
 
 

   

Modelling vibration transmission on frameworks of beams using 
Advanced Statistical Energy Analysis 

Carl HOPKINS1; Xing WANG1,2 
1 Acoustics Research Unit, University of Liverpool, Liverpool, UK 

2 National Key Laboratory of Science and Technology on Vessel Integrated Power System, Navy University of 

Engineering, P.R. China 

ABSTRACT 
To account for indirect coupling and high propagation losses on frameworks of coupled beams, Advanced 
Statistical Energy Analysis (ASEA) has been used to study bending and torsional wave models, and bending 
and longitudinal wave models on frameworks of beams. At high-frequencies, Timoshenko theory was 
incorporated into ASEA by changing the group velocity used to calculate the coupling loss factors, but 
maintaining the Euler-Bernoulli beam transmission coefficients. Comparisons of FEM, SEA and ASEA show 
that high propagation losses can occur with a rectangular beam frame, while tunneling exists in a three-bay 
linear grillage which has relatively short beam lengths. Unlike SEA, ASEA is shown to be able to account for 
the indirect coupling and these losses. For a three-bay linear grillage, comparisons with FEM show that 
ASEA is able to predict the response on the ‘perfectly periodic’ structure as well as a more realistic 
engineering structure with uncertainty in the Young's modulus. 
 
Keywords: vibration, beams I-INCE Classification of Subjects Number(s): 43.2, 75.2 

1. INTRODUCTION 
Frameworks of beams are often employed in engineering structures for marine, aeronautic, 

automotive and building applications for which prediction models are needed to estimate vibration 
transmission for noise and vibration control. 

This paper considers mid- and high-frequency prediction models based on classical Statistical 
Energy Analysis (SEA) (1) and Advanced SEA (ASEA) (2) for frameworks of beams with multiple 
wave types up to high frequencies where Timoshenko beam theory is valid. With systems of coupled 
beams, the validation of statistical models must consider the following combination of factors: low 
mode counts, low modal overlap, multiple wave types, different bending wave theories, propagation 
losses and indirect coupling as well as increasing uncertainty in measurements at high frequencies. 
Hence SEA and ASEA are not only compared with each other, but with Finite Element Methods (FEM) 
and measurements. 

Heron (2) developed ASEA which combines SEA with ray tracing ignoring phase effects to track 
the power transmitted between coupled subsystems. This approach was validated with excitation of 
longitudinal waves at one end of an in-line array of six rods. Subsequently Yin and Hopkins (3,4) used 
ASEA to predict bending wave transmission across two coupled plates where one plate was a periodic 
ribbed plate at high frequencies where each bay supported local modes and could be modelled as a 
separate subsystem. It was shown that indirect coupling between bays at high -frequencies was 
sufficiently dominant that SEA underestimated the response by 40dB on the furthest bay whereas 
ASEA gave close agreement with measurements and FEM. This was because ASEA accounted for 
spatial filtering due to transmission across each rib that led to non-diffuse vibration fields on the most 
distant bays. Wilson and Hopkins (5) extended the application of ASEA to large structures built from 
many coupled plates by introducing beam tracing to increase computational efficiency. This allowed 
modelling of large periodic box-like structures for which spatial filtering of bending waves becomes 
apparent in the low- and mid-frequency ranges after only a few structural junctions. The inclusion of 
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indirect coupling in ASEA provided significantly better estimates than SEA when plates had at least 
one or two bending modes in each one-third octave band, although the modal overlap was relatively 
high due to significant coupling losses. This paper considers the application of ASEA to beams over a 
wide frequency range. In the high-frequency range, Timoshenko bending theory is applicable and 
propagation losses are expected to become increasingly important due to lower group velocities than 
Euler-Bernoulli theory. However, validated methodologies concerning the changeover from 
Euler-Bernoulli to Timoshenko bending theory using SEA and ASEA are absent from the literature.  

2. CLASSICAL SEA AND ADVANCED SEA 

2.1 SEA 
The SEA matrix solution is given by 
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where Win(i) is the power input into source subsystem i,  is the band centre angular frequency, Ei is the 

time and space average energy of subsystem i, ii is the Internal Loss Factor (ILF) of subsystem i, ij is the 

Coupling Loss Factor (CLF) from subsystem i to j. 

