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Abstract. We consider an alternative interpretation of classical Dung ar-
gumentation framework (af) semantics by introducing the concept of

“forbidden sets”. In informal terms, such sets are well-defined with re-

spect to any extension-based semantics and reflect those subsets of ar-
gument that collectively can never form part of an acceptable solution.

The forbidden set paradigm thus provides a parametric treatment of

extension-based semantics. We present some general properties of for-
bidden set structures and describe the interaction between forbidden

sets for a number of classical semantics. Finally we establish some initial

complexity results in the arena of forbidden set decision problems.
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Introduction

Among the many developments arising from the seminal treatment of argumen-
tation within the abstract graph-theoretic model of argumentation frameworks
(afs) from Dung [7], one of the most prolific areas has been the formulation
of alternative “argumentation semantics”: that is the conditions on subsets of a
framework’s atomic arguments characterising which such sets present collectively
“justified” arguments from which fail to do so. In addition to those presented in
[7] one finds ideas such as semi-stable in Caminada [5], ideal from Dung et al. [8],
together with cf2 semantics arising in Baroni et al. [3], the parametric concept of
resolution-based semantics described by Baroni and Giacomin [2] together with
the analysis of one specific instantiation of this by Baroni et al. [1].

Our aim in the present article is not to offer yet another semantics of abstract
argumentation derived from graph-theoretic considerations within the supportng
af, but rather to examine an alternative view of such that have already been
posited and, indeed, may be offered subsequently.

The central conceit underpinning our treatment stems from the property that
all such extension-based semantics (as these have come to be generally known)
conceptually prescribe solutions via a “positive” enumeration of “acceptable” sub-
sets of arguments within a framework, e.g. the so-called “conflict-free” solutions
are those subsets, S, in which no attack is present between any members of S.
Thus, in order to validate a set as acceptable it suffices to find it among the list
of allowed solution sets.



Here we examine an alternative view: examining conditions on sets, S, which
suffice to eliminate any possibility that S is an acceptable position. These condi-
tions, in a similar style to classical extension bases, may be thought of as described
through an enumeration of sets, which we will call the forbidden sets (with respect
to a given af and argumentation semantics). In this way if S is a forbidden set
with respect to an af, H and semantics σ this indicates that no σ-extension of
H contains S as a subset.

We provide some basic background in Section 1, proceeding to define formally
the concept of forbidden set in Section 2 and prove some generic properties of
these. In Section 3 we then consider comparative aspects of forbidden sets defined
for some standard semantics and review some questions concerning computational
complexity matters within Section 4. Conclusions and open issues are presented
in Section 5.

1. Preliminaries

We begin by recalling the concept of abstract argumentation framework and ter-
minology from Dung [7] and outline the main computational problems that have
been of interest within this.

Definition 1 We use X to denote a finite set of arguments with A ⊆ X × X the
so-called attack relationship over these. An argumentation framework (af) is a
pair H = 〈X ,A〉. A pair 〈x, y〉 ∈ A is referred to as ‘y is attacked by x’ or ‘x
attacks y’. Using S to denote an arbitrary subset of arguments for S ⊆ X ,

S− =def { p : ∃ q ∈ S such that 〈p, q〉 ∈ A}
S+ =def { p : ∃ q ∈ S such that 〈q, p〉 ∈ A}

We say that: x ∈ X is acceptable with respect to S if for every y ∈ X that attacks
x there is some z ∈ S that attacks y. Given S ⊆ X , F(S) ⊆ X is the set of all
arguments that are acceptable with respect to S, i.e.

