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ABSTRACT 

This paper presents a study on the Bayesian spectral density method for operational modal 

analysis, i.e., modal identification using output-only ambient vibration data. The method 

makes Bayesian inference of the modal properties by using the sample power spectral density 

(PSD) matrix averaged over independent sets of ambient data. In the typical case with a 

single set of consecutive time history of data, it is divided into non-overlapping segments and 

they are assumed to be independent. This study is motivated by a recent paper that reveals a 

mathematical equivalence of the method with the Bayesian FFT method. The latter is a more 

fundamental approach based directly on the FFT of the ambient data without averaging 

concepts or the independent segment assumption. This study shows that the equivalence does 

not hold in reality when the segment length is not long (compared to the natural period), 

because the theoretical long data asymptotic distribution of the PSD matrix can deviate 

significantly from reality. A single time history can be considered sufficiently long for the 

Bayesian FFT method but the same need not be true for the Bayesian PSD method, 

depending on the number of segments. Violating long data asymptotics leads to bias in the 

modal identification results, primarily as a result of spectral leakage.  
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1 Introduction 

Ambient modal identification, often known as ‘operational modal analysis’, aims at 

identifying the modal properties (e.g., natural frequency, damping ratios, mode shapes) of a 

constructed structure using (output-only) measured vibration data [1][2]. The loading to the 

structure is not known but is assumed to be broadband random so that statistical 

characteristics of the response can be assumed to be attributed to the modal properties rather 

than the loading. Stochastic subspace identification [3] and frequency domain decomposition 

[4] are two conventional methods with variants in the time and frequency domain, 

respectively. In the absence of loading information, the uncertainty associated with the 

identified parameters can be significant. This calls for a rational approach for quantifying the 

identification uncertainty of modal parameters. In a classical statistical approach, also known 

as ‘frequentist’ approach, identification uncertainty is measured as the variability of the 

estimate over repeated experiments. Methods for calculating the uncertainty of modal 

parameters in this context have been developed [5].  

 

A Bayesian system identification approach [6][7][8] provides a fundamental means for 

identifying the modal parameters consistent with probability logic and modeling assumptions. 

Bayesian approaches for ambient modal identification have been formulated in a series of 

papers by Yuen & Katafygiotis, chronologically, in the time domain [9], in the frequency 

domain based on the power spectral density (PSD) matrix [10], and in the frequency domain 

based on the Fast Fourier Transform (FFT) of the ambient data [11]. Judging solely on 

modeling assumptions, the time domain approach is less preferred to the frequency domain 

approaches because it inevitably involves imposing broadband assumption on the excitation 

and the prediction error (e.g., channel noise) over the whole sampling spectrum, i.e., up to the 

Nyquist frequency, which is unlikely to be valid unless the data has been filtered [12]. The 

PSD method is also less preferred to the FFT method because it involves averaging concepts 

and requires independent data sets.  

 

In a Bayesian context, the identification result of the modal parameters is encapsulated in 

their joint posterior (i.e., given data) probability density function (PDF). With sufficient data 

the modal parameters are ‘globally identifiable’ [13], in the sense that their posterior PDF has 

a single regular peak. In this case the posterior PDF can be approximated by a Gaussian PDF 



centered at the posterior most probable value (MPV). Mathematically, the MPV minimizes 

the negative log-likelihood function (NLLF). The covariance matrix of the Gaussian PDF, 

which reflects the identification uncertainty of the modal parameters, is equal to the inverse 

of the Hessian of the NLLF at the MPV. Determining the MPV by brute-force numerical 

optimization of the NLLF is computationally prohibitive, primarily because the number of 

parameters grows with the number of DOFs and is therefore typically large. This undermined 

the application of the aforementioned Bayesian approaches in their original form. By a 

mathematical reformulation of the NLLF of the FFT method, fast algorithms for computing 

the posterior MPV and covariance matrix were later developed, for well-separated modes 

[14], multiple (possibly close) modes [15][16] and well-separated modes from multiple 

setups [17][18]. These developments allowed practical application of the Bayesian FFT 

method, e.g., [19][20][21].  

