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Abstract

In the fast evacuation problem, we study the path planning problem
for two robots who want to minimize the worst-case evacuation time on
the unit disk. The robots are initially placed at the center of the disk.
In order to evacuate, they need to reach an unknown point, the exit, on
the boundary of the disk. Once one of the robots �nds the exit, it will
instantaneously (using wireless communication) notify the other agent,
who will make a beeline to it.

The problem has been studied for robots with the same speed [8]. We
study a more general case where one robot has speed 1 and the other has
speed s ≥ 1. We provide optimal evacuation strategies in the case that
s ≥ c2.75 ≈ 2.75 by showing matching upper and lower bounds on the
worst-case evacuation time. For 1 ≤ s < c2.75, we show (non-matching)
upper and lower bounds on the evacuation time with a ratio less than
1.22. Moreover, we demonstrate that a di�erent-speeds generalization of
the two-robot search strategy from [8] is outperformed by our proposed
strategies for any s ≥ c1.71 ≈ 1.71.

1 Introduction

Consider a pair of mobile robots in an environment represented by a circular
disk of unit radius. The goal of the robots is to �nd an exit, i.e. a point at an
unknown location on the boundary of the disk, and both move to this exit. The
exit is only recognized when a robot visits it. The robots' aim is to accomplish
this task as quickly as possible. This problem is referred to as the evacuation
problem. The robots start at the center of the disk and can move with a speed not
exceeding their maximum velocity (which may be di�erent from one another).
They can coordinate their actions in any manner they like, and can communicate
wirelessly (instantaneously).

1.1 Related work

Evacuation belongs to the realm of distributed search problems, which have a
long history in mathematics, computer science, and operations research, see,
e.g. [3].

∗The �nal publication is available at http://link.springer.com/chapter/10.1007%

2F978-3-662-53426-7_1. Published version appears in Volume 9888 of the book series Lecture
Notes in Computer Science.
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Salient features in search problems include the environment (e.g. a geometric
one or graph-based), mobility of the robots (how they are allowed to move),
perception of and interaction with the environment, and their computational
and communication abilities. Typical tasks include exploring and mapping an
unknown environment, �nding a (mobile or immobile) target (e.g. cops and
robbers games [4] and pursuit-evasion games [17]; the �lost at sea� problem [12];
the cow-path problem and plane-searching problem [2],[5],[14],[15]), rendezvous
or gathering of mobile agents [16], and evacuation [7, 8],[10]. (Note that we
distinguish between the distributed version of evacuation problems involving
a search for an unknown exit, and centralized versions, typically modeled as
(dynamic) capacitated �ow problems on graphs, where the exit is known.) A
general survey of search and rendezvous problems can be found in [1]. Also
related is the task of patrolling or monitoring, i.e. the periodic (re)visitation of
(part of) the environment [6],[9],[18].

In most of these settings, the typical cost is the time required to �nish the
task (in a synchronous environment), or the total distance moved by the robots
to �nish it (in an asynchronous setting). (Patrolling has a di�erent �cost�, the
time between consecutive visits to any point in the region, the so-called �idle
time�.)

A little explored feature of the robots is their speed. Most past work has
focused on the case where all robots share the same (maximal) speed. Notable
exceptions of which the authors are aware include [7], which considers the evac-
uation problem on the in�nite line with robots with distinct maximal speeds,
[9], which introduces a non-intuitive ring patrolling strategy using three robots
with distinct maximal speeds, and [11],[13], where the rendezvous problem with
di�erent speeds in a cycle is studied. It is this feature, robots with di�erent
maximal speeds, that we explore in this paper.

The most relevant previous work is [8],[10], which explores the evacuation
problem in the unit disk with two robots with identical speeds (s = 1).

1.2 Our results

We consider the evacuation problem in the unit disk using two robots with dis-
tinct maximal speeds (one with speed 1, the second with speed s ≥ 1). The
robots share a common clock and can communicate instantaneously when they
have found the exit (wireless communication) and so can synchronize their be-
havior in the evacuation procedure. We assume that the robots can measure
distances to an arbitrary precision (equivalently, they can measure time to an
arbitrary precision), and can vary their speeds as they desire, up to their max-
imum speed.