F(S) = {x ∈ X : ∀ y such that 〈y, x〉 ∈ A , ∃ z ∈ S s.t. 〈z, y〉 ∈ A}

A subset, S, is conflict-free if no argument in S is attacked by any other argument
in S. with ⊆-maximal conflict-free set referred to as naive extensions. A conflict-
free set S is admissible if every y ∈ S is acceptable w.r.t S. S is a complete
extension if S is conflict-free and should x ∈ F(S) then x ∈ S, i.e. every argument
that is acceptable to S is a member of S, so that F(S) = S. The set of ⊆-maximal
complete extensions coincide with with the set of ⊆-maximal admissible sets these
being termed preferred extensions. The set S is a stable extension if S is conflict
free and S+ = X \S. and is a semi-stable extension (Caminada [5]) if admissible
and has S ∪ S+ ⊆-maximal among all admissible sets.

The grounded extension of 〈X ,A〉 is defined as the ⊆-minimal complete ex-
tension.



We use σ to denote an arbitrary semantics from

{cf,nve,adm,pr, st,com, sst,gr}

corresponding to conflict-free, naive, admissible, preferred, stable, complete, semi-
stable and grounded instances.

For a given semantics σ and af, H(X ,A) we use Eσ(H) to denote the set
of all subsets of X that satisfy the conditions specified by σ. We say that σ is
a unique status semantics if |Eσ(H)| = 1 for every af, H, denoting the unique
extension by Eσ(H).

We complete this, brief, overview by describing the three canonical decision
problems that may be instantiated for a given semantics: Verification (ver),
Credulous Acceptance (ca) and Sceptical Acceptance (sa). Formal definitions of
these problems for afs are presented in Table 1.

Table 1. Decision Problems in afs

Problem Name Instance Question

Verification (verσ) H(X ,A); S ⊆ X Is S ∈ Eσ(H)?

Credulous Acceptance (caσ) H(X ,A); x ∈ X ∃ S ∈ Eσ(H) for which x ∈ S?

Sceptical Acceptance (saσ) H(X ,A); x ∈ X ∀ T ∈ Eσ(H) is x ∈ T?

2. Forbidden Sets and Related Structures

In this paper we introduce and explore the properties of a “parametric” operator
– the forbidden set constructor – and its relationship with the extension-based
semantics outlined in the preceding section.

Definition 2 Let S ⊆ 2X . A set T ⊆ X is said to be a forbidden set for S if for
every set S ∈ S, it is not the case that T ⊆ S.

A set, T ⊆ X is a minimal forbidden set for S if it is both a forbidden set for
S but no strict subset of T describes a forbidden set for S. Given S, the notation
κ(S) and µ(S) describe those subsets of X for which

κ(S) = { T ⊆ X : T is a forbidden set for S }

µ(S) = { T ⊆ X : T is a minimal forbidden set for S } ⊆ κ(S)

For k, with 0 ≤ k ≤ |X |, the k-section of S, denoted χ(k)(S), is

χ(k)(S) = { P ⊆ X : |P | = k and P ∈ κ(S) }

In the special case k = 1, χ(1) are those members of X that do not occur in any
set of S; while the subsets χ(2) play an important role in the characterization
considered in Dunne et al. [10] where these are referred to as “unpaired elements”.



We note that κ(S) and, potentially, µ(S), contains sets which are strict su-
persets of elements in S. A simple example of such behaviour is given with
X = {x1, x2} and S = {{x1}, {x2}}: in this case µ(S) = κ(S) = {{x1, x2}}.

Some properties of these operations are exploited in later results such as
Lemma 2.

Lemma 1 Given S ⊆ 2X and κ(S) as defined in Defn. 2, the set systems κ(S),
µ(S) and χ(k)(S), satisfy

a. If Q ∈ κ(S) there is (at least one) R ⊆ Q with R ∈ µ(S).
b. The conditions ∅ ∈ κ(S), µ(S) = {∅} and S = ∅ are equivalent.
c. κ(S) = ∅ if and only if {x1, . . . , xn} ∈ S, that is to say S contains the set

which comprises all of the arguments in X .