 

Following similar techniques used in developing the fast algorithms for the FFT method, an 

algorithm for determining the posterior statistics (MPV and covariance matrix) in the PSD 

method has been recently presented for general multiple modes [22]. The method is 

approximate because the MPV of the ‘spectral parameters’ (i.e., those other than the mode 

shapes) minimizes a surrogate NLLF formulated based on the trace of the PSD matrix as data 

rather than the PSD matrix itself. Nevertheless the paper suggested an interesting similarity of 

the mathematical structure of the PSD and FFT method. Motivated along this direction, this 

paper presents some insights on the PSD method and how it is related to the FFT method. For 

a single set of ambient data, which is typically the case in practice, it is shown that the PSD 

method is mathematically equivalent to dividing the data into non-overlapping segments, 

assuming that they are independent and making inference collectively based on their FFTs. In 

reality, however, the PSD method is more vulnerable to modeling error when the number of 

segments is not small.  

 

This paper is organized as follows. We first present the Bayesian FFT method which provides 

the fundamental approach for making inference about the modal parameters making full use 

of the information within the selected frequency band. The Bayesian PSD method is then 

presented and its underlying assumptions are clarified. The mathematical equivalence of 



these two approaches is then established, followed by a discussion. The relevant issues are 

illustrated with numerical examples based on synthetic data. 

2 Bayesian FFT method 

We first give a brief introduction of the Bayesian FFT method; a recent review can be found 

in [12]. Let 
N
j

n
j R 1}ˆ{ x  denote the measured digital time history of acceleration response 

at n  DOFs of the subject structure. The method makes use of the FFT of the measured 

response on a selected resonance frequency band as data to formulate the posterior PDF of 

modal parameters. The FFT is defined as 
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which corresponds to frequency tNkk  /)1(f  up to the Nyquist frequency ( t2/1  Hz); 

t  is the sampling interval in seconds. The FFT of the measured data is modeled as  
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where m
i

n
i R 1}{ φ  are the mode shape vectors of the m  contributing modes in the selected 

frequency band; 
n

k Cε  is the FFT of the prediction error (e.g., channel noise), assumed to 

have a constant PSD matrix neS I  within the selected frequency band; nI  denotes the identity 

matrix of dimension n ; 
m
iikp 1}{   are the FFT at frequency kf  of the modal forces, assumed 

to have a constant PSD matrix nnC S  within the selected frequency band; and 

12 ])2()1[(  iikiikikh          (3) 

is the (complex-valued) transfer function between the i -th modal force and modal 

acceleration; ikik f/f  is a frequency ratio of the FFT frequency kf  to the natural 

frequency if .  

 

In the above context, the set of modal parameters to be identified is given by 

},;,...,1:,,{ eiii Smif Sφθ          (4) 



with the constraints that S  is a Hermitian matrix and the mode shapes are normalized to have 

unit norm, i.e., 1i
T
i φφ  ( mi ,...,1 ). Assuming a uniform (constant) prior distribution for θ , 

its posterior PDF can be written in a compact form by [15] 
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where 
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is the theoretical PSD matrix of the data. The asterisk ‘*’ denotes a complex conjugate 

transpose.  

 

The NLLF in (6) and hence the posterior PDF assumes that the data duration is long 

compared to the natural periods of the modes in the selected frequency band so that the FFTs 

}{ kF  at different frequencies are asymptotically independent and they are jointly complex 

Gaussian, each with a covariance matrix given by ]|[)( *
θθE kkk E FF . In the limit this 

matrix becomes the theoretical PSD matrix in (7). This is an important aspect that will be 

revisited later when the PSD method is discussed.  

