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This paper presents an investigation of the origin and evolution of the complex flowpattern on a hemisphere-cylinder

at separated flow conditions. Three-dimensional numerical simulations have been performed for a range of Reynolds

numbers andangles ofattack.Acritical point theoryhasbeenused toanalyze the flowfields.Thishas yielded, for the first

time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the

Reynolds number and angle of attack.A complete characterization of the origin and evolution of the complex structural

patterns of this geometry is documented. For the higher Reynolds number and angle of attack, a structurally stable

topology is found that is associatedwith the pattern of the horn vortices, usually found on this geometry in a range from

low tohighReynoldsnumbers and from incompressible to compressible regimes. Surface critical points and surface and

volume streamlines describe the main flow structures and their strong dependence with the flow conditions.

I. Introduction

F LOW separation over inclined axisymmetric bodies such as the

hemisphere-cylinder (HC) is usually associated with problems of

flight stability and control.Due to its numerous applications, such as in

aircraft fuselages, missiles, and submarines, the study of the flow

around the hemisphere-cylinder geometry, at both zero and nonzero

angles of attack (AOAs), has been the subject of several experimental

and computational investigations. The main goal has been to under-

stand how flow separation affects aerodynamicproperties: particularly,

the forces and moments on the hemisphere-cylinder body.

The importance of the prediction and control of three-dimensional

separation relies on the highly undesirable effects that it can cause on

the aerodynamic characteristic and structural loads of the object.

Massive flow separation leads to stall conditions on lifting bodies to the

formation of large detached vortices, the interaction of these vortical

patterns, and the subsequent destabilization downstream of control

surfaces. In addition, separation increases local heat transfer on

reattachment zones, causing problems in high-speed flights (e.g., the

hypersonic “Columbia” Space Shuttle and the slender-wing super-

sonic “Concorde” transport aircraft) [1]. Low-Reynolds-number flow

separation around the nose of the hemisphere-cylinder is a prototype

case of essentially three-dimensional laminar flow separation. At

certain flow conditions, depending on the Reynolds numberRe, Mach
number, and AOA, the qualitative physical picture emerging when
massive flow separation occurs on a hemisphere-cylinder is a laminar
separation bubble that, at high incidence of the body, results in a pair of
counter-rotating vortices originated in the separation bubble, com-
monly referred to as “horn” vortices (HV). The unsteady nature of
these vortices may generate unsteady structural loads affecting to the
size and shape of the mean separated region, and consequently
conditioning vehicle stability. In addition, the crossflow pressure
gradient on the inclined circular cylinder causes the boundary layer to
separate on the lee sides and roll up, generating the so-called “leeward”
vortices (LV) (see figure in work by Hoang et al. [2]).
Motivated by the improvements in the capabilities of air-to-air

missiles, intensive research was conducted in order to improve
the existing predictive methods for their aerodynamic performance.
The high AOA attained by these vehicles lead to massive three-
dimensional separation; hence, the methods used traditionally in
aircraft industry, mainly based on potential flow, were not adequate.
It was then, when the flow topology laws (introduced and expanded
successively by Legendre [3], Lighthill [4], Perry and Fairlie [5],
Dallman [6], Tobak and Peake [7], and Perry and Chong [8]) became
useful in the analysis of the flow structures in three-dimensional
separated flows to enable the deduction of mean flow characteristics.
These laws provided a theoretical foundation for the analysis and
description of the flow patterns in situations where lack of resolution
(both experimental and numerical) might cause inaccuracies in the
study of these kindd of complex flows.
Hsieh [9–11] was the first to study the flow around a hemisphere-

cylinder in low supersonic flow. The author was able to identify three
different separation patterns as a function of the Reynolds number,
Mach number, and AOA:
1) The first pattern is crossflow separation, resulting from the

crossflow pressure gradient (i.e., a direct consequence of AOA) that
causes a pair of leeside vortex sheets that wind over themselves
forming the leeward vortices.
2) The second pattern is the nose separation bubble (SB), caused by

the meridional pressure gradient.
3) The third pattern are the secondary separation lines defining the

secondary leeward vortices that appear when the crossflow pressure
gradient is intense enough.
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Next, Fairlie [12] studied prolate-spheroid and hemisphere-
cylinder geometries in incompressible flow at Re ≃ 1.5 × 106 and
high AOAs. He found that, when the AOAwas larger than 17.5 deg,
the horn vortices emerged from the body surface: two spiral nodes,
symmetrically located about the leeward plane of symmetry, gave rise
to a pair of counter-rotating vortices that were shed downstream.
Further subsequent investigations were carried out to study the

three-dimensional complex topology patterns developed above the
body surface, based on critical point theory. Based on this theory,
Tobak and Peake [7,13,14] were the first to identify and classify
critical points and separation lines on the hemisphere-cylinder body
surface in compressible flows. They pointed out the existence of two
unstable foci, associated with the emergence of the horn vortices; a
saddle and a node point; related to a separation bubble; as well as a
reattachment line and primary and secondary lines of separation,
related to the leeward vortices. Additionally, this study found that
compressibility altered quantitatively the flow characteristics, but
that the topological patterns on the surface of the hemisphere-
cylinder were equivalent between compressible and incompressible
regimes. Supplementary to this hypothesis, Bippes and Turk [15]
studied the influence of the Mach number, Reynolds number, and
AOA over the same geometry and found that the structural flow
patterns in stable laminar flow were very similar to the ones found in
turbulent separated flow.
A sequence of experiments performed in the early 1980s using

