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Discovering the mutational events that fuel adaptation to environmental change remains an important 

challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial 

melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the 

common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction 

between bird predation and coal pollution
1
. The carbonaria locus has been coarsely localised to a 200 

kilobase region but the specific identity and nature of the sequence difference controlling the carbonaria-

typica polymorphism, and the gene it influences, are unknown
2
. Here we show that the mutation event giving 

rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element 

(TE) into the first intron of the gene cortex. Statistical inference based on the distribution of recombined 

carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the 

historical record. We have begun to dissect the mode of action of the carbonaria-TE by showing that it 

increases the abundance of a cortex transcript, whose protein product plays an important role in cell-cycle 

regulation, during early wing disc development. Our findings fill a significant knowledge gap in the iconic 

example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in 

response to natural selection. The discovery that the mutation itself is a TE will stimulate further debate 

about the importance of ‘jumping genes’ as a source of major phenotypic novelty
3
. 

Ecological genetics, the study of polymorphism and fitness in natural populations, has been revitalised through the 

application of next-generation sequencing technology to open up what were previously treated as genetic black 

boxes
4,5

. Growing appreciation of the loci and developmental networks that generate adaptive phenotypic variation
6
 

promises to answer fundamental questions about the genetic architecture of adaptation, such as the prevalence of 

genomic hotspots for adaptation
7
, the relative contribution of major vs minor effect mutations

8
, and the structural 

nature and mode of action of beneficial mutations
9
. The significance of characterising the identity and origin of 

functional sequence polymorphisms is in providing an explicit link between the mutation process and natural 

selection. In this context, whilst industrial melanism in the peppered moth has retained its appeal as a graphic 

example of the spread of a novel mutant rendered favourable by a major change in the environment, the crucial piece 

of the puzzle that has been missing is the molecular identity of the causal mutation(s)
10

. 

A combined linkage and association mapping approach previously localised the carbonaria locus to a < 400 kb 

region orthologous to Bombyx mori chromosome 17 (loci b-d)
2
. Thirteen genes and two miRNAs occur within this 

interval, none of which were known to be involved in wing pattern development or melanisation. By extending the 

association mapping approach to a larger population sample and more closely spaced genetic markers (Methods), 

the carbonaria candidate region was narrowed to ~100 kb (Fig. 1a). The candidate region resides entirely within the 

span of one gene – the ortholog of Drosophila ‘cortex’ (cort), whose only known function is as a cell-cycle regulator 

during meiosis
11

. In B. betularia, cortex consists of 8 non-first exons, multiple alternative first exons (of which only two, 

1A and 1B, are strongly expressed in developing wing discs), and a very large first intron (Fig. 1b). 

The rapid spread of carbonaria gave rise to strong linkage disequilibrium (LD)
2
, such that many sequence 

variants are associated with the carbonaria phenotype. This poses a challenge for isolating the specific causal 

variant(s). We reasoned that if the carbonaria mutation arose on an ancestral typica haplotype
2
, the hitchhiking 

variants should in principle also be present at some frequency within the typica population, leaving the causal variants 

as the only ones unique to carbonaria. High quality contiguous reference sequences were assembled from tiled BAC 

and fosmid clones, resulting in one carbonaria and three different typica core haplotypes (Methods; Extended Data 

Fig. 1). Alignment of these sequences (Supplementary Text 1) revealed 87 melanisation candidate polymorphisms  

(Fig. 1b; Supplementary Table 1), concentrated within the large first intron of cortex (69-91 kb, depending on 

haplotype). Eighty-five candidates were eliminated using an increasing number of typica individuals to exclude rare 

variants. A single nucleotide polymorphism (carbonaria_candidate_25) was eventually excluded on the basis of one 

individual out of 283 typica, leaving a very large insert (carbonaria_candidate_45) as the only remaining candidate. 
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Figure 1: The carbonaria candidate region, and the position and structure of the carbonaria mutation. a,~400 

kb candidate region (bounded by marker loci b and d 
2
) indicating gene content and genotyping positions (vertical 

lines in the continuous grey bar). Intron-exon structure and orientation are illustrated separately for each gene 

(annotated in GenBank KT182637). b, Refined candidate region including candidate polymorphisms (lines on the grey 

bar). The intron-exon structure of cortex is shown for carbonaria (black moth) and typica (speckled moth), highlighting 

the presence of a large (22 kb) indel (orange) within the first intron. Exons 1A and 1B are alternative transcription 

starts followed by the shared exons 2-9. c, The only exclusive carbonaria-typica polymorphism within the candidate 

region. The structure of the insert, shown in the carbonaria sequence, corresponds to a class II DNA transposon, with 

direct repeats resulting from target site duplication (black nucleotides) next to inverted repeats (red nucleotides). 

Typica haplotypes (lower sequence) lack the 4-base target site duplication, the inverted repeats and the core insert 

sequence. The transposon consists of ~9 kb tandemly repeated 2⅓ times (RU1-RU3), with three short tandem 

subrepeat units (green dots, SRU1-SRU9) within each RU. 

