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Speci�cation Analysis in Regime-Switching
Continuous-Time Di¤usion Models for Market Volatility

Abstract

We examine model speci�cation in regime-switching continuous-time di¤usions for
modelling S&P 500 Volatility Index (VIX). Our investigation is carried out under two
nonlinear di¤usion frameworks, the NLDCEV and the CIRCEV frameworks, and our
focus is on the nonlinearity in regime-dependent drift and di¤usion terms, the switching
components, and the endogeneity in regime changes. While we �nd strong evidence
of regime-switching e¤ects, models with a switching di¤usion term capture the VIX
dynamics considerably better than models with only a switching drift, con�rming the
presence and importance of volatility regimes. Strong evidence of nonlinear endogeneity
in regime changes is also detected. Meanwhile, we �nd signi�cant nonlinearity in the
regime-dependent di¤usion speci�cation, suggesting that the nonlinearity in the VIX
dynamics cannot be accounted for by regime-switching e¤ects alone. Finally, we �nd
that models based on the CIRCEV speci�cation are signi�cantly closer to the true data
generating process of VIX than models based on the NLDCEV speci�cation uniformly
across all regime-switching speci�cations.

JEL Classi�cation: C22, C24, C52, C58
Keywords: Volatility Index, Regime-Switching Model, Nonlinear Di¤usion, Constant

Elasticity Volatility, Endogeneity, Maximum Likelihood Estimation.
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1. Introduction

The Volatility Index (VIX) was introduced by the Chicago Board Options Exchange
(CBOE) in 1993 to measure the market�s expectation of volatility based on the S&P
100 Index option prices, and it has since been an important indicator of implied short-
term U.S. market volatility. In 2003, options on the S&P 500 Index were included in
the calculation of VIX covering a wide range of strike prices. In 2004, VIX futures and
options were also introduced, making volatility a tradable asset. Due to its nature of
measuring market volatility, the VIX is termed as the "investor fear gauge" by Whaley
(2000). Proper understanding of the VIX dynamics is key to the success of many
�nancial and economic activities that rely on it.
VIX generally exhibits mean-reversion despite its volatile upward movements during

some periods after the 2008 �nancial crisis. It is not clear, however, whether VIX reverts
to the same constant level over time or whether its evolution is time-homogeneous. Guo
and Wohar (2006) investigated the stability of the mean of VIX by performing multiple
structural breaks test of Bai and Perron (1998) and identi�ed multiple regimes. Chen
and Huang (2014) examined VIX Exchange Traded Funds data and also found evidence
structural breaks. Their �ndings, amongst those of others, are indicative of possible
regime-switching features of VIX.
There is a large literature supporting the existence of stochastic regime changes

in the evolution of �nancial and economic variables. Choi (2009) proposed a regime-
switching univariate di¤usion model to describe the dynamics of the U.S. short-term
interest rates and found strong evidence of high and low volatility regimes and time-
varying regime-switching probabilities. Goutte and Zou (2013) employed a modi�ed
Cox-Ingersoll-Ross (CIR) model to study exchange rates and documented that their
regime-switching models match the reality much better than their single-regime model.
Chevallier and Goutte (2014) considered a regime-switching jump di¤usion process
and found evidence of regime changes in the daily returns of seven international stock
markets. Most recently, Bu et al. (2016) showed that regime-switching transformed
di¤usion models are e¤ective in capturing additional variability in the dynamics of
short-term interest rates.
While there have been numerous studies on regime-switching models, very few pa-

pers introduced regime shifts into continuous-time di¤usion models to study the VIX
dynamics. Among them, Amengual and Xiu (2012) proposed a joint model for the
S&P 500 index and the VIX where the central tendency parameter for the spot volatil-
ity is allowed to be regime-switching. Papanicolaou and Sircar (2014) proposed a
regime-switching Heston model for pricing VIX derivatives1. These studies almost ex-
clusively considered regime-switching continuous-time a¢ ne (linear) processes. While
a¢ ne models are extremely popular for pricing contingent claims due to their analytic
tractability, the validity of the a¢ ne assumption is usually taken for granted.

1Mencia and Sentana (2013) and Song and Xiu (2014) also studied volatility models with stochastic
components, but their models allowed these components to change continuously.
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This paper contributes to the literature modelling the VIX dynamics by study-
ing model speci�cation in regime-switching continuous-time di¤usion models. Our
focus is on the nonlinearity in regime-dependent drift and di¤usion terms, the switch-
ing components, and the potential nonlinear endogeneity in regime changes. First,
our regime-switching continuous-time di¤usion models are two-factor models. One
is the continuously evolving regime-dependent di¤usion process and the other is the
regime variable changing discretely. Our models are economically intuitive, �exible,
and easy to implement. Moreover, we consider two general nonlinear di¤usions as
our regime-dependent processes. The �rst is the Nonlinear Drift Constant Elasticity
Volatility (NLDCEV) process introduced by Aït-Sahalia (1996b), and the second is the
CIR-reducible Constant Elasticity Volatility (CIRCEV) process proposed by Bu et al.
(2011). The two nonlinear di¤usions are known to be able to generate desirable nonlin-
earity in both the drift and di¤usion terms and encompass linear models (e.g. the CIR
process) as special cases. Therefore, our frameworks allow us to test the validity of
the nested linear (a¢ ne) models. Second, we test a number of restricted speci�cations
in terms of whether the drift, the di¤usion, or both terms are allowed to be regime-
dependent. These tests shed light on whether stochastic central tendency, stochastic
volatility or both are important for driving the VIX dynamics. Third, studies including
Choi (2009), Chang et al. (2014), Bu et al. (2016) all reported evidence of endogeneity
in regime changes. We investigate whether regime changes in the VIX dynamics, if
any, are endogenously driven. We propose a �exible endogenous speci�cation to pick
up potential nonlinear endogenous dependence between regime-switching probabilities
and the level of VIX. Fourth, the comparison between our two competing nonlinear
di¤usion speci�cations is a non-trivial issue due to their overlapping and dynamic na-
ture. Using a combination of informal and formal criteria, we examine their relative
closeness to the true data generating process (DGP) in our regime-switching context.
Finally, our study does not su¤er from discretization bias2. The CIRCEV speci�cation
has closed-form exact transition density by construction. For the NLDCEV speci�ca-
tion, we use the highly accurate closed-form expansion method by Aït-Sahalia (2002)
to approximate the unknown true transition density. The likelihood function of our
regime-switching models are obtained by applying the recursive algorithm developed
by Hamilton (1989).
To achieve our goals, we consider regime-switching models based on the CIR, the

NLDCEV and the CIRCEV speci�cations. The linear CIR speci�cation is included
since it is a common special case of the two nonlinear frameworks. Hence, the linear
restriction implied by the CIR speci�cation can be tested under both nonlinear frame-
works. In addition, for each of the three di¤usion speci�cations, a total of seven distinct
regime-switching speci�cations are considered for estimation. These purposefully spec-
i�ed models form a useful basis for examining the aforementioned speci�cation issues
in regime-switching di¤usion models for VIX.