 

Modal identification problems with sufficient data are globally identifiable, in the sense that 

the posterior PDF of θ  has a single peak in the parameter space. In this case, using a second 

order Taylor expansion of the NLLF, the posterior PDF can be approximated by a Gaussian 

PDF centered at the most probable value (MPV) and with a covariance matrix. 

Mathematically, the MPV minimizes the NLLF and the covariance matrix is equal to the 

inverse of the Hessian of the NLLF evaluated at the MPV.  

 

The Bayesian FFT method is fundamental in the sense that inference is made directly based 

on the FFT without averaging concepts. The FFT is not a statistical proxy as it has a one-one 

correspondence with the time domain data. There is no loss in information by making 

inference based on the FFT rather than the time domain data directly. Using the FFT data on 



a selected frequency band, usually around the resonance peak of the modes of interest, allows 

one to play a balance between the information used for identification (the wider the band the 

better) and modeling error risk (the wider the band the higher the risk).  

3 Bayesian PSD method 

The Bayesian PSD method was developed earlier than the Bayesian FFT method. It makes 

Bayesian inference based on the sample PSD matrix of the ambient data averaged over M  

(say) independent sets of data. In real situations where only one consecutive time series of 

ambient data is available, the M  sets of data are obtained by dividing the original data set of 

duration dT  into M  non-overlapping segments (each of duration MTd / ) and they are 

assumed to be independent. Let 
MN

j
r
j

/
1

)(
}ˆ{ x  denote the r -th segment ( Mr ,...,1 ): 
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which now corresponds to the frequency tNkMk  /)1(f  (Hz). A different symbol k  

(instead of k ) is used for the frequency index to reflect the fact that the FFT now has a lower 

frequency resolution than the FFT in (1), as the frequency interval is now tNM /  (Hz) 

instead of tN/1 . The sample PSD matrix averaged over M  segments is given by  
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The PSD method takes the collection }ˆ{ kE  in the selected frequency band as the ‘data’ for 

making inference about the modal parameters. In formulating the likelihood function, it 

makes use of the theoretical result that, for nM   and assuming large segment length 

MTd / , the PDF of k Ê  for given θ  has a ‘complex Wishart distribution’ of dimension n  

and with M  degrees of freedom [10][23][24]. This PDF is given by 
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where ]|ˆ[)( θEθE kk E    is given by (7) with k  substituting k ; ][tr  denotes the trace of 

the argument matrix, i.e., the sum of diagonal entries. The likelihood function in the PSD 

method is the product of )|ˆ( θEkp   for different frequencies in the selected band, i.e.,  

 












 




k

kkn

i
M

k

nMnnnM
k

k trM
iM

M
p ]ˆ)([exp

)!()]([det

)ˆ(det
)|}ˆ({ 1

1

2/)1(

EθE
θE

E
θE


  ( nM  ) 

           (12) 

Assuming a uniform (constant) prior distribution for θ , its posterior PDF taking }ˆ{ k E  as 

data is given by 
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is the NLLF for the PSD method. 

 

As mentioned before, the NLLF in (14) and hence the posterior PDF assumes that the 

segment length MTd /  is large compared to the natural periods of the modes in the selected 

frequency band, so that each k Ê  has a complex Wishart distribution and the k Ê s at 

different frequencies are asymptotically independent. The additional condition nM   

ensures that nn
k C 
Ê  as a random matrix is almost surely non-singular because its rank is 

),min( Mn . 

4 Apparent mathematical equivalence 

In this section we show that when dealing with a single set of consecutive time-domain data, 

which is typically the case in practice, the PSD method (for nM  ) is mathematically 

equivalent to making inference collectively based on the FFTs of the M  non-overlapping 



segments by assuming that they are independent and have large segment length MTd / . 

Specifically, we shall show that the NLLF derived under this context is identical to that of the 

PSD method. In later sections we shall argue that in reality this equivalence does not hold (or 

not useful in practice) because MTd /  need not be large even if dT  is large.   