We show that, even in the case of two robots, the analysis involved in �nding
(time) optimal evacuation strategies can become intricate, with strategies that
depend on the ratio of the fast robot's to the slow robot's maximal speed.

For large s, we introduce an e�cient and non-obvious search strategy, called
the Half-Chord Strategy (Figure 1). We generalize a strategy from [8] for small
s, the �Both-to-the-Same-Point Strategy� (BSP), where the two robots move to
the same point on the boundary and then separately explore the boundary in
clockwise and counterclockwise directions to �nd the exit. For values of s ≥
c1.86 (with c1.86 ≈ 1.856), we show that BSP is not optimal by demonstrating
that the Half-Chord Strategy is superior to it. Moreover, we improve on this
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with the Fast-Chord Strategy (Figure 4), which outperforms Half-Chord for
1.71 ≈ c1.71 < s < c2.07 ≈ 2.07. We obtain optimality for all s ≥ c2.75 ≈ 2.75,
in the wireless setting, as we demonstrate matching upper and lower bounds
on the evacuation time. For s ∈ (1, c2.75), we provide lower bounds on the
evacuation time that do not match the bounds provided by the respective search
strategies (BSP for s < c1.71, Fast-Chord for s ∈ [c1.71, c2.07), and Half-Chord
for s ≥ c2.07). The worst ratio between our upper and lower bound, 1.22, is
realized for s = c1.71.

Section 2 contains a more formal de�nition of the problem we consider.
Section 3 contains our upper bounds on the evacuation time, while Section 4
has our lower bounds. In the interests of space, parts of the proofs are omitted
from this version, and we trust the reader to rely upon the supplied diagrams
for the intuition of our results.

2 Problem De�nition and Strategy Space

In this section, we formally de�ne the problem in question. Furthermore, we
provide a partition of the strategy space and some observations, which will be
useful in the bounds to follow.

De�nition 1 (The Fast Evacuation Problem). Given a unit disk and two robots
starting at its center (the former with maximum speed s ≥ 1 and the latter
with maximum speed 1), provide an algorithm such that both robots reach an
unknown exit lying on a boundary point of the disk. The two robots, called Fast
and Slow, are allowed to move within the entire unit disk, can only identify the
exit when they stand on it, and can communicate wirelessly at any time.

De�nition 2. An �evacuation strategy� is an algorithm on how each robot moves
such that both robots have evacuated the disk at the end of its execution.

The following remark is a direct consequence of the geometric environment
in which this fast evacuation scenario takes place.

Remark 1. In any evacuation strategy, when either robot discovers the exit,
the optimal strategy of the other one immediately reduces to following a beeline
to the exit.

We now proceed with identifying key aspects of potential strategies.

De�nition 3. A �both-explore� strategy is a strategy for both robots to evacuate
the disk, where (in the worst-case) both of them explore at least two distinct
points on the boundary. We de�ne the set of all both-explore strategies as BES.

De�nition 4. A �fast-explores� strategy is a strategy where only Fast explores
the boundary searching for the exit. Slow, eventually, only reaches the exit point
and at any time it reaches no other point on the boundary of the disk. We de�ne
the set of all fast-explores strategies as FES.

De�nition 5. A �slow-explores� strategy is a strategy where only Slow explores
the boundary searching for the exit. Fast, eventually, only reaches the exit point
and at any time it reaches no other point on the boundary of the disk. We de�ne
the set of all slow-explores strategies as SES.
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Notice that, for s = 1, if only one robot explores the boundary, we randomly
assign such a strategy to FES or SES. Below, let ALL stand for the set of all
evacuating strategies.

Proposition 2. (BES,FES, SES) forms a partition of ALL.

We remark that, when considering SES and FES strategies, it can become
a burden to forcefully keep the non-exploring robot away from the boundary.
E.g., if we only want Slow to explore in an SES strategy, the optimal behavior
of Fast would be to mimic the behavior of Slow. For FES strategies with s ≤ 2,
it also proves to be most natural to allow Slow to move on the boundary, but
to ignore it when Slow �nds the exit �rst. For this reason we use FES and
SES strategies in this sense. Alternatively, one could also let the non-exploring
robot to move ε-close to the boundary.