2See Hsiao and Semmler (2011) for a detailed discussion on the e¤ects of discretization on
continuous-time models.
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Daily series of VIX data from January 2, 1990 to March 20, 2015 are used for esti-
mating our models. Our main empirical �ndings can be summarized as follows: First,
across all three di¤usion speci�cations, we �nd strong evidence supporting the presence
of two regimes in the VIX dynamics based on enormously improved likelihoods and in-
formation criteria. Second, all exogenous regime-switching models are strongly rejected
against corresponding endogenous regime-switching models with a �exible time-varying
transition probabilities. Third, drift-switching only models and di¤usion-switching only
models are both rejected against more general both-switching models. Nevertheless,
di¤usion-switching only models captures the VIX dynamics considerably better than
drift-switching only models. Forth, across all seven regime-switching speci�cations, the
linear CIR speci�cation is strongly rejected under both nonlinear frameworks. Finally,
using a combination of informal and formal comparisons, we �nd that models based on
the more tractable CIRCEV speci�cation outperform models based on the NLDCEV
speci�cation uniformly across all regime-switching speci�cations. The last point has
particular implications for practical users interested in nonlinear di¤usions, since our
results suggest that the CIRCEV process which has a closed-form transition density
can be a powerful alternative to the less tractable NLDCEV process whose transition
density must be approximated.
The rest of this paper is organized as follows. In Section 2, we brie�y introduce

the two general continuous-time nonlinear di¤usion frameworks and explain how to
evaluate their transition densities. In Section 3, we outline the details of our regime-
switching mechanism and our endogenous regime-switching speci�cation. Empirical
results based on the VIX data are presented in Section 4. Section 5 concludes.

2. Continuous-Time Nonlinear Di¤usion Models

The basic dynamics for a univariate continuous-time parametric di¤usion process fYt; t � 0g
is typically described by the following Stochastic Di¤erential Equation (SDE)

dYt = �Y (Yt; ) dt+ �Y (Yt; ) dWt (1)

where �Y (y; ) and �2Y (y; ) are the instantaneous drift and di¤usion terms, and
fWt; t � 0g is a standard Brownian motion. Since the dynamics of Yt is completely
determined by �Y (y; ) and �

2
Y (y; ), the main focus of di¤usion modelling is on the

speci�cation these two terms and the estimation of  . Well known examples in �nance
include Merton (1973), Black and Scholes (1973), Vasicek (1977), Cox et al. (1985),
Du¢ e and Kan (1996), Aït-Sahalia (1996b), Conley et al. (1997), Ahn and Gao (1999),
and Bu et al. (2011)3.
The di¤usion term �2Y (y; ) determines the conditional variance of the instanta-

neous change dYt. When �2Y (y; ) = �2y2�, the process is said to have Constant

3Nonparametric and semiparametric di¤usions have also been proposed in the literature. Notable
examples include Aït-Sahalia (1996a), Stanton (1997), Jiang and Knight (1997), Bandi and Phillips
(2003), Kristensen (2010), and most recently Bu et al. (2015).
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Elasticity Volatility (CEV) where � is the elasticity of the instantaneous volatility.
The CEV speci�cation was �rst introduced by Chan et al. (1992) who considered a
linear drift in their study on the U.S. short-term interest rates. It was further stud-
ied by Aït-Sahalia (1996b) and Conley et al. (1997) and both promoted the use of
a nonlinear drift to improve the mean reversion e¤ect. The CEV speci�cation is ex-
tremely parsimonious and the two parameters can usually be estimated very accurately.
Empirical evidence also suggests that the CEV speci�cation is capable of �tting the
conditional instantaneous volatility adequately. Therefore, it has been considered by
many empirical studies, including Gallant and Tauchen (1998), Durham (2003), Choi
(2009), Bu et al. (2011, 2016).

2.1. Nonlinear Drift CEV (NLDCEV) Model

The NLDCEV di¤usion process considered in this paper is speci�ed as

dYt = (��1Y
�1
t + �0 + �1Yt + �2Y

2
t )dt+ �Y �

t dWt (2)

which is a generalization of the linear drift CEV model (also known as the CKLS
model) by Chan et al. (1992). For the CKLS model, the strength of mean reversion
is the same for all levels of Yt. However, several empirical studies (e.g. Aït-Sahalia
1996b) concluded that the linear drift fails to generate strong enough pull at low or
high levels of Yt and hence suggested the above nonlinear drift model for a wider range
of applications. When ��1 > 0 and �2 < 0, the drift speci�cation generates stronger
mean reversion. The speed of Yt returning to its long-run average value is given by
���1=Y 2

t +�1+2�2Yt. Conley et al. (1997) provided a detailed analysis of the dynamic
properties of this process and derived speci�c parameter restrictions for the stationarity
of the model. The NLDCEV model is general enough to nest several existing models
such as the Vasicek (1977) model (��1 = �2 = � = 0), the CIR model (��1 = �2 = 0
and � = 1=2), and the CKLS model (��1 = �2 = 0).
Maximum Likelihood (ML) is usually the preferred method of estimation because

of its e¢ ciency gain. However, the transition density of a continuous-time di¤usion
is usually unavailable in closed-form except for a few rare cases (e.g. Black and Sc-
holes 1973, Vasicek 1977, and Cox et al. 1985). In order to use ML, the transition
density of the NLDCEV model must be approximated. Among many approximation
techniques (c.f. Durham and Gallant 2002), the closed-form expansion method by
Aït-Sahalia (2002) is widely accepted as one of the most e¢ cient and accurate density
approximation methods.
This method �rst employs the so-called Lamperti transform

X � (Y ; ) =

Z Y 1

�Y (!; )
d!

to transform the original di¤usion Yt to a unit di¤usion Xt, i.e.

dXt = �X(Xt; )dt+ dWt
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where

�X(x; ) =
�Y (

�1(x; ); )

�Y (�1(x; ); )
� 1
2

@�Y
@y

(�1(x; ); )

The transition density of Xt can then be approximated more reasonably by the Her-
mite expansion. Aït-Sahalia (2002) showed that the Kth order approximation of
pX (�; xjx0; ) can be written as

p
(K)
X (�; xjx0; )

= �� 1
2�

�
x� x0
�

�
exp

�Z x

x0

�X(!; )d!

� KX
k=0

c
(k)
X (xjx0; )

�k

k!
(3)

where � (�) is the standard normal density function and c(k)X (xjx0; ) = 1. The other
coe¢ cients are determined recursively by

c
(k)
X (xjx0; )

= k(x� x0)
�k
Z x

x0

(! � x0)
k�1

(
�X(!; )c

(k�1)
X (!jx0; ) +

1

2

@2c
(k�1)
X (!jx0; )

@!2

)
d!

with �X(x; ) = [�X(x; )
2 + @�X(x; )=@x] =2. Consequently, given p

(K)
X (�; xjx0; )

in (3), we can obtain the Kth order approximation of the required transition density
p
(K)
Y (�; yjy0; ) by changing variable from X to Y as

p
(K)
Y (�; yjy0; ) =

p
(K)
X (�; (y; )j(y0; ); )

�Y (y; )

In practice, K = 1 gives very precise density function with the usual values of �
(e.g. daily, weekly or monthly) (c.f. Aït-Sahalia 1999). In this paper, we use a daily
data set (i.e. � = 1=252) and hence use the approximate density function with K = 1.