surface hot-film sensors [16,17] and laser Doppler velocimetry
[18,19] studied in more detail these leeward vortices (previously
detected by Hsieh [9]), far from the body nose. It was postulated that
the contribution of substantial crossflow and heavily inflectional
profiles of the boundary layer on the leeside caused the development
of vortex sheets that ultimately formed the counter-rotating leeward
vortices, which were not able to remain laminar for large Reynolds
number (transitioning to a turbulent regime). In addition, Hsieh and
Wang [20] provided numerical evidence in support of this flow
pattern.
Several authors continued the work and contributed with their

research. Mead and Schiff [21] studied surface pressure distributions
and their variations in the separation bubble region in supersonic
flows.Ying et al. [22] suggested that the hornvorticesmight appear in
an asymmetric fashion, but Hoang et al. [2,23], who studied experi-
mentally the influence of the Reynolds number and AOA on these
vortex pair in incompressible flows, did not find evidence of such
asymmetry. In addition, these latter authors found that the nose
structures and the separation lines, which gave rise to the vortical
structures over the aft part of the body, were not connected.
More recently, Gross et al. [24] performed direct numerical simula-

tions and experiments at moderate Reynolds numbers (ReD � 2000
and ReD � 5000) and moderate-to-high incidence. At AOA �
10 deg, they determined the presence of long separation bubble
shedding structures that were primarily two-dimensional (2-D),
suggesting that the dominant mechanism of such flow oscillations was
an inviscid linear shear-layer instability on the symmetry plane.
However, the geometry studied by these authors was different in the
rear part of the body to the classicHCgeometry studied in the literature
mentioned previously. They studied the so-called DARPA suboff bare
hull geometry, for which the rear part was extended smoothly to form a
fuselaged tail. On the contrary, the HC body ended in a plane cylinder
base, constituting a bluff body and then giving rise to a wide wake. As
found by Gross et al. [24], flow oscillations in three-dimensional
separated flows might be dominated by an inflectional instability and
become unstable at relatively small Reynolds numbers [25]. However,
the three-dimensional nature of the flow around a hemisphere-cylinder
prevented, in principle, the use of traditional linear stability analysis
based on one-dimensional velocity profiles. Methodologies for global
instability analysis needed to be employed. On the other hand, large-
scale coherent structures in turbulent flows were often reminiscent of
flow structures generated by linear instabilities, especially in mixing
layers flows (e.g., Crow and Champagne [26], Gaster et al. [27],
Reynolds and Hussain [28], etc.).
Coming back to the HC, Bohorquez et al. [29] and Sanmiguel-

Rojas et al. [30] performed numerical simulations atAOA � 0 deg,

finding bifurcations of the linear global stability modes on the wake
as a function of the Reynolds number and the aspect ratio ( ) of the
body (length/diameter). A global mode was found to be associated
with the instability of the counter-rotating vortex pair forming the
three-dimensional wake, with the associated nondimensional fre-
quency of St ≃ 0.11. Similar frequencies were found by many
authors that studied flows past bluff bodies [31,32]. This result was in
good agreement with the standard weakly nonlinear theory for Hopf
bifurcation [33]. Finally, Le Clainche et al. [34], who studied the HC
at high AOAs and low Reynolds numbers, also found the same
frequency related with the wake oscillations. These authors found
that the onset of unsteadiness in theHCwas due to an instability in the
three-dimensional wake with a frequency of St ≃ 0.11. The fluc-
tuations commenced close to the cylinder base and were convected
downstream. This effect suggested that the base of the cylinder
played a fundamental role in the primary instability of this flow.
However, to totally understand this behavior, the mechanism of flow
separation, and its connection with the hornvortices, it was necessary
to study more in depth the origin and evolution of the complex
structural patterns characterizing the geometry.
In the past, topology patterns have been analyzed over different

configurations on a hemisphere-cylinder at high AOAs in compress-
ible and incompressible regimes employing both experimental and
numerical techniques at highReynolds numbers. However, the origin
of the complex topological patterns is still an open question. These
patterns evolved from laminar regimes starting from very low values
of Reynolds numbers until they achieved the more classical config-
uration presented in the literature [14].
This paper explains the origin and evolution of the critical points

on the surface of a hemisphere-cylinder, and it details the analysis
of three-dimensional topological patterns that precede the formation
of the threewell-known topology patterns found in this geometry: the
separation bubble, the horn vortices, and the leeward vortices. For the
first time, a bifurcation diagram that classifies the different flow
topology regimes as functions of the Reynolds number and AOA is
presented for this geometry.
The paper is organized as follows: Sec. II defines the geometry and

the numerical code, and it demonstrates the convergence of the
presented results. Section III reviews in detail the critical point theory.
Section IV introduces and classifies the results in the bifurcation
diagram. Section V shows the results. Finally, a brief discussion and
the main conclusions are presented in Sec. VI.

II. Model Description and Numerical Simulations

Three-dimensional numerical simulations are performed to study
the flow around a hemisphere-cylinder with an aspect ratio
of = L/D, where L and D are the length and diameter of the body,
respectively. In addition, the angle Φ is defined in the azimuthal
direction and is measured positive in the clockwise direction. The
value of this angle corresponds to zero on the symmetry plane of the
body (see Fig. 1b).
Flow topology and structural analysis are carried out for several

combinations of AOA and Reynolds number (Re), which is defined
as Re � U∞D∕ν, where U∞ is the freestream velocity and ν rep-
resents the kinematic viscosity. Figure 1 shows the model and the
parameters defined for the analysis. More details about the geometry
can be found in the work by Le Clainche [35].

