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ABSTRACT
One key task in computational aeroelasticity is to calculate frequency response functions of
aerodynamic coefficients due to structural excitation or external disturbance. Computational
fluid dynamics methods are applied for this task at edge-of-envelope flow conditions. As-
suming a dynamically linear system around a non-linear steady state, two computationally
efficient approaches in time and frequency domain are discussed. A non-periodic, time-
domain function can be used on the one hand to excite a broad frequency range simultane-
ously giving the frequency response function in a single non-linear, time-domain simulation.
The frequency-domain approach on the other hand solves a large, but sparse linear system
of equations, resulting from the linearisation about the non-linear steady state, for each fre-
quency of interest successively. Results are presented for a NACA 0010 aerofoil and a generic
civil aircraft configuration in very challenging transonic flow conditions with strong shock-
wave/boundary-layer interaction in the pre-buffet regime. Cost savings of up to one order
of magnitude are observed in the time domain for the all-frequencies-at-once approach com-
pared with single-frequency simulations, while an additional order of magnitude is obtained
for the frequency-domain method.
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1.0 Introduction
Gust loads analysis and flutter clearance are key tasks during design and certification of new
airframes. Simulations have to be performed for a huge number of parameter combinations
varying e.g. Mach number, altitude, load factor, gust length, mode shape and frequency. Lin-
ear potential methods like doublet lattice1 cannot capture re-compression shocks and shock-
induced separation. Thus, these methods cannot be applied at transonic flow conditions, where
modern aircraft operate, without additional correction methods.2,3 However, solving the time-
dependent, non-linear Reynolds-averaged Navier-Stokes (RANS) equations coupled with a
structural and flight dynamics solver is prohibitive regarding the computational time required
to cover the flight envelope.

In the industrial process, frequency response functions of integrated aerodynamic quanti-
ties are pre-computed instead and the fluid-structure problem is solved afterwards using e.g.
a p-k method in the flutter analysis. A common approach applies sinusoidal structural excita-
tions while integrating the RANS equations in time until the aerodynamic response becomes
periodic. This process is repeated for each mode shape and several frequencies to interpo-
late the discrete output signal. If small disturbances are assumed, the aerodynamic system
responds dynamically linear. The superposition principle can then be applied leading to two
computationally more efficient approaches.

In the first method, a non-periodic time-domain function – a pulse – is used to excite a
broad frequency range simultaneously.4,5,6 Since linearity is assumed, the aerodynamic re-
sponse is a superposition of these excitation frequencies. Hence, the frequency response
function can be obtained by a single time-domain simulation when dividing the Fourier trans-
form of the disturbance of the output signal by the Fourier transform of the excitation signal.
The second approach to reduce the computational cost, referred to as linear (or linearised)
frequency-domain (LFD) method,7 applies the small disturbance assumption to linearise the
governing equations around a steady flow field. Thereafter, the equations are transferred into
the frequency-domain resulting in a large, but sparse system of linear equations for the per-
turbation of the fluid unknowns. The linear system is then solved for several frequencies to
obtain the frequency responses per mode shape.

In this paper, the different methods are first outlined, and advantages and disadvantages of
either approach are then discussed. Results of the LFD and pulse method are compared for
a NACA 0010 aerofoil at a transonic Mach number and increasing angle of attack including
pre-buffet flow conditions. Moreover, frequency responses of lift and pitching moment as
well as surface pressure coefficients are presented for a generic wing-fuselage configuration
at steady flow conditions close to the buffet onset.

2.0 Methods
2.1 Linear frequency-domain solver

The LFD approach is first introduced. For a finite-volume method, the semi-discrete RANS
equations are

dM(x)W
dt

+ R(W, x, ẋ) = 0, (1)

with the diagonal matrix M storing the cell volumes and the residual function R depending on
the vectors of fluid unknowns W, grid-point locations x and grid-point velocities ẋ. Assuming
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small perturbations
(
W1, x1, ẋ1

)
from a steady state

(
W0, x0

)
, the variables can conveniently be

separated as

W(t) = W0 + W1(t), x(t) = x0 + x1(t), ẋ(t) = ẋ1(t)

and eq. (1) can be linearised around this steady state

M
dW1

dt
+ R (W0, x0) +

∂R
∂W

W1 +
∂R
∂x

x1 +
∂R
∂ẋ

ẋ1 + W0
∂M
∂x

ẋ1 = 0 (2)

The residual at steady state R (W0, x0) is negligible small and eq. (2) is then transferred into
the frequency domain yielding a large system of linear equations[

∂R
∂W

+ jω∗M
]

Ŵ = −

∂R
∂x

+ jω∗
(
∂R
∂ẋ

+ W0
∂M
∂x

) x̂, (3)

with ω∗ denoting the reduced frequency, while j is the imaginary unit. Equation (3) relates
the Fourier coefficients of a harmonic excitation x̂ to the Fourier coefficients of the fluid un-
knowns Ŵ, constituting a large, but sparse linear system of equations. Further details con-
cerning the LFD method in the DLR-TAU code can be found in [7].