 

The insert was found to be present in 105 out of 110 fully black moths (wild caught in the UK since 2002) and absent 

in all (283) typica tested (Methods; Extended Data Fig. 2). Consistent with local carbonaria morph frequencies of 10-

30%
12

, 2/105 individuals were homozygous for the carbonaria insert. Five individuals morphologically 

indistinguishable from carbonaria did not possess the carbonaria insert; they do not present any strong haplotype 

association based on this set of candidate loci but do all differ from the core carbonaria haplotype at many positions. 

Our interpretation is that these individuals are hetero- or homo-zygous for the most extreme of the insularia alleles 

(intermediate phenotypes), which are known to occasionally produce carbonaria-like phenotypes
13,14

 and segregate 

as alleles of the carbonaria locus in classical genetics crosses
14

. Conversely, none of the genotyped insularia morphs 

(31 individuals, covering the full spectrum of variation from i1 to i3
14

) contain the carbonaria insert (Extended Data Fig. 

2). We conclude that the large insert is the carbonaria mutation. 

The carbonaria insert is 21,925 nt in length, composed of a ~9 kb essentially non-repetitive sequence (except 

for ~370 nt at the repeat unit junctions) tandemly repeated approximately two and one-third times, with only minor 

differences among the repeats (Fig. 1c). The insert bears the hallmark of a class II (DNA cut-and-paste) transposable 

element: short inverted repeats (6 bp) and duplication of the (4 bp) target site present in typica haplotypes (Extended 

Data Fig. 3). We estimate ~255 and ~60 genomic copies, respectively, of the 9 kb carbonaria-TE repeat unit (RU) and 

RU junctions, implying relatively few genomic copies of the complete carb-TE. No nucleotide or translated BLAST hits 

were found in any relevant database, with the exception of B. betularia RNAseq reads (NCBI: SRX371328), indicating 

that the carb-TE RU is Biston-specific. 

In order to examine patterns of recombination, which provide insight into the evolutionary dynamics of a 

chromosomal region, we genotyped the same 105 carbonaria and a sub-set of 37 typica, plus 35 insularia, at 119 

polymorphic loci within 28 PCR fragments distributed along ~200 kb either side of the carb-TE (Fig. 1a). Diploid 

genotypes were phased, and the resulting haplotypes divided into those with and without the carb-TE. The sequence 

identity of the ancestral carbonaria haplotype, whose core was known from the BAC/fosmid work, was extended by 

assigning allelic state at each marker locus to ancestral carbonaria or typica/insularia. Fifty percent of carb-TE 

haplotypes have retained the ancestral carbonaria haplotype across the full 400 kb window, the remainder showing 
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varying degrees of recombination with typica haplotypes on one or both sides of the causal mutation (Fig. 2a). The 

recent selective sweep
15

 is reflected by declining LD between the carbonaria locus and marker loci with increasing 

genetic distance (Fig. 2b). Tenure of the carb-TE has been transient, having declined from ~99% to less than 5% in 

its industrial heartland since 1970
16

. It has nevertheless left a substantial trace of its former abundance in the form of 

ancestral carbonaria haplotype blocks introgressed into typica and insularia haplotypes (Fig. 2c), consistent with the 

simulation-based expectation. 

1848 Manchester is generally regarded as the first reported sighting of the carbonaria form
1
, although the 

wording of the record implies that it was rare but not completely unknown at this time. Establishing how long before 

this date the carbonaria mutation occurred is complicated because it could have existed undetected at low frequency 

for hundreds of years (Supplementary Methods). Our approach to this problem has been to independently infer the 

age of the mutation event by considering the erosion of the ancestral carbonaria haplotype due to genetic 

recombination and mutation. One million simulated time trajectories of the carbonaria phenotype were randomly 

drawn according to their fit to historical frequency data (Extended Data Fig. 4). Based on these trajectories, 

recombination patterns were simulated using an empirical estimate of recombination rate and compared to the 

observed recombination pattern of the carbonaria haplotypes. The probability density for the date of the carb-TE 

mutation event (Fig. 2d) is highly skewed (median = 1763, interquartile range = 1681-1806) with a maximum 

likelihood at 1819, a date highly consistent with a detectable frequency being achieved in the mid-1840s. 

 

 

 
Figure 2: Recombination pattern and ageing of 

the carb-TE mutation. a, Nearest recombination 

sites ~200 kb either side of the carb-TE (at position 

0) in a sample of 107 carbonaria haplotypes, i.e. 

carb-TE present (orange), with non-carbonaria 

(typica and insularia) haplotypes (light grey). Dark 

grey areas indicate boundaries within which 

recombination occurred. b, Multilocus linkage 

disequilibrium (rd) across the same sequence 

window among carbonaria and non-carbonaria 

haplotypes. Grey area indicates the widest 99% 

confidence region, across loci, for the null 

hypothesis (rd ≈ 0). Red lines represent the 

simulation-based upper bound under the extreme 

assumption that all alleles defining the carbonaria 

haplotype were initially exclusive to it (mean and 

90% interval). c, Introgression of the ancestral 

carbonaria haplotype (black) into non-carbonaria 

haplotypes (grey), i.e. carb-TE absent (n = 144). 