Proof: Recall that we assume 〈X ,A〉 is a finite structure.
For (a) suppose that Q ∈ κ(S). If it is the case that no strict subset of Q is

a forbidden set for S then, by definition, we have Q ∈ µ(S). Otherwise we find
some T ⊂ Q for which T ∈ κ(S). Repeating the argument either T is a minimal
forbidden set for S or has some subset which is a forbidden set. Eventually we
find some R ⊆ Q which is both forbidden and minimally so.

For (b), that µ(S) = {∅} if and only if ∅ ∈ κ(S) follows directly from the
definition of µ(S). To see that µ(S) = {∅} is only possible when S = ∅, again from
the definition of forbidden set, were ∅ to be a forbidden set for S this indicates
that no S ∈ S has ∅ ⊆ S. This property can only be satisfied in the degenerate
case S = ∅.

With (c), κ(S) = ∅ expresses the property that S has no forbidden sets at
all, so, in particular, the set containing all arguments of X must belong to S.
Conversely, should {x1, . . . , xn} ∈ S this suffices to rule out any subset of X as
forbidden, i.e. κ(S) = ∅. 2

3. Comparative Properties of Forbidden Sets in Divers Semantics

Let H = 〈X ,A〉 be an af. A natural question arising with respect to the forbid-
den set paradigm, concerns what may be said in general regarding comparisons
between distinct extension sets of H and their associated forbidden sets.

In order to avoid an excess of parentheses, we adopt the following notation
when considering a given af H = 〈X ,A〉.

EHσ =def Eσ(H)
κHσ =def κ(Eσ(H))
µHσ =def µ(Eσ(H))

The following results present some basic relationships between forbidden sets
and underlying semantics. Noting that Case (b) of Lemma 2 indicates semantics,
σ defined as ⊆-maximal elements of semantics τ have identical forbidden sets
determining membership of S ∈ Eσ cannot be established simply by arguing S
has no R ∈ µ(Eσ) as a subset. The relationship given in part (c), however, does
provide a method by which S ∈ Eσ can be decided via forbidden set structures.



Lemma 2

a. If σ, τ are semantics that satisfy, EHσ ⊆ EHτ then κHτ ⊆ κHσ .

b. If EHσ is defined to be the (⊆)-maximal sets within EHτ then κHτ = κHσ .

c. If σ, τ satisfy the condition given in (b) then, for all S ⊆ X S ∈ EHσ if and
only if

(∃ Q ∈ µ(EHτ \ EHσ ) : Q ⊆ S) and (∀ Q ∈ µHσ ¬(Q ⊆ S))

Proof: For (a), when σ and τ satisfy EHσ ⊆ EHτ no set in κHτ can be a subset of
any set in EHτ . In particular if S ⊆ EHτ then a forbidden set for EHτ is perforce also
a forbidden set for S. It follows that any forbidden set for EHτ is a forbidden set
for EHσ , i.e. κHτ ⊆ κHσ .

For (b), the maximality premise already ensures κHτ ⊆ κHσ via part (a). Con-
sider any S ∈ κHσ and suppose, for the sake of contradiction, that S /∈ κHτ . From
the definition of forbidden set this means we can find T ∈ EHτ with S ⊆ T . Now,
however, we find R ∈ EHσ with T ⊆ R so that S ⊆ T ⊆ R ∈ EHσ contradicting
S ∈ κHσ .

For the relationship in (c), should it be the case that S ∈ EHσ then S /∈ EHτ \EHσ
so that S ∈ κ(EHτ \ EHσ ) and the property of there being some Q ∈ µ(EHτ \ EHσ )
with Q ⊆ S follows from Lemma 1(a). Similarly the premise S ∈ EHσ indicates
S /∈ κHσ thus no Q ∈ µHσ satisfies Q ⊆ S.