2.2 Advanced SEA 
ASEA was introduced by Heron (2) and considers the available power per unit modal energy and 

the unavailable power per unit modal energy. This allows unavailable power to be defined as power 
lost due to propagation across a subsystem. 

Available power corresponds to stored modal energy which is the only form of energy that is 
considered in SEA. The link between ASEA and SEA can be seen by rewriting Eq. Error! Reference 
source not found. in the form, A0e0+Me0=P0, in which M=diag{ ni ii} is a diagonal matrix of modal 
overlap factors, the total modal energy matrix is e0=[E1/n1, E2/n2, …, EN/nN], ni is the modal density of 
subsystem i, P0 is the column vector of input powers, and A0 is defined as 
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ASEA requires solution of the following two equations: 
P Ae +Me   (3) 

Q Be + Md  (4) 
where P and Q are the available and unavailable power input vectors respectively. The available modal 
energy is denoted by e and unavailable modal energy is denoted by d; hence Me and Md give the 
available power lost and unavailable power lost within each subsystem respectively. Matrix A 
represents the power transfer from available power in a particular subsystem to available power in 
another subsystem (including that subsystem itself) whereas matrix B represents the transfer of 
available power to unavailable power. The number of times that the initial power is tracked across the 
source subsystem is defined as the ASEA level number. When the level number is zero there is no 
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transfer from available power to unavailable power and use of A0 with ASEA gives a result that is 
equivalent to SEA. In this paper the beams are excited with rain-on-the-roof; hence all the input power 
is available for transmission, so it can be treated as available power input in P whereas the unavailable 
power input in matrix Q is zero. The subsystem response is given by the total modal energy e+d. 

2.3 Wave theory 
For junctions of beams the coupling loss factor is calculated using 

g,

4
i ij

ij
i

c
fL

 (5) 

where cg,i is the group velocity of subsystem i, ij is the transmission coefficient from subsystem i to 
subsystem j, and Li is the beam length of subsystem i.  
 To cover bending wave vibration over a wide frequency range, one possibility would be to 
change over from Euler-Bernoulli to Timoshenko phase velocity when the difference between them is 
10% because this percentage is currently used to define the thin beam limit. However, this is an 
arbitrary definition. Therefore as the coupling loss factor is proportional to the group velocity it is 
proposed to switch between Euler-Bernoulli to Timoshenko group velocities when there is at least a 
1dB difference in the resulting coupling loss factor which corresponds to a 26% change in the group 
velocity. This is a more practical choice because it is unrealistic to expect the agreement between SEA 
or ASEA and the actual response of a single, large structure to be consistently less than 1dB.  

For coupled beams that form a two-dimensional junction, four possible incident waves can be 
considered: Type A bending waves (defined here as having displacement in  the same plane as the 
junction), Type B bending waves (defined here as having displacement perpendicular to the plane of 
the junction), longitudinal waves and torsional waves. For beams that are perpendicular to each other 
at the junction, excitation of Type A bending waves generates longitudinal waves, and excitation of 
Type B bending waves generates torsional waves at the junction.   

For practical purposes the approach proposed in this paper is to determine t ransmission coefficients 
for insertion in Eq.(5) based on Euler-Bernoulli theory but switch from Euler-Bernoulli to Timoshenko 
group velocities when there is at least a 1dB difference in the resulting coupling loss factor which 
corresponds to a 26% change in the group velocity. 

3. FINITE ELEMENT METHODS 
Finite element calculations are carried out using Abaqus/CAE 6.12 with rain-on-the-roof excitation 
applied to each beam. Excitation of bending or longitudinal waves is applied using unity forces with 
random phase at each unconstrained node along the length of the beam. For excitation of torsional 
waves, this is applied by using unity moments with random phase. Ten sets of rain-on-the-roof are used 
and the results processed to calculate a mean value with 95% confidence intervals.  FEM models are 
built with Euler-Bernoulli beam element B33 and Timoshenko beam element B31 for comparison with 
SEA and ASEA which implement Euler-Bernoulli or Timoshenko theory. 