Red lines represent the simulation-based 

expectations (mean and 90% interval). d, 

Probability density for the age of the carb-TE 

mutation inferred from the recombination pattern in 

the carbonaria haplotypes (maximum density at 

1819 shown by dotted line; first record of 

carbonaria in 1848 shown by dashed line). 

The position of the carb-TE suggests that its effect on melanisation is achieved through altering the expression of 

cortex, through one of several potential mechanisms
17

 (incorporation of any part of carb-TE into cortex transcripts has 

been excluded). Biston cortex is characterised by numerous splice isoforms and alternative first exons; we focus on 

the population of transcripts initiated by exons 1A and 1B, as the other first exons are absent or only weakly 

expressed in Biston wing discs, and did not exhibit morph-specific differences (Extended Data Fig. 5). The global 

pattern of splice isoforms showed neither consistent presence/absence or crude relative abundance differences 

among morphs for any developmental stage (Extended Data Fig. 6 and 7). Cumulative expression across all isoforms 

(Fig. 3a) increases by an order of magnitude between the 6
th
 larval instar (La6) and day 4 prepupa (Cr4), coinciding 

with a phase of rapid wing disc morphogenesis (Fig. 3b), falling back to a low level by day 6 prepupa (Cr6) – with no 

clear difference among morphs (t/t vs c/t, P > 0.5). To exclude interference by potentially non-functional isoforms, we 

targeted full transcripts only, either starting with 1A or 1B. The trend for the abundance of 1B full transcript, consistent 

across several families with different genetic backgrounds, is c/c > c/t > t/t, most pronounced at Cr4 (Fig. 3c and 
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Extended Data Fig. 8a). 1A-initiated full transcript, which is in general an order of magnitude less abundant than 1B, 

does not show a significant difference between genotypes (Fig. 3d and Extended Data Fig. 8b). 

 

 

 
Figure 3: Relative expression of cortex in 

developing wings of B. betularia. a, Average 

expression (across typica and carbonaria morphs) 

of all cortex splice variants (exons 7-9) relative to 

the control gene Spectrin alpha chain in wing discs 

at different developmental stages (La6: 6
th
 instar 

larvae, Cr2: day 2 crawler, Pu2: day 2 pupae, 

PDP: post diapause pupae). b, Scaled images of 

B. betularia forewings at different stages. c and d, 

Relative expression of cortex 1B (c) and 1A (d) full 

transcript in developing wings of the three 

carbonaria-locus genotypes (cc, ct and tt) 

produced within the progeny of a ct x ct cross (no 

data for cc at Cr2). Genotypes differ significantly 

for 1B full transcript (P < 0.001), whereas 

genotypes do not differ for 1A full transcript (P > 

0.2). (Note the differing y-axis scales). Equivalent 

graphs for the progeny of ct x tt crosses (which 

lack the cc genotype) are presented in Extended 

Data Fig. 8. 

 

The role of cortex in wing pattern melanisation is not obvious. In Drosophila, cortex has been primarily associated with 

meiosis in ovaries
11

 (several cortex transcripts are expressed in Biston ovaries and testes, Extended Data Fig. 5). 

Molecular function is suggested by phylogenetic analysis which indicates that Biston cortex occurs in a lepidopteran 

sub-group within an insect-specific clade of a protein family containing cell-cycle regulators Cdc20 and Cdh1, 

encoded by Fzy and Fizzy-related in Drosophila (Extended Data Fig. 9b). These proteins help regulate fundamental 

cell division processes such as cytokinesis by presenting substrates to, and activating, the anaphase-promoting 

complex or cyclosome (APC/C), which ubiquitinates cell-cycle proteins, thereby earmarking them for degradation. 

Substrate recognition is by binding to degrons, short linear motifs such as the D box and KEN box. Sequence 

conservation across lepidopterans and non-lepidopterans reveals a single binding site in cortex (Extended Data Fig. 

9c) which likely binds the D box-like
18

 degron LxExxxN
19

. This degron binding capability is predicted for both of the full 

isoforms (1A [441aa] and 1B [407aa], although 1B apparently lacks the N-terminal C box usually required for APC/C 

binding) but not for the alternative isoforms (Extended Data Table 1). These data demonstrate orthology and support 

shared function between cortex in D. melanogaster and B. betularia, although the molecular connection between cell-

cycle protein degradation at the APC/C and melanisation remains to be determined. 