Conversely suppose that some Q ∈ µ(EHτ \ EHσ ) satisfies Q ⊆ S but that no
Q ∈ µHσ has this property. Then,

Q ∈ µ(EHτ \ EHσ ) and Q ⊆ S ⇒ S /∈ EHτ \ EHσ
⇒ S /∈ EHτ or S ∈ EHσ

In addition,

∀ Q ∈ µHσ ¬(Q ⊆ S) ⇒ S ∈ EHτ

Notice that as a consequence of (b) we have µHσ = µHτ so we cannot directly
deduce from ¬(Q ⊆ S) for each Q ∈ µHσ that S ∈ EHσ : only S ∈ EHτ . Combining
S /∈ EHτ \ EHσ and S ∈ EHτ we deduce that S ∈ EHσ as claimed. 2

Corollary 1 For all H = 〈X ,A〉

a. κHadm = κHpr = κHcom.

b. κHcf = κHnve.

c. κHpr ⊆ κHsst ⊆ κHst.

d. κHcf ⊆ κHadm.

Proof: Immediate consequence of Lemma 2 and established containment proper-
ties of the featured semantics. 2

It is worth noting at this point a distinguishing aspect of the forbidden set
paradigm in comparison with the extension-based semantics. It is well known in



the latter formalism, that EHco ⊆ EHadm, i.e. every complete extension is an admis-
sible set. The converse, however, does not hold: one may construct frameworks
having S ∈ EHadm but S /∈ EHco.1 The forbidden set structures for both seman-
tics, however, are identical in consequence of EHpr being formed by ⊆-maximal
admissible sets and ⊆-maximal complete sets.

As a second point Corollary 1(a) offers an interesting point of comparison
with recent work of Baumann et al. [4]. In this regard if we wish to distinguish
S ∈ EHadm from S ∈ EHpr in order to do so via the forbidden set paradigm the
additional information required in terms of Lemma 2 (c) can be used.

We next establish that the relationships from Corollary 1(c)-(d) are exact,
i.e we construct instances for which µHσ 6⊆ µHτ although µHσ ⊆ κHτ , indicating the
minimal forbidden sets are distinct.

Lemma 3 There are choices of H with which,

a. µHcf 6⊆ µHadm.

b. µHpr 6⊆ µHst.

c. µHpr 6⊆ µHst and EHst 6= ∅.
d. µHpr 6⊆ µHsst.

e. µHsst 6⊆ µHst.

Proof: Consider the three afs shown in Fig. 1.
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Figure 1. Non-containment properties in minimal forbidden set semantics

The af shown in Fig. 1(i) has

µHcf = {{1, 2}, {1, 3}}
µHadm = {{2}, {3}}

1Any af for which Egr(H) 6= ∅ provides such an example: the empty set is always an admis-

sible set but (in these cases) will fail to be a complete extension.



This suffices to establish (a). The af depicted in Fig. 1(ii) has EHst = ∅ and
EHpr = EHsst = {∅}. In consequence,

µHst = {∅}

while

µHpr = µHsst = {{1}, {2}, {3}}

The relationships claimed in (b) and (e) are now immediate.
Finally in the af shown under Fig. 1(iii) we have,

EHpr = {{1, 5}, {7}}
EHst = {{1, 5}}
EHsst = {{1, 5}}
µHpr = {{2}, {3}, {4}, {6}, {1, 5, 7}}
µHst = {{2}, {3}, {4}, {6}, {7}}
µHsst = {{2}, {3}, {4}, {6}, {7}}

From which (c) and (d) are easily deduced. 2

Finally we have a select number of instances where the structure of forbidden sets
is characterized exactly.

Lemma 4

a. The set µHcf is formed by the ⊆-minimal sets in

{{x, y} : 〈x, y〉 ∈ A or 〈y, x〉 ∈ A} ∪ {{x} : 〈x, x〉 ∈ A}

b. A set S ⊆ X is defenceless in H if and only if every superset T of S satisfies

T ∈ EHcf ⇒ ∃ r ∈ T− : r /∈ T+

The set µHadm is formed by the ⊆-minimal defenceless sets of H.

c. For any unique status semantics, σ,

µHσ = { {x} : x 6∈ Eσ(H)}

Proof: For (a), consider any Q ∈ µHcf and observe that any such Q has |Q| ≤ 2:
the property of Q being a forbidden set for conflict-free sets is easily seen to be
equivalent to (Q×Q)∩A 6= ∅ so that the corresponding minimal forbidden subsets
within Q are formed by those pairs {x, y} ⊆ Q linked by an attack in A together
with self-attacking arguments.