4. BEAM CONSTRUCTIONS 
Two different frameworks of beams were used for modelling and also fabricated for laboratory 

measurements. These were a rectangular beam frame and a three-bay grillage. All beams are formed 
from Perspex for with a cross-section of 0.02m x 0.01m. For the rectangular beam frame (Figure 1(a)) 
the beam lengths are 1.3m and 1.0m whereas for the three-bay linear grillage (Figure 1(b) the beams 
are either 0.40m or 0.45m long (i.e. approximately half the length of the beams in the rectangular beam 
frame), in order to (a) reduce propagation losses, (b) increase the likelihood of indirect coupling and 
(c) allow measurable velocity levels on the furthest beam. 
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Figure 1 – (a) Rectangular beam frame, (b) Three-bay linear grillage 

INTER-NOISE 2016

2454



 

 

5. RESULTS 

5.1 Rectangular beam frame 
For the rectangular beam frame, results are shown with excitation of Type A bending waves on 

beam 1 for receiving subsystems representing bending wave energy in Figure 2(a,b) and for receiving 
subsystems representing longitudinal wave energy in Figure 2(c,d).  

On Figure 2(a), measurements above 2kHz show closest agreement with FEM, SEA and ASEA 
using Euler-Bernoulli theory for transmission to bending wave motion on beam 2 which is directly 
connected to beam 1. However, for transmission to bending wave motion on beam 4 (which is not 
physically connected to the source beam) the results in Figure 2(b) indicate that FEM with either 
Euler-Bernoulli or Timoshenko elements agree closely with measurements.  

For EB1/EL2 on Figure 2(c) the confidence intervals from FEM using Euler-Bernoulli and 
Timoshenko elements overlap up to 20kHz and both show closest agreement with SEA or ASEA using 
Euler-Bernoulli group velocity. Above 2kHz for EB1/EL4 on Figure 2(d) there is clear evidence that 
FEM with Euler-Bernoulli elements shows closest agreement with ASEA using Euler-Bernoulli group 
velocity, and FEM with Timoshenko elements shows closest agreement with ASEA using Timoshenko 
group velocity. At 20kHz the difference between Euler-Bernoulli and Timoshenko models is 7dB for 
both FEM and ASEA. The fact that ASEA shows close agreement with FEM using Timoshenko 
elements and that the energy level differences with ASEA are higher than SEA confirms the presence 
of significant propagation losses because this mechanism is included in ASEA, but not in SEA. It also 
confirms the assumption in ASEA that phase effects can be ignored. 
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Figure 2 – Rectangular beam frame - Comparison of FEM, SEA (BL model) and ASEA (BL model) with 

excitation of Type A bending waves on subsystem B1. Receiving subsystems: (a) B2 (b) B4 (c) L2 (d) L4. 

, Measurement; , FEM (Euler-Bernoulli elements); , FEM (Timoshenko elements); 

, SEA (Euler-Bernoulli group velocity); , SEA (Timoshenko group velocity); , 

ASEA (Euler-Bernoulli group velocity); , ASEA (Timoshenko group velocity). Results from 

measurements and FEM are shown with with 95% confidence intervals. 
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For the rectangular beam frame, results are shown with excitation of Type B bending waves on 

beam 1 for receiving subsystems representing bending wave energy in Figure 3(a,b) and for receiving 
subsystems representing torsional wave energy in Figure 3(c,d). For EB1/EB4 between 315Hz and 2kHz, 
FEM using Euler-Bernoulli and Timoshenko elements are similar, and the difference compared with 
measurements is between 0.2dB and 2.2dB. However, for EB1/EB4 above 2kHz it is clear that there is 
closest agreement with FEM using Timoshenko elements; this is evident near the peak in the energy 
level difference at 4kHz. Above 2kHz, FEM using Euler-Bernoulli elements follows the general trends 
of SEA or ASEA using Euler-Bernoulli group velocity. For EB1/EB4 above 6.3kHz, FEM using 
Timoshenko elements closely follows ASEA using Timoshenko group velocity. This agreement, and 
the fact that ASEA has significantly higher energy level differences than SEA, indicates that ASEA 
correctly incorporates these high propagation losses. 

