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ABSTRACT

An application of nonlinear model reduction for a full-scale passenger aircraft, exhibit-

ing geometric structural nonlinearity, is presented. The model reduction approach is

based on eigenmode decomposition about the coupled aeroelastic system’s reference

equilibrium point combined with a projection of the expanded full-order nonlinear

residual function. Efforts are made to establish a structured approach to identify

the dominant modes required to construct an accurate reduced-order model for such

nonlinear aeroelastic system. Time-domain results for gust response analysis are then

presented to study the effect of structural nonlinearities and to compare the reduced

model against the full-order simulation. Results show both the linear and nonlinear

reduced-order models are capable of accurately predicting the dynamic gust response

of aircraft structures while achieving significant reduction in system size.

.
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1.0 Introduction

This paper presents an application of nonlinear model reduction for the dynamic

gust response analysis of realistic full-scale aircraft configurations exhibiting geomet-

ric structural nonlinearities. This investigation builds upon previous work[1] which

extended the model reduction framework to include higher order nonlinearity and

demonstrated accurate prediction of aeroelastic responses of a nonlinear two degree-

of-freedom aerofoil model. The model reduction approach further builds upon the

work in [2, 3] and is based on eigenmode decomposition about the coupled aeroelas-

tic system’s reference equilibrium point combined with a projection of the expanded

full-order nonlinear residual function. Current model reduction application deals with

multiple eigenmodes[2, 4, 5] and the linear formulation has been applied to realistic

aircraft configurations where the aerodynamics are modelled by a commercial compu-

tational fluid dynamics code[3].

An large body of work focusing on the geometrically exact structural nonlinearity

of very flexible aircraft structures. A complete aeroelastic formulation for a HALE

type aircraft is presented in [6], while a strain-based finite element beam framework

to model such an aircraft is studied in [7]. The nonlinear aeroelastic modelling for a

fully flexible aircraft is studied in [8]. Later, the effect of discrete gust disturbances on

a flying wing model is studied in [9]. More recently, several investigations have been

presented combining geometric structural nonlinearity, flight dynamics and unsteady

aerodynamics for flying wings [10, 11] and a framework to study the behaviour of

slender wings in incompressible flow is described in [12].

This paper examines the effect of a geometrically exact nonlinear beam formulation

as applied to the FFAST aircraft model. The physical structural model is detailed

in Section 2 with the geometrically exact beam equations [13, 14] described in Sub-

section 2.1 and aerodynamics based on the linear theories of Wagner and Küssner

briefly outlined in Subsection 2.2. This paper aims to demonstrate the application of

model reduction on a full-scale aircraft structure. The model reduction is formulated

in Section 3. A guideline to determine the important modes used for model reduction

is discussed in Section 4. Results are presented in Section 5.

2.0 Physical Model

The FFAST aircaft (Fig. 1) is constructed by hand using the nonlinear beam model as

discussed hereafter in Subsection 2.1. The beam-stick model consists of 11 elements

along the fuselage centre-line, 11 elements for each main wing, and 8 elements per lift-

ing surface at the tail. Both the fuselage and wings vary in geometric properties along

their respective lengths. The material density is 2000 kgm−3, with a Poisson ratio of

0.3. The default stiffness for the fuselage beams is 1.5 × 1011 Pa, while for the wing

elements it is 1.8 × 1011 Pa. The entire structure consists of 59 unconstrained nodes

and has a total of 1180 degrees-of-freedom when coupled with strip aerodynamics as

discussed in Subsection 2.2.
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Figure 1. Finite element beam-stick model of FFAST aircraft

The FFAST wing model is obtained by taking one of the wings from the FFAST

aircraft model and clamping the wing at the root. The wing features sweep, dihedral

and inhomogeneous geometric properties along the spanwise direction. The FFAST

wing consists of 11 unconstrained structural nodes leading to a total of 220 degrees-

of-freedom when coupled strip aerodynamics.

2.1 Geometrically Exact Beam Model

The nonlinear beam model [13, 14] in general couples structural flexibility with un-

restrained rigid-body motions. The descriptions of beam kinematics is geometrically

exact. The finite element discretised form of the equations of motion for a discrete

restrained beam is given as follows

M (Xe) Ẍe +Qgyr

(
Xe, Ẋe

)
+Qstiff (Xe) = Qext

(
Xe, Ẋe

)
(1)

Here, Xe denotes the vector of nodal displacements and rotations, while M (Xe) is

the tangent mass matrix. The vectors Qgyr, Qstiff and Qext represent the gyroscopic,

elastic and external forces, respectively. The expression for the external forces is

general and typically a function of the system states. This is characteristic of, for

example, aerodynamic or other externally applied follower forces both of which are

dependent on the structure’s geometry.