We do not consider SES strategies in our analysis. An optimal SES strategy
is obviously to go to the boundary and explore the boundary (counter)clockwise.
The worst case time is 1 + 2π.

3 Upper Bounds

3.1 The Half-Chord Strategy

The idea for this strategy stems from the proof of the FES lower bound to
follow. The worst-case analysis is performed for s ∈ [2,∞). For the strategy
details below, please refer to Figure 1. The center of the disk is denoted by O.
Fast's trajectory is given with double arrows, while Slow's is given with single
arrows. All angles and arcs are considered in counterclockwise order.

3.1.1 The Strategy.

Initially, both robots move in beelines with an angle of π + 1/2 between them
until Fast reaches the boundary (i.e. for 1

s time). Let B be the �rst boundary
point reached by Fast. From now on, Fast's strategy reduces to exploring the
boundary. On the other hand, Slow continues on its beeline for another 1

s time
until it reaches point C (where |OC| = 2

s ). Then, it takes an arc from C to M
on the disk with radius 2

s centered at O (where M is the middle point of chord
BA, where A is the point with arc distance 2 arccos

(
− 2
s

)
from B). Finally,

Slow traverses MB. Below, we provide a more structured and formal strategy
de�nition.

Fast moves as follows until the exit is found:

• for t ∈
[
0, 1s
]
: moves toward B and

• for t ∈
(
1
s ,

1+2π
s

]
: traverses the boundary counterclockwise.

Slow moves as follows until the exit is found:

• Phase I: for t ∈
[
0, 2s
]
moves toward C,

• Phase II: for t ∈
î
2
s ,

1+2 arccos(−2/s)
s

ó
moves toward M via C̄M on disk(

O, 2s
)
,
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Table 1: Measurements for Half-Chord Strategy

|OC| = 2
s by choice

B̃A = 2arccos
(
− 2
s

)
by choice

φ = ]BOC = π + 1/2 by choice

|C̄M | = 1
s (2 arccos

(
− 2
s

)
− 1) slow on M exactly when fast on A

θ = ]COM = s
2 |C̄M | = arccos

(
− 2
s

)
− 1/2 arc-to-angle

ψ = ]MOB = 2π − φ− θ = π − arccos
(
− 2
s

)
sum of angles around O

|AB| = 2 sin
(
2 arccos

(
− 2
s

)
/2
)
= 2
»
1− 4

s2 arc-to-chord computation

|AM | = |MB| = |AB|/2 =
»
1− 4

s2 since M is the middle of the chord

]OMB = π/2 perpendicular bisector through center

• Phase III: for t ∈
î
1+2 arccos(−2/s)

s , 1+2π
s

ó
moves toward B via the MB

segment.

In Table 1, we shortly outline some core measurements on the emerging
shape, e.g. angles and lengths, which will be useful in the proofs that follow.
We now continue with some useful propositions.

Proposition 3. Fast reaches A exactly when Slow reaches M .

Proposition 4. Fast explores the whole boundary before Slow reaches B.

•

•

•
•

•O

C
B

A

M

Figure 1: The Half-
Chord Strategy (case
s = 4)

The aforementioned proposition, together with
the fact that it takes 1+2π

s time for Fast to explore
the whole boundary, provides us with the endtime for
Phase III and the strategy in general.

The main result of this section follows from the
combination of the upper bounds proved for Phases
I, II, and III.

Theorem 5. For any s ≥ 2, the worst-case evac-
uation time of the Half-Chord strategy is at most
1+2 arccos(− 2

s )
s +

»
1− 4

s2 .

3.1.2 Phase I.

Lemma 6. The Half-Chord evacuation strategy takes at most

(1 + 2 arccos(−2/s))
s

+

…
1− 4

s2

evacuation time, if the exit is found during Phase I.