2.2. CIR-Reducible CEV (CIRCEV) Model

The NLDCEV speci�cation is �exible, but the relatively large number of parameters
often leads to numerical di¢ culties and unstable drift parameter estimates. In or-
der to introduce su¢ cient nonlinearity into the model while at the same time obtain
closed-form exact transition density, Bu et al. (2011) proposed to use the so-called
Reducible Di¤usions (RDs). They assumed that their parametric di¤usion Yt is a
strictly monotone su¢ ciently smooth time-independent transformation of an analyti-
cally tractable Basic Di¤usion (BD) Xt, i.e.

Yt = V (Xt; �)

where
dXt = �X (Xt;#) dt+ �X (Xt;#) dWt (4)
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which is a simpler parametric di¤usion depending on �X (Xt;#) and �2X (Xt;#). In this
setup, V (x; �) is the transformation function satisfying @V (x; �)=@x 6= 0 for all x and
�, where � is the transformation parameter vector.
The speci�cation of Yt depends entirely on the choice of Xt and the transformation

function V . Hence, Yt depends on  = (#; �)0. Since the purpose is to develop models
with closed-form exact transition densities, the Vasicek (1977) and the CIR processes
are preferred choices for their closed-form transition densities. Bu et al. (2011) noted
that for any given BD Xt, the knowledge of the functional form of �2Y (y; ) will lead
to a unique solution of V . Consequently, a feasible strategy is to choose V such that
the resulting RD Yt has a desired di¤usion term �2Y (y; ). Bu et al. (2011) argued
a desirable di¤usion term is particularly important for �nancial applications such as
volatility modelling and option pricing which rely mostly on the short-run dynamics
of the stochastic process.
As discussed above, the CEV speci�cation is parsimonious and �exible. Bu et al.

(2011) therefore proposed a nonlinear RD with CEV, where the BD Xt follows the well
known CIR process

dXt = (�0 + �1Xt)dt+ �X
1=2
t dWt

The CIR process is stationary on (0;+1) when �1 < 0, �0 > 0 and 2�0 � �2.
Conditional on Xt��, Xt follows the non-central �2 distribution with fractional degrees
of freedom. They showed that for �2Y (y; ) = �2y2�, the inverse of the transformation
function V can be obtained in closed-form as

x = U(y; �) =
1

4

�
y1��

1� �

�2
The above transformation is strictly monotone on (0;1) for � 2 (0;1). It follows
from Ito�s Lemma that the CIRCEV speci�cation is given by

dYt =

��
2�0(1� �) +

1

2
�2(2� � 1)

�
Y 2��1
t +

�1Yt
(2� 2�)

�
dt+ �Y �

t dWt

Bu et al. (2011) showed the CIRCEV speci�cation generates a much stronger pull
at high levels of Yt than the linear drift. It also nests the CIR model (� = 1=2) and
the Ahn and Gao (1999) model (� = 3=2) as special cases. Clearly, the CIRCEV
speci�cation is a general setup which provides not only the nonlinearity in both the
drift and di¤usion terms but also the extra degrees of freedom in the data-driven choice
of �.
By construction, the transition density can be easily obtained by a change of vari-

able as

pY (�; yjy0; ) =
y1�2�

2
q
(1� �)2

ce�u�v
�v
u

�q=2
Iq

h
2 (uv)1=2

i
(5)

where

c =
2�1

�2 (e�1� � 1) ; u =
ce�1�

4

�
y1��0

1� �

�2
; v =

c

4

�
y1��

1� �

�2
; q =

2�0
�2

� 1
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and Iq (�) is the modi�ed Bessel function of the �rst kind of order q. The closed-form
transition density allows the users to implement exact ML inference very easily. This
is in contrast to the majority of parametric di¤usions in the literature (c.f. Durham
and Gallant 2002)4.

3. Regime-Switching Mechanism

3.1. Regime-Switching Di¤usion Models

There is a large literature supporting the existence of stochastic regime changes in
the evolution of �nancial and economic variables. Examples include Hamilton (1988),
Cai (1994), Gray (1996), Garcia and Perron (1996), and recently Chang et al. (2014).
Most recent studies on regime-switching di¤usions are by Choi (2009), Goutte and Zou
(2013) and Bu et al. (2016).
Following most of the previous works on regime-switching models, we assume that

there could be two possible regimes. The dynamics of VIX is therefore described by
the following regime-switching continuous-time di¤usion process

dYt = �Y
�
Yt; st

�
dt+ �Y

�
Yt; st

�
dWt

where �Y
�
Yt; st

�
and �Y

�
Yt; st

�
are the regime-dependent drift and di¤usion terms

and st is the regime index. Following the literature, we use low (L) and high (H)
regimes to characterize two di¤erent economic environments.
Our regime-switching continuous-time framework assumes that the VIX evolves

continuously when the economy is in one of the regimes, but allows this continuous-time
dynamics to change depending on the state of the economy. Choi (2009) argued that
such a regime-switching speci�cation is able to explain the volatility clustering better
than a single-regime model. Also, the design of the model allows for two distinct sources
of nonlinearity. The �rst is from the nonlinearity in the regime-dependent di¤usion
speci�cation, and the second is from the regime-switching dynamics. Consequently,
our framework allows us to examine whether the observed nonlinearity in reality should
be attributed to the former, or the latter, or both, and hence provide useful guidance
for practical applications.
To formally investigate the empirical issues such as nonlinearity, switching compo-

nents, and endogeneity, we consider two general regime-switching nonlinear di¤usion
frameworks. The �rst is the regime-switching NLDCEV (RS-NLDCEV) framework
and the second is the regime-switching (RS-CIRCEV) framework. In addition, as a
benchmark, the RS-CIR model is also included in our study.

4Bu et al. (2011) derived the necessary and su¢ cient conditions for stationarity and unattainability
of the boundaries (i.e. 0 and1) in �nite expected time, as well as the �-mixing property which ensures
that the classical asymptotic theory holds for the ML inference based on discretely observed random
samples. See Bu et al. (2011) for more discussion.
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We assume that the regime variable st follows a discrete-time �rst order two-state
Markov chain with the following transition matrix

P =

�
pLL pHL
pLH pHH

�
(6)

where we de�ne the transition probabilities as pij = P (st = jjst�� = i), i; j = L;H.
Representing stationary distribution of the Markov chain in terms of pLL and pHH , we
have

�L =
1� pHH

2� pLL + pHH
and �H =

1� pLL
2� pLL + pHH

In this study, the transition probabilities pLL and pHH and the parameters of regime-
switching di¤usion models are estimated jointly by ML based on a Hamilton (1989)
type �ltering algorithm5.

3.2. Endogenous Regime-Switching Speci�cation

The above standard regime-switching model assumes constant regime-switching transi-
tion probabilities. However, studies including Diebold et al. (1994), Kim et al. (2008),
Choi (2009), Chang et al. (2014), and Bu et al. (2016) all reported evidence of en-
dogeneity in regime changes. A convenient way to allow endogenous regime changes
in regime-switching models is to specify the transition probabilities as functions of the
lagged of the state variable Yt. In order to capture potential nonlinearity in such a de-
pendence structure, we follow Bu et al. (2016) by considering the following speci�cation
for the endogenous transition probabilities

pLL (Yt��) = P (st = Ljst�� = L; Yt��) = �

 
cL +

pX
i=1

dLiY
i
t��

!
(7)

pHH (Yt��) = P (st = Hjst�� = H; Yt��) = �

 
cH +

qX
i=1

dHiY
i
t��

!
(8)

where � is the logistic function. Clearly, if all the coe¢ cients of the powers of Yt�� are
jointly zero, the transition probabilities become constant and the endogenous regime-
switching model reduces to the exogenous case.