Equation (1) is linearised around the equilibrium giving the incremental form of the

finite element equation of motion as

M (xe) ẍe + C (xe, ẋe) ẋe +K (xe)xe = ∆Qext (xe, ẋe) (2)

with xe denoting a disturbance from the equilibrium position. This final second-order

differential equation can be rearranged into first-order form for the application of

model reduction.



4 2016 RAeS Applied Aerodynamics Conference

2.2 Aerodynamic Model

Linear aerodynamic strip theory is coupled with the beam equations by assuming

each structural node coincides with a two-dimensional aerofoil section and therefore

the aerodynamic forces acting on each aerofoil directly translate to the structural

nodes. The aerodynamic model uses Wagner and Küssner functions to describe the

aerodynamic forces due to aerofoil motion and gust disturbances, respectively. This

aerodynamic model is used in previous work and has been verified against common

results in literature[1].

The aerodynamic strip system is defined with respect to the ‘beam’ reference frame

located at the wing root with the x-axis pointing along the span of the wing, the y-

axis along the streamwise direction and the z-axis perpendicular up. Each structural

node j in the nonlinear finite element beam model coincides with a two-dimensional

aerofoil section in the y-z plane. The aerodynamic forces acting acting on each aerofoil

section will depend on the sectional motion and are in addition, treated as follower

forces.

3.0 Nonlinear Model Reduction

The coupled nonlinear model describing the dynamics of an elastic aircraft system

can be represented in semi-discrete state-space form. Denote by W the n-dimensional

state-space vector partitioned into structural states Ws and aerodynamic states Wf .

Written as a set of first-order ordinary differential equations, we find

Ẇ = R (W ,Θ) (3)

where R is the nonlinear residual vector corresponding to the unknowns W , while Θ

is a vector of independent system parameters. There exists a reference equilibrium

point W0 for given constants Θ0.

Define an increment with respect to the equilibrium as w = W−W0. The nonlinear

residual in Eq. (3) can then be expanded in a multi-variate Taylor series about the

reference equilibrium point with respect to the system states W as

R (W ,Θ) ≈ Aw + 1
2!B (w,w) +

(
RΘ (W0,Θ0) +AΘw + 1

2!BΘ (w,w)
)
θ (4)

where A = ∂R/∂W is the system Jacobian matrix and B, the symmetric multilinear

vector function of second-order derivatives, is retained. More specifically, evaluated

about the equilibrium point (indicated by subscript 0), it is expressed as

B (x,y) =

n∑
j,k=1

∂2R

∂Wj∂Wk

∣∣∣∣
0

xjyk

Subscript Θ denotes differentiation with respect to it. While only first-order deriva-

tives in Θ are retained here for this study, in general, higher-order derivatives can be

included as well. Equation (4) represents the starting point for the model reduction.
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The full-order system is projected onto a small basis of m eigenvectors of the Jaco-

bian matrix A evaluated at the equilibrium point. The eigensolutions of the Jacobian

matrix are, in general, complex-valued. Such eigensolutions exist, for example, as

modes of structural vibration. For the specific case of the linear aerodynamic model

discussed in Subsection 2.2, eigensolutions associated with the fluid unknowns are

purely real-valued.

The set of right (direct) eigenvectors φi is obtained by solving

Aφi = λiφi, for i = 1, . . . ,m (5)

while the corresponding problem

AHψi = λ̄iψi, for i = 1, . . . ,m (6)

gives the set of left (adjoint) eigenvectors ψi. The superscript H denotes the conju-

gate transpose (i.e. Hermitian). The right and left eigenvectors are collected together

respectively giving the corresponding modal matrices, denoted by Φ and Ψ,

Φ = [φ1, . . . ,φm] , Ψ = [ψ1, . . . ,ψm] , Φ,Ψ ∈ Cn×m (7)

It is convenient to scale the eigenvectors to satisfy the biorthonormality conditions,

ΨHΦ = I, ΨHΦ̄ = O, I,O ∈ Rm×m (8)

where matrices I and O are the identity matrix and a zero matrix, respectively. The

biorthonormality conditions also ensure the following results

ΨHAΦ = Λ, ΨHAΦ̄ = O (9)

where Λ ∈ Cm×m is a diagonal matrix containing the eigenvalues.∗

The full-order unknowns w are described by a small set of m eigenvectors using the

following coordinate transformation

w = Φz + Φ̄z̄ (10)

where z ∈ Cm is the state-space vector governing the dynamics of the reduced-order

nonlinear system. The unknowns w are represented as a linear combination of right

eigenvectors with z as the time-dependent amplitude. The nonlinear reduced-order

model is then formed by substitution and premultiplying each term by the Hermitian

of the left modal matrix. The final nonlinear reduced-order model takes the form

ż = Λz + 1
2!Ψ

HB
(
Φz + Φ̄z̄,Φz + Φ̄z̄

)
+ ΨH

(
RΘ +AΘΦz +AΘΦ̄z̄ + 1

2!BΘ
(
Φz + Φ̄z̄,Φz + Φ̄z̄

) )
θ (11)

This is a reduced complex system of equations which can be readily integrated in time.

