is seen that there is a small difference which may lead to the 

conclusion that the time-varying system needs a slightly different control action from the one 

provided by the time-invariant system. 

 

The terminal cost matrix 𝐒 is selected in this case to give a small settling time even though an 

increased terminal cost would have brought the terminal states very close to zero thus resulting in 

small free vibration amplitude. After the time instant 𝑡f = 𝐿 𝑣⁄  when the mass leaves the beam, the 

beam vibrates freely as a time-invariant system (27). At this time instant the controller is switched to a 

new control action synthesised by adopting a linear quadratic index with a control weighting matrix 

changed to 𝐑 =  diag(5, 5) which results in a reduced control effort as the beam is no longer under 

direct action of the moving load. In this case a high terminal cost 𝐱T(𝑡f)𝐒𝐱(𝑡f) would have resulted in 

very small values for the initial conditions of the free vibration equation at 𝑡f. 

 

Figure 3. Mid-point deflection of the beam 

A. Time-invariant quadratic control (red-continuous) vs. uncontrolled system (blue-continuous) 

B. Time-invariant quadratic control (red-continuous) time-varying system control without taking into 

account the moving mass (green-dashed) and time-varying system control taking into account the 

moving mass (black-dotted) 

 

The performance improvement obtained using a controller designed either by a time-invariant or a 

time-varying linear quadratic performance index appear similar (Fig. 3). In this case the time-varying 

controller is synthesised with a smaller terminal cost and a final deflection amplitude 𝑤(𝐿, 𝑡f) of about 

1 cm results, which subsequently leads to a slightly higher amplitude of the free vibration deflection 

response. 

 



The difference between the linear time-invariant control method and the time-varying method without 

using the contact force during the design process is seen by analysing Figure 4 where the control 

action is plotted for the time history of the moving load action. It is seen that the control action 

variation obtained for the time-invariant system require a high magnitude at the end of the time 

interval when the mass is on the beam. In comparison the first actuator needs a smaller control force 

amplitude but most importantly in the case in which the contact force is taken into account the control 

and the augmented state-space representation (26) is used, force variation is approximately within 

±2N. 

 

Figure. 4 Control force time variation, linear time-invariant system (red-continuous), time-varying 

system (green- dashed), time-varying augmented system (black-dotted) 

 

 

The most important observation is that by taking into account the contribution of the moving mass in 

the design process (26) the effect of the controller is significantly improved and a drop of about 30% 

of amplitude is achieved (Fig. 6 A). 

 

If as a result of constructive restrictions the actuators need to be only on one side of the beam’s span, 

the difference between the constant gain controllers’ and the time-varying gain controllers’ 

contributions become more significant during the moving mass action (Figure 5) and the time 

dependence of the system can no longer be neglected. 

 

Figure 5. Mid-point deflection of the beam, actuators on one side of the beam’s span 

A. Time-invariant quadratic control (red) vs. uncontrolled system (blue) 

B. Time-invariant quadratic control (red-continuous) time-varying system control without taking into 

account the moving mass (green-dashed) and time-varying system control taking into account the 

moving mass (black-dotted) 

 

The linear time-invariant control method (Fig.5 A, Fig. 6 B) brings no significant improvement to the 

deflection amplitude (97.9%) compared with the uncontrolled case whereas the time-varying 

technique undergoes a drop in the amplitude level of about 20% (Fig.5 B, Fig. 6 B). 

 

The use of only one actuator at position x=0.113 m which would be a more realistic setup instead of 

two actuators on one side, would modify the bar chart in Figure 6. B to the levels: 96.1% for time-

invariant system, 86% for time-varying system and 72.8% for time-varying augmented system (26). 

 



Figure 6. Comparison of the control action’s effect on the maximum mid-span deflection amplitude 

for two cases considered 

A. actuators positioned on both sides of the beam 

B. actuators positioned on one side of the beam 

Un – uncontrolled system, TI – time-invariant LQR based method, TV – time-varying LQR based 

method, Aug – time-varying method with contact force included in controller design phase 

 

4.2. Bounded control action 

All the numerical results presented in section 4.1 are based on the assumption that any value of the 

control force can be achieved. From a mathematical point of view this makes the Hamiltonian 

function point-wise differentiable with respect to the control variable and allows the use of the Riccati 

equation (16) which in the end leads to a feedback representation of the control system. 