4. Data and Results

4.1. Data

Daily CBOE S&P 500 Volatility Index (VIX) data from January 2, 1990 to March 20,
2015 are considered in this study. Table 1 provides some summary statistics. There

5The Hamilton (1989) algorithm is standard. For space economy, we do not elaborate speci�c
details.
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are 6352 observations in our sample. The level of VIX ranges between 9.310 and 80.860
with sample mean 19.921 and standard deviation 7.982. The marginal distribution of
VIX shows clear departure from normality with a positive skewness of 2.072 and a
large kurtosis of 10.466. The normality is formally rejected by the signi�cance of the
enormous Jarque-Bera statistic at 1% signi�cance level.

[Table 1 here]

Time series plots of the VIX series and its �rst di¤erence are provided in Figure 1.
We can see that the level of VIX peaked around 1990-1991, 1997-1999, 2002-2003, and
2008-2010. In particular, due to the Global Financial Crisis, the 2008 to 2010 years
recorded substantially higher levels of VIX than the rest of the sample period. It is
also clear that associated with high levels of VIX are high levels of the volatility of
VIX. This feature is consistent with the leverage e¤ect implied by the CEV di¤usion
speci�cation. Judging from the plots, we can argue that the volatility of VIX behaves
quite di¤erently in di¤erent time periods. This motivates us to conjecture that regime
changes are likely to be an important feature of our data and therefore to analyze
di¤usion models in regime-switching contexts.

[Figure 1 here]

4.2. Models and Results

For each of our three di¤usion speci�cations, namely the CIR, the NLDCEV, and the
CIRCEV, seven distinct models in terms of regime-switching speci�cations are esti-
mated by ML based on our closed-form transition density functions and the Hamilton-
type �ltering algorithm. The details of our models and estimation results are summa-
rized in Table 2, 3, and 4, respectively. Taking the CIR speci�cation as an example,
the seven models are: (i) the single-regime CIR model (CIR), (ii) the general regime-
switching CIR model (RS-CIR) with switching drift and di¤usion terms, (iii) the drift-
switching only RS-CIR model (RS-CIR-1), (iv) the di¤usion-switching only RS-CIR
model (RS-CIR-2), (v) the endogenous RS-CIR model (ERS-CIR), (vi) the endogenous
drift-switching only RS-CIR (ERS-CIR-1), and �nally (vii) the endogenous di¤usion-
switching only RS-CIR (ERS-CIR-2). The same regime-switching speci�cations for
the NLDCEV and the CIRCEV di¤usion speci�cations are created and estimated. We
de�ne the low (L) regime as the low VIX volatility regime and the high (H) regime
as the high VIX volatility regime. For drift-switching only models, however, we de�ne
low (L) and high (H) regimes as the low and high mean reversion regimes, respectively.
For all the models, we report ML estimates of model parameters and their standard
errors, as well as the maximized log-likelihood (LL), AIC and BIC values.

[Table 2, 3, and 4 here]
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4.2.1. Regime-Switching, Endogeneity, and Switching Components

First and foremost, across all three di¤usion speci�cations, the LLs increase substan-
tially when we move from the single-regime model to any of our regime-switching
models. However, it is well known that the standard LR test cannot be used to test
the presence of two regimes against the null of a single regime, since the parameters
related to the second regime are not identi�ed under the null hypothesis. Neverthe-
less, as suggested by Hamilton and Susmel (1996), Gray (1996), and Choi (2009), the
standard LR statistic can still serve informally as a broad indication of the relative
performance of competing models in terms of goodness-of-�t to the data. Following
this argument, we calculated the LR statistics between the single-regime model and the
general (drift and di¤usion both switching) exogenous regime-switching model under
all three frameworks and reported the results in the �rst panel of Table 5. The LR sta-
tistics are 1849.408, 990.93, and 890.664 for the CIR, the NLDCEV, and the CIRCEV
frameworks, respectively. These LR statistics would lead to negligible p-values, should
the usual Chi-squared distribution with corresponding degrees of freedom be used. Ar-
guably, the improvement in terms of LL is enormous. According to the AIC and BIC
values, all our regime-switching models outperformed the single-regime model across
all three di¤usion speci�cations. On this basis, it is reasonable for us to carry out
our subsequent analysis under the presumption that regime-switching is present in the
data.
To test the presence of endogenous regime changes, we choose the maximum lag

length of q = p = 2 in our estimation6 of endogenous regime-switching models but
only reported the signi�cant lags of Yt. Our speci�cation is more �exible than most
studies where typically only the �rst lag is included. We therefore expect our model
to be more capable of detecting potential, particularly nonlinear, endogeneity. From
the second panel of Table 5, we can see that across all three di¤usion speci�cations,
the assumption of exogenous regime changes is strongly rejected according to the LR
statistics calculated between exogenous and endogenous regime-switching models under
the same regime-switching speci�cation. It is important to stress that the LR test
is a valid test, since the exogenous regime-switching model is strictly nested by the
endogenous regime-switching model. Our results con�rmed the �ndings of, for example,
Choi (2009), Chang et al. (2014) and Bu et al. (2016), that regime changes in the
economy is most likely to be endogenously driven.

[Table 5 here]

The time series plot of VIX and �rst di¤erence suggest clear evidence of chang-
ing volatilities of VIX over di¤erent periods of time. We therefore conjecture that
models with a regime-switching di¤usion component may capture the VIX dynamics

6Adding more lags did not improve the LL signi�cantly.
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better than models without a switching di¤usion component. Meanwhile, it is well
known that the drift and di¤usion terms play very di¤erent roles in the dynamics
of continuous-time di¤usions. Speci�cally, the drift determines the long-run behavior
(e.g. mean reversion), whereas the di¤usion term drives the local (i.e. short-run) ac-
tivities. Consequently, it usually requires a long span of data to estimate the drift
satisfactorily (c.f. Bandi and Phillips 2003). For our regime-switching models, there
are two drift terms to be identi�ed, while at the same time only certain segments of the
sample contain information about the long-run behaviors of the two regime-dependent
di¤usions. This is likely to reduce the model�s ability to identify the drift term accu-
rately and thus weaken its power of capturing certain features of the VIX dynamics.
In contrast, the estimation of regime-dependent di¤usion terms is less a¤ected as the
di¤usion term captures the local feature of the data. For these reasons, we expect
the di¤usion-switching only models to �t the data better than the drift-switching only
models.
We resort again to the LL, information criteria and LR statistics to test models with

one switching component against the models with both components switching. First,
as can be already seen from Table 2, 3, and 4, our conjecture that di¤usion-switching
only models perform better than drift-switching only models is con�rmed by the LL,
AIC and BIC values. Across all three frameworks, di¤usion-switching only models are
uniformly preferred than drift-switching only models under the same regime-switching
speci�cations. Second, according to the LR test results reported in the third and fourth
panels of Table 5, drift-switching only models and di¤usion-switching only models are
both rejected against the general both-switching models signi�cance the tests. This
suggests that regime-switching e¤ects in the evolution of VIX are likely to a¤ect both
the long-run behavior (i.e. central tendency) and the short-run behavior (i.e. stochastic
volatility) of the VIX dynamics. Meanwhile, this also con�rms that our general regime-
switching models, despite the relatively large number of parameters, did not over�t
the data.