For (b) if S ⊆ X is defenceless in H not only is S itself not in EHadm but also
S cannot be extended to an admissible set. Hence S cannot form a subset of any
member of EHadm, i.e. S ∈ κHadm as required.



Part (c) is trivial. 2

It is easy to see that for each 0 ≤ k ≤ n (n = |X |) one can construct afs 〈X ,A〉 in
which there is some S ∈ Epr(〈X ,S〉) for which |S| = k. A similar “hierarchy” is,
however, not possible with respect to members of µHpr. We present a sub-optimal
variant of this claim in,

Theorem 1 For all n ≥ 4 with X = {x1, x2, . . . , xn}

∀ H(X ,A) : maxS∈µH
pr
|S| ≤ n − log2 n

∃ H(X ,A) : maxS∈µH
pr
|S| = b n/2 c

Proof: Noting that for n ∈ {2, 3} it is easy to form S ∈ µHpr having |S| = 2 (just

use A = {〈x, y〉, 〈x, z〉, 〈y, x〉} so that µHpr = {{x, y}, {x, z}}). The reader may
easily verify by inspection that for n = 3, no af having a minimal forbidden set
of size 3 can be built.

Thus, assuming n ≥ 4, we start with the upper bound claim, i.e that

max
S∈µH

pr
|S| ≤ n − log2 n

Let H = 〈X ,A〉 be any af for which |X | = n and is such that no other af, G of
n arguments has

max
S∈µG

pr
|S| > max

S∈µH
pr
|S|

Consider any set S witnessing this behaviour in 〈X ,A〉 and without loss of gen-
erality assume

S = {x1, x2, . . . , xr}

(where, trivially, r ≥ 3). It is certainly the case that S ∈ EHcf for otherwise we
find a strict subset of S which is in κHpr in contradiction to S ∈ µHpr.

For each xi ∈ S, let Si denote S \ {xi}. By definition from S ∈ µHpr we
therefore have for every i, Si /∈ κHpr and hence we can find Ti ⊆ X \S that satisfies

Si ∪ Ti ∈ EHpr

Observe that the system 〈T1, T2, · · · , Tr〉 must consist of r distinct subsets
of X \ S, i.e. Ti = Tj if and only if i = j. For suppose, without loss of generality,
T1 = T2. Then

S1 ∪ T1 ∈ EHpr and S2 ∪ T1 ∈ EHpr

so that S1∪S2∪T1 = S∪T1 ∈ EHadm contradicting S ∈ κHpr. Notice that admis-
sibility of S ∪ T1 follows since the set is conflict-free and should y ∈ X \ (S ∪ T1)
attack S ∪ T1 either it attacks some member of T1 and thence is counterattacked



by both S1 and S2 or y attacks some argument in S = S1 ∪S2 and so is defended
by either T1 or S1 (if y ∈ S−1 ) or S2 (should y ∈ S−2 ).

From this argument we obtain the (crude) upper bound claimed on the size
of the largest possible set in µHpr: there are r arguments in S and require n − r
(the size of X \ S) to be such that (at least) r distinct sets may be formed. That
is we require

2n−r ≥ r

Should r > n− log2 n then, 2n−r = 2log2 n−ε for some ε > 0, giving 2n−r = n/2ε

and since 2ε > 1 (via ε > 0) it follows that

n

2ε
< n− log2 n+ ε

as required for the upper bound.
To show that there are afs, H(X ,A) for which maxS∈µH

pr
|S| is at least

b|X |/2c, let m ≥ 2 and define

X =

{
{y1, y2, . . . , ym, z1, z2, . . . , zm} if n = 2m
{y1, y2, . . . , ym, z1, z2, . . . , zm, u} if n = 2m+ 1