∗ Note in the case of a real-valued eigensolution, the biorthonormality conditions can no longer be

satisfied as φ = φ̄. These eigenvectors are then scaled such that ψHφ = 1
2

giving ψHAφ = 1
2
λ which

is convenient in order to use consistent notation when dealing both with real- and complex-valued

modes.
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Figure 2. Eigenvalue spectrum of FFAST wing
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Figure 3. First two bending modes for the isolated wing

4.0 Eigenmode Selection for Model Reduction

The test cases discussed herein, i.e. the FFAST aircraft and corresponding isolated

wing, are large structural models where each structural node corresponds to a two-

dimensional aerofoil modelled by linear aerodynamic strip theory. To form the

reduced-order model for such a system, it is important to identify the basis relevant to

the system dynamics. The eigensolution of such a system consists of a large number

of purely real-valued eigenvalues arising from the aerodynamic and gust degrees-of-

freedom (the fluid unknowns) and complex-conjugate pairs of eigenvalues arising from

the structural degrees-of-freedom (the structural unknowns). This is illustrated for

the FFAST wing in Fig. 2.
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In order to form an accurate reduced-order model it is crucial to retain the first few

lower-frequency, weakly damped structural modes which are associated with dominant

amplitudes. These take the form of complex-conjugate pairs in the eigensolution.

The number of modes depends on the type of structure. In the case of the isolated

FFAST wing, the first two lower-frequency structural bending modes (Fig. 3) are

found to be sufficient and any additional structural mode give negligible improvement

to the reduced-order solution. In the case of the full FFAST aircraft, two additional

structural modes associated with the fuselage are needed.

In addition, there exists a series of purely real-valued ‘gust eigenmodes’ which con-

tributes to the accuracy of the structural response during the gust disturbance phase

and should be included. These gust eigenmodes can be determined analytically by the

expression λ = −ε3U/b, where U is the freestream velocity, b is the local semi-chord

length corresponding to the aerofoil sections and ε3 = 0.1393 is the lower time con-

stant used in the exponent in the Küssner function [15]. The accuracy of the solution

will improve with increasing number of gust modes starting with the one of the lowest

value. The number of gust modes required to achieve a good prediction varies with

the total number of aerodynamic strips of the model and it is a good general rule to

choose a large number gust modes. From a practical conservative point of view, it is

feasible to calculate and include this lower-valued gust mode arising from more than

half of all the wing nodes as this is still a minimal fraction of the total system size

as will be illustrated in Section 5. For clarity, in Fig. 2 (b) some of these important

eigenmodes are highlighted in red.

Similar to gust eigenmodes there exist, corresponding to the time constants of the

Wagner function, purely real-valued ‘aerodynamic eigenmodes’ which make up the

dominant portion of all eigenvalues on the real axis. The inclusion of these modes

were found to have minimal impact on the reduced-order solution for the gust response

simulations examined.

5.0 Results

5.1 FFAST Wing

The FFAST wing is simulated for gust response calculation with the aim to analyse the

effect of geometric structural nonlinearity and the reduced-order model. The FFAST

wing is placed in a freestream flow of 50 ms−1 at sea-level and subjected to discrete

1-cos gust disturbance acting in the vertical direction with intensity of 14% of the

freestream speed. The amplitude of this gust intensity is chosen high to induce the

nonlinear effects. A range of standard gust lengths are evaluated ranging from 9 m to

107 m. Figure 4 (a) shows the response histories of the wing tip to the range of gust

lengths with the short length gusts producing highly oscillatory responses while the

longer gusts give a smooth damped dynamic response. Since the largest amplitudes are

found for gust lengths of 21 m and 107 m, these will be discussed in more detail below.

Figure 4 (b) shows the geometrically nonlinear solution at two specific gust lengths of
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Figure 4. Linear and nonlinear wing tip response to gusts at 50 m/s freestream speed.
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Figure 5. Reduced stiffness linear and nonlinear wing tip response to gusts at 50 m/s freestream speed.