A. Numerical Simulations

Three-dimensional numerical simulations are carried out for
Reynolds numbers ranging from 100 to 1000 and AOAs from 0 to
30 deg in a HC geometry with = 8. Table 1 summarizes the
numerical simulations performed.

1. Numerical Code

The numerical code used for the simulations is OpenFOAM 2.0,
which is an open-source computational fluid dynamics software.¶

¶Data available online at http://www.openfoam.com [retrieved 2016].
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High-quality results over axisymmetric bodies related to linear
stability analysis using this code have been recently reported
[29,30,36,37].
The module employed in OpenFOAM discretizes the in-

compressibleNavier–Stokes equations using a finite volumemethod.
The spatial and temporal discretizations are performed using a central
difference scheme (linear interpolation scheme to relate cell center
and face center values) for both the convective and diffusive terms
and a Crank–Nicholson scheme, respectively, with second-order
accuracy in both cases (see work by Le Clainche [35] for further
numerical details).

2. Computational Domain and Boundary Conditions

The computational domain is a coaxial cylindrical surface rotated
360 deg (fully three-dimensional) of diameter 20D and length 50D.
This length is demonstrated to be sufficient to accurately capture the
physics of the problem in the casewithAOA � 0 deg [29,30], and is
therefore used for the present study. Themesh employed is generated
using the OpenFOAMutility BlockMesh. It is composed of a regular
tetrahedral grid. To avoid numerical singularities, themeshwithin the
sphere region is created following the numerical algorithm that
defines a cubic sphere [38].
No-slip boundary conditions are employed on the body surface

and freestream boundary conditions on the far field using u�x; t� �
�U∞ cos�AOA�; U∞ sin�AOA�; 0� in the inlet and sides of the
domain (with U∞ � 1) and p�x; t� � 0 in the outlet.

3. Study of Convergence and Validation

A mesh containing ∼2.8 × 106 tetrahedral cells is used for the
numerical simulations at Re ≥ 350. Le Clainche et al. [39] showed
that the frequency spectrum observed in the velocity field close to the
nose region converges for the specific resolution and the numerical
error is below 3% for drag coefficient calculations at Re � 1000 and
AOA � 20 deg (the most demanding case considered in this
analysis). Hsieh and Wang [20] showed that the flow topology
patterns found in the hemisphere-cylinder were always present in the
flow physics description of this geometry; thus, they could be
considered as a robust physical phenomenon. The robustness of this
flow pattern led to the identification of the critical points that define
the laminar separation bubble, even in cases of limited spatial
resolutions. Le Clainche et al. [40] identified the critical points
defining the separation bubble at Re � 1000 and AOA � 20 deg

using the same numerical code and amesh containing∼105 cells. The
small quantitative errors in the location of the critical points did not
have the potential to modify the topological description of the flow,
and they are considered to be acceptable for the present analysis.
The numerical simulations have been validated with time-resolved

particle image velocimetry experiments (presented in work by Le
Claincheet al. [39]) andwith the literature [29,37]. Thedragcoefficient
of the HC with = 2 is compared with the results obtained by
Sanmiguel-Rojas et al. [37] at Re � 300 and AOA � 0 deg. The
relative error defined as ε�%� � j�CD − CD0�∕CD0j · 100 (where
CD0 is the drag coefficient obtained from the literature, and CD is the
drag coefficient obtained in the present simulations) is smaller than
2.5%. This is considered to be sufficiently small to carry out the
structural analysis. The small differences between the present data and
the previously published results are most likely due to the different
numerical schemes employed in both cases. Sanmiguel-Rojas et al.
[37] used a total variation-diminishing (TVD) scheme as spatial
discretization to solve the numerical simulations.However, the present
authors use a central differencing scheme: in particular, a linear
interpolation scheme. TVD schemes are known to be highly dis-
sipative, whereas central differencing schemes are associated with low
numerical dissipation and high dispersion. Dissipative effects can
reduce the effective Reynolds number, and they could explain the
smaller values obtained for the drag coefficient in the present investi-
gation compared to the values obtained in the literature. Nevertheless,
this small error (∼2.5%) is assumed to be admissible in the results
presented herein.

III. Critical Points Theory

Critical point theory is a technique that was introduced
sequentially by Legendre [3], Lighthill [4], Perry and Fairlie [5],
Dallman [6], Tobak and Peake [7], and Perry and Chong [8] to
describe the topological features of flow patterns. A critical point is a
location in space where the three components of the velocity vector
are all simultaneously zero and the streamline slope is undetermined.
Using Taylor series to expand the flow around the critical points, and
only retaining the linear terms, the flow expansion can be represented
via the Jacobian matrix J as _x � Jx, where x is the vector rep-
resenting the spatial coordinates and _x represents its time derivatives.
The eigenvectors of the Jacobian matrix define the planes of the

flow trajectories around the critical points, whereas the eigenvalues λ
of the Jacobian matrix satisfy the following equation:

λ3 � Pλ2 �Qλ� R � 0 (1)

where P,Q, and R are defined as the trace, the discriminant, and the
determinant of J, respectively.
In incompressible flows, the divergence of the velocity field is

zero; so, in Eq. (1), P � 0 and the critical points are classified
according to their location in theQ-R plane: theQ-R chart [41]. The
curve solution T � 27R2 � 4Q3 separates real and complex
eigenvalues.
Depending on the nature of the eigenvalues λ, critical points are

classified as nodes (Q > 0, T < 0), foci (Q > 0, T > 0), saddle

Table 1 Numerical simulations performed on the hemisphere-
cylinder with = 8 (marked X)

AOA

Reynolds number

100 150 200 250 300 350 400 450 500 1000

30 –– –– –– –– –– –– –– –– –– X
20 X X X X X X X X X X
15 –– X X X X X X –– –– X
10 –– –– X — X — X –– –– X
5 –– –– –– X –– –– –– X –– X
0 –– –– –– –– –– –– –– –– –– X

Fig. 1 Representations of a) hemisphere-cylinder dimensions (side view) and b) azimuthal angle into the hemisphere-cylinder (front view).
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points (Q < 0), and a sequence of borderline cases. Nodal and focal
points can be either stable (sink of streamlines) or unstable (source of
streamlines), depending on whether the streamlines are attracted
toward or repelled from the critical point, respectively. Borderline
cases are a mixture of two different critical points (i.e., P � 0 →
node-saddle or Q � 0 → node-foci∕starnode). On a body surface,
since the velocity vector is equal to zero, the wall shear stress is used
instead for the critical point calculations. Wall streamlines are then
called skin-friction lines.
For a body totally immersed in a flow, a set of topological rules has

been postulated in the literature [14]. One of these, which is of
particular relevance to this work, stated that the number of nodes or
foci minus the number of saddles on a three-dimensional body was
equal to two [4,42]:

X
N −

X
S � 2 (2)

IV. Topological Bifurcations and Phase Diagram

The results obtained from the numerical simulations for the
hemisphere-cylinder with = 8 are classified in a topological
bifurcation diagram as a function of the Reynolds number and AOA.
In the diagram, it is possible to identify steady–unsteady flow and
attached–separated flow. Additional classifications are included,
depending on the nature of the separation bubble. Figure 2a shows the
phases diagram, in which six different regimes are identified for the
first time in this work. The flow is steady in the two first regimes,
whereas it is unsteady in the other regimes. The diagram also
distinguishes two kind of separation topologies based on the type of
point of separation that defines the separation bubble (node or
saddle): the separation process is known as local (node) or global
(saddle) [14]. The regimes are described as follows:
1) Regime I is steady attached flow.

2) Regime II is steady state with local nose separation. The sep-
aration bubble is described by a node of separation (local separation),
a node of reattachment, and two saddles SI symmetrically positioned
with respect to the symmetry plane.
3) Regime III is unsteady attached flow.
4) Regime IV is an unsteady state with local nose separation. The

topological description of the nose bubble is analogous to the one in
regime II.
5) Regime V is the unsteady state with global separation. The

separation bubble is described by a saddle of separation (global
separation), a node of reattachment, two saddles SI , and two nodes
NI , both symmetrically positioned with respect to the symmetry
plane.
6) Regime VI is the unsteady state with global separation and

“nose” vortices. The separation bubble is described by a saddle of
separation (global separation), a node of reattachment, and two
saddles SI and two foci F, both symmetrically positioned with
respect to the symmetry plane. These foci are related to the origin of
the nose vortices. When the two foci F are identified among the
surface critical points defining the separation bubble, the vortical
pattern that is found in the nose area of the hemisphere-cylinder is
called the nosevortex.Based on this definition, the three-dimensional
topology pattern leads to distinguishing two subregimes into
regime VI:
7) Regime VI.I is when the nose vortices do not emerge from the

body surface. This is a previous step to the formation of the horn
vortices: a transitional regime.
8) Regime VI.II is when the nose vortices emerge from the body

surface. It is then when these nose vortices are called horn vortices.
The present phases diagram is representative for many config-

urations of the hemisphere-cylinder. The topology patterns found in
regimeVI are also found in the incompressible regime at moderate to
high Reynolds numbers [14] and in the compressible regime at high

Reynolds numbers [15].

Fig. 2 Representation of a) phase diagram as function of Reynolds number andAOA, and b)mean flow skin-friction lines and critical points in different
Regimes.
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Figure 2b shows the different surface topologies of the separation
bubble of regimes II, IV, V, and VI. The onset of unsteadiness occurs
incidentally in region IV, characterized by a local separation. How-
ever, at these conditions, the flow oscillations are related to a wake
instability [34], and the flow around the separation bubble is mostly
steady.
Finally, Fig. 3 shows isosurfaces of instantaneous streamwise

velocity in a case contained in regime IV (Re � 350 and AOA �
20 deg). As can be seen, the flow is unsteady in the wake. The left
part of the figure zooms in on the skin-friction lines obtained with
instantaneous flow. As can be seen, both the instantaneous flow skin-
friction lines shown in this figure and the mean flow skin-friction
lines shown in Fig. 2b of regime IVare mostly identical.

V. Flow Topology Patterns in the Hemisphere-Cylinder

The three topology patterns of the hemisphere-cylinder along the
different regimes of the phase diagram are the leeward vortices,
the separation bubble, and the horn vortices, which are found in the
present numerical simulations. The same evolution of the flow
regime under variations of Reynolds numbers and AOAs can be
recovered following two different paths: maintaining the Reynolds
number while varying the AOA, and maintaining the AOA while
varying the Reynolds number. In the following, the evolution for
increasing the Reynolds number is studied for a constant AOA by
monitoring the location and classification of critical points, pressure
gradients, and surface and volume streamlines.