Proof. We need only care about the time t ∈ [1/s, 2/s], since for less time
Slow has not yet reached the boundary. Imagine that the exit is discovered
after (1 + a)/s time (for a ∈ [0, 1]). For a visualization, the reader can refer
to Figure 2a. Slow has covered (1 + a)/s distance on the OC segment, while

Fast has explored an a part of B̃A. Slow now takes a segment from its current
position (namely D) to the exit E. To compute |DE| we use the law of cosines
in 4DOE. Let ω = ]DOE. In case a ≤ 1

2 , ω ≤ π, and more accurately
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•

•

•
•

•
•

•

O

C
B

A

M

D

E

(a) Exit during Phase I (a = 0.75)

•

•

•

•

•

•

•

O
B

A

M

S

E

D

(b) Exit during Phase II (τ = 0.3)

Figure 2: Exit during Phases I & II (Examples for s = 4)

ω = a + ψ + θ = π + a − 1
2 . In case a > 1

2 , ω > π, and more accurately
ω = 2π − a− ψ − θ. Since cos(2π − x) = cos(x), we can consider the two cases
together. We compute,

|DE| =
√
|OE|2 + |OD|2 − 2|OE||OD| cos(ω) =

»
1 + (1+a)2

s2 + 2 1+a
s cos(1/2− a)

Overall, the worst-case evacuation time is given by

max
a∈[0,1]

{
1 + a

s
+

 
1 +

(1 + a)2

s2
+ 2

1 + a

s
cos(1/2− a)

}
.

To conclude the proof, it su�ces to observe that 2
s +

»
1 + 22

s2 + 2 2
s is an

upper bound to the above quantity, since a ≤ 1 and cos(·) ≤ 1. Finally,

2
s +
»
1 + 22

s2 + 2 2
s ≤

1+2 arccos(− 2
s )

s +
»
1− 4

s2 for any s ≥ 2.

3.1.3 Phase II.

Lemma 7. The Half-Chord evacuation strategy takes at most
1+2 arccos(− 2

s )
s +»

1− 4
s2 evacuation time, if the exit is found during Phase II.

Proof. We prove that the worst-case placement for the exit is point A. Suppose
the exit E is found at the time when Slow lies on point S and has not yet

covered a τ part of C̄M . The corresponding central angle is sτ
2 , since C̄M

is an arc on (O, 2s ). At the same time, Fast has not yet explored an sτ part

of B̃A with a corresponding central angle of size sτ . Then, Slow can move
backwards on the boundary of (O, 2s ) for another τ distance to point D. Now,
the central angle from D to M is sτ

2 + sτ
2 = sτ and matches the central angle

between E and A. Thence, due to shifting by the same central angle, we get
]EOD = ]EOA + ]AOD = ]DOM + ]AOD = ]AOM . Moreover, since
|OD| = |OM | = 2

s and |OE| = |OA| = 1, triangles 4EOD and 4AOM are
congruent meaning that |ED| = |AB|. To sum up, if the exit is discovered τ

time before Slow reaches M , it takes at most another τ +
»

1− 4
s2 time for it
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to reach it. At the same time, it would take τ +
»
1− 4

s2 for it to reach A.
Hence, exiting through A is the worst-case scenario and yields a total time of
1+2 arccos(− 2

s )
s +

»
1− 4

s2 .

3.1.4 Phase III.

Lemma 8. The Half-Chord evacuation strategy takes at most
1+2 arccos(− 2

s )
s +»

1− 4
s2 evacuation time, if the exit is found during Phase III.

Proof. Since
1+2 arccos(− 2

s )
s time has already passed at the beginning of Phase

III, it su�ces to show that at most
»
1− 4

s2 time goes by when the exit is

discovered within ÃB.
Suppose that the exit is discovered τ time units after the beginning of Phase

III. Then, Slow lies at C (Figure 3), τ distance away from M on the MB
segment. On the other hand, Fast lies on E, an sτ distance away from A on

ÃB.
Consider a disk with center C and radius r =

»
1− 4

s2 − τ . One can notice

that (C, r) intersects (O, 1) at two points: one of them is B and the other one is

D, where D is included in ÃB, since |AC| ≥ r for any choice of τ ≥ 0. Moreover,
we draw the chord DB and its middle point, say M ′. Now, notice that OM ′ is
perpendicular to DB, since DB is a chord of (O, 1) and also that OM ′ passes
through C, since DB is also a chord of (C, r). To conclude, we exhibit that E

is included in D̃B. Equivalently, that |ÃE| ≥ |ÃD|. We look into two cases.
First, that ]AOD ≤ ]AOM . In this case, we compute ]AOD = ]AOM −