 

The apparent equivalence is based on the observation that the trace term in the NLLF (14) of 

the PSD method can be written as a quadratic form similar to that in the NLLF (6) of the FFT 

method. This in turn is based on the ‘cyclic’ property of the trace function, which was also 

used in developing the algorithm in [22]. Specifically, for any complex matrices ZYX ,,  of 

appropriate dimension, 
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Substituting k Ê  from (10) and using this identity, the second term in (14) becomes 
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where the second equality follows because the trace function is linear (trace of sum is equal 

to sum of trace); the last equality follows because 
)(1*)( ˆ)(ˆ r
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 FF θE  is a scalar. Substituting 

(16) into (14), 
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On the other hand, consider making Bayesian inference using the FFTs calculated from the 

M  segments of data. Assume that they are independent and the segment length MTd /  is 



sufficiently long. The likelihood function in the present context is equal to the product of 

those of the individual segments because they are assumed independent: 
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The likelihood function of each segment is given by 
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with the NLLF being, based on (6) and omitting the constant, 
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The likelihood function in (18) is then given by 
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where the NLLF is 
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and is identical to (17). 

5 Discussion 

We now present a discussion of the Bayesian PSD method from both theoretical and 

computational point of view. The discussion assumes that a single set of consecutive time 

history of ambient data is given, as is typically the case. 

 

5.1 Underlying assumptions 

The PSD method involves statistical proxy and averaging concepts for making inference as it 

uses as data the sample PSD matrix averaged over independent segments. The FFT method 

shows that these are not necessary as one can make Bayesian inference directly based on the 

FFT of the whole set of measured time history. In addition to those modeling assumptions of 

the FFT method, the PSD method assumes that the segments are independent. When 1M  

the NLLF (14) of the PSD method is mathematically identical to that of the FFT method in 



(6), but in this case it is no longer the correct NLLF of the PSD method (unless 1n ) 

because it is only valid for nM  .  

 

5.2 Deviation from long data asymptotics 

The apparent equivalence shown in Section 4 can deviate significantly from reality because 

the data length of each segment ( MTd / ) need not be large even if dT  is large. This weakens 

the validity of the long segment assumption in the PSD method and leads to modeling error. 

The latter results from discrepancy between the theoretical distribution of the sample PSD 

(assuming long data length) and the actual distribution. In this regard, the validity of three 

theoretical results is critical to the likelihood function and hence the NLLF in (14): 

1. the independence of the sample PSD matrices at different frequencies, which allows the 

likelihood function to be written simply as a product of the PDFs at different frequencies;  

2. the analytical form of (11), i.e., the complex Wishart distribution; 

3. the analytical expression in (7) for the expectation of the sample PSD matrix, which 

facilitates mathematical analysis and computation of the NLLF so that fast algorithms can 

be derived.  

The effect of the segment length on these aspects shall be illustrated later through a numerical 

study in Section 6. The results reveal that the first two aspects are robust to the segment 

length but the third can be far from reality when the number of segments is not small, leading 

to bias in the identification results.  

 

It should be noted that when the PSD method was first formulated in [10] the exact 

theoretical expression for ]|ˆ[ θEkE   in terms of the modal parameters was used, which was 

valid regardless of the segment length. Thus, only the first two aspects above are relevant to 

the original formulation. The expression involves the FFT of the theoretical correlation 

function, or equivalently the integral of the theoretical PSD matrix with the Fejer kernel 

[25][26], and is not conducive to mathematical analysis or computations. The discussion here 

refers to the efficient form of the PSD method that uses the asymptotic form of ]|ˆ[ θEkE   in 

(7), for which the third aspect above is also relevant.  