Our results suggest that carb-TE impacts adult melanisation pattern through increasing the abundance of 

cortex, perhaps altering the course of scale cell heterochrony, with dominance arising through a threshold effect (1B 

full transcript is more abundant in c/c than c/t). How the carb-TE promotes cortex expression is unknown but the 

general mechanism is predicted to allow for the production of insularia morphs putatively controlled by different 

mutations within cortex. In combination with parallel findings in Heliconius butterflies
20

, our results support the idea 

that cortex is a conserved developmental node for generating colour pattern variation in evolutionarily diverse 

Lepidoptera. It may, however, not be the only gene in this region involved in patterning, as suggested by recent work 

on Bombyx mori mutant, Black moth, which has a similar phenotype to B. betularia carbonaria
21

, although none of the 

genes implicated are differentially expressed among carbonaria and typica wing discs. 

The carb-TE is a spectacular example of an adaptively advantageous transposon
22-24

, its discovery filling a 

fundamental gap in the peppered moth story and furthering our appreciation of the mechanism underpinning rapid 

adaptation. A consensus on the general importance of TEs for adaptive evolution has yet to emerge
3,25

. Over longer 

time frames, phenotypic effects of TEs may be obscured by imprecise excision that leaves a minimal trace of the TE 

whilst retaining the mutant (adaptive) phenotype
26

. By contrast, we have shown that the carb-TE is young, 

approximately 200 years (generations) old, during which time it has gone from a single mutation to near fixation 

(regionally) to near extinction – driven by a pulse of environmental change. 
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Methods 

 

Wild samples 

Moths used for fine mapping and ageing analysis came from a northwest England – north Wales transect sampled in 

2002 
12

, with 12 carbonaria and 6 insularia specimens additionally collected in 2005-2009. 

 

Reference sequences 

An extended BAC tiling path was constructed using mapped B. betularia genes 
27

, B. mori nscaf2829 (SilkDB) 

orthologs, and BAC-end sequences as probes. Combinatorial PCR using BAC-end sequences and internal gene 

anchors were used to determine the relative positions of the BACs. Fosmids were used to bridge a gap. A minimal 

tiling path was sequenced as a 3 kb mate-pair library with Roche 454 GS FLX Titanium. Reads were assembled into 

contigs using Newbler and manually scaffolded using tiled BAC-end sequences and exon order of genes spanning 

multiple contigs as anchors. The scaffold covers a 3.6 Mb region spanning from the mapped genes myosin heavy 

chain (myosin HC) to leucine-rich transmembrane protein (LRTP) with the carbonaria polymorphism located towards 

the centre. A recombination rate estimate within this region of 2.9 cM/Mb was obtained from a total of 350 offspring in 

8 crosses screened for recombination between the ends of the 3.6 Mb interval. Three typica and one carbonaria 

haplotype sequences were reconstructed using BACs and fosmids for the region spanning locus b to d (Fig. 1a). 

Clones were assigned to haplotypes based on co-segregation of genotypes and phenotypes between parents and 

sibs of the heterozygous (carbonaria-typica) individuals used to generate the BAC (family 67) and fosmid (family 11) 

libraries. Small assembly gaps caused by repetitive sections were bridged using long capillary Sanger sequences; 

fosmid clone 25H14, containing the large repetitive TE, was sequenced using Pacific Biosystems RS II to 300x 

coverage using P4-C2 chemistry and assembled using HGAP v2 (Pacific Biosystems). Homopolymer length variation 

often caused by 454 errors rather than true polymorphisms was verified by Sanger sequencing. 

A draft genome assembly was generated from an individual homozygous for the carbonaria region. Full-sib 

carbonaria-typica heterozygotes were crossed (family 135) to produce homozygous carbonaria offspring, as well as 

heterozygotes and homozygous typica. The carbonaria homozygotes were identified using alleles closely linked to the 

carbonaria locus, with more distant loci on either side used to ensure that the haplotype had not been disrupted by 

recombination. DNA was prepared by phenol-chloroform extraction from a final instar male larva with gut removed. 

The genome was sequenced at ~3.5X coverage on a 454 FLX+ platform and a draft assembly constructed using 

Newbler. The genome assembly was used for polymorphism discovery, and in tiling path construction using homology 

to B. mori. Single read coverage was used to detect repetitive regions, aiding in single-target primer design, and to 

confirm the repetitive nature of the carb-TE. 

The gene content of the b-d interval was examined by comparing its sequence against GenBank proteins, ESTs, 

transcriptomes, and annotated genes in the orthologous region in other Lepidoptera. Tblastx against these 

orthologous regions and Augustus 
28

 gene prediction were used to detect potentially overlooked genes. All genes 

were manually annotated and (except for vcpl) confirmed using cDNA. The annotation of 11 genes (not including 

cortex) was also subsequently confirmed against a B. betularia transcriptome (GenBank # SRX371328) assembled 

with Trinity 
29

. MicroRNAs were found using miRBase with blastn including hairpin precursors. BLAST (blastn, blastx) 

searches for carb-TE-like sequences were performed on NCBI databases (GenBank nt, protein, EST, transcriptome), 

independently curated lepidopteran genome assemblies (e.g. SilkDB), and RepBase (19.09). 