A. Formation of the Leeward Vortices

As a consequence of the AOA in the simulations performed over
the HC, the crossflow pressure gradient effect causes the boundary
layer to separate and roll up, leading to the origin of a pair of leeside
vortices known as leeward vortices. It is possible to distinguish two
different cases in the phase diagram, depending on the nature of the
formation of the LV. On the one hand, if the origin of the vortices is
not a critical point, the path of vortices formation is known as “open
separation” (regime I). On the other hand, if the origin of the vortices
is a critical point, the path of formation is known as “closed
separation” (regime II) [14]. The following sections study in detail
these two possible paths.

1. Leeward Vortices and Open Separation

Figures 4a–4d show the evolution of the streamlines, skin-friction
lines, and critical points at Reynolds number from 10 to 150 and
AOA � 20 deg. At very low Reynolds numbers, the flow is fully
attached and there is a single “limiting streamline” or “line of
reattachment” on the surface of the body in the symmetry plane. This
line acts as a barrier, dividing the body streamlines in two sides
(symmetry plane).
Tobak and Peake [14] postulated that the initial configuration of

critical points on the HC, when the flow is fully attached and with a
zero AOA, are characterized by a node of attachment in the semi-
sphere and a node of separation in the base of the body (cylinder
base).When theReynolds number increases, the node of separation is
bifurcated into a new couple of points (node–saddle), leading to the

configuration found in Figs. 4a–4b (bottom): node-saddle-node. The
reattachment line ends in these critical points. As seen, the number of
surface critical points over a three-dimensional body obeys the
topological rules previously mentioned

�X
N −

X
S � 2

�

[4,42,43].
As the Reynolds number increases (Fig. 4b), the nodes from the

cylinder base separate from each other. Crossflow pressure effects
lead the skin-friction lines to converge into two new lines, the “lines
of primary separation,”which end in these two nodes. The two nodes
prevent the “limiting” streamlines from crossing. This regime is
characterized by an open separation, as the attachment lines are not
anchored at a critical point.
Increasing the Reynolds number slightly (Fig. 4c), the two

reattachment node points evolve into two foci. On the one hand, the
focal points are always located in regions of maximum vorticity [5]
and they can be considered as the origin of vortical formations. On the
other hand, it is possible to identify two foci in the streamlines drawn
in a plane transversal to the inflow velocity, close to the cylinder base
(Fig. 4c top right): these two foci identify the LV.The formation of the
LV remarks the influence of the crossflow pressure gradient over the
entire geometry. Let us note that the origin of the LV is not reflected
on the body surface by a critical point.
Finally, increasing the Reynolds number (Fig. 4d), two new

couples of node–saddle points appear in the base of the HC as a result
of two bifurcation processes.

2. Leeward Vortices and Closed Separation: Separation Bubble

Figures 4d–4f show the transition from open to closed separation
(from left to right). As theReynolds number increases, themeridional
pressure gradient (in the meridional or symmetry plane) causes the
flow to separate at the nose of the body, which is manifested by the
appearance of a node–saddle couple close to the region of minimum
pressure at the nose. Increasing the Reynolds number, the concurrent
effect of the meridional and crossflow pressure gradients around the
nose region causes the separation saddle to bifurcate, giving rise to a
new node–saddle couple. The critical points redistribute symmetri-
cally to adopt the structurally stable configuration of Fig. 4f (top),
conforming to the nose separation bubble. In this new topology, the
separation lines associated with the leeward vortices are anchored to
the two saddle points delimiting the nose separation bubble. Figure 4f
(bottom) shows streamlines in a plane transversal to the HC, which is
very close to these two saddle points. It is possible to see that the
trajectory followed by the streamlines represents the origin of the
leeward vortices.
Regarding the phases diagramof Fig. 2, it is possible to identify the

origin of leeward vortices with open and closed separation in regimes
I and II, respectively, in which the flow remains steady. Asmentioned
before, close separation in the leeward vortices is directly linked to
the presence of a separation bubble. The topological bifurcations that
are associated with flow separation are induced by crossflow and
meridional pressure gradients (due to the three-dimensional nature of
the geometry itself). These effects also contribute to the formation of
the leeward vortices and the separation bubble. Furthermore, as
expected, the separation and reattachment lines, which evidence the
presence of the LV that interacts with the body, are always connected
with the base of theHC, suggesting that the planar base of the cylinder
may play an important role in the formation of the flow structures.
[34]. This conclusion was also found in several investigations carried
out in the literature [24,35,37].