 



5.3  Computational aspects 

Since the NLLF of the PSD method shares the same mathematical form as the NLLF of the 

FFT approach, the algorithms for efficient computation of posterior statistics in principle can 

be used interchangeably. In fact, the derivation of the algorithm developed in [22] was similar 

to that in [15]. Regardless of the algorithm developed for computing the posterior statistics, 

the NLLF in the formulation should be strictly obeyed, for otherwise the Bayesian nature of 

the method will be lost. That is, the MPV should minimize the NLLF and the covariance 

matrix should be equal to the inverse of the Hessian of the NLLF at the MPV. In this regard, 

the algorithm in [22] is not numerically consistent. It obtains the MPV of the ‘spectral 

parameters’, i.e., those other than the mode shapes, and the mode shapes separately in two 

stages. The MPV of the spectral parameters minimizes a surrogate NLLF formulated based 

on the trace of the sample PSD matrix as data rather than the sample PSD matrix itself. In 

addition, the surrogate NLLF assumes that the number of segments M  is large so that the 

trace of the sample PSD matrix is asymptotically Gaussian. Unless the original time history 

data is ‘super-long’ so that both MTd /  and M  are large, the large M  assumption 

contradicts with the long segment assumption.  

6 Illustrative example 

In this section we present a numerical study with synthetic data to illustrate the issues 

discussed in the last section. We shall first illustrate the effect of the number of segments on 

the distribution of the sample PSD and its correlation with different frequencies. A similar 

study is also applied to the sample PSD averaged over different segments, which is used as 

the data for modal identification in the Bayesian PSD method. This leads naturally to the 

effect on the modal identification results, where the potential bias in terms of the posterior 

MPV and variance shall be investigated. As we shall see, as the number of segments 

increases and hence the segment length is shortened, the distribution of the sample PSD 

deviates from the asymptotic value assumed in the identification theory. This can lead to a 

significant bias (over-estimation) in the identified damping values.  

 



6.1 Synthetic data 
Consider a time history of SDOF (single degree of freedom) synthetic acceleration 

measurement 
N
jjx 1}ˆ{   of duration dT 1000 sec and sampling frequency 100Hz, i.e., 

000,1001001000 N . The data is modeled as 

jjj txx  )(ˆ        Nj ,...,1   (23) 

where 
N
jj 1}{   is i.i.d. (independent and identically distributed) white noise with a PSD of 

HzgSe /)(1 2  (typical of force-balanced accelerometers); )( jtx  is the acceleration 

response of an SDOF structure satisfying  

)()()(2)( 2 tptxtxtx           (24) 

with f 2  (rad/sec), f 1Hz (natural frequency) and %1  (damping ratio); )(tp  is 

white noise excitation with a PSD of S /Hzg)(04.0 2 . Figure 1 shows the sample PSD 

calculated from a typical set of data. The horizontal bar in the figure indicates the selected 

frequency band for modal identification in Section 6.5, which can be ignored for the moment.  

  

 

Figure 1 Sample PSD calculated from a typical set of data of duration 1000dT sec. 

Horizontal bar indicates the selected frequency band for modal identification 

 

6.2 Frequency resolution 

In the context of the PSD method, suppose we divide the original data set into M  non-

overlapping segments, so that each has a duration of MTd / . The frequency interval, i.e., the 
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frequency difference between neighboring FFT ordinates, is equal to 1000// MTMf d   

(Hz). Figure 2 shows the reduction of frequency resolution with increasing M , overlaying 

the dynamic amplification factor for illustration.  

 

 

Figure 2 Frequency resolution for different number of segments M . Solid line – dynamic 

amplification factor. Dots – FFT ordinates 

 

6.3 Sample PSD 

We next illustrate the effect of shortened data segment on the distribution of the sample PSD. 