2.2 Pulse excitation

A common approach to identify frequency response functions with a time-domain solver is to
use a sinusoidal excitation while integrating in time until the response becomes periodic. This
process is repeated for all frequencies of interest. However, if small disturbances are assumed,
the aerodynamic system responds dynamically linear. The superposition principle can then
be applied leading to a more efficient approach. A non-periodic time-domain function, e.g.
a pulse, chirp or step, can be used to excite a broad frequency range. Hence, a frequency
response function H can be obtained from one single time-domain simulation when dividing
the Fourier transform of the perturbation of the output signal by the Fourier transform of the
excitation signal, e.g. for an arbitrary response ζ due to arbitrary input q,

Hζ,q(ω∗) =
F (ζ(t) − ζ0)
F (q(t))

(4)

with F denoting the Fourier operator. Since this approach assumes a linearly responding
system, it belongs to the group of time-linearised methods, while avoiding an explicit lineari-
sation of the underlying governing equations.

While the particular shape of the excitation function is not important, three criteria should
be satisfied nevertheless. First, its Fourier transform should not exhibits roots in the magnitude
at frequencies within the range of interest. An example is presented in Figure 1(a) showing
the Fourier transform of four excitation functions. While the chirp and the step functions
result in a nearly constant magnitude over the relevant frequency range, the magnitude of the
1-cos function shows two roots and a significant decrease with increasing frequencies. Such
behaviour can be avoided if a non-symmetric polynomial is used instead. The non-symmetric
polynomial used in this study takes the specific form

q(t) = (6t2 − 15t + 10)t3, t ∈ [0, 1]
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(a) Fourier transform of excitation signals (b) excitation signals

Figure 1: Fourier transforms of selected excitation signals and corresponding time histories
of pulse excitations.

for the ascending part of the pulse. The function is constructed with the boundary condition,
that the first and second derivative is zero at both ends of the interval. The final form is
obtained by mirrowing and stretching the polynomial by a factor of 3 for the descending part.
Its time-domain representation as well as the 1-cos function is provided in Figure 1(b). Both
functions have the same compact support, while the polynomial exhibits its maximum earlier
than the 1-cos function.

A compact support is the second criterion. Such support is preferred to reduce the num-
ber of grid deformation and preprocessing calls while integrating in time. Preprocessing is
usually required to update the dual-grid metrics, but it is relatively fast compared with the
deformation. For the wing-fuselage configuration discussed below, grid deformation and pre-
processing combined account for almost as much computational time per physical time step
as the non-linear flow solver itself, which underlines the necessity to perform as few grid de-
formations as possible. Thus, using a chirp function as excitation, which offers almost ideal
frequency content, would lead to significant computational overheads.

Finally, in the application of CFD solvers smooth functions are preferable. While the chirp
and the two pulse functions satisfy this condition, the step function does not. In the case of a
step function, the grid velocity in the first time step is

ẋ ≈
x(t + ∆t) − x(t)

∆t
=

1
∆t
, (5)

thus inverse proportional to the time-step size. When severe flow conditions demand very
small computational time steps, the grid velocity can become large causing serious conver-
gence problems for the time integrator. Thus, the non-symmetric polynomial pulse, satisfying
all criteria, is used as excitation function throughout in this paper.

Applying the pulse technique comes with the assumption that a perturbation from the steady
mean state is caused by the excitation only. However, the initial steady computation is usually
not converged to machine precision and additional fluctuations can occur, e.g. due to reflec-
tions from the farfield. These have an effect on the computed frequency response function
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(a) magnitude of lift coefficient (b) phase of lift coefficient

Figure 2: Magnitude of lift frequency response for wing-fuselage configuration

especially if the excitation amplitude is small such as required at flow conditions exhibit-
ing strong shock-induced separation. The calculation of response functions is improved by
performing an additional time-dependent static simulation. The perturbation of the output
is computed by subtracting both signals instead of considering the difference to the steady
solution only. Although the computational cost is nearly doubled, significant improvements
can be observed at small and medium frequencies for the wing-fuselage case in pre-buffet,
as shown in Figure 2. While more detail for this configuration is discussed below, improved
results are observed for reduced frequencies between 1 and 4 as well as for the quasi-steady
part at zero reduced frequency.