Assessment of the conversion from bending waves on the source subsystem to torsional waves on a 
receiving subsystem is feasible above 2kHz as there are at least two bending and two torsional modes 
in each frequency band (modal overlap factor is at least 0.2 for both bending and two torsional waves) 
and the FEM curves become relatively smooth. For EB1/ET2 and EB1/ET4 between 2kHz and 20kHz, 
FEM using Euler-Bernoulli elements follows the general trends of SEA or ASEA using 
Euler-Bernoulli group velocity, and FEM using Timoshenko elements closely follows ASEA using 
Timoshenko group velocity. Again, this confirms the assumption in ASEA that phase effects can be 
ignored. The transmission coefficients from bending waves on one beam to torsional waves on the 
other beam are highest above 6.3kHz. Hence the combination of high propagation losses with 
Timoshenko group velocity and wave conversion at each junction results in high energy level 
differences (e.g. 34dB for EB1/EB4 at 20kHz predicted using ASEA and FEM using Timoshenko 
elements). 
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Figure 3 – Rectangular beam frame - Comparison of FEM, SEA (BT model) and ASEA (BT model) with 

excitation of Type B bending waves on subsystem B1. Receiving subsystems: (a) B2 (b) B4 (c) T2 (d) T4. 
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5.2 Three-bay linear grillage 
Figure 4(a,b) compares measured and predicted energy level differences for the BL model where 

Type A bending waves are excited on the source beam 1, and the source and receiving subsystems 
represent Type A bending wave energy. There is close agreement between the average values from 
measurements, FEM (Euler-Bernoulli and Timoshenko elements) and ASEA (Euler-Bernoulli and 
Timoshenko group velocity). With increasing frequency, the generation of longitudinal waves at the 
junction typically increases the indirect coupling such that ASEA gives lower energy level differences 
than SEA as the beams become more distant from the source. However, the largest differences between 
SEA and ASEA do not always occur in the highest frequency band. In general, measurements and FEM 
show closest agreement with ASEA rather than SEA due to the existence of indirect coupling.  

Figure 4(c,d) shows predicted energy level differences for the BL model where Type A bending 
waves are excited on the source beam 1 and the receiving subsystem represents longitudinal wave 
energy. These results show similarly close agreement between FEM and ASEA when both the source 
and receiving subsystems contain bending wave energy. The main finding here is that ASEA provides 
a better estimate of vibration transmission than SEA. 
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Figure 4 – Three-bay linear grillage frame - Comparison of FEM, SEA (BL model) and ASEA (BL 

model) with excitation of Type A bending waves on subsystem B1. Receiving subsystems: (a) B9 (b) 
B10 (c) L9 (d) L10. 

 
For the BT model, Figure 5(a,b) allow comparison of measured and predicted energy level 

differences for Type B bending wave excitation where both source and receiving subsystems represent 
Type B bending wave energy. For the most distant subsystems 9 and 10, SEA overestimates the energy 
level difference by 4dB and there is closer agreement between measurements, FEM and ASEA 
( 3.4dB difference) which also have overlapping 95% confidence intervals.  Between 1kHz and 16kHz 
there are both bending and torsional modes. Measurements tend to show closest agreement with FEM 
using Timoshenko rather than Euler-Bernoulli theory. Differences between these FEM models 
becomes apparent at and above 4kHz although the difference between Timoshenko and 
Euler-Bernoulli group velocities is only 26%, at and above 8kHz. In general, ASEA with Timoshenko 
group velocity shows closest agreement with measurements and FEM using Timoshenko theory.  
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Figure 5(c,d) allows comparison of predicted energy level differences for the BT model where Type 
B bending waves are excited on the source subsystem and the receiving subsystem represents torsional 
wave energy. In general, FEM using Euler-Bernoulli elements shows closest agreement with ASEA 
using Euler-Bernoulli group velocity, and FEM using Timoshenko elements shows closest agreement 
with ASEA using Timoshenko group velocity. 
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Figure 5 – Three-bay linear grillage frame - Comparison of FEM, SEA (BT model) and ASEA (BT 

model) with excitation of Type B bending waves on subsystem B1. Receiving subsystems: (a) B9 (b) 
B10 (c) T9 (d) T10. 