Let kS 
ˆ  be the sample PSD calculated from a particular segment (of length MTd / ), say, the 

first segment, at a particular frequency k f . That is,  

2)1(
|ˆ|ˆ

kkS   F           (25) 

where, according to (9), 










MN

j

NkjM
jk

ex
N

tM
/

1

/)1)(1(2)1()1( ˆ2ˆ iF       (26) 

The theoretical PDF of kS 
ˆ  is given by (11) with kk S  
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where ]ˆ[ kSE   is the expectation of kS 
ˆ . If the duration of the segment ( MTd / ) is sufficient 

long (theoretically infinite), ]ˆ[ kSE   is given by the asymptotic expression in (7) with 1n , 

1Φ  and kk SDH : 

ekk SSDSE ]
ˆ[      (assuming MTd /  large) (28) 

where 

])2()1[( 222
kkkD           (29) 

is the dynamic amplification factor and kk f f/ ; kf  is the FFT frequency.  

 

6.3.1 Expectation 

For illustration consider the sample PSD kS 
ˆ  at the natural frequency, i.e., 1f k Hz. Figure 3 

compares the asymptotic value of ]ˆ[ kSE   from (28) with the actual value estimated from 

100,000 independent trials. These two values almost coincide at 1M , which shows that the 

original data length 1000dT sec is sufficiently long for a good asymptotic long data length 

approximation. When M  increases, the actual value is less than the asymptotic value. This 

reduction is often referred as ‘spectral leakage’ in signal processing. Thus, when M  is not 

small the duration of each segment MTd /  is no longer large even when dT  is. 

 

Figure 3 Expectation of kS 
ˆ  of segment with duration MTd / . Dashed line – asymptotic 

formula in (28); circle – sample estimate from 100,000 trials. Discrepancy between circle and 

dashed line reflects spectral leakage. Note that the x-axis is plotted on log scale. 
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6.3.2 Probability distribution 

Figure 4 shows the actual PDF of kS 
ˆ  (solid line) estimated from the same 100,000 

independent trials. The theoretical PDF in (27) with ]ˆ[ kSE   given by (28) (which assumes 

large MTd / )  is also shown with dashed line in the figure for comparison. When 1M , the 

actual PDF agrees well with the asymptotic PDF. As M  increases their difference increases. 

When 20M  (say) the difference is visually significant and the theoretical PDF fails to give 

a reasonable approximation to the actual PDF. As discussed in Section 5.2, the departure of 

the theoretical PDF from reality can be attributed to the departure of its mathematical form 

(complex Wishart distribution) and the departure of the asymptotic value of ]ˆ[ kSE   in (28) 

from the actual value. Figure 5 shows the results analogous to Figure 4 except that theoretical 

value (dashed line) is now calculated with ]ˆ[ kSE   estimated from the sample mean of the 

100,000 trials. The agreement between the solid and dashed line reveals that discrepancy 

between the PDFs observed in Figure 4 is mainly attributed to the departure of (28) from 

reality. 

 

 

Figure 4 PDF of sample PSD based on data length MTd /  ( 1000dT sec). Solid line – 

sample estimate from 100,000 trials; dashed line – (27) with ]ˆ[ kSE   given by (28) 
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Figure 5 PDF of sample PSD based on data length MTd /  ( 1000dT sec). Solid line – 

sample estimate from 100,000 trials; dashed line – (27) with ]ˆ[ kSE   estimated from sample 

mean of 100,000 trials 

 

6.3.3 Correlation among different frequencies 

Figure 6 shows the correlation coefficient of the sample PSD at the natural frequency (1Hz) 

with other neighboring FFT frequencies, estimated from the same 100,000 samples used in 

the previous sections. It is seen that the correlation is practically zero regardless of M . It is 

therefore valid to assume that the sample PSDs at different frequencies are independent even 

when M  is not small. Thus, the effect of the number of segments on the independence of 

FFT at different frequencies can be considered insignificant. 

