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Abstract 8 

A new Markov Chain Monte Carlo (MCMC) algorithm for Subset Simulation was 9 

recently proposed by imposing a joint Gaussian distribution between the current sample 10 

and the candidate. It coincides with the limiting case of the original independent-11 

component algorithm where each random variable is represented by an infinite number 12 

of hidden variables. The algorithm is remarkably simple as it no longer involves the 13 

explicit choice of proposal distribution. It opens up a new perspective for generating 14 

conditional failure samples and potentially allows more direct and flexible control of 15 

algorithm through the cross correlation matrix between the current sample and the 16 

candidate. While by definition the cross correlation matrix need not be symmetric, this 17 

article shows that it must be so in order to satisfy detailed balance and hence to produce 18 

an unbiased algorithm. The effect of violating symmetry on the distribution of samples 19 

is discussed and insights on acceptance probability are provided.   20 

 21 
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1. Introduction  24 

In a risk assessment problem let 
T

nXX ],...,[ 1X  be the set of uncertain parameters 25 

modeled by random variables. Without loss of generality 
n
iiX 1}{   are assumed to be 26 

standard Gaussian (zero mean and unit variance) and i.i.d. (independent and identically 27 

distributed). Dependent non-Gaussian random variables can be constructed from 28 

Gaussian ones by proper transformation [1]. One important problem in risk assessment 29 

is the determination of failure probability )(FP  for a specified failure event F , which 30 

can be formulated as an n-dimensional integral or an expectation: 31 
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where )(I  is the indicator function, equal to 1 if its argument is true and zero otherwise; 33 

T
nxx ],...,[ 1x  denotes the parameter value of X ; and 34 

 )
2

1
exp()2()(

1

22/ 


 
n

i

i
n x x          (2) 35 

is the n-dimensional standard Gaussian probability density function (PDF).  36 

 37 

Direct Monte Carlo method [2][3] is the most robust method for estimating the failure 38 

probability regardless of problem complexity but it is not efficient for small probabilities. 39 

Advanced Monte Carlo methods aim at reducing the variance of estimators beyond 40 

direct Monte Carlo but in doing so they lose application robustness [4]. Subset 41 

Simulation is a method that is found to play a balance between efficiency and 42 

robustness [5][6]. It is based on the idea that a small failure probability can be 43 

expressed as the product of larger conditional probabilities of intermediate failure 44 

events, thereby potentially converting a rare event simulation problem into a sequence 45 

of more frequent ones.  46 

 47 

The efficient generation of conditional failure samples, i.e., samples that are conditional 48 

on intermediate failure events, is pivotal to Subset Simulation. This is conventionally 49 

performed using an independent-component Markov Chain Monte Carlo (MCMC) 50 

algorithm [5][7][8], which is applicable for high dimensional problems and makes the 51 

algorithm robust to applications. In Step I, given the current sample 
T

nXX ],...,[ 1X , 52 

each component iX   ( ni ,...,1 ) of the candidate is generated independently by MCMC. 53 

In Step II, the candidate 
T

nXX ],...,[ 1 X  is accepted as the next sample if it lies in F ; 54 

otherwise the current sample is taken as the next sample. 55 

 56 

By imposing a joint Gaussian distribution between the current sample and the 57 

candidate, a new algorithm for Step I was recently proposed (Section 3.3 in [9]). Each 58 

component iX   ( ni ,...,1 ) of the candidate is generated independently as a Gaussian 59 

variable with mean ii X  and variance 
21 i , where )1,0(i  is a parameter chosen by 60 

user and can be seen as the correlation between iX   and iX . This algorithm is 61 
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remarkably simple and the candidate X  is always different from the current sample X .  62 

It is directly controlled through the correlations 
n
ii 1}{   and the explicit choice of 63 

proposal PDF is no longer required. It coincides with the limiting case of the original 64 

independent-component algorithm where each random variable is represented by an 65 

infinite number of hidden variables [10]. 66 

 67 

The Gaussian candidate concept was generalized to introduce correlation between the 68 

components of the candidate. It was proposed that the candidate X  be generated as a 69 

Gaussian vector with mean RX  and covariance matrix 
T

RRIC  , where 
nnR I  70 

denotes the identity matrix; and 
nnR R  is the cross covariance matrix between X  71 

and X , in the sense that ][][ TT EE XXRXX  . By definition R  need not be symmetric. 72 