We construct an af, 〈X ,A〉, for which

{y1, y2, . . . , ym} ∈ µHpr

We concentrate on the case n = 2m, since the construction for n = 2m + 1 is
identical. For the arguments, {z1, z2, . . . , zm} all of the m(m− 1) attacks,

{ 〈zi, zj〉 : 1 ≤ i 6= j ≤ m}

are added, so that at most one zk can appear in any P ∈ EHadm. The set of attacks
is completed with

{ 〈zi, yi〉 : 1 ≤ i ≤ m }

Consider the set S = {y1, y2, . . . , ym}. Certainly S /∈ EHadm since, although conflict-
free, there is no way of defending the attack on yi arising from zi. In addition,
it is not possible to find a subset T of X for which S ∪ T ∈ EHadm, since the only
arguments available to form such a set are with {z1, . . . , zm} and the resulting
S ∪ T would fail to be conflict-free.

In total these establish S ∈ κHadm. It is, however, also a minimal such set.
To see this, let Si = S \ {yi}. It is not hard to see that for each i, Si /∈ κHadm:
the set Si ∪{zi} being in EHadm (in fact it is a prefered extension). The argument
zi defends itself from attacks stemming from zj (j 6= i) and, furthermore defends
yj ∈ Si from the attack on it by zj . Thus Si ∪ {zi} is both conflict-free and



defensive, i.e. in EHadm. This establishes that no strict subset of S belongs to κHadm
while S itself is in κHadm. It follows that S ∈ µHadm with |S| = m = b n/2 c. 2

By developing consequences of the idea of “conflict-sensitivity” introduced in [10]
we can, in fact, show that this lower bound is optimal, i.e. for every H(X ,A),
maxS∈µH

pr
|S| ≤ b|X |/2c. We omit the details on account of limited space.

4. Computational Complexity of Forbidden Set Problems

Given the formal definition of forbidden set it is easy to classify the complexity
of membership in κHσ on the basis of results from [6,9,11]. Thus,

Fact 1 Given H = 〈X ,A〉 and S ⊆ X deciding if S ∈ κHσ is

in p if σ ∈ {cf,nve,gr}
conp–complete if σ ∈ {adm,pr, st}
Πp

2–complete if σ ∈ {sst}

The last two cases holding even if S contains just a single argument.

Proof: Polynomial time methods for σ ∈ {cf,nve} cases simply involve checking
if S×S has a non-empty intersection with A, i.e. some attack involves arguments
in S. Similarly for grounded semantics S ∈ κHgr if and only if S contains an argu-
ment not belonging to the grounded extension. This being efficiently computable
deciding S ∈ κHgr is also so. When S = {x} (i.e. a single argument) the decision
S ∈ κHσ is simply a rephrasing of ¬caσ(H, x). The complexity classifcation for
{adm,pr, st} is now immediate from Dimopoulos and Torres [6] while that of
{sst} follows from Dvorak and Woltran [11]. 2

While obtaining exact complexity results for deciding membership of κHσ is
straightforward using well-known results, the question of membership of the min-
imal forbidden sets turns out to be rather less so. Although the single argument
instance {x} ∈ µHσ has identical complexity to its general counterpart {x} ∈ κHσ
for σ ∈ {adm,pr, sst} the reason for this is that EHσ 6= ∅ for these semantics.
From which it follows that

({x} ∈ µHσ ) ⇔ ({x} ∈ κHσ ) ⇔ ¬caσ(H, x)

This argument, however, fails to apply whenever S contains at least two argu-
ments. We can observe, however, that

S ∈ µHσ ⇔ (S ∈ κHσ ) ∧

 ∧
y∈S

S \ {y} 6∈ κHσ


That is we do not need to test every subset of S in order to confirm its membership
of µHσ .