 

 

Figure 6 Correlation coefficient of sample PSD at the natural frequency (1Hz) with other 

frequencies, estimated from 100,000 trials 

 

6.4 Sample PSD averaged over segments 

Consider now the sample PDF averaged over the M  segments, i.e., analogous to (10), 

0 100 200 300 400
0

0.01

0.02
M=1

0 100 200 300 400
0

0.01

0.02
M=2

0 100 200 300 400
0

0.01

0.02
M=5

0 100 200 300 400
0

0.01

0.02
M=10

value [(g)
2
/Hz]

P
D

F
 [

( 
g
)2

/H
z
]-1

0 100 200 300 400
0

0.01

0.02
M=20

0 100 200 300 400
0

0.01

0.02
M=40

0.9 0.95 1 1.05 1.1
-0.5

0

0.5

1
M=1

0.9 0.95 1 1.05 1.1
-0.5

0

0.5

1
M=2

0.9 0.95 1 1.05 1.1
-0.5

0

0.5

1
M=5

0.9 0.95 1 1.05 1.1
-0.5

0

0.5

1
M=10

Freq. [Hz]

C
o
rr

. 
C

o
e
f.

0.9 0.95 1 1.05 1.1
-0.5

0

0.5

1
M=20

0.9 0.95 1 1.05 1.1
-0.5

0

0.5

1
M=40






 
M

r

r
kk S

M
E

1

)(ˆ1ˆ          (30) 

where 
)(ˆ r

k
S   denotes the sample PSD of the r -th data segment. Note that 

)1(ˆ
k

S   was 

abbreviated to kS 
ˆ  in Section 6.3 for simplicity in notation. Clearly, ]ˆ[]ˆ[ kk SEEE   . Using 

(11) with 1n , the PDF of kE 
ˆ  is given by 
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6.4.1 Probability distribution 

Figure 7 shows the actual PDF of kE 
ˆ  (solid line) estimated from the same 100,000 

independent trials in Section 6.3. The theoretical PDF in (31) with ]ˆ[ kSE   given by (28) 

(which assumes large MTd / )  is also shown with dashed line in the figure for comparison. 

When 1M , the actual PDF agrees well with the asymptotic PDF. Their discrepancy 

increases with M  and is seen to be visually significant when 10M . This discrepancy is 

responsible for the bias in the modal identification results presented in Section 6.5 later. 

 

Figure 8 show the results analogous to Figure 7 except that theoretical value (dashed line) is 

now calculated with ]ˆ[ kSE   estimated from the sample mean of the 100,000 trials. Again, the 

agreement between the solid and dashed line reveals that the departure of (28) from reality is 

the main contributor to the discrepancy seen in Figure 7. 



 

Figure 7 PDF of sample PSD averaged over M  segments, each of length MTd /  ( 1000dT

sec). Solid line – sample estimate from 100,000 trials; dashed line – (31) with ]ˆ[ kSE   given 

by (28)   

 

 
Figure 8 PDF of sample PSD averaged over M  segments, each of length MTd /  ( 1000dT

sec). Solid line – sample estimate from 100,000 trials; dashed line – (31) with ]ˆ[ kSE   

estimated from sample mean of the same 100,000 trials 

 

6.4.2 Correlation among different frequencies 

Similar to Figure 6, Figure 9 shows the correlation of the PSD at the natural frequency with 

other FFT frequencies. The correlation is generally higher compared to Figure 6 but is still 

small. This reveals that the independence at different frequencies is fairly robust to the 

segment length and it can be a good approximation even when the number of segments is not 

small. 
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Figure 9 Correlation coefficient of averaged PSD at 1Hz with other frequencies, estimated 

from 100,000 trials 

 

6.5 Modal identification 

We next investigate the modal identification results using the PSD method based on the 

likelihood function that assumes large segment length ( MTd / ), which is currently the only 

setting that allows fast algorithm to be developed and the method be practically implemented. 

As we shall see, as the number of segments increases the identified damping ratio is 

increasingly biased high. 