 

Fine mapping 

The interval containing the carbonaria polymorphism was narrowed down to a section bordered on both sides by 

evidence of carbonaria haplotype breakdown caused by recombination. Polymorphisms at regular intervals in the b-d 

region (Fig. 1a; Supplementary Table 2) were genotyped in wild-caught carbonaria, typica and insularia (105, 33 and 

30 individuals, respectively). We conservatively used only homozygous genotypes to set these boundaries since the 

dominance of carbonaria obscures the assignment of alleles in heterozygous genotypes to a certain morph haplotype. 

The four contiguous haplotype sequences (one carbonaria, three typica) constructed from BACs and fosmids were 

aligned between these narrowed down boundaries and examined for polymorphisms that were distinct in the 

carbonaria haplotype relative to all three typica haplotypes, resulting in 87 carbonaria candidate polymorphisms 

(Extended Data Fig. 1, Supplementary Table 1). With the exception of carbonaria_candidate_45, wild-caught typica 

were genotyped at all loci by means of PCR-RFLP, PCR-indel or sequencing. Dependent on the frequency of the 

candidate alleles in the typica sample, 16 to 283 typica (32 to 566 typica haplotypes) were used for exclusion. 

Carbonaria_candidate_25 was present in only one out of 566 typica haplotypes. The typica phenotype of this 
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individual (12-2002-01) was confirmed, as was the presence of carbonaria_candidate_25 allele from independently 

extracted DNA. A very large indel, later identified as the true carbonaria polymorphism (carbonaria_candidate_45), 

that could not be bridged by PCR required an alternative present/absent screening approach which also provides a 

positive control for absence haplotypes (to distinguish insert absence from PCR failure). A three-primer PCR was 

designed with two primers flanking the indel and a third within the insert, relatively close to the indel boundary 

(Extended Data Fig. 2). The assay was validated using a family known to include all three genotypes (Family 135, 

Extended Data Fig. 2). 

 

Inferring haplotypes and the age of the carbonaria mutation 

A set of 177 individuals, including 105 carbonaria individuals was genotyped at 119 polymorphic loci within 28 PCR 

products, stretching across ~400 kb (Supplementary Table 2). Carbonaria haplotypes were inferred using SHAPEIT 
30

 

and the position (interval) of recombination breakpoints inferred based on two or more consecutive phase-switched 

polymorphisms. High repeatability of the phasing outcomes was verified by resampling, and switch errors minimised 

by including known haplotypes and classifying only two types (melanic and non-melanic). Indices of multilocus linkage 

disequilibrium (rd) were calculated on polymorphisms within each PCR fragment and the carbonaria locus across the 

400 kb interval 
31

. Their significance was assessed using 999 Monte-Carlo permutations. The pattern of introgression 

of the carbonaria haplotype into background haplotypes (i.e., typica and insularia morph alleles) was assessed using 

ChromoPainter v2 
32

 to search for contiguous blocks that match the carbonaria haplotype, thus generating the 

‘expectation painting’ of background haplotypes. 

The age of the carbonaria mutation was inferred with a simulation-based approach. The analysis was performed in 

three steps. Firstly, 1,000,000 time-forward trajectories of the carbonaria phenotype were sampled, using a 

Metropolis-Hastings algorithm, depending on their likelihood given historical phenotypic frequencies (Supplementary 

Table 3), and conditional to their starting date (x0) and population size (N). Secondly, recombination patterns were 

simulated using the sampled trajectories, in populations of size N, and a fixed recombination rate of 2.9 cM/Mb (males 

only). This process yielded sample distributions of the closest recombination breakpoint relative to the carbonaria 

locus. Finally, the likelihood of the simulated distributions given the empirical recombination pattern was computed 

and averaged out across simulations in order to estimate the probability density of the mutation age (x0). Full details in 

Supplementary Methods. 

 

Expression and alternative transcripts of cortex 

Offspring from either heterozygous carbonaria/typica (c/t) x homozygous t/t crosses segregating 1:1, or c/t x c/t 

crosses segregating 1 c/c: 2 c/t: 1 t/t, were used for end-point reverse transcription PCR (RT-PCR) and real time 

qPCR (RT-qPCR) experiments. Caterpillars were reared on grey willow (Salix cinerea). Wing discs (forewings and 

hindwings) were dissected from final (6
th
) instar larvae, crawlers or prepupae (day 2-6 from the start of crawling 

stage), pre-diapause pupae (day 2-8 from pupation, at which point they have entered diapause) and post-diapause 

pupae (wing discs staged into six categories), and stored in RNAlater (Ambion). RNA was extracted with TRIzol and 

cDNA synthesized with SuperScript III (Invitrogen) – oligo(dT). The genotype-phenotype (adult morph) of each wing 

disc specimen was determined with the carb-TE three primer PCR (and verified by sequencing a linked SNP, 

carbonaria_candidate_25). Relative abundance and RT-qPCR data were analysed using Generalized Linear (mixed) 

Models. See Extended Data Fig. 8c for sample sizes. 