2.3 Computational fluid dynamics solver DLR-TAU

The DLR-TAU code8,9 is a finite-volume Euler and Navier-Stokes solver on unstructured
grids. The chosen discretisation employs the modified scheme of Jameson, Schmidt and
Turkel10 for the mean flow equations, while the Spalart-Allmaras11 one-equation turbulence
model is used for the eddy-viscosity closure throughout in this paper. The flow equations are
marched to steady state with a lower-upper, Symmetric-Gauss-Seidel pseudo-time integration
method and geometric multigrid. Time-accurate unsteady flow solutions can be obtained fol-
lowing the dual time-stepping approach12 combined with a second-order accurate backward
differencing scheme.

For the frequency-domain approach, the flux Jacobian matrix is obtained analytically, while
the linearisation with respect to the grid motion and velocity is obtained using central finite
differences. The crucial part when applying an LFD method is solving the system of lin-
ear equations, corresponding to the exact order of the underlying spatial scheme, efficiently
in terms of computational time and memory requirements. A generalised conjugate residual
solver with deflated restarting is used, which recycles an invariant Krylov subspace between
restarts of the underlying generalised minimal residual solver.13 The linear system is pre-
conditioned using an incomplete lower-upper factorisation of a blended flux Jacobian matrix
resulting from first- and second-order spatial discretisations.14
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(a) surface pressure coefficient (b) skin friction coefficient

Figure 3: Steady surface pressure and skin friction coefficient for NACA 0010 aerofoil

3.0 Results
3.1 NACA 0010

Results are presented for the NACA 0010 aerofoil using a computational domain discretised
with about 30,000 points. The point distribution has a structured layer near the wall to ensure
a sufficient boundary layer resolution, while the far-field distance is set to 50 chord lengths.
Results are shown at a constant Mach number of 0.8 and Reynolds number based on the chord
length of 10 million. Three angles of attack are analysed ranging from 3 to 5 deg.

The steady surface pressure and skin friction coefficients are presented in Figure 3. At
an angle of attack of 3 deg, a re-compression shock can be observed at about 22 % chord
length while the flow is attached. Increasing the angle of attack to 4 deg moves the shock
downstream, while a small re-circulation region is observed. At an angle of attack of 5 deg,
while the flow is still re-attaching before the trailing edge, the shock starts to move up-stream,
referred to as inverse shock motion.

A rigid pitching motion is simulated around these different steady states with a rotational
axis located at 25 % chord length. A small amplitude of 10−5 deg is chosen to ensure a
dynamically linear behaviour of the CFD solver. A temporal convergence study is presented
in Figure 4 for a sinusoidal excitation at the highest angle of attack considered and reduced
frequency of 0.4. The complex-valued derivative of the lift coefficient is computed using a
sliding window to understand when the lift derivative converges. Convergence is achieved
after about 2.5 periods. Increasing the number of time steps per period (Np) from 128 to 256
reduces the lift coefficient’s magnitude and increases its phase. A further refinement of the
time step size has a negligibly small effect on the results.

Before comparing results computed with the different methods, a more general overview of
the lift coefficient’s frequency response is given in Figure 5. At an angle of attack of 3 deg,
the frequency response is qualitatively comparable with Theodorsen’s aerodynamics.15 A
monotonic decrease in magnitude and a phase lag at small reduced frequencies is observed.
The small region of separation at 4 deg angle of attack is reducing the quasi-steady derivative,
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(a) magnitude (b) phase

Figure 4: Temporal convergence of lift coefficient for NACA 0010 at 5 deg angle of attack
and a reduced frequency of 0.4

(a) magnitude (b) phase

Figure 5: Frequency responses in lift coefficient for NACA 0010 aerofoil

while the magnitude is still decreasing monotonically over the reduced frequency range. The
shape of the frequency response function is different for the highest angle of attack, caused by
the stronger interaction between the shock and the region of separated flow. While the quasi-
steady derivative is further reduced, the magnitude is now exhibiting a maximum around a
reduced frequency of about 0.4. Moreover, for reduced frequencies below the maximum, a
phase lead is observed. This behaviour indicates a weakly damped eigenvalue of the fluid
Jacobian matrix and was previously analysed in the context of shock buffet in [16,17] and
discussed for validation of the LFD method in [18].