In [9], symmetry was not explicitly imposed in deriving the properties of the algorithm, 73 

although the numerical examples assumed diagonal (hence symmetric) R . The objective 74 

of this article is to clarify whether R  needs to be symmetric. It will be shown that for 75 

detailed balance to hold, and hence the algorithm be unbiased, R  must be symmetric. 76 

The effect of violating symmetry will be discussed and insights are provided for 77 

acceptance probabilities. Clarifications are also given on the derivation in [9] regarding 78 

the issue of symmetry.    79 

 80 

2. Detailed balance and symmetry requirement 81 

Consider using the generalized algorithm mentioned in the last section to generate 82 

samples distributed as the conditional PDF )(/)()()|( FPFIF  xxx  . Here F  can 83 

denote any intermediate failure event in Subset Simulation. Let the current sample be 84 

X  and the next sample be Y . MCMC produces the conditional failure samples by 85 

ensuring the transition PDF from X  to Y  to satisfy the ‘detailed balance condition’, also 86 

known as ‘reversibility condition’: 87 

)|()|()|()|( || FpFp yyxxxy XYXY       
nRyx,   (3) 88 

That is, the arguments x  and y  can be swapped. The following standard arguments [5] 89 

allow one to reduce detailed balance to the consideration of the transition PDF from the 90 

current sample to the candidate X , i.e., )|(| XXp . First, the equality holds trivially 91 

when yx   and so it suffices to consider yx  . Since Step II ensures that all samples 92 

lie in F , it suffices to check detailed balance for only those states in F , i.e.,  93 
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)()|()()|( || yyxxxy XYXY  pp       yx  , Fyx,  (4) 94 

where )|( F  has been replaced by )( . This reduces to considering the case where the 95 

candidate in Step I is accepted in Step II, for which XY  . Detailed balance then 96 

reduces to requiring  97 

)()|()()|( || yyxxxy XXXX    pp      yx  , Fyx,  (5) 98 

 99 

According to the generalized algorithm, given the current sample X , the candidate X  100 

is a Gaussian vector with mean RX  and covariance matrix 
T

RRIC  . That is, for 101 

any 
nRyx, , 102 
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where ),;( CRxy  denotes the n -dimensional Gaussian PDF with mean Rx  and covariance 104 

matrix C  and evaluated at y . Detailed balance in (5) therefore reads  105 

)(),;()(),;( yCRyxxCRxy           (7) 106 

 107 

In an attempt to show (7), one tries to rewrite the LHS so that the roles of x  and y  can 108 

be swapped. This involves linear algebra dealing with the quadratic forms in the exponent of the 109 

Gaussian PDFs. As the key theoretical result in this article, it is shown in the appendix that the 110 

LHS of (7) can be rewritten as  111 

)(),;()(),;( yCyRxxCRxy   T
        (8) 112 

where 113 

RRIC
T            (9) 114 

Equation (8) says that x  and y  can be swapped but R  should be replaced by 
T

R  and 115 

C  by C . Comparing the RHS of (7) and (8), it is now clear that detailed balance holds if 116 

and only if ),;(),;( CyRxCRyx  T , i.e., one Gaussian PDF with mean Ry  and 117 

covariance 
T

RRIC   is identical to another Gaussian PDF with mean yR
T

 and covariance 118 

RRIC
T . This holds if and only if R  is symmetric.     119 

 120 
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3. Distribution of the next sample 121 

It is instructive to consider the effect of a general (asymmetric) R  on the distribution of the 122 

next sample. According to the generalized algorithm, the transition PDF from the current sample X  123 

to the next sample Y  is given by 124 

)](1)[()(),;()|(| xxyyCRxyxyXY APFIp        ( 10 ) 125 

where )(  is the Dirac-Delta function; and 126 

  zzCRxzxXXx dFIFPPA )(),;()|()(       ( 11 ) 127 

is the acceptance probability in Step I given that the current sample is at x . Check that )|(| xXY p  128 

integrates to 1: 129 

1)](1[)|(                           

)](1)[()(),;()|(|



 

xxXX

yxxyyyCRxyyxyXY

A
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dPdFIdp 
   ( 12 ) 130 

Suppose X  is distributed as the conditional PDF )|( Fx . Using the Theorem of Total 131 