]DOM = ]MOB − ]DOM = ]MOM ′ + ]M ′OB − ]DOM = ]MOM ′ +
]DOM ′ − ]DOM = 2 · ]MOM ′, since ]AOM = ]MOB and ]M ′OB =
]DOM ′ from the fact that OM (OM ′) bisects AB (DB). Moreover, ]DOM ′−
]DOM = ]MOM ′. We compute ]MOM ′ = arctan(sτ/2) by the right
triangle 4MOC. Finally, ]AOD = 2arctan(sτ/2) ≤ sτ = ]AOE, since
arctan(x) ≤ x for x ≥ 0.

For the second case, ]AOD > ]AOM . Then, ]AOD = ]AOM+]MOD =
]MOB + ]MOD = ]MOM ′ + ]M ′OB + ]MOD = ]MOM ′ + ]DOM ′ +
]MOD = 2 ·]MOM ′, again by using the equalities deriving from bisecting the
chords. The rest of the proof follows as before.

3.2 The Half-Chord Strategy for 1 ≤ s ≤ 2

We �rst observe that, for s = 2, the name �Half-Chord� is slightly misleading,
as the points A, B, and M coincide. The time needed for s = 2 is, as shown in
Theorem 5, 1+2π

s . Note also that the Half-Chord strategy is a BES strategy for
s = 2.

For s < 2, Slow can simply move even slower, namely with speed s
2 . Using

the same paths as for s = 2, this provides the same upper bound of 1+2π
s .

Theorem 9. For 1 ≤ s ≤ 2, the (generalized) Half-Chord strategy leads to a
1+2π
s evacuation time.
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•

•

•

•

•

•

•

O

C

B

A

M

D

M ′

(a) First case (τ = 1
5
)

•

•

•

•
•

•

•

O

C
B

A

M

D

M ′

(b) Second case (τ = 1
2
)

Figure 3: Exit during Phase III (when s = 4; exit E lies at the end of Fast's
arrow)

3.3 The Both-to-the-Same-Point Strategy

This BES strategy follows the same key idea presented in [8] where it is proven
to be optimal for s = 1.

3.3.1 The Strategy.

In the Both-to-the-Same-Point Strategy (shortly BSP strategy), initially both
robots set out toward the same boundary point moving in a beeline. Once they
arrive there, they move to opposite directions along the boundary. This goes on,
until the exit has been found by either robot or the robots meet each other on
the boundary. We restrict the analysis of BSP for s ∈ [1, 2], since for s > c1.71
this strategy becomes non-dominant.

Theorem 10. The BSP strategy requires evacuation time at most

1 + 2

 
1− 1

(s+ 1)2
+

2arccos(− 1
s+1 )− s+ 1

s+ 1

when s ∈ [1, 2].

3.4 The Fast-Chord Strategy

In the Half-Chord strategy for s = 2, we observe that the �nal point reached
after Phase I, i.e. point C, lies on the disk boundary. Thence, after that, Slow

explores C̃B, but so does Fast (since by its strategy it explores the whole bound-
ary). This seems like an unnecessary double-exploring of this part of the bound-
ary. Thus, we propose a new strategy, where Fast reaches C as usual, but then

traverses the CB chord, instead of C̃B. Furthermore, we could vary the po-
sition of C, in order for Fast to reach B (for the second time) exactly when
Slow reaches D (a point before B) and so get Fast to explore some part of the
boundary in clockwise fashion as well. In this case, Slow does not traverse the
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whole C̃B. Let us now describe more formally this Fast-Chord family of strate-
gies. All arcs are considered in counterclockwise fashion unless otherwise stated.

Below, let |B̃A| = s − 1, x1 = |ÃC|, x2 = |CB|, x3 = |D̃B| and y = |C̃B|; see
Figure 4.

3.4.1 The Strategy.

y

s− 1

x1

x2

x3
•

•
•
•

•

O

C

B

D

A

Figure 4: The Fast-
Chord Family of Strate-
gies

Fast moves as follows until the exit is found:

• for t ∈
[
0, 1s
]
moves toward B,

• Phase I: for t ∈
(
1
s , 1
]
traverses B̃A,

• Phase IIa: for t ∈
(
1, 1 + x1

s

]
traverses ÃC,

• Phase IIb: for t ∈
(
1 + x1

s , 1 +
x1+x2

s

]
traverses

CB and

• Phase IIc: for t ∈
Ä
1 + x1+x2

s , 1 + x1+x2

s + x3

s+1

ó
moves toward D (clockwise) till it meets Slow.