RT-qPCR experiments were designed to measure the relative abundance of cortex transcripts, either of all transcripts 

combined (using primers in exons 7 and 9) or full transcripts only (primers in exons 1A-3 and 1B-3, as exon 3 is 

effectively exclusive to the full transcripts [Extended Data Fig. 7]). DNAse treatment was not performed, but for exons 

7-9 RT-qPCR co-amplification of gDNA was prevented by positioning the reverse primer on the exon 8-9 boundary 

(this was not a concern for exons 1-3 RT-qPCRs because the large first intron precluded gDNA amplification). We 

chose 40S ribosomal protein S3a 
33

 and Spectrin alpha chain 
34

 as two single-copy autosomal housekeeping genes. 

Primer sequences are listed in Supplementary Table 4. Annealing temperatures were optimised to 66°C and 

amplicons were confirmed to produce single bands on agarose gels. cDNA was diluted 1:1 with water to allow 

template volumes within the accuracy range of the pipette used. RT-qPCRs for target and control were run in three 

replicates using Kapa SYBR Fast qPCR Universal under recommended conditions on a Roche LightCycler 480 with 

45 cycles and a melting curve. Since both control genes gave similar results, only Spectrin alpha chain was used for 

the entire sample. 
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Alternative transcription starts of cortex were searched for using 5’ RACE on RNA extracted from 15 wing disc 

samples covering a wide range of stages and c/c, c/t, t/t genotypes, and additionally from whole pupa and testes. 

Cortex-specific cDNA was synthesised with SuperScript III and a gene-specific negative strand primer; 5' cytosine 

extension was added using terminal transferase (NEB) and dCTPs. The single-stranded cDNA was made double-

stranded and a target sequence for amplification incorporated in a single extension cycle (LongAmp Hot Start, NEB) 

with an oligo containing a 5' primer recognition site and a 3' poly-G tail. PCR was performed using a forward primer 

matching the synthetic 5' end and a nested cortex-specific reverse. The amplicons were sequenced using a second 

nested primer. The alternative first exons were confirmed by Sanger sequencing with forward primers inside the new-

found exons to generate clean sequence without the background noise commonly observed with 5' RACE. 

The complete pattern of cortex splice variation was examined with end-point RT-PCR using primers 

Bb_cort_exon1A_F, or Bb_cort_exon1B_F, and Bb_cort_exon9_R (primer sequences in Supplementary Table 4). 

PCR conditions were 60°C annealing, 40 cycles, 75 s extension, 25 µl total volume, 3 µl wing disc cDNA, LongAmp 

Taq DNA polymerase (NEB). A Fragment Analyzer (Advanced Analytical) was used to estimate the size and relative 

abundance of amplicons within each individual, after normalising samples to a concentration range of ~1-10 ng/µl. 

The concentration of each fragment peak was calculated using PROSize (Advanced Analytical), and the relative 

abundance was computed as the concentration of a splice variant divided by the sum of all fragment concentrations 

within that individual profile. The cortex splice variant amplicons were sequenced as two pools (t/t and c/t) using 

Pacific Biosystems RS II with P6-C4 chemistry and the insert reads extracted using smrtportal (Pacific Biosystems). 

Reads that contained exon 1A or 1B and exon 9 were used to validate the sequence composition and relative 

abundance of spliced gene isoforms. 

No part of carb-TE was detected in cortex transcripts, either with PacBio sequencing or with PCR using various 

primer combinations where one primer lies within the transposon and the other matches a cortex exon. However, 

carb-TE-like partial sequence was amplified (with primers within repeat units) from both typica and carbonaria morph 

cDNA synthesised using carb-TE primers, implying that these RNA sequences are transcribed from non-allelic 

homologs of the carb-TE. 

 

Expression of alternative candidate genes 

Two Bombyx mori adult melanism/patterning mutants, Black moth (Bm) and Wild wing spot (Ws), were recently 

mapped to a region partially orthologous to the carbonaria interval 
21

. In this study, end-point PCR showed complete 

absence of cortex expression in pupal stages and adults while potentially important prepupal stages were not 

examined. Three neighbouring genes (BGIBMGA005658, 5657, 5655) did show convincing differences between wild 

type and both mutants even though these genes lie outside the Ws mapping interval. We performed equivalent end-

point reverse transcription PCR in B. betularia for the three orthologs gloverin-2, menm and lrrp to determine whether 

morph – gene expression associations existed between carbonaria and typica (comparing c/t and t/t genotypes for 

wing disc stages: Cr4, Cr6, Pu2, Pu4 and PDP). PCR conditions as for cortex 1A/1B-9 end-point PCRs, except 45 

seconds extension (primer sequences in Supplementary Table 4). 