 

In reality the physical system may require a bounded control action due to inherent limitations of the 

existing actuation solutions. These limitations are taken into account in the design phase by limiting 

the control action to realizable values of the actuation force. Looking at Figure 5 it can be seen that 

both the time-invariant controller and the time-varying controller require values of the control force 

amplitude above about -4 N and therefore one could ask if it is possible to achieve the same effect 

with a control force amplitude within a prescribed interval centred to zero. 

 

In section 2 the possibility of a constraint in control is presented for two idealizations, the first of them 

for a quadratic index in state-variables (8) and bounds in control |𝐮(𝑡)| < 𝐔 which results in a “bang-

bang” control action (10) and the second of them for a quadratic performance index both in control 

and state-variables (11). 

 

The problems involving bounds on control are mathematically more demanding as it requires solving 

a two-point boundary value problem. One particular difficulty is also brought about by the 

discontinuity of the “bang-bang” control (10) which makes the Jacobian of the system (7) and (14) 

singular. One way around this is to approximate the control given by (10) with a continuous function, 

for instance   

𝐮∗(𝑡) = −𝑈0 sgn (𝐁
T(𝑡)𝛌∗(𝑡)) ≅ −𝑈0 atan (𝛼 𝐁

T(𝑡) 𝛌∗(𝑡)) /𝛽 (29) 

where constant 𝛼 is chosen to adjust the approximation (a greater 𝛼 leads to a sharper rise) and 𝛽 is a 

normalization constant. The disadvantage of this approximation is that for very small values of the 

elements of 𝐁T(𝑡) 𝛌∗(𝑡) the values obtained for the control force action are below the expected values 

±𝑈0. 

 



Figure 7. Time history of the mid-span deflection obtained with bounded control  

A. uncontrolled system (blue-continuous); quadratic index with bounded control (green-dashed) 

B. quadratic index, bang-bang control (black-continuous); quadratic index with bounded control 

(green-dashed); quadratic index, time-invariant (red-dotted) 

 

The output responses obtained for the optimal performance indices (8) and (11) when the control 

action is bounded |𝑢𝑖(𝑡)| ≤ 1.2 are plotted in figure 7 for the time-invariant system (27) with 

quadratic index (11) and the uncontrolled case. It has to be mentioned that in the case that the problem 

is solved by using a two-point boundary value method the moving contact force is taken into account. 

Both bounded control methods give similar results. By analysing figure 8 it is possible to see that for 

most of the time the control is “on” for both cases. The time intervals where a difference between the 

two control actions occurs are very small and can be neglected. This is the reason why there is no 

obvious advantage or disadvantage in using any of the two bounded control methods for this example. 

 

Figure 8. Control force action for bounded control methods, quadratic index, bang-bang control 

(black-continuous); quadratic index with bounded control (green-dashed); quadratic index, time-

invariant (red-dotted) 

A. first actuator position; B. second actuator position 

 

One of the main disadvantages of the control design methods presented in this subsection is that they 

result in an open-loop control system whereas the control depends on the solution of the costate 

variables which should be solved off-line and then fed into the system. 

 

4.3 Suboptimal technique based on algebraic Riccati equation  

In section 2.4 a solution method based on the step by step calculation of the algebraic Riccati equation 

(18) has been advanced. The method is similar to the state-dependent Riccati equation technique 

which was studied in connection with a particularly shaped nonlinear system that can be transformed 

into a state-dependent linear form (Cloutier, 1997): 

�̇�(𝑡) = 𝑓(𝑡, 𝐱, 𝐮) = 𝐀(𝐱)𝐱(𝑡) + 𝐁(𝐱)𝐮(𝑡) (30) 

The system that describes the moving mass problem is linear but the time variation of the matrix 

coefficients makes an optimal control solution difficult to obtain. The method proposed consists of 

using at every time step an optimal control determined as 𝐮(𝑡𝑖) = −𝐑
−1𝐁T(𝑡𝑖)𝐏𝐱(𝑡𝑖) with matrix 𝐏 

determined from the algebraic Riccati equation (18). The final solution is not optimal as this division 

in time segments does not satisfy the optimality principle but this constitutes an on-line method where 

the feedback control gain is adjusted at every time step according to time evolution of the system. In 

equation (18) from which 𝐏(𝑡𝑖)  is determined matrices 𝐀(𝑡𝑖) and 𝐁(𝑡𝑖) have elements changing at 



every time step. The method also allows for the control to be bounded as the control action 𝐮(𝑡𝑖) is 

determined at every time step and can be tested against the bounds and adjusted. 