4.2.2. Nonlinearity

The nonlinearity in the drift and di¤usion terms is one of the most important issues
in di¤usion modelling. First, there is an obvious trade-o¤ between the �exibility and
the tractability of the di¤usion models. For instance, linear (e.g. a¢ ne) models are
best known for their analytical tractability because of their closed-form conditional
characteristic functions. Consequently, ML inference and �nancial applications such as
derivative pricing become particularly convenient. In contrast, nonlinear models usu-
ally do not have tractable transition density or conditional characteristic functions7.
Therefore, the implementation of these models are generally more complicated. On
the other hand, while the nonlinearity in the di¤usion term is found conclusively sig-

7To our best knowledge, the only class of nonlinear di¤usions with closed-form transition densities
and conditional characteristic functions are the reducible (transformation-based) di¤usions. See Bu
et al. (2011) for more discussion.
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ni�cant in many �nancial applications, evidence of nonlinearity in the drift is largely
inconclusive (c.f. Choi 2009). This leads to the debate whether a nonlinear drift is
required in certain applications at the cost of losing tractability. To our best knowl-
edge, few studies addressed this issue in VIX modelling, particularly in the context of
regime-switching.
We �rst consider testing nonlinearity under the NLDCEV framework. The nonlin-

earity in the drift and the di¤usion terms of the NLDCEV speci�cation is determined by
��1, �2 and �. For example, the process reduces to the CIR process when ��1 = �2 = 0
and � = 1=2. It follows naturally that it is possible to test nonlinearity by nesting the
CIR speci�cation into the more general NLDCEV speci�cation and examine the LR
statistic. We then proceed to calculate the relevant LR between the CIR and NLDCEV
models across all regime-switching speci�cations and report them in the upper panel
of Table 6. Across all cases, the LR tests are signi�cant at least at 1% level, strongly
rejecting all models based on the linear CIR speci�cation in favor of the more general
NLDCEV speci�cation for any given regime-switching speci�cation.

[Table 6 here]

Meanwhile, testing nonlinearity under the CIRCEV framework is considerably eas-
ier. Since the CIRCEV process is a smooth transformation of the CIR process, the
nonlinearity in the drift and the di¤usion terms is determined by the value of the
transformation parameter � alone. Speci�cally, the CIRCEV speci�cation reduces to
the CIR speci�cation when � = 1=2. Results of the relevant LR between the CIR and
CIRCEV models across all regime-switching speci�cations are reported in the lower
panel of Table 6. Similar to the NLDCEV case, these tests strongly reject all models
based on the CIR process in favor of models based on the CIRCEV process across all
regime-switching speci�cations.
The strong rejection of the linear CIR speci�cation against the more general NLD-

CEV and CIRCEV speci�cations should not be taken as a surprise, since the dynamics
of the former is known to be excessively simple and empirically rejected in many di¤er-
ent contexts (e.g. Choi 2009, Bu et al. 2011) against nonlinear alternatives. However,
the most important implication of our results is that the obvious nonlinearity in the
dynamics of VIX cannot be explained by regime-switching e¤ects alone.

4.2.3. Comparison Between Nonlinear Speci�cations

Finally, we examine the relative performance between models based on the NLDCEV
speci�cation and models based on the CIRCEV speci�cation. As discussed, both non-
linear speci�cations are capable of generating desirable shapes of the drift and di¤usion
functions consistent with many empirical data. While they share the same di¤usion
function, they di¤er in their drift speci�cations. The obvious advantage of the CIRCEV
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speci�cation is that the reducibility ensures that its exact transition density can be eval-
uated in closed-form, while for the NLDCEV speci�cation the transition density has
to be approximated. The NLDCEV also has two more parameters than the CIRCEV.
Clearly, the CIRCEV is substantially more tractable and parsimonious. For this reason,
it would be very useful, from a practical point of view, to compare the empirical per-
formance of the two speci�cations in the context of our regime-switching speci�cations
to see if the e¤ort of density approximation and additional parameters are worthwhile.
We begin with an informal comparison based on the maximized LLs and the two

information criteria. First, the maximized LLs of CIRCEV-based models are substan-
tially larger than those of NLDCEV-based models uniformly across all seven regime-
switching speci�cations. We also report the standard LR statistics and their statistical
signi�cance in the upper panel of Table 7. Clearly, the LRs are so large, signi�cant at
1% level, that the p-values would have been practically zero, if the usual Chi-squared
distribution with corresponding degrees of freedom should be used. Although such a
test would not have been strictly valid due to the overlapping nature of the two mod-
els, the huge di¤erence in the LLs is indicative of the fact that CIRCEV-based models
provide much better �t to the data than NLDCEV-based models across all regime-
switching speci�cations. Meanwhile, a comparison based on the information criteria
is a more legitimate exercise. Since the NLDCEV has two more parameters than the
CIRCEV, the information criteria penalize the NLDCEV-based models even further.
Therefore, at least in loose terms the CIRCEV speci�cation outperforms the NLDCEV
speci�cation uniformly across all our regime-switching speci�cations.

[Table 7 here]

To investigate this issue formally, the main di¢ culty lies in the overlapping nature
of the two models8. In addition, the two models are dynamic. Therefore, neither the
Vuong (1989) test, nor the Rivers and Vuong (2002) test is suitable. We therefore resort
to the recent test developed by Marcellino and Rossi (2008), henceforth denoted as the
MR test, for comparing overlapping competing nonlinear dynamic models. The null
hypothesis of the MR test is that the models are equally close to the true DGP according
to the Kullback and Leibler (1951) information criterion. The alternative is that one
model is closer to the true DGP. More importantly, their test is valid whether or not
the models are correctly speci�ed and suitable for a variety of estimation methods.
Since we estimated our models by ML, the MR test statistic is a normalized version
of the standard LR statistic. Under the null hypothesis, the test statistic has either a
normal or a mixture of Chi-squared asymptotic distribution depending on the speed of
convergence of the variance of the test statistic. See Marcellino and Rossi (2008) for
more details.

8This can be seen from the fact that the CIR speci�cation is nested in both the NLDCEV and the
CIRCEV speci�cations.

15



The test statistics and their signi�cance are reported in the lower panel of Table
7. Not surprisingly, all seven null hypotheses are strongly rejected. This is valid
and convincing evidence to conclude that the CIRCEV speci�cation does outperform
the NLDCEV speci�cation at least in the context of our data and regime-switching
speci�cations. This particular conclusion may carry a signi�cant implication for the
empirical practice of modelling nonlinear continuous-time di¤usions, particularly when
regime switching is allowed. Clearly, not only does the CIRCEV has closed-form exact
transition density, which complete avoids the discretization or approximation bias (c.f.
Hsiao and Semmler 2011), but it also provide important functional �exibility even
better than the more heavily parameterized NLDCEV.