Slow moves as follows until the exit is found:

• for t ∈ [0, 1] moves toward C,

• for t ∈ (1, 1 + y] traverses C̃D,

• for t ∈
Ä
1 + y, 1 + y + x3

s+1

ó
traverses D̃B till it

meets Fast.

The following system of equations describes the relationship between the
variable distances:

x1 + y + x3 + s− 1 = 2π (I)
x2 = 2 sin

(
x3+y

2

)
(II)

x1 + x2 = s · y (III)

Equation (I) suggests how the disk boundary is partitioned. Equation (II)
suggests that x2 is the chord of an arc with length x3+y. Equation (III) suggests
that Fast traverses x1 and x2 at the same time as slow traverses y. That is,
since Fast lies on A exactly when Slow lies on C, then Fast arrives at B (for
the second time) exactly when Slow arrives at D. The latter happens at time
1+y = 1+x1+x2

s . The remaining x3 part of the boundary can be explored in time
x3

s+1 , since both robots explore it concurrently until they meet. Hence, within
x3

s+1 time, they can explore a distance equal to s · x3

s+1 +
x3

s+1 = (s+1) · x3

s+1 = x3.
All variables are non-negative representing distance.

The idea behind this paradigm is to try di�erent values for x3 and then solve
the above system to extract x1, x2 and y. Nonetheless, due to the sin(·) function
in equation (II), it is not possible to obtain a symbolic solution. Thence, we
hereby provide bounds computed numerically. For any value of s, we iterate over
all possible x3 values and then solve the above system numerically. For each x3
value and for each exploration phase, we use a small time step and compute the
worst-case evacuation time. Then, we can select the x3 value which minimizes
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this worst-case time. All this numerical work is implemented in Matlab. We
iterate over x3 in the interval [0, 2π − s+ 1]. The upper bound for x3 stems
from the case x1 = y = 0. Indeed, notice that, for s = 1, Fast-Chord is exactly
BSP when we set x1 = y = 0. For the time parameter, namely t, we iterate in

the interval
î
0, 1 + x1+x2

s + x3

s+1

ó
. Finally, we use a parametric representation of

the disk (where the center O lies on coordinates (0, 0)) to calculate the distance
between the two robots.

By studying the numerical bounds we obtain via the Fast-Chord method,
we state the following result, in comparison to the other two strategies studied
in this paper.

Theorem 11. Fast-Chord performs better than (Generalized) Half-Chord for
s ∈ (c1.71, c2.07). It also performs better than Both-to-the-Same-Point for s ≥
c1.71.

4 Lower Bounds

The main tool behind our lower bounds is the following lemma from [8].

Lemma 12 (Lemma 5 [8]). Consider a boundary of a disk whose subset of total
length u + ε > 0 has not been explored for some ε > 0 and π ≥ u > 0. Then
there exist two unexplored boundary points between which the distance along the
boundary is at least u.

4.1 Fast Explores

Lemma 13. Any FES-strategy takes at least

• 1+2π
s time for any s ∈ [1, 2] and

• 1+2 arccos(− 2
s )

s +
»
1− 4

s2 time for any s ≥ 2.

Proof. For any s, Fast needs at least 1+2π
s time to explore the whole boundary.