 
5.2.1 Effect of uncertainty in the Young’s modulus  

To assess the effect of uncertainty in the material properties, a Monte Carlo simulation is carried 
out using FEM. An ensemble of ten different models of the three-bay linear grillage is created in which 
the Young’s modulus for each beam in each grillage is determined by random sampling of values from 
a normal distribution based upon the mean and standard deviation from the measured Young’s modulus 
for Perspex. For these data, the coefficient of variation ( / ) is 0.11. 

It was noted that with longitudinal excitation there were a few level differences with discrepancies 
up to 5dB between ASEA and FEM for the perfectly periodic grillage. Figure 6 allows comparison of 
ASEA with FEM using uniform material properties and FEM with random Young’s modulus. This 
shows closer agreement is obtained between ASEA and FEM with random Young’s modulus because 
this ensures that the local modes of the beams that form the grillage are no longer identical.  

Figure 7 shows the differences between the energy level differences predicted using FEM and those 
from ASEA for the BL model. The results indicate that regardless of whether Euler-Bernoulli or 
Timoshenko theory is used, the effect of uncertainty in the Young’s modulus is to reduce the 
differences between FEM and ASEA to less than 3dB and to avoid a bias error where ASEA 
overestimates the energy level difference. This effect was more pronounced with excitation of 
longitudinal waves rather than excitation of bending or torsional waves ; hence the BT model is not 
shown here. 
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Figure 6 – BL model of longitudinal wave transmission on the three-bay grillage (Source 
subsystem: L1): comparison of FEM (uniform material properties), FEM (random Young’s modulus) 
and ASEA. , FEM (random Young’s modulus) with Euler-Bernoulli elements; , FEM 

(uniform material properties) with Euler-Bernoulli elements; , FEM (random Young’s 
modulus) with Timoshenko elements; , FEM (uniform material properties) with Timoshenko 

elements; , ASEA (Euler-Bernoulli group velocity); , ASEA (Timoshenko group 
velocity). Results from FEM are shown with 95% confidence intervals.  
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Figure 7 – Difference between FEM and ASEA energy level differences for BL model on the 
three-bay grillage (Source subsystem: L1): (a) FEM (uniform material properties) with 

Euler-Bernoulli elements, ASEA (Euler-Bernoulli group velocity); (b) FEM (random Young’s 
modulus) with Euler-Bernoulli elements, ASEA (Euler-Bernoulli group velocity); (c) FEM (uniform 

material properties) with Timoshenko elements, ASEA (Timoshenko group velocity); (d) FEM 
(random Young’s modulus) with Timoshenko elements, ASEA (Timoshenko group velocity). , 

bending receiving subsystem; , longitudinal receiving subsystem. 
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6. CONCLUSIONS 
To assess the validity of ASEA with multiple wave types at high frequencies where Timoshenko 

bending theory is valid, coupling loss factors are calculated using wave theory transmission 
coefficients based on Euler-Bernoulli theory but using Timoshenko (rather than Euler-Bernoulli) 
group velocity. The proposal is to switch from Euler-Bernoulli to Timoshenko group velocities when 
there is at least a 1dB difference in the resulting coupling loss factor which corresponds to a 26% 
change in the group velocity. For beams with relatively high propagation losses, the agreement 
between ASEA and FEM indicates that (a) unlike SEA, ASEA is able to predict high propagation 
losses, (b) it is reasonable to ignore phase effects in the ray tracing approach used with ASEA, and (c) 
changing over from Euler-Bernoulli to Timoshenko theory in SEA and ASEA can be achieved by 
changing the group velocity used to calculate the coupling loss factors.  However, when propagation 
losses are not significant because the beams are sufficiently short, indirect coupling (tunneling 
mechanisms) can become increasingly important. For rain-on-the-roof excitation of bending waves on 
a perfectly periodic, finite three-bay linear grillage there was reasonable agreement between 
measurements, FEM and ASEA. The differences between FEM and ASEA were less than 5dB and 
could be partly attributed to neglecting phase effects in ASEA. To investigate the more realistic 
situation of an imperfectly periodic, finite linear grillage, numerical experiments with FEM were used 
to introduce uncertainty into the Young’s modulus for each beam that forms the linear grillage. Results 
show that for beams modelled with Euler-Bernoulli or Timoshenko theory, the effect of this 
uncertainty was to reduce all the differences between FEM and ASEA to less than 3dB. 
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