 

Cortex phylogeny and protein modelling 

Cortex sequences derived from database searches (Supplementary Table 5) were supplemented with a selection of 

Chd1/Cdc20/Fizzy sequences from model organisms and the set aligned with MAFFT 
35

 (Supplementary Text 2). The 

central propeller domain was isolated and used for bootstrapped phylogenetic analysis with MEGA 6 
36

 employing its 

Maximum Likelihood algorithm and the JTT matrix-based model. Any gapped positions were ignored. Homology 

models of B. betularia and D. melanogaster cortex proteins were made with MODELLER 
37

 and Consurf 
38

 used to 

map protein sequence conservation to their respective surfaces, among lepidopteran or non-lepidopteran cortex 

proteins. 

 

Accession codes 

Typica 1 haplotype (b-d interval) reference sequence (KT182637); Biston betularia whole genome sequence NCBI 
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sites have no impact on the phylogenetic tree presented in Extended Data Fig. 9 since it was calculated using only 

the propeller domain (Extended Data Fig. 9a). 
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Extended data figures and tables 

 

 
 

Extended Data Figure 1: BAC and fosmid haplotype tilepaths used to define carbonaria candidate polymorphisms. a, 

BAC and fosmid tilepaths of the carbonaria haplotype (black bars) and three typica haplotypes (different shades of 

grey). Two small regions not covered by BACs or fosmids were reconstructed using parents and offspring sequences 

from the same heterozygous family (FAM11). The positions of loci b and d (cf. Fig. 1) are indicated by the dashed 

lines, and the carbonaria candidate region is highlighted blue. Fosmid 25H14 containing carb-TE appears small 

because it is aligned against typica reference sequence which does not include the carb-TE. b, Alignment of three 

typica haplotypes against the carbonaria haplotype for a short section within the carbonaria candidate region, showing 

SNPs (dots are nucleotides identical to the carbonaria sequence). Polymorphisms where all three typica alleles differ 

from carbonaria were treated as carbonaria candidates; polymorphisms where the same allele occurs in carbonaria 

and at least one typica were excluded from further consideration. 
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Extended Data Figure 2: Validation of the 3-primer PCR carb-TE genotyping assay in a family and its application in a 

variety of wild-caught moths. a, Schematic alignment of carbonaria and typica haplotypes showing the position of the 

three primers (A, B and C, not to scale) used in the same PCR to detect the presence and absence of the 22 kb carb-

TE. In the presence of carb-TE, primers A and C are too far apart to generate a product; the repeat structure of carb-

TE presents three annealing sites for primer B but only the shortest primer B-C combination is amplified when using 

45 s extension (primer sequences are listed in Supplementary Table 1). b, carb-TE genotypes for father (lane 2), 

mother (lane 3) and 15 offspring (lanes 4-18); the two brightest bands in the size ladder are 300 bp and 1 kb (lane 1). 

The parents were full-sibs and known to be heterozygous (c/t), and therefore expected to generate c/c, c/t and t/t 

offspring. The larger band (primers B-C) indicates the presence of the carb-TE, the smaller band (primers A-C) 

absence (typica allele in this family); heterozygotes have both bands. The individual in lane 15 (135F1-12) is the 

homozygous male used for wgs. c, Presence/absence of carb-TE in a carbonaria haplotype fosmid clone (lane 2), 

three different typica haplotype clones (lanes 3-5, one fosmid, two BACs), wild carbonaria homozygotes (lanes 6-7), 

wild carbonaria heterozygotes (lanes 8-10), typica with a flanking haplotype similar to the carbonaria haplotype but 

lacking the carb-TE (lanes 11-13), light insularia (lanes 14-16), intermediate insularia (lanes 17-19), dark insularia 

(lanes 20-22), carbonaria-like insularia (lanes 23-25). 
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Extended Data Figure 3: Hypothetical reconstruction of the birth of the carbonaria allele. Class II non-autonomous 

DNA transposition is mediated by two transposase monomers linked to terminal inverted repeats (TIR). The 

monomers form a dimer at the target site which is cleaved to leave short direct repeated overhangs. The transposable 

element including TIRs is inserted and finally the single-stranded cleaved sites are filled in completing the target site 

duplication 
39

. The unduplicated target site motif (CCTC) is common, possibly ubiquitous, in all non-carbonaria (typica 

and insularia) haplotypes, but a typica ancestor is the more likely given the pattern of haplotype similarities and the 

presumed prevalence of typica haplotypes around 1800. 
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Extended Data Figure 4: The rise and fall of carbonaria in the Manchester area. a, Frequency of the carbonaria 

phenotype. b, Corresponding frequencies of the carbonaria allele. The envelopes show the confidence intervals, 50%, 

90%, 99% for the simulated trajectories. Dark-red dots, observations falling within the simulated trajectories; orange 

dots, additional data collected post-2002 (year during which > 85% of the field sample was collected). Stars indicate 

likely frequencies where historical data is scarce. Data and sources are listed in Supplementary Table 3. 
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Extended Data Figure 5: a, Illustration of cortex exon structure indicating the positions of thirteen alternative 

transcription starts and subsequent exons relative to the flanking genes in the b-d region (position of carb-TE 

indicated by orange bar). b, Expression of different starting position cortex transcripts. End-point reverse transcription 

PCR with reduced cycles (35) was used to exclude transcripts with negligible dosage. Amplicon intensities are scaled 

between + (faint but visible) and +++ (strong PCR product). Negative PCRs represent expression below the detection 

threshold; this may even occur in ‘origin’ tissue types (wing disc/pupa/testes) in which the alternative starts were 

discovered owing to the fact that 5' RACE used ~20 times the amount of RNA template relative to the standard cDNA 

synthesis for the 35 cycle end-point PCRs. Ovaries were not used for 5' RACE which may have caused gonad 

expression bias towards testes. Test tissues are 6th instar larvae gonads and wing discs at different developmental 

stages (abbreviations as in Fig. 3). 
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Extended Data Figure 6: Examples of cortex splice variation pattern in typica and carbonaria developing wing discs. 