We now show a better bound for s ≥ 2. At time 1+a
s (where a ≥ 0), Fast has

explored at most an a part of the boundary. Then, if we consider the time 1+a−ε
s

(where ε > 0), a 2π − (a − ε) = 2π − a + ε subset of the boundary has not yet
been explored. We bound a ∈ [π, 2π) such that 0 < 2π − a ≤ π holds. We now
apply Lemma 12 with u = 2π − a and ε. Thence, there exist two unexplored
boundary points between which the distance along the boundary is at least u.
Let us now consider the perpendicular bisector of the chord connecting these
two points. Depending on which side of the bisector Slow lies, an adversary may
place the exit on the boundary point lying at the opposite side. The best case
for Slow is to lie exactly on the point of the bisection. That is, Slow will have

to cover a distance of at least
2 sin(u

2 )
2 = sin

(
a
2

)
, where 2 sin

(
u
2

)
is the chord

length. In this case, the overall evacuation time is equal to 1+a
s + sin

(
a
2

)
and

for the best lower bound we compute max
π≤a<2π

{
1+a
s + sin

(
a
2

)}
.
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4.2 Both Explore

The following lower bound is a result of applying Lemma 12 to obtain a gener-
alization of the lower bound proved in [8]. The proof considers a timestep when
both robots have explored some part of the boundary and lie on the opposite
ends of a long chord. Then, an adversary acts according to his best interests.
He either places the exit on the end opposite Fast or in the end being farthest
to Slow; the latter leading to a chord bisection argument similar to the one used
in Lemma 13.

Lemma 14. Any BES-strategy takes at least

• 1 + 2
s

»
1− s2

(s+1)2 +
−s+2 arccos(− s

s+1 )+1

s+1 time for s ∈ [1, 2),

• 1 +
»

1− 4
(s+1)2 +

−s+2 arccos(− 2
s+1 )+1

s+1 for s ∈ [2, c4.84] (where c4.84 ≈
4.8406) and

• 1 + sin
(
s−1
2

)
time for s ∈ (c4.84, 2π + 1).

The above lower bound loses its value as s grows. Hence, there is a need to
capture a lower bound for the case where Slow has not explored any part of the
boundary yet. This is possible, since we can apply an FES lower bound idea
when s is big enough.

Lemma 15. Any BES-strategy takes at least

• 1 + sin
(
s−1
2

)
time for s ∈ (π + 1, c4.97), where c4.97 ≈ 4.9699, and

• 1+2 arccos(− 2
s )

s +
»
1− 4

s2 time for s ≥ c4.97.

4.3 An Improvement for Both Explore

λ

k

•

•

•

•

•

O
B

A

M
K

Figure 5: An Improved
BES Lower Bound

We now obtain numerical values for a stronger
BES lower bound by performing a more com-
plex analysis on the Original BES lower bound
proof given in Lemma 14. The main idea behind
the improvement is to provide a better bound for
the subcase when the adversary places the exit
on the farthest endpoint from Slow's current po-
sition. Apparently, the best play for Slow is to
lie exactly on the midpoint of the chord with the
unexplored endpoints. Nevertheless, in order for
Slow to be there, it needs to spend some of its
time, originally destined for exploration, within
the disk interior. We hereby examine the best
possible scenario for Slow in terms of its distance
from the midpoint following the above reasoning.
Let us refer to this lower bound as Improved BES.

Lemma 16. Improved BES is greater or equal to Original BES for any s ≥ 1.
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Proof. At time 1 + y, where y ≥ 0 is a variable, Fast has explored at most an
s − 1 + sy part of the boundary and Slow has explored at most a y part of
the boundary. Now suppose that Slow has spent k time, where k ∈ [0, y], not
exploring the boundary, i.e. moving within the disk interior.

Notice that it takes 1+ 2π−s+1
s+1 time for the whole perimeter to be explored,

when both robots are only exploring after timestep 1. Thence, we upper-bound
y ≤ 2π−s+1

s+1 . To lower-bound y, we restrict the unexplored part u = 2π − s +
1− (s+1)y+ k ≤ π. That is, we get y ≥ max{π−s+1+k

s+1 , 0}. Moreover, u > 0 is
already covered by the aforementioned upper bound.

Now, we are ready to apply Lemma 12: There exist two unexplored points
(say A,B) with arc distance ≥ 2π − s + 1 − (s + 1)y + k, which implies

that the chord between them has length at least 2 sin
Ä
2π−s+1−(s+1)y+k

2

ä
=

2 sin
Ä
s−1+(s+1)y−k

2

ä
. An adversary could place the exit on any of the two end-

points. If Slow reaches an endpoint �rst (case I), then the exit is placed on the
other side, such that Slow has to traverse the chord. If Fast reaches an endpoint
�rst, then the exit is placed either on the other side (case II), meaning that Fast
has to traverse the chord, or on the endpoint that lies the farthest from Slow's
current position (case III), meaning that Slow has to traverse at least half the
chord. We assume that both the robots and the adversary behave optimally.
Hence, the robots will always avoid case I.