A comparison of the frequency response functions computed with both the LFD and time-
domain methods using either sinusoidal or pulse excitation is given in Figure 6 for the
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(a) magnitude (b) phase

Figure 6: Comparison of frequency responses in lift coefficient for NACA 0010 aerofoil

attached-flow case at 3 deg angle of attack and the highest angle of attack at 5 deg. An
excellent agreement is obtained between the LFD and the pulse method for the complete fre-
quency range considered, even at the severe pre-buffet flow condition. Computations using
sinusoidal excitations were performed at three reduced frequencies, confirming the validity of
the time-linearised approaches for attached as well as detached steady flow conditions.

3.2 Generic civil aircraft

The second test case is a half wing-body configuration scaled to wind tunnel dimensions.
The semi-span of the model is 1.10 m, while the aerodynamic mean chord is about 0.279 m.
The wing is twisted, tapered and has a constant sweep angle of 25 deg. This configuration
has recently been investigated in the transonic wind tunnel facility of the Aircraft Research
Association19 and it was also chosen for investigation of global stability analysis.20

An unstructured mesh was produced using the Solar grid generator.21 The initial spacing
normal to all viscous walls is less than 0.8 in wall units for this coarse mesh, while the growth
rate of cell sizes in the viscous layer is less than 1.3. The blunt trailing edge is described by
8 cells corresponding to a spacing of about 0.15 % of the local chord. Concerning the span-
wise mesh distribution, a spacing of 0.5 % and 0.1 % of the span is imposed for the wing root
and tip, respectively. Altogether, the grid is composed of 2.7 million points corresponding
to 4.7 million elements of mixed type including 12,000 prisms, 71,000 pyramids, 2.4 million
hexahedral and 2.3 million tetrahedral elements. The grid spacing on the wing surface is
presented in Figure 7.

The freestream Mach number is set to 0.8 and the Reynolds number based on the aero-
dynamic mean chord is 3.75 million. Fully turbulent flow is assumed. The angle of attack
in the current study is fixed at 3 deg, just below shock-buffet onset. The reference temper-
ature and pressure are 266.5 K and 66.0 kPa, respectively. Far-field conditions are applied
at a distance corresponding to 25 times the semi-span of the model (around 90 aerodynamic
mean chords), while symmetry boundary condition is applied along the centre plane. The
steady surface pressure distribution on the wing is depicted in Figure 8(a) showing a shock
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(a) full configuration (b) outer wing section

Figure 7: Generic wing-fuselage configuration

(a) steady pressure coefficient and separation zone (b) z-component of synthetic torsion mode

Figure 8: Steady surface pressure and z-component of excitation mode

at about 50 % chord length. The shock-induced separation – marked by a black, dashed line
– starts at mid-semi-span where it re-attaches further downstream, while in the outer wing
section, between 79 % and 91 % of the semi-wing span, the flow is detached all the way from
the re-compression shock to the trailing edge. Around this steady flow field, forced-motion
simulations are performed exciting the system in a synthetic torsion mode, see Figure 8(b).

The frequency response in lift and moment coefficient computed with the LFD and pulse
method is presented in Figure 9. A reduced frequency range, based on the mean aerodynamic
chord, is considered between 0.0 and 1.0. The magnitude of the lift exhibits a local maximum
around reduced frequency 0.7, see Figure 9(a). A similar behaviour can be observed for the
pitching moment in Figure 9(b). This is contrary to linear potential theory, where starting from
the quasi-steady derivative a monotonic decrease is predicted for torsion-like modes. Consid-
ering the phase of the lift coefficient, a maximum and an inflection points can be observed as
well as a phase lead over a wide range of reduced frequencies. A similar behaviour has been



10 2016 RAeS Applied Aerodynamics Conference

(a) magnitude of lift (b) magnitude of pitching moment

(c) phase of lift (d) phase of pitching moment

Figure 9: Comparison of frequency responses for generic civil aircraft

observed for the aerofoil case, see Figure 6. The results computed by both time-linearised
methods agree excellently in the considered frequency range for the lift and moment despite
this complex response behaviour.