End-point PCR on wing disc cDNA amplified with primers in the first and last exons (E1-E9), with typica individuals to 

the left of the central ladder (the two brightest bands in the size ladder are 300 bp and 1 kb) and carbonaria 

individuals (all carbonaria-typica heterozygotes) to the right of the central ladder. a, Exon 1A variants in Cr2 stage. b, 

Exon 1B variants in Cr4 stage. (See Fig. 3 for stage abbreviations.) 
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Extended Data Figure 7: Exonic structure and size distributions of cortex splice variants amplified by end-point RT-

PCR with primers in exon 1A or 1B and exon 9. Size distributions of the PacBio reads are displayed for the two 

alternative first exons 1A (a) and 1B (b) of cortex. c and d, Comparison of carbonaria-locus genotypes (t/t pale blue 

fill, c/t light blue line, c/c dark blue line) measured with Fragment Analyzer. Relative Fluorescence Units (RFU) were 

averaged across individuals for fragments amplified with E1A-E9 (c) or E1B-E9 (d) primers. Prior to averaging RFUs 

were standardized so that the total fluorescence (area under the curve) per individual scales to 1. Arrows with the 

same number denote either similar exonic structure (E1A vs E1B variants) or fragment identity between the two 

sources of data (PacBio reads and Fragment Analyzer). Exonic structure of the six main splice variants is represented 

in matrices (a, b), in which white cells represent skipped exons in a splice variant (* indicates full transcript in which 

the first 71bp of exon 6 are missing). [Apparent differences among melanic and non-melanic for 1A #2 and #3 splice 

variants were not consistent among families]. 
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Extended Data Figure 8: Relative expression of cortex full transcript in developing wing discs, comparing ct 

heterozygotes with tt homozygotes produced from ct x tt crosses (starting with exon 1B [a] or exon 1A [b]). Genotypes 

differ significantly for 1B full transcript (P = 0.001), whereas genotypes do not differ for 1A full transcript (P > 0.5). 

Note the differing y-axis scales. c, Sample sizes for cortex RT-qPCR experiments by wing disc developmental stage 

and carbonaria-locus genotypes. (La6: 6
th
 instar larvae, Cr2: day 2 crawler, Pu2: day 2 pupae, PDP: post diapause 

pupae.) 
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Extended Data Figure 9: a, Schematic illustration, not to scale, of molecular features of B. betularia cortex protein sequence. b, Bootstrapped 
Maximum Likelihood consensus tree calculated with MEGA 6 of Fizzy/cortex derived from the propeller domain of the alignment in Supplementary 
Text 2. Branches are collapsed where partitions were reproduced in less than half of bootstrap replicates. Major groups containing lepidopteran 
cortex (black circles), non-lepidopteran cortex (red circles), Fizzy-related/rap (yellow circles) or Fizzy/Cdc20/Cdh1 proteins (green circles), are 
similarly unequivocally defined in trees obtained by Neighbour Joining or Maximum Parsimony methods (not shown). c, 3D protein sequence 
conservation mapping of: upper panel, lepidopteran cortex sequences onto a homology model of B. betularia cortex; middle panel, all cortex 
sequences onto the same B. betularia model; lower panel, non-lepidopteran cortex sequences onto a model of D. melanogaster cortex. Molecular 
surfaces are shown in PyMOL using a spectrum from high conservation (blue) to low (red). The mapping reveals the shared presence of a 
presumed inter-blade D box-like degron-binding site (pink segment is superimposed D box-mimicking sequence from the structures of human 
APC/C [PDB 4ui9] 

40
). In contrast, there is much weaker conservation of surface regions corresponding to facial KEN box or helical specificity-

determinant sites (white and grey regions, respectively, from the same structure), suggesting that cortex proteins lack these functionalities. Note 
that the greater sequence variability in the non-lepidopteran set leads to lower overall sequence conservation (lower panel) but that overall patterns 
in all panels are similar.  
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Extended Data Table 1: Predicted functionality of B. betularia cortex isoforms (starting with exon 1A or 1B). 

 
1
 Isoforms as defined in Extended Data Fig. 7. 

2
 Since the region lost from the propeller fold constitutes approximately a single blade, it is possible that these, and only these, truncated-propeller 

forms may still fold stably. 
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