21 m and 107 m. In general, the geometrically nonlinear solution differs moderately

from the linear solution and has overall reduced amplitudes in the dynamic response.

However, the effect of the geometric nonlinearity is minimal, this is due to the high

structural stiffness of the FFAST wing with E = 1.8 × 1011 Pa. For the purpose of

emphasising the geometric nonlinear effects all the subsequent results have a reduced

material stiffness of E = 9.0 × 1010 Pa. Figure 5 shows equivalent results, compared

with Fig. 4, at this reduced structural stiffness. Here, the differences induced by the

geometric nonlinear effect is more pronounced.

Next, the application of the linear reduced-order model is considered. This is the

case where the term B is neglected in Eq. (11). Several reduced-order models are

constructed based on various numbers of basis eigenmodes. The selection of such
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Figure 6. FFAST wing linear reduced-order model at two distinct gust lengths
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Figure 7. Linear wing profile at maximum amplitude for two distinct gust lengths

eigenmodes follows the method described in Section 4. First, the two lowest-frequency

structural modes are used. Then, additional gust modes are included in the reduced-

order model basis. The system is simulated under the same two critical gust lengths

as previously. Figure 6 shows the results produced by the linear reduced-order models

for the wing tip motion history. It is clear that by including additional gust modes

the reduced-order model produces incrementally better representations of the full-

order solution. The spanwise displacement profile at the maximum amplitude point

as produced by the full-order simulation as well as the reduced-order models is shown

in Fig. 7. For the long length gust at Lg = 107 m this occurs at 1.2 s, and for the

short length gust at 0.4 s. It can be observed that by including additional gust modes

the solution is improved for all structural nodes. A satisfactory reduced-order model
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Figure 8. FFAST wing nonlinear reduced-order model at two distinct gust lengths
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Figure 9. Nonlinear wing profile at maximum amplitude for two distinct gust lengths

solution is obtained using eight modes reducing a full-order system of 220 degrees-of-

freedom.

The application of the nonlinear reduced-order model includes the symmetric mul-

tilinear vector function of second-order derivatives, B, in Eq. (11). Figures 8 and 9

show the same set of results for those simulations. The results follow a similar trend

compared with the linear case, with the additional feature that the nonlinear reduced-

order model is able to capture the lower amplitude of the nonlinear response.
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Figure 10. FFAST aircraft linear reduced-order model at two distinct gust lengths
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Figure 11. FFAST aircraft nonlinear reduced-order model at two distinct gust lengths

5.2 FFAST Aircraft

The same set of simulations are performed for the full scale FFAST aircraft with

reduced stiffness for the wings (E = 9.0 × 1010 Pa) and unaltered stiffness for the

fuselage section (E = 1.5× 1011 Pa). For the linear reduced-order model construction

additional basis eigenmodes are required to achieve an accurate prediction of the full-

order solution. Initially the first four structural eigenmodes are included. Additional

gust modes are added to obtain improving representations of the full order solution.

A satisfactory result is achieved with 16 basis eigenmodes in total. This is a reduction

of a 1180 degrees-of-freedom system. Figure 10 shows the performance of the linear

reduced-order model at the same two gust lengths: Lg = 107 m and Lg = 21 m.

Similar results are obtained by the nonlinear reduced-order model presented in Fig. 11
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6.0 Conclusions

This paper presents an application of nonlinear reduced-order modelling applied to

full-scale nonlinear aircraft structures for gust response calculations. The test cases

herein are based on the FFAST aircraft model which is constructed by hand using a

geometrically exact nonlinear beam formulation while the aerodynamics rely on linear

strip theory with motion- and gust-induced contributions enforced at each structural

node representing a part of the wing. The nonlinear model reduction approach is based

on the eigenmode decomposition of the system’s Jacobian matrix and projection of

the full-order dynamics onto this finite vector space. An approach to identify the

important eigenmodes, used as basis in the model reduction, is discussed. Besides the

lowest-frequency structural modes, also gust modes should be included if the initial

transient response during the gust is to be accurately represented. These gust eigen-

modes can always be identifed as their corresponding eigenvalues can be calculated by

hand.

In general, both the linear and nonlinear (up to second order) reduced models show

accurate prediction with respect to their corresponding linear and geometrically non-

linear full order solutions when simulating gust encounter at a range of gust lengths.

It is important to note that the peak deflection for the structural response is accu-

rately reproduced in the reduced models. For the largest test case, the full aicraft, a

reduction in system size from 1180 to 16 is achieved.

Future work will be directed at formulating and establishing higher-order nonlinear

reduced-order model terms. The purpose of such development is to investigate the

reduced-order model capability when dealing with higher-order structural nonlinearity.
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