 

Figure 9A shows the deflection responses obtained using this method compared with the time-

invariant method and the time-varying method for the augmented system. It can be seen that the 

controlled response at mid-span is comparable to the one obtained with the time-invariant method, but 

this technique allows for the weighting matrices to be variable as well which will give a better 

response to the control requirements (Stancioiu and Ouyang, 2013). For instance the shape of the mid-

span deflection response of a single span beam shows that large deflection occurs at time instant of 

0.2 sec, when the mass moves near to the mid-span. Therefore it seems natural to increase the value of 

𝐐 matrix elements around that time instant. 

 

Figure 9B shows that the effects of this alteration results in a better response reduction around 0.2 sec 

and leaves the response outside this time interval virtually unchanged. In fact the response can be 

made to approach the same level of reduction obtained using the optimal solution for the augmented 

system (26). 

 

Figure 9. Time history of the mid-span deflection obtained with the step by step method compared to 

the time-invariant and time-varying control design methods, moving speed v = 2.5 m/s 

red-continuous(Time Invariant) – time invariant, black-dotted(Time Varying Aug)-time-varying with 

contact force action, dark grey-dashed (Time Varying RE) – step by step Riccati equation method 

constant performance index, light grey-continuous (Time Varying RE var) – step by step Riccati 

equation method variable performance index 

 

The improvement achieved with the step by step Riccati equation technique when it is compared with 

other methods becomes more visible as the speed of the moving load increases. At a moving speed of 

5m/s instead of 2.5 m/s the maximum mid-span deflection of the system with a controller designed 

using the step by step method has more than 10% reduction (Figure 10). 

 

Figure 10. Time history of the mid-span deflection obtained with the step by step method compared 

to the time-invariant and time-varying control design methods, moving speed v = 5m/s 

Red-continuous (Time Invariant) – time invariant, black-dotted(Time Varying Aug)-time-varying 

with contact force action, dark grey-dashed (Time Varying RE) – step by step Riccati equation 

method constant performance index 

 

Similarly to the cases studied before when only one actuator is fitted under the beam at position 𝑥a= 

0.11m the effect of the controller designed using this method becomes more significant (Figure 11). 



Figure 11. Time history of the mid-span deflection obtained with the step by step method compared 

to the time-invariant and time-varying control design methods, moving speed v = 2.5m/s, one actuator 

at position 𝑥a = 0.11 m 

red-continuous (Time Invariant) – time invariant, black-dotted (Time Varying Aug)-time-varying with 

contact force action, dark grey-dashed (Time Varying RE) – step by step Riccati equation method 

constant performance index 

 

5. Conclusions 

 

This paper studies optimal control of vibration of a beam traversed by a mass moving at a constant 

speed.  As a time-varying system, its vibration is nonstationary and control synthesis requires suitable 

methods. In order to take advantage of the specifics of the problem, the system equation is cast in an 

augmented form which considers the moving load effect and is amenable to theoretical and numerical 

treatment.  Several control methods based on different practical requirements are given a 

mathematical meaning and are compared through numerical simulation. One particular aspect studied 

concerns the influence of the number and location of the actuators. It is shown that the actuator 

position influences to a great extent the control design method. In this respect, when the actuators are 

placed only at one end of the supporting structure the control method needs to take into account the 

time-varying character of the problem. 

 

It is found through numerical simulation that time-varying control always leads to greater reduction of 

vibration than time-invariant control and different performance indices affect the effectiveness of the 

optimal control solution.  Another finding of this study is that including the moving mass contact 

force as a state variable into a time-varying system can significantly improve the system response 

under control and hence proves that the approach based on the augmented system is useful.  