Probability and (10), the PDF of Y  is 132 
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Using (8) and substituting )(/)()()|( FPFIF  xxx  , the first integral is given by 134 
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      ( 14 ) 135 

 where 136 

  xxCyRxy dFIP T
A )(),;()(          ( 15 ) 137 

is the probability that a Gaussian vector with mean yR
T

 and covariance C  lies in F .  138 

The second integral in (13) is simply given by 139 

)|()](1[)|()](1)[( FPdFP AA yyxxxxy        ( 16 ) 140 

Substituting (14) and (16) into (13) gives 141 

)|()]()([)|()( FPPFp AA yyyyyY           ( 17 ) 142 
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For general R , )()( yy AA PP   and so )(yYp  is different from the target PDF )|( Fy . When 143 

R  is symmetric, CC   and )()( yy AA PP   for all y , and so )|()( Fp yyY  . 144 

 145 

To clarify, when X  is a standard Gaussian vector, generating a Gaussian candidate X  146 

with mean RX  and covariance 
T

RRIC   ensures it is also a standard Gaussian 147 

vector. The same also works when the mean is replace by XR
T

 and the covariance by 148 

RRIC
T . These are true no matter whether R  is symmetric or not. For the next 149 

sample Y  to have the target PDF )|( Fy  (standard Gaussian conditional on failure), 150 

however, R  must be symmetric. 151 

 152 

4. Acceptance probability 153 

Further insights about the acceptance probabilities )(yAP  and )(yAP   are presented for 154 

general R . First, their integral with respect to )(y  is equal to )(FP . Using (11), 155 
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     ( 18 ) 156 

where we have used (8) in the second equality and 1),;(  yCRzy d  in the fourth 157 

equality. The result in (18) is intuitive because generating a Gaussian vector with mean 158 

RX  and covariance matrix 
T

RRIC  , and with X  being standard Gaussian, will 159 

also give a standard Gaussian vector, whose probability of lying in F  is clearly )(FP . 160 

Replacing R  by 
T

R  and C  by C  in (18) shows that the same result holds for )(yAP  , 161 

i.e., 162 

)()()( FPdPA   yyy           ( 19 ) 163 

 164 

A more non-trivial result holds. Despite the fact that )()( yy AA PP  , their integral with 165 

respect to )|( Fy  are always the same: 166 
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  ( 20 ) 167 

where we have used (8) in the second equality. This result in fact guarantees that the 168 

expression of )(ypY  in (17) integrates to 1.  169 

  170 

To illustrate the above results, suppose failure is defined as }{ bF T  Xa  for some 171 

vector 
nRa  and scalar Rb . Then the failure boundary is a hyperplane and it can be 172 

derived analytically (details omitted) that  173 
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Assume the following numerical values: 175 











5.01.0

3.05.0
R  










5.1

1
a  3b  176 

For 
T]12[y , (21) gives (3 significant digits) 310.0)( yAP  and 422.0)(  yAP , which 177 

are clearly different. The integrals in (19) and (20) are estimated by direct Monte Carlo. 178 

Averaging the values of )(yAP  and )(yAP   with one million i.i.d. standard Gaussian 179 

samples of y  confirms that  yyy dPA )()(   and   yyy dPA )()(   are both equal to the 180 

theoretical value (3 significant digits) 0480.0)/()(  aa
TbFP . Averaging using 181 

the same set of samples but only over those with bT ya  (i.e., conditional on failure) 182 

gives estimates of  yyy dFPA )|()(   and   yyy dFPA )|()(  , which are both equal to 183 

0.374 (3 significant digits). These findings are consistent with (19) and (20).     184 

 185 
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5. Remarks 186 

Comments on the original derivation in [9] are in order. In Appendix A of the paper, 187 

detailed balance was shown by considering the Gaussian vector 
nR2

10 ];[  UUU  with 188 

zero mean and covariance matrix  189 











IR

RI
Σ T           ( 22 ) 190 

It was claimed that a) given 1U , the vector 0U  is marginally Gaussian with mean 1RU  191 

and covariance 
T

RRI  ; and b) given 0U , the vector 1U  is marginally Gaussian with 192 

mean 0RU  and covariance 
T

RRI  . By writing the joint PDF in two ways, i.e., 193 

11|000|110 UUUUUUUU ppppp  , it was deduced that (see (43) of the paper), for any 194 