4.3. Conclusion

We studied model speci�cation in regime-switching continuous-time di¤usions for mar-
ket volatility, using the VIX which the widely accepted fear gauge as our proxy. The
frameworks under which our analysis was carried out are general and �exible enough
for us to examine a number of important empirical issues such as regime-switching,
endogeneity, switching components, nonlinearity, as well as to compare the relative
performance of the two closely related yet quite distinct nonlinear di¤usion speci�ca-
tions, namely the NLDCEV and the CIRCEV speci�cations, on the basis of formal
and informal criteria.
At least in the context of our di¤usion and regime-switching speci�cations, we found

strong evidence of regime changes in the dynamics of market volatility. In particular,
our results suggest that such a regime-switching mechanism is primarily character-
ized by the changing volatilities of the market volatility and most likely endogenously
driven by the level of market volatility itself. Moreover, regime-dependent nonlinearity
remained to be a crucial feature of the underlying dynamics, as the regime-switching
e¤ects alone cannot account for the complicated nonlinear dynamics su¢ ciently. Con-
sequently, we conclude that the most suitable models for modelling market volatility
such as the VIX should have an endogenous regime-switching mechanism and at least
suitably speci�ed regime-dependent nonlinear di¤usion functions. Compared to the
di¤usion term, the role of the drift term is likely to be of secondary importance. For
these reasons, nonlinear di¤usion speci�cations with desirable tractability, such as the
reducible di¤usions, can potentially play a very important role in this type of situations.
Further research can include conducting similar studies for modelling other �nancial

variables such as the short-term interest rates and exchange rates (c.f. Choi 2009,
Goutte and Zou 2013), or extending the current frameworks to models with jumps
(c.f. Chevallier and Goutte 2014), or considering pricing �nancial derivatives based
on regime-switching a¢ ne reducible continuous-time models (c.f. Amengual and Xiu
2012, Mencia and Sentana 2013).

16



References

Ahn, D.H., and Gao, B. (1999): A Parametric Non-linear Model of Term Structure
Dynamics. Review of Financial Studies, 12, 721-762.

Aït-Sahalia, Y. (1996a): Nonparametric Pricing of Interest Rate Derivatives. Econo-
metrica, 64, 527-560.

Aït-Sahalia, Y. (1996b): Testing Continuous-Time Models of the Spot Interest Rate.
Review of Financial Studies, 9, 385-426.

Aït-Sahalia, Y. (1999): Transition Densities for Interest Rate and Other Nonlinear
Di¤usions. Journal of Finance, 54, 1361-1395.

Aït-Sahalia, Y. (2002): Maximum Likelihood Estimation of Discretely Sampled Di¤u-
sions: A Closed-Form Approximation Approach. Econometrica, 70(1), 223-262.

Amengual, D., and Xiu, D. (2012): Delving into Risk Premia: Reconciling Evidence
from the S&P 500 and VIX Derivatives. Technical Report, University of Chicago
Booth School of Business.

Bandi. F.M., and Phillips, P.C.B. (2003): Fully Nonparametric Estimation of Scalar
Di¤usion Models. Econometrica, 71(1), 241-283.

Bai, J., and Perron, P. (1998): Estimating and Testing Linear Models with Multiple
Structural Changes. Econometrica, 66. 47-68.

Black, F., and Scholes, M. (1973): The Pricing of Options and Corporate Liabilities,
Journal of Political Economy, 81, 637-654.

Bu, R., Cheng, J., and Hadri, K. (2016): Reducible Di¤usions with Time-Varying
Transformations with Application to Short-Term Interest Rates. Economic Mod-
elling, 52, 266-277.

Bu, R., Hadri, K., and Kristensen, D. (2015): Transformed Di¤usions and Copulas:
Identi�cation and Estimation. Working Paper.

Bu, R., Giet, L., Hadri, K., and Lubrano, M. (2011): Modeling Multivariate Interest
Rates Using Time-Varying Copulas and Reducible Nonlinear Stochastic Di¤erential
Equations. Journal of Financial Econometrics, 9(1), 198-236.

Cai, J. (1994): A Markov Model of Switching-Regime ARCH. Journal of Business and
Economic Statistics, 12(3), 309-316.

Chan, K.C., Karolyi, A., Longsta¤, F., and Sanders, A. (1992): An Empirical Com-
parison of Alternative Models of the Short-Term Interest Rate. Journal of Finance,
47, 1209-1227.

Chang, Y., Choi, Y., and Park, J. (2014): Regime Switching Model with Endogenous
Autoregressive Latent Factor. Working Paper.

Chen, J.H., and Huang, Y.F. (2014): Long Memory and Structural Breaks in Mod-
elling the Volatility Dynamics of VIX-ETFS. International Journal of Business,
Economics and Law, 4(1), 54-63.

17



Chevallier, J., and Goutte S. (2015): Detecting Jumps and Regime Switches in Inter-
national Stock Markets Returns. Applied Economics Letters, 22(13), 1011-1019.

Choi, S. (2009): Regime-Switching Univariate Di¤usion Models of the Short-Term
Interest Rate. Studies in Nonlinear Dynamics and Econometrics, 13(1), Article 4.

Conley, T.L., Hansen, L., Luttmer, E., and Scheinkman, J. (1997): Short Term Interest
Rates as Subordinated Di¤usion. Review of Financial Studies, 10, 525-578.

Cox, J., Ingersoll, J., and Ross, S. (1985): In Intertemporal General Equilibrium Model
of Asset Prices. Econometrica, 53, 363-384.

Diebold, F., Lee, J., and Weinbach, G. (1994): Regime Switching with Time-Varying
Transition Probabilities. In C. Hargreaves (Ed.), Nonstationary Time Series Analy-
sis and Cointegration, 283-302. Oxford University Press.

Du¤ee, D., and Kan, R. (1996): A Yield Factor Model of Interest Rates. Mathematical
Finance, 6, 379-406.

Durham, G., and Gallant, R. (2002): Numerical Techniques for Maximum Likelihood
Estimation of Continuous-Time Di¤usion Processes. Journal of Business and Eco-
nomic Statistics, 20(3) 297-338.

Durham, G. (2003): Likelihood-Based Speci�cation Analysis of Continuous-Time Mod-
els of the Short-Term Interest Rate. Journal of Financial Economics, 70, 463-487.

Gallant, A.R., and Tauchen, G. (1998): Reprojecting Partially Observed Systems with
Application to Interest Rate Di¤usions. Journal of the American Statistical Asso-
ciation, 93(441), 10-24.

Garcia, R., and Perron, P. (1996): An Analysis of the Real Interest Rate under Regime
Shifts. Review of Economics and Statistics, 78(1), 111-125.

Gray, S.F. (1996): Modeling the Conditional Distribution of Interest Rates as a Regime-
Switching Process. Journal of Financial Economics, 42, 27-62.

Goutte, S., and Zou, B. (2013): Continuous Time Regime Switching Model Applied to
Foreign Exchange Rate. Mathematical. Finance Letters, 2013:8.

Guo, W., and Wohar, M.E. (2006): Identifying Regime Changes in Market Volatility.
Journal of Financial Research, 29(1), 79-93.

Hamilton, J. (1988): Rational-Expectations Econometric Analysis of Changes in
Regime: An Investigation of the Term Structure of Interest Rates. Journal of Eco-
nomic Dynamics and Control, 12, 385-423.

Hamilton, J. (1989): A New Approach to Economic Analysis of Nonstationary Time
Series. Econometrica, 57, 357-384.

Hamilton, J., and Susmel, R. (1994): Autoregressive Conditional Heteroskedasticity
and Changes in Regime. Journal of Econometrics, 64, 307-333.