3. Secondary Leeward Vortices

The presence of the leeward vortices in the body surface is limited
by the lines of primary separation and reattachment. However, by
increasing the Reynolds number, the crossflow leads to a new couple
of separation lines: the “secondary” separation lines. Crossflow

Fig. 3 Instantaneous flow visualizations at Re � 350 and AOA �
20 deg (Regime IV): isosurface of streamwise velocity (right) and zoom-
in of instantaneous skin-friction lines (left).
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pressure gradient leads to the bifurcation of the reattachment lines.
The topology presents a new couple of vortices between the body
surface and the leeward vortices: the “secondary leeward” vortices.
These secondary separation lines are only found in regime VI.
Figure 5 compares skin-friction lines and critical points in regime

V (Fig. 5a) (leeward vortices) and regime VI (Fig. 5b) (primary and
secondary leeward vortices). As seen, both skin-friction lines and
critical points identify the presence of the primary and secondary
leeward vortices. Skin-friction lines delimiting the primary leeward
vortex have their upstream origin on two saddle points out of the

symmetry plane. These saddle points delimit the recirculation region

within the separation bubble. Finally, the line of flow separation
corresponding to secondary leeward vortices emanates from a node
in the plane of symmetry, and it has no connection to the nose

separation bubble.

B. Formation of the Separation Bubble

At Re � 200, the flow is separated (regime II). As shown in

Fig. 4f, the separation bubble in this regime is defined by two nodes

Fig. 4 Critical points and skin-friction lines at AOA � 20 deg: a) Re � 10, b) Re � 50, c) Re � 100, d) Re � 150, and e–f) Re � 200. Figures 4a–4e
show skin-friction lines, streamlines and critical points on the body (top left) and back surface (top right and bottom). Figure 4f shows the critical points,

skin-friction lines (top) and streamlines (bottom) in a transversal plane X∕D � 1 (L. is abbreviation of line).
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and two saddles. The point of separation is defined by the critical
point found in the symmetry plane of the body, which corresponds to
the region with the maximum adverse pressure gradient (detailed
below). Thus, the points of the separation and reattachment are the
two nodes, whereas the two saddles, as explained in previous
sections, identify the origin of the LV.
The size of the separation bubble is measured as the distance from

the point of separation to the point of reattachment in the symmetry
plane. This size increases with the Reynolds number, and the set of
critical points describing the bubble is qualitatively identical up to
Re � 450. However, the flow becomes unsteady at Re � 350. The
first linear global instability appears around 300 < Re ≤ 350 with a

Hopf bifurcation that causes oscillations in the wake of the
hemisphere-cylinder [34]. However, the three-dimensional separa-
tion bubble remains steady over this range of Reynolds number
because the flow unsteadiness is concentrated in the wake. Figure 6
shows the critical points describing the separation bubble at
Re � 350, 400, 500, and 1000 at AOA � 20 deg, which are
conditions under which the flow is unsteady (regimes IV, V, and VI).
At Re � 500, the increment of meridional pressure gradient causes
the point of separation to branch off into a new couple of node–saddle

points. The separation bubble is now described by two nodesNI , two
saddles SI , a saddle of separation S, and a node of reattachment N.

The separation lines of the primary LVare still emerging from the two
saddles SI .
Finally, the increased crossflow pressure gradient at Re � 1000

causes the two node points NI (found at Re � 500) to go through a
local bifurcation and become foci F (regime VI). The presence of a
focal point is always linked to the presence of a saddle point and
generates a vortex “sheet” [7]. These two foci delimit the extent of the
horn vortices (see Sec. V.C for more details).
As seen, the topological patterns found by Tobak and Peake [7],

who studied the flow around the same geometry at different AOAs
and higher Reynolds number (Re ≃ 105, turbulent regime, incom-
pressible flow), have been reproduced by the present results in regime
VI. These flow structures were in good agreement with the ones
presented by Bippes and Turk [15] in the same geometry at AOA �
15 deg and Re ≃ 2 × 106 in a compressible flow regime.

1. Pressure Distribution

An adverse pressure gradient (APG) occurs when the static
pressure increases in the direction of the flowm causing a flow
deceleration that, if strong enough, may lead to flow detachment and
the formation of a nose separation bubble. This is the origin of flow
separation and the separation bubble.
Pressure coefficients have been computed along the surface of the

hemisphere-cylinder at Reynolds numbers ranging from 100 to 1000
(AOA � 20 deg) to study more in depth the origin and evolution of
the separation bubble. The results obtained have been compared with
the equivalent potential flow (obtained with the same numerical
solver) for which separation cannot occur, with the aim of
highlighting the relation between the pressure gradients and the
topology of skin-friction lines.
The pressure coefficient is defined as

Cp � p − p∞

�1∕2�ρ∞U2
∞

(3)

where p and p∞ are local and far-field pressures, respectively; ρ∞ is
the density; and U∞ is the far-field velocity.
It is known that the origin of the separation bubble starts when the

APG surpasses a certain value [44], and it is reflected in the variations
ofCp. In the meridional plane (symmetry), this coefficient decreases
to negative values (whichmeans that the local pressure is smaller than
far field) withCpeak as a minimum value, and subsequently increases
slowly. In this growth, it is possible to identify a zone in which Cp

remains nearly constant: this is the “plateau” region and it describes
the SB. The points of separation and reattachment are located
upstream and downstream of this zone, respectively.
Figure 7 shows the pressure coefficient in Φ � 0 deg for

Reynolds numbers ranging from 100 to 1000 and compared with
potential flow theory. The point X∕D � 0 corresponds to the

Fig. 5 Critical points and mean flow skin-friction lines in a) regime V
(Re � 500, AOA � 20 deg) and b) regime VI (Re � 1000,
AOA � 30 deg).