 

Consider modal identification using the PSD approach with dT 1000 sec of ambient data 

generated in the last section, where the PSD calculated from a typical set of data was shown 

in Figure 1. As indicated in the figure, the spectral information within the frequency band 

]1.1,9.0[  Hz is used for modal identification. To provide a perspective on the quality and 

amount of the data considered here, the modal signal-to-noise (s/n) ratio is [14]  
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This is typical in field tests under normal wind conditions and modes with this s/n ratio can 

be easily identified. On the other hand, a data length of dT 1000 sec is equivalent to 

 fTN dc (1000)(1)=1000 natural periods, which is sufficient for identifying the damping 

ratio with good accuracy [27][28].  
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To investigate the quality of the identification results we generate 1000 independent sets of 

data and perform modal identification for each set. For each set of data we perform modal 

identification with different number of segments M . The discussion here focuses on the 

posterior MPV and posterior c.o.v. (coefficient of variation = posterior standard 

deviation/posterior MPV) of the natural frequency and damping ratio.  

 

6.5.1 Posterior MPV 

Figure 10 shows the posterior MPVs (dots) of the natural frequency and damping ratio of 

1000 trials of data. The square shows the sample mean of the MPVs and the dashed line 

shows the exact value used for generating the data for identification. Note that the results for 

1M  is identical to those one could have obtained using the Bayesian FFT method. For the 

natural frequency, the results are qualitatively the same for different M . For the damping 

ratio, however, as M  increases the MPVs are increasingly biased high. This bias can be 

explained by noting that the likelihood function assumes the asymptotic distribution for the 

sample PSD but it is biased high (Figure 7). Intuitively, this drives the MPV of the damping 

ratio in the identification process (minimizing the NLLF) to higher values so as to drive the 

theoretical PDF of the PSD to the low side to ‘match’ probabilistically the sample PSD 

calculated from the data. The fact that the results are practically unbiased when 1M  

reflects that the total data duration of 1000dT sec is indeed sufficiently long for the 

Bayesian FFT method to be valid, but the same is not true for the PSD method when the 

number of segments is not small.   

 

 

Figure 10 Posterior MPVs of modal properties obtained from Bayesian PSD method with 

different number of segments (M). Dots – results from 1000 trials. Square – sample mean of 



1000 trials. Dashed line – exact value that generated the data. Note that the horizontal axis is 

plotted on log-scale. Results show that as M increases the damping ratio identified by the 

PSD approach is biased high. 

    

6.5.2 Posterior c.o.v. 

We next investigate the posterior c.o.v. of the natural frequency and damping ratio. Figure 11 

shows the posterior c.o.v.s of the 1000 trials (dots). The square shows the root mean square 

(RMS) value of the c.o.v.s. The RMS value is considered rather than simply the sample mean 

because it is the proper form of averaging for variability. The solid line shows the sample 

c.o.v. of the MPVs shown in Figure 10. There is a slight increase in the posterior c.o.v.s and 

sample c.o.v.s as the number of segments increases. Nevertheless, the RMS value of the 

posterior c.o.v. agree well with the sample c.o.v. of MPV, showing that it properly reflects 

the posterior variability of the identified values around their sample mean (which is 

nevertheless biased for the damping ratio). 

 

 

Figure 11 Posterior c.o.v. of modal properties obtained from Bayesian PSD method with 

different number of segments (M). Dots – results from 1000 trials. Square – sample mean of 

1000 trials. Solid line – sample c.o.v. of MPVs. Note that the horizontal axis is plotted on 

log-scale. Results show that the posterior c.o.v. is generally consistent with the sample c.o.v. 

of MPVs.  

 

It was shown previously [29] that if there is no modeling error the Bayesian measure and 

frequentist measure of identification uncertainty should agree. In the present case the 

Bayesian measure is the RMS value of the posterior c.o.v. and the frequentist measure is the 



sample c.o.v. of the MPVs. Despite the agreement between the square and solid line in Figure 

11, the Bayesian and frequentist measure do not agree for the damping ratio because the 

sample c.o.v. of the MPVs were calculated based on the (biased) sample mean rather than the 

actual damping value that generated the data. That is, had the sample variance (from which 

the c.o.v. is calculated) of the MPVs been