18



Hsiao, C., and Semmler, W. (2011): Continuous and Discrete Time Modeling of Short-
Term Interest Rates, in: Gregoriou, G., and Pascalau, R. (Ed.), Financial Econo-
metrics Modeling: Derivatives Pricing, Hedge Funds and Term Structure Models,
Palgrave, 163-187.

Jiang, G., and Knight, J. (1997): A Nonparametric Approach to the Estimation of Dif-
fusion Processes with an Application to a Short-Term Interest Rate Model. Econo-
metric Theory, 13, 615-645.

Kim, C.J., Piger, J., and Startz, R. (2008): Estimation of Markov Regime-Switching
Regression Models with Endogenous Switching. Journal of Econometrics, 143, 263-
273.

Kullback, S., and Leibler, R.A. (1951): On Information and Su¢ ciency. Annals of
Mathematical Statistics, 22(1), 79�86.

Kristensen, D. (2010). Pseudo-Maximum Likelihood Estimation in Two Classes of
Semiparametric Di¤usion Models. Journal of Econometrics, 156, 239-259.

Marcellino, M., and Rossi, B. (2008): Model Selection for Nested and Overlapping Non-
linear, Dynamic and Possibly Mis-speci�ed Models. Oxford Bulletin of Economics
and Statistics, 70(1), 867-893.

Mencia, J., and Sentana, E. (2013): Valuation of VIX derivatives. Journal of Financial
Economics, 108(2), 367�391.

Merton, R.C. (1973). Theory of Rational Option Pricing. Bell Journal of Economics
and Management Science, 4, 141-183.

Papanicolaou, A., and Sircar, R. (2014): A Regime-Switching Heston Model for VIX
and S&P 500 Implied Volatilities. Quantitative Finance, 14(10), 1811-1827.

Rivers, D., and Vuong, Q. (2002): Model selection tests for nonlinear dynamic models.
Econometrics Journal, 5, 1�39.

Stanton, R. (1997). A Nonparametric Model of Term Structure Dynamics and the
Market Price of Interest Rate Risk. Journal of Finance, 52, 1973-2002.

Song, Z., and Xiu, D. (2014): A Tale of Two Option Markets: State-Price Densities
Implied from S&P 500 and VIX Option Prices. Journal of Econometrics, Forth-
coming.

Vasicek, O. (1977): An Equilibrium Characterization of the Term Structure. Journal
of Financial Economics, 5, 177-188.

Vuong, Q. (1989): Likelihood Ratio Tests for Model Selection and Nonnested Hypothe-
ses. Econometrica, 57, 307�333.

Whaley, R.E. (2000): The Investor Fear Gauge. Journal of Portfolio Management,
26(3), 12-17.

19



Table 1: Descriptive statistics of VIX data
Sample Period Jan 2, 1990 - Mar 20, 2015
Sample Size 6352
Mean 19.921
Min 9.310
Max 80.860
Std Dev. 7.982
Skewness 2.072
Kurtosis 10.466
Jarque-Bera Statistic 19298.001
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Table 2: ML estimation results for RS-CIR framework
CIR RS-CIR RS-CIR-1 RS-CIR-2 ERS-CIR ERS-CIR-1 ERS-CIR-2

�0;L 95.047 85.493 43.307 75.262 81.492 32.652 67.390
(11.634) (10.712) (4.555) (9.455) (11.734) (5.754) (9.675)

�0;H 313.941 500.092 349.779 579.605
(41.830) (28.655) (43.022) (33.082)

�1;L -4.779 -5.941 -0.000 -4.802 -5.785 -0.041 -4.313
(0.619) (0.659) (0.000) (0.557) (0.749) (0.039) (0.563)

�1;H �10.399 -35.196 -11.937 -44.009
(1.719) (1.536) (1.682) (2.550)

�2L 21.635 7.854 18.637 8.082 7.078 19.455 7.160
(0.988) (0.186) (0.371) (0.189) (0.272) (0.377) (0.281)

�2H 55.893 57.134 54.434 54.075
(1.755) (1.784) (2.505) (2.484)

PLL 0.959 0.767 0.962
(0.012) (0.014) (0.012)

PHH 0.898 0.138 0.901
(0.012) (0.047) (0.013)

cL 1.307 13.831 1.271
(3.170) (3.087) (2.931)

cH -18.935 11.224 -21.529
(7.513) (5.886) (7.883)

dL1 -0.735
(0.225)

dL2 0.014
(0.005)

dH1
2.614 3.008
(1.039) (1.110)

dH2 -0.110 -0.128
(0.046) (0.050)

LL -10474.402 -9549.698 -10317.912 -9589.703 -9490.337 -10260.062 -9530.299
AIC 20954.804 19115.396 20649.824 19191.406 19000.674 20538.124 19076.598
BIC 20975.074 19169.448 20697.120 19231.945 19068.239 20598.933 19130.650
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Table 3: ML estimation results for RS-NLDCEV framework
NLDCEV RS-NLDCEV RS-NLDCEV-1 RS-NLDCEV-2 ERS-NLDCEV ERS-NLDCEV-1 ERS-NLDCEV-2

��1;L 826.013 4364.769 2379.952 2517.836 4364.423 2379.005 2516.015
(960.884) (1508.870) (865.087) (955.888) (1427.770) (1771.127) (1437.977)

��1;H 140.329 1449.683 143.820 1448.998
(302.001) (1736.496) (728.301) (2707.071)

�0;L -86.565 -675.427 -661.474 -364.410 -680.209 -660.996 -367.266
(156.901) (252.835) (152.410) (153.496) (243.879) (400.619) (235.001)

�0;H 177.392 81.185 201.721 80.997
(74.038) (153.675) (132.371) (238.894)

�1;L 5.261 33.767 70.242 17.968 33.871 70.036 18.175
(7.510) (13.212) (14.176) (7.698) (13.139) (26.718) (11.846)

�1;H -4.924 -5.734 -6.431 -5.825
(3.748) (3.071) (7.201) (5.011)

�2;L �0.142 -0.581 -2.441 -0.323 -0.568 -2.434 -0.323
(0.099) (0.214) (0.482) (0.121) (0.223) (0.492) (0.183)

�2;H -0.000 -0.000 -0.018 -0.004
(0.000) (0.000) (0.112) (0.001)

�2L 0.151 0.079 0.156 0.070 0.044 0.156 0.039
(0.022) (0.019) (0.023) (0.016) (0.010) (0.023) (0.009)

�2H 1.849 1.599 1.799 1.518
(0.887) (0.062) (0.791) (0.628)

�L 1.314 1.325 1.310 1.349 1.422 1.311 1.444
(0.024) (0.041) (0.025) (0.020) (0.039) (0.025) (0.038)

�H 1.075 1.103 1.079 1.105
(0.078) (0.039) (0.072) (0.066)

PLL 0.965 0.999 0.969
(0.013) (0.011) (0.013)

PHH 0.843 0.999 0.849
(0.021) (0.011) (0.020)

cL 6.027 6.335 1.444
(3.005) (1.664) (3.024)

cH -9.704 5.840 1.105
(2.407) (5.277) (3.055)

dL1 1.141 3.081
(0.482) (0.411)

dL2 0.043 -0.251
(0.020) (0.016)

dH1
1.086 -10.164
(0.260) (0.360)

dH2 -0.029 1.188
(0.009) (0.013)