Fig. 6 Critical points and mean flow skin-friction lines at AOA � 20 deg and a) Re � 350, b) Re � 400, c) Re � 500, and d) Re � 1000.
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junction point between the hemisphere and the cylinder. The region

ofCpeak and the region of constantCp are identified.Cpeak is found in

the area withX∕D < 0. However, the position ofCpeak is farther from

X∕D � 0 in the viscous calculations than in the calculations done

using potential flow theory. As expected, the results obtained with

potential flow theory differ from the calculations obtained with

viscous theory. The figure also details the critical points in the nose of

the HC in regimes I (AS denotes attached, steady), II (LS denotes

local separation, steady), IV (LU denotes local separation, unsteady),

V (GU denotes global separation, unsteady), and VI (GU denotes

global separation, unsteady). The points of separation and re-

attachment are marked by squares.

As seen, if theAOA ismaintained, the size of the separation bubble

increases when the Reynolds number increases. In addition, it is

observed that, in the particular cases shown in the figure, the point of

separation moves from X∕D > 0 (steady regimes) to X∕D < 0 (un-

steady regimes, global separation). Finally, the point of reattachment

moves upstream as the Reynolds number increases.

C. Formation of the Horn Vortices

Themain goal of this section is to detail the path of formation of the

horn vortices. The origin of these vortices lies in the two fociF found

in the nose of the body surface defining the three-dimensional

separation bubble [12,14]. As previously seen, these two foci are

conforming the bubble in the cases contained in regime VI. The

evolution from regimeV to regimeVI (formation of HV) is studied in

detail in Fig. 8. In regimeV, the separation bubble remains steady, but

it is unsteady in regimeVI. The top of Fig. 8 shows the contours of the

Cp coefficient and the critical points on the body surface that bounds

the SB. Themiddle part of the figure shows the evolution of the focus

Fs in the symmetry plane. The distance from this focus to the body

surface (Y∕D � 0) measures the height of the SB. Table 2 shows the

position of the critical points and the position of the focusFs found in

the symmetry plane of the SB.

Finally, Fig. 8 (bottom) shows the evolution from NI to F of the

critical points describing the SB. Their corresponding eigenvalues

have been represented in the QR chart [41]. The node (stable) is

transformed into a focus (stable) when the eigenvalue cross the line

marked with “T.” In the figure, cases 1 and 2 show two events

contained in regime V (Re � 500,AOA � 20 deg and Re � 1000,
AOA � 10 deg, respectively). The size of the bubble is smaller in

case 1. This suggests that, regardless theReynolds number, the size of

the SB decreases when the AOA increases. The same effect is found

in cases 3 and 4, shown in the same figure, that compares two events

Fig. 8 Global separation. Sketch showing the evolution of the critical points defining the SB (correspondencewithTable 2). Surface critical points andCp

(top), the arrows represent free stream velocity. Focus Fc in the symmetry plane of the SB (middle). Eigenvalues in the QR chart [41] (bottom).

Fig. 7 Pressure coefficient distribution alongX∕D (with Y � Z � 0) at
AOA � 20 deg, 100 < Re < 1000, and Φ � 0 deg, compared with
potential flow theory (POT).
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from regime VI (Re � 1000, AOA � 20 deg and Re � 1000,
AOA � 30 deg, respectively).
Coming back to the evolution of the critical points in the SB from

regimeV toVI (from left to right in Fig. 8), case 1 is established as the

baseline state (critical points and Cp coefficient) in the forthcoming

explanation. As seen in case 2, increasing the Reynolds number (or

AOA) results in the meridional pressure gradient increasing and, as a

consequence, the length of the SB also increases. This effect and also

the crossflow pressure gradient produce the two saddles SI to

approximate each other. The height of the SB has also diminished.

Increasing the Reynolds number slightly more, the combined effect

of both the crossflow and meridional pressure gradients induces a

crossflow and longitudinal deceleration (respectively) and leads to

the transformation of the two nodesNI into the two fociF. This effect

is evidenced in case 3. As mentioned before, the focal points are

always located in regions of maximum vorticity. Hence, these two

foci suggest a vorticity rise inside the SB.At the same time, the results
also show a notable growth in the height of the SB. Finally, increasing

the Reynolds number slightly more, meridional and crossflow

pressure gradients lead to an increase in the foci FI intensity (in the

QR chart,Q, which is discriminant of the Jacobian matrix defined in

Sec. III, is more positive), and consequently it is expected that the
vorticity within the SB also increases. This effect is evidenced in case

4, where the results also show that the length and height of the bubble

are diminished. At this point, the intensity of these foci is sufficiently

high to become the origin of theHV.However, surface topology is not

sufficient to address this hypothesis, and using the three-dimensional
flow topology is necessary.

1. Three-Dimensional Flow Topology and Skin-Friction Lines

A three-dimensional representation of the skin-friction lines of the

HC has been performed. To this aim, the volume streamlines have

been computed around the bubble nose of the body at two different

flow conditions from regime VI (Re � 1000 and AOA � 20 and

30 deg). The flow was unsteady around the nose of the HC; thus, the
streamlines computed corresponded to themean flow. Figure 9 shows

the coherent structures detected withQ criterion [43], displaying the

vorticity and a rake of volume streamlines. As seen, it is possible to

distinguish the SB and a pair of counter-rotating vortices (the nose

vortices, classified in region VI of the phases diagram in Fig. 2).
Volume streamlines reveal that, at an AOA of 30 deg, these vortices

emerge from the body surface; thus, they are called HVs. Under these

conditions, the intensity of the streamwise vorticity is stronger than at

AOA � 20 deg. This result is in good agreement with the

description of Fig. 8.As seen in the diagram, atAOA � 20 deg (case
3), when the intensity of the surface foci is not strong enough,