Let us now examine more carefully what happens in case III. For a depiction
of the proof, see Figure 5. The ideal location for Slow is to lie exactly on the
chord midpoint, say M . Nevertheless, this may not be possible due to it only
spending k time within the disk interior. Let us consider the minimum distance
from the chord midpoint to the boundary. This is exactly 1−λ, where λ = |OM |
is the distance from the midpoint to the center of the disk. Notice that OM
intesects AB perpendicularly, since M is the midpoint of chord AB. Using

the Pythagorean theorem in 4AMO, we get λ =
√
1− sin2

Ä
s−1+(s+1)y−k

2

ä
.

If we consider the case when 1 − λ > k, then the ideal position for Slow is
to lie k distance away from the boundary and on the extension of OM (i.e.
on point K). From there, Slow can take a beeline to the exit, yielding a√

sin2
Ä
s−1+(s+1)y−k

2

ä
+ (1− λ− k)2 distance again by the Pythagorean the-

orem, now in 4AMK.
To conclude, Slow will try to minimize this beeline distance over k, while the

adversary will select a case between II and III that maximizes the total distance.
Overall, the optimization problem reduces to computing:

max
y∈[ymin,ymax)

1 + y +max


min
k∈[0,y]

2
s sin

Ä
s−1+(s+1)y−k

2

ä
,

min
k∈[0,y]

√
sin2
Ä
s−1+(s+1)y−k

2

ä
+max {1− λ− k, 0}2


 (1)

Note that the above bound matches the original one for 1− λ < k.
Last but not least, we need also consider the case where the adversary

chooses to place the exit on the last boundary point to be explored. In the

current setting, it takes at least u
s+1 = 2π−s+1−(s+1)y+k

s+1 extra time for both
robots to explore the rest of the boundary, since Fast explores s u

s+1 while Slow
explores u

s+1 for a total distance of u. Overall, we are looking to compute

max
y∈[ymin,ymax)

¶
1 + y + 2π−s+1−(s+1)y

s+1

©
, since Slow wishes to minimize k. Due
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to the inherent complexity of the optimization problem (1), we compute numer-
ical bounds. The computational work is done in Matlab, where we iterate over
feasible values of y and k. The resulting bounds show that, for all s ∈ [1, 2π+1),
this lower bound is greater or equal to the lower bound given in Lemma 14 with
k = 0 always selected as the minimizer.

5 Comparison and Future Work

Regarding the lower bounds, for each value of s we select the minimum (weakest)
lower bound between the (maximum) BES and FES ones as our overall lower
bound. We see that Improved BES is strictly stronger than Original BES for
any s ≥ c1.71 ≈ 1.71. Moreover, Improved BES is stronger than the FES lower
bound for s ≥ c2.75 ≈ 2.75.

As far as the upper bounds are concerned, we notice that Half-Chord out-
performs BSP for any s ≥ c1.86 ≈ 1.856. Besides, Fast-Chord outperforms BSP
for any s ≥ c1.71 ≈ 1.71. Finally, Fast-Chord outperforms Half-Chord for any
s ≤ c2.07 ≈ 2.072. That is, the introduction of Fast-Chord yields a better upper
bound for any s ∈ [c1.71, c2.07].

By comparing upper and lower bounds, we see that Half-Chord is optimal for
s ≥ c2.75, since the matching FES lower bound is the weakest in this interval.
On the other hand, for s < c2.75 the ratio between the bounds is at most 1.22
(maximized when s = c1.71), where the strategy changes from BSP to Fast-
Chord. The best strategy to use is BSP when s < c1.71, Fast-Chord when
c1.71 < s < c2.07 and Half-Chord for s ≥ c2.07.

Optimality for the case 1 < s < c2.75 remains open. Regarding further work,
one could consider a more-than-two-robots evacuation scenario. Moreover, the
non-wireless case for two-robots fast evacuation seems to be quite challenging-
given that exact optimality is complex to obtain even for s = 1 ([10]).
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