LL -9837.452 -9341.993 -9810.662 -9369.349 -9315.848 -9807.289 -9341.706
AIC 19686.904 18711.986 19645.324 18758.698 18665.696 19640.578 18711.412
BIC 19727.443 18806.577 19726.402 18826.263 18780.557 19728.413 18806.003
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Table 4: ML estimation results for RS-CIRCEV framework
CIRCEV RS-CIRCEV RS-CIRCEV-1 RS-CIRCEV-2 ERS-CIRCEV ERS-CIRCEV-1 ERS-CIRCEV-2

�0;L 0.628 0.654 0.745 0.684 0.198 0.916 0.189
(0.196) (0.327) (0.264) (0.305) (0.102) (0.380) (0.073)

�0;H 6.645 0.193 6.519 1.040
(6.357) (0.333) (8.034) (1.401)

�1;L -3.844 -2.184 -3.242 -2.785 -1.631 -3.515 -2.449
(0.555) (0.529) (0.528) (0.481) (0.554) (0.592) (0.478)

�1;H �11.220 -39.671 -12.028 -42.749
(2.351) (4.246) (2.372) (6.268)

�2L 0.091 0.062 0.081 0.060 0.035 0.088 0.030
(0.014) (0.014) (0.014) (0.013) (0.009) (0.017) (0.006)

�2H 0.538 0.298 0.502 0.146
(0.228) (0.066) (0.278) (0.032)

�L 1.396 1.361 1.380 1.369 1.457 1.367 1.484
(0.026) (0.039) (0.029) (0.037) (0.042) (0.032) (0.034)

�H 1.270 1.280
(0.071) (0.090)

PLL 0.963 0.984 0.966
(0.013) (0.036) (0.021)

PHH 0.847 0.037 0.859
(0.021) (0.021) (0.017)

cL 3.894 1.918 2.260
(2.760) (1.133) (1.677)

cH -10.067 -3.871 -1.891
(2.174) (1.889) (0.364)

dL1 0.255
(0.126)

dL2 0.034 -0.008 0.009
(0.016) (0.004) (0.005)

dH1
1.146 0.270
(0.228) (0.051)

dH2
-0.031 -0.004
(0.007) (0.002)

LL -9777.305 -9331.973 -9546.243 -9348.018 -9304.674 -9540.546 -9326.202
AIC 19562.610 18683.946 19108.486 18710.036 18635.348 19101.092 18672.404
BIC 19589.636 18751.511 19162.538 18757.332 18723.183 19168.657 18739.969
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Table 5: LR test results for regime-switching, endogeneity and switching components
H0(one-regime) vs H1(two-regimes) LR Statisitc p-value
CIR vs RS-CIR 1849.40 0.000
NLDCEV vs RS-NLDCEV 1303.68 0.000
CIRCEV vs RS-CIRCEV 990.93 0.000

H0(exogenous) vs H1(endogeneous) LR Statisitc p-value
RS-CIR vs ERS-CIR 118.722 0.000
RS-CIR-1 vs ERS-CIR-1 115.700 0.000
RS-CIR-2 vs ERS-CIR-2 118.808 0.000
RS-NLDCEV vs ERS-NLDCEV 52.280 0.000
RS-NLDCEV-1 vs ERS-NLDCEV-1 6.746 0.009
RS-NLDCEV-2 vs ERS-NLDCEV-2 55.286 0.000
RS-CIRCEV vs ERS-CIRCEV 54.598 0.000
RS-CIRCEV-1 vs ERS-CIRCEV-1 11.394 0.004
RS-CIRCEV-2 vs ERS-CIRCEV-2 43.632 0.000

H0(drift) vs H1(both) LR Statisitc p-value
RS-CIR-1 vs RS-CIR 1536.428 0.000
RS-NLDCEV-1 vs RS-NLDCEV 937.338 0.000
RS-CIRCEV-1 vs RS-CIRCEV 428.540 0.000
ERS-CIR-1 vs ERS-CIR 1539.450 0.000
ERS-NLDCEV-1 vs ERS-NLDCEV 982.882 0.000
ERS-CIRCEV-1 vs ERS-CIRCEV 471.744 0.000

H0(di¤usion) vs H1(both) LR Statisitc p-value
RS-CIR-2 vs RS-CIR 80.010 0.000
RS-NLDCEV-2 vs RS-NLDCEV 54.712 0.000
RS-CIRCEV-2 vs RS-CIRCEV 32.090 0.000
ERS-CIR-2 vs ERS-CIR 79.924 0.000
ERS-NLDCEV-2 vs ERS-NLDCEV 51.716 0.000
ERS-CIRCEV-2 vs ERS-CIRCEV 43.056 0.000
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Table 6: LR test results for nonlinearity
H0(linear) vs H1(nonlinear) LR statistic p-value
CIR vs NLDCEV 1273.900 0.000
RS-CIR vs RS-NLDCEV 415.410 0.000
RS-CIR-1 vs RS-NLDCEV-1 1014.500 0.000
RS-CIR-2 vs RS-NLDCEV-2 440.708 0.000
ERS-CIR vs ERS-NLDCEV 348.978 0.000
ERS-CIR-1 vs ERS-NLDCEV-1 905.546 0.000
ERS-CIR-2 vs ERS-NLDCEV-2 377.186 0.000

H0(linear) vs H1(nonlinear) LR statistic p-value
CIR vs CIRCEV 1394.194 0.000
RS-CIR vs RS-CIRCEV 435.450 0.000
RS-CIR-1 vs RS-CIRCEV-1 1543.338 0.000
RS-CIR-2 vs RS-CIRCEV-2 483.370 0.000
ERS-CIR vs ERS-CIRCEV 371.326 0.000
ERS-CIR-1 vs ERS-CIRCEV-1 1439.032 0.000
ERS-CIR-2 vs ERS-CIRCEV-2 408.194 0.000
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Table 7: LR and MR test results for comparing models
H0(equal) vs H1(unequal) LR statistic p-value
NLDCEV vs CIRCEV 120.294 0.000
RS-NLDCEV vs RS-CIRCEV 20.040 0.001
RS-NLDCEV-1 vs RS-CIRCEV-1 528.838 0.000
RS-NLDCEV-2 vs RS-CIRCEV-2 42.662 0.000
ERS-NLDCEV vs ERS-CIRCEV 22.348 0.000
ERS-NLDCEV-1 vs ERS-CIRCEV-1 533.486 0.000
ERS-NLDCEV-2 vs ERS-CIRCEV-2 31.008 0.000

H0(equal) vs H1(unequal) MR statistic p-value
NLDCEV vs CIRCEV 2.959 0.002
RS-NLDCEV vs RS-CIRCEV 1.846 0.032
RS-NLDCEV-1 vs RS-CIRCEV-1 4.496 0.000
RS-NLDCEV-2 vs RS-CIRCEV-2 3.708 0.000
ERS-NLDCEV vs ERS-CIRCEV 2.059 0.019
ERS-NLDCEV-1 vs ERS-CIRCEV-1 4.419 0.000
ERS-NLDCEV-2 vs ERS-CIRCEV-2 2.006 0.023
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Figure 1: Time series and di¤erenced series of VIX data
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