crossflow separation is still the origin of the vortices found in the

hemisphere-cylinder. These vortices can be considered as leeward

vortices; however, since the two foci F from which they emerge are

present in the description of the nose separation bubble, these vortices
are renamed as nosevortices. The terminology presented in this paper

considers these vortices as a transition that will evolve into the HV.
Figure 10 shows the same vortical structures detected with Q and

some selected volume streamlines, emerging from the two foci F.
The trajectory followed by these streamlines and their interaction
with the vortices pattern represented by isosurfaces of Q criterion

show that, atAOA � 20 deg, the surface fociF (stable, sink of skin-

friction lines) are connected to the focus Fs at the symmetry plane

(unstable, source of skin-friction lines). However, at AOA �
30 deg, the nose vortices emerge from those foci F; thus, they are
referred to as HVs. Finally, it is worth mentioning that the crossflow

pressure gradient, considered as the main contributor to the origin of

the LV, is also interacting with the HV downstream of the SB (see the

rake of volume streamlines in Fig. 9b and the volume streamline in

Fig. 10b).

Fig. 9 Three-dimensional flow topology at Re � 1000. Mean flow
volume streamlines and isosurfaces of instantaneous Q colored with

spanwise vorticity (red and blue colors represent the counter-rotating
vortices, and green color shows the zero vorticity regions).
a) AOA � 20 deg, Q � 1300; and b) AOA � 30 deg, Q � 4000.

Table 2 Critical points describing the nose separation bubblea

Case

(X∕D, Φ) (X∕D, Y∕D)

Separation Attachment Sides Extra Symmetry

Re � 500 S N SI NI FS

AOA � 20 deg (−0.056, 0) (1.36, 0) (0.96,�28.6) (0, �39.8) (0.8, 0.18)
Re � 1000 S N SI NI FS

AOA � 10 deg (−0.020, 0) (1.92, 0) (1.6,�15.6) (0, 50.1) (1.44, 0.14)
Re � 1000 S N SI F FS

AOA � 20 deg (−0.08, 0) (1.84, 0) (1.36,�41.6) (0.8,�28.6) (1.12, 0.61)
Re � 1000 S N SI F FS

AOA � 30 deg (−0.16, 0) (1.12, 0) (0.72,�48.4) (0.4,�41.6) (0.36, 0.18)

aS � saddle,N � node,F � foci,Φ � azimuthal angle measured clockwise,X∕D and Y∕D correspond

to streamwise and wall-normal component, respectively, non-dimensionalized with the diameter of the

hemisphere-cylinder D.
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VI. Conclusions

The hemisphere-cylinder at a high AOA is a geometry rep-
resentative of submarine bodies, aircraft fuselages, and torpedoes or
missiles (i.e., Infra Red Imaging System Tail (IRIS-T), AIM-
132, : : : ); these applications operate at high Reynolds numbers and,
in some cases, in transonic/supersonic regimes.
The study performed in this paper addressed the three-dimensional

separated flow topologies that developed as the AOAwas increased.
The findings of the study at incompressible and low-Reynolds-
number flow conditions shed light on the physical phenomena
occurring at higher Reynolds number. Concerning the topology of
the three-dimensional separated flow, it was noted by Bippes and
Turk [15] and Peake and Tobak [1] that the flow patterns encountered
on the hemisphere-cylinder at very high Reynolds numbers and
transonic conditionswere qualitatively identical to the ones found for
low Reynolds numbers in incompressible flow.
Three different flow structures surround the hemisphere-cylinder

under separated flow conditions; i.e., separation bubbles, horn
vortices, and leeward vortices. With the aim of studying the origin
and evolution of the complex flow patterns, this paper presents three-
dimensional numerical simulations for a variety of Reynolds
numbers and AOAs.
Critical point theory has been applied to the simulated flowfields to

provide, for the first time for this geometry, a bifurcation diagram that
classified the different flow topology regimes as a function of the
Reynolds number and theAOA. Six different flow regimes have been
distinguished and studied in detail. Along the six studied regimes, it
was shown that the separation bubble appeared initially defined as a
local separation phenomenon (node of separation) and evolved to
global separation (saddle of separation) when the flow conditions
changed (Reynolds number or AOA increase). Furthermore, the two
foci found in the critical points that defined the separation bubble
were a result of a high-vorticity region that contributed to modify the
size of the bubble and evidenced the presence of the HV. Finally, it
was found that the leeward vortices, generated by the crossflow
pressure gradient, were the most robust characteristic pattern of this
geometry, found in both steady and unsteady flows and regardless of
the presence of nose separation, except for very low Reynolds
numbers and AOAs.
The deeper understanding gained regarding the topologies of

the three-dimensional separated flow can be useful in the future to
improve existing industrial methods for the calculation of aero-
dynamic forces and moments. These methods typically rely on
potential flow calculations that fail to a large extent when massive
separation exists. Currently existing methods for introducing the
effect of flow separation in engineering design tools are devised for
two-dimensional separation, and their extension to three-dimen-

sional flows is precluded by the absence of a clear description of the
substantially more complex three-dimensional separation. In
addition, understanding the manner in which flow separation occurs
in three-dimensional geometries can help to devise flow control
strategies that improve the aerodynamic performance and capabilities
of this class of aerodynamic bodies.
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