Recalling that the complexity class dp is defined by those decision problems,
Q whose positive instance are both positive instances of some decision problem,



L1 belonging to np and positive instances of some decision problem, L2, in conp,
the following holds for verifying membership of a given set S in µHσ .

Theorem 2

a. For σ ∈ {pr,adm,com}, given 〈S, 〈X ,A〉〉 deciding if S ∈ µHσ for the af
H = 〈X ,A〉 is dp–complete, even for instances 〈S, 〈X ,A〉〉 in which |S| = 2.

b. For stable semantics deciding S ∈ µHst is dp–complete even with instances
having |S| = 1.

Proof: (Outline) In the case of (a), we recall from Corollary 1(a) that κHadm =
κHpr = κHcom so it suffices to demonstrate the upper bound for σ = adm. Given
〈S, 〈X ,A〉〉 with S ⊆ X , S ∈ µHadm requires,

∃ 〈T1, T2, . . . , Tk〉 : Ti ⊆ X \ S and Ti ∪ S \ {yi} ∈ EHadm

capturing the condition that every strict subset of S can be extended to an ad-
missible set. In addition, S itself must be a forbidden set, i.e.

∀ U ⊆ X \ S S ∪ U /∈ EHadm

And now defining

L1 = { 〈X ,A, S〉 : ∃〈T1, . . . , T|S|〉 Ti ∪ S \ {yi} ∈ EHadm}
L2 = { 〈X ,A, S〉 : ∀ U ⊇ S U /∈ EHadm}

we see that S ∈ µHadm if and only if 〈H, S〉 ∈ L1∩L2. Since L1 ∈ np and L2 ∈ conp
we deduce S ∈ µHadm can be decided in dp.

To establish dp–hardness we present a reduction to instances 〈〈X ,A〉, S〉 from
instances 〈ϕ1, ϕ2〉 of the canonical dp–complete problem sat-unsat in which
these are accepted if and only if the cnf, ϕ1 is satisfiable and the cnf ϕ2 is
unsatisfiable. Given an instance 〈ϕ1, ϕ2〉 of sat-unsat H is formed by combining
three copies of the “standard translation” of cnf formulae to afs: two of these
with designated arguments ϕ1

1 and ϕ2
1 capturing the structure of ϕ1; the other,

tied with the argument ϕ2, linked with the structure of ϕ2. The framework uses
four additional arguments, {p1, p2, q1, q2} which are configured in a directed cycle

ϕ1
1 → p1 → q1 → ϕ2

1 → q2 → p2 → ϕ1
1

Finally the arguments {q1, p2} are attacked by ϕ2.
It can be shown that 〈ϕ1, ϕ2〉 is accepted as an instance of sat-unsat if and

only if {ϕ1
1, ϕ

2
1} ∈ µHpr, i.e. there are admissible sets, S1 and S2 for which ϕ1

1 ∈ S1

and ϕ2
1 ∈ S2, however no admissible set, S, with {ϕ1

1, ϕ
2
1} ⊆ S.

We omit the proof of (b) due to space limitations. 2



5. Conclusions

We have presented an alternative view of extension-based semantics within Dung’s
af model: rather than describing solutions in terms of (positive) membership of
a set we focus on capturing semantics by describing those sets which cannot form
part of a solution. We have demonstrated the containment relationships between
extension sets determine containments between the corresponding forbidden set
structures and derived some preliminary complexity results on verification. To
conclude we briefly mention some further directions. In addition to analogues of
generic studies of extension based semantics within the forbidden set paradigm
(e.g. realizability in the style of Dunne et. al. [10]) one has directions specific
to the operations κ and µ defined earlier. In particular since κ(S) and µ(S) are
themeselves sets of subsets, in principle these operations could be iterated. While
the structure of κ(κ(S)) is uninteresting (being either ∅ or 2X ) that of µ(µ(S))
appears non-trivial.
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