nR10,uu , 195 

)(),;()(),;( 110001 uRRIRuuuRRIRuu  TT       ( 23 ) 196 

and hence detailed balance was concluded to hold. 197 

 198 

The identity in (8) shows that (23) is only true when R  is symmetric. For general R , 199 

the identity says that, 200 

)(),;()(),;( 110001 uRRIuRuuRRIRuu  TTT       ( 24 ) 201 

The issue in the argument leading to (23) stems from claim (b) above. The correct claim 202 

should be: given 0U , the vector 1U  is marginally Gaussian with mean 0UR
T

 and 203 

covariance RRI
T . This follows from the standard result that for two jointly Gaussian 204 

vectors 
nRXX 21,  with mean 

nR21,  and covariance matrices 205 

nnT
jjiiij RXXE  ]))([(  , given 1X , the vector 2X  is marginally Gaussian 206 

with mean )( 11
1

11212    X  and covariance 12
1

112122  
.     207 

  208 

Appendix B in [9] assumed that R  was symmetric so it was not affected by this issue. 209 

Neither was the adaptive algorithm in Section 3.4 or numerical examples in Section 4 210 

affected because they assumed diagonal R  (hence symmetric). 211 

 212 
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6. Conclusions 213 

The identity in (8) provides the correct form of the joint PDF of the current sample and 214 

the candidate where the arguments are swapped. Based on this, detailed balance is 215 

shown to hold if and only if the cross correlation matrix is symmetric. A general 216 

expression for the PDF of the next sample has been derived in (17), which reveals the 217 

effect of violating symmetry. Insights on acceptance probabilities are also provided and 218 

illustrated with examples. The generalized algorithm opens up new possibilities for 219 

improving the efficiency of Subset Simulation and Monte Carlo algorithms in general. It 220 

is hoped that this article can contribute to clarifying basic theoretical issues for 221 

designing the cross correlation matrix or tuning the algorithm in future research.   222 
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 227 

8. Appendix. Proof of identity (8) 228 

To show (8), we express the LHS as 229 









  ),(

2

1
exp||)2()(),;( 1

xyCxCRxy qn       ( 25 ) 230 

where 231 

xxRxyCRxyxy
TTq   )()(),( 1

       ( 26 ) 232 

The proof is accomplished by showing |||| CC   and  233 

yyyRxCyRxxy
TTTTq   )()(),( 1

       ( 27 ) 234 

where RRIC
T  as defined in (9).   235 

 236 

To show |||| CC  , we use the matrix determinant theorem [11], which says that for any 237 

matrices VUBA ,,,  of appropriate size, 238 

|||||||| 11 UVABBAUBVA           ( 28 ) 239 

Apply this with IA , IB , RU  and 
TV R  gives 240 

|||||||||||||| 11
CRRIRIRIIIRRIC   TTT

     ( 29 ) 241 

 242 
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To show (27), expand the first term in (26): 243 

TTTTTTq )()(),( 1111
RxCyRxCyxRCRIxyCyxy

      ( 30 ) 244 

We use the matrix inverse lemma [11] to express 
11 )(   T

RRIC  and )( 1
RCRI

 T
 245 

in another form. For any matrices VUBA ,,,  of appropriate size, the lemma says that 246 

 
1111111 )()(   VAUVABUAAUBVA       ( 31 ) 247 

Applying the lemma with IA , IB , RU  and 
TV R  gives  248 

TTTTTT
RCRIRRRIRIRRRIRIRRIC

11111 )()()(    ( 32 ) 249 

Applying the lemma with IA , 
1CB , 

TU R  and RV  gives 250 

CRRIRRRCRIRCRI   TTTT )()( 11
     ( 33 ) 251 

where we have used IRRC  T
. Substituting 

T
RCRIC

11    from (32), the third 252 

term in (30) becomes 253 

xCRyxCICRyRxyRxRCRyRxyRxCy
1111 )(   TTTTTTT

  ( 34 ) 254 

where in the second equality we have used CIRR T
. Substituting (32) and (33) into 255 

the first and second term in (30), and using (34) for the last two terms, 256 

TTTTTTTq )(),( 1111
xCRyxCRyxCxyRCRyyyxy

     ( 35 ) 257 

This is identical to (27) after writing in complete square form in x . 258 

 259 
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