 

One of the difficulties involved in using optimal control methods lies in their implementation. 

Generally a more complex problem such as bounded control requires an open-loop control strategy. A 

good compromise to this problem can be made by using a step by step Riccati equation method, 

whereas the control is determined at any time step from the time-varying system matrices by solving a 

Riccati equation. This method mimics the solution of a linear quadratic problem and is inspired by the 

state-dependent Riccati equation technique. It is shown to give a viable alternative solution to the 

problem of bounded control as well as to the problem with time-varying performance weighting 

matrices. 
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Figure 1. Actuators positions for a single span beam example 

A. two actuators positioned on both sides at locations 𝑥a1 and 𝑥a2 

B. one actuator positioned at 𝑥a 

 

 

 

Figure 2. Time varying 𝐊g(𝑡) (blue) vs. time-invariant (green) control gain matrix 𝐊g; and mean 

values of the time varying elements of  𝐊g(𝑡) (red dashed line). 

 

 

 

Figure 3. Mid-point deflection of the beam 

A. Time-invariant quadratic control (red-continuous) vs. uncontrolled system (blue-continuous) 

B. Time-invariant quadratic control (red-continuous) time-varying system control without taking into 

account the moving mass (green-dashed) and time-varying system control taking into account the 

moving mass (black-dotted) 

 

 

Figure. 4 Control force time variation, linear time-invariant system (red-continuous), time-varying 

system (green- dashed), time-varying augmented system (black-dotted) 

 

 

Figure 5. Mid-point deflection of the beam, actuators on one side of the beam’s span 

A. Time-invariant quadratic control (red) vs. uncontrolled system (blue) 

B. Time-invariant quadratic control (red-continuous) time-varying system control without taking into 

account the moving mass (green-dashed) and time-varying system control taking into account the 

moving mass (black-dotted) 

  

 

 

Figure 6. Comparison of the control action’s effect on the maximum mid-span deflection amplitude 

for two cases considered 

A. actuators positioned on both sides of the beam 

B. actuators positioned on one side of the beam 

Un – uncontrolled system, TI – time-invariant LQR based method, TV – time-varying LQR based 

method, Aug – time-varying method with contact force included in controller design phase 

 

 

 

 

Figure 7. Time history of the mid-span deflection obtained with bounded control  

A. uncontrolled system (blue-continuous); quadratic index with bounded control (green-dashed) 



B. quadratic index, bang-bang control (black-continuous); quadratic index with bounded control 

(green-dashed); quadratic index, time-invariant (red-dotted) 

 

 

Figure 8. Control force action for bounded control methods, quadratic index, bang-bang control 

(black-continuous); quadratic index with bounded control (green-dashed); quadratic index, time-

invariant (red-dotted) 

A. first actuator position; B. second actuator position 

 

 

 

Figure 9. Time history of the mid-span deflection obtained with the step by step method compared to 

the time-invariant and time-varying control design methods, moving speed v = 2.5 m/s 

red-continuous(Time Invariant) – time invariant, black-dotted(Time Varying Aug)-time-varying with 

contact force action, dark grey-dashed (Time Varying RE) – step by step Riccati equation method 

constant performance index, light grey-continuous (Time Varying RE var) – step by step Riccati 

equation method variable performance index 

 

 

 

Figure 10. Time history of the mid-span deflection obtained with the step by step method compared 

to the time-invariant and time-varying control design methods, moving speed v = 5m/s 

Red-continuous (Time Invariant) – time invariant, black-dotted(Time Varying Aug)-time-varying 

with contact force action, dark grey-dashed (Time Varying RE) – step by step Riccati equation 

method constant performance index 

 

 

 

 

Figure 11. Time history of the mid-span deflection obtained with the step by step method compared 

to the time-invariant and time-varying control design methods, moving speed v = 2.5m/s, one actuator 

at position 𝑥a = 0.11 m 

red-continuous (Time Invariant) – time invariant, black-dotted (Time Varying Aug)-time-varying with 

contact force action, dark grey-dashed (Time Varying RE) – step by step Riccati equation method 

constant performance index 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