In Figure 10, unsteady pressure coefficients are presented at 90 % of the half span width, a
span position where the steady flow field exhibits separation, see Figure 8(a). The magnitude
is dominated by a strong peak at about 40 % of the local chord length showing the movement
of the re-compression shock. Upsteam of the shock, in the supersonic region, only minor
pressure fluctuations can be seen, while the separation bubble causes pressure fluctuations
near the trailing edge. A discontinuity of about 145 deg can be observed in phase at the same
chord-wise position as the shock peak. A monotonic increase in phase is obtained on the lower
surface, where the flow is subsonic. All these features are captured well by the LFD and the
pulse method at this pre-buffet flow conditions showing the maturity of both time-linearised
approaches for three-dimensional geometries.
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(a) magnitude (b) phase

Figure 10: Comparison of complex-valued surface pressures at reduced frequency of 0.5 for
wing-body configuration at normalised span position of 0.9

Table 1: Runtimes for generic civil aircraft using 72 cores
LFD Pulse + Static Sinusoidal

total number of frequencies 1 260 1
number of frequencies of interest 1 25 1
total runtime (h) 1.3 362.2 194.4
runtime per frequency (h) 1.3 14.5 194.4

Finally, the runtimes of the different methods are compared for the generic wing-fuselage
configuration in Table 1. Both LFD and the non-linear, time-domain method using sinusoidal
excitation evaluate one frequency at a time, while the former approach is 150 times faster in
comparison. A reduction in computational time of more than an order of magnitude compared
to the sinusoidal time-domain simulations is still achieved when the pulse method is applied.
The pulse method is slower than the LFD, since an additional static simulation was required
and higher frequencies are evaluated as well, which are not of interest in an aeroelastic ap-
plication. A larger time step size would directly improve the speed-up of the pulse method
and reduce the number of unnecessarily computed frequency responses. However, a previous
time-convergence analysis22 in the context of shock buffet has shown, that larger time steps
have a negative influence on the prediction quality at these severe flow conditions. At more
benign flow conditions the convergence requirements of the non-linear, time-dependent solver
is less stringent, and hence the cost savings of LFD become less dominant. Experience has
shown that a cost saving factor of about five between LFD and pulse is often observed in at-
tached transonic flow. Overall, an order of magnitude speed-up between each of the presented
simulation approaches to calculate aerodynamic derivatives is a fair estimate. Moreover, while
LFD only requires a monitoring of the aerodynamic derivatives to judge the convergence of
the linear system, time-dependent simulations require expensive investigation of temporal
convergence, such as real time-step size and number of subiterations/abort criteria. In addi-
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tion, an appropriate excitation amplitude has to be chosen. This cost is not included in the
table.

4.0 Conclusion
Two approaches are presented to reduce the computational cost of calculating frequency re-
sponse functions of aerodynamic derivatives for aeroelastic applications. Both methods rely
on the assumption of a linearly responding system. The first approach linearises the flow
equations and solves the resulting system in the frequency domain. A robust iterative tech-
nique based on a Krylov subspace method is applied to efficiently solve the large, but sparse
linear system. The second method uses pulse excitation in the time-domain to compute the
frequency response function within one simulation. A non-symmetric, polynomial function
with compact support (i.e. a pulse) is used to excite a broad frequency spectrum while min-
imising the amount of grid deformation calls. Results are presented for the NACA 0010 aero-
foil as well as for a generic wing-fuselage configuration. Excellent agreement between both
time-linearised methods and their non-linear, time-domain counterpart are obtained for both
test cases comparing frequency response functions of lift and moment coefficients as well
as local pressure distributions. Even at edge-of-envelope flow conditions including shock-
induced separation close to the buffet onset, time-saving factors of one order of magnitude
are achieved comparing the pulse method to non-linear, time-domain simulations using sinu-
soidal excitation. Applying the linearised frequency domain method provides an additional
order of magnitude in speed-up.

Comparing both time-linearised approaches, the frequency domain method is faster if re-
sponses in a limited frequency range are of interest and a non-uniform sample distribution is
desired. In addition, no expensive time-convergence or amplitude analyses are required. If
responses are desired for a large frequency range, the pulse method is computationally more
efficient. Moreover, it is a reasonable alternative if a Jacobian matrix, often resulting from
an implicit solution scheme, is not implemented for the chosen type of flux discretisation or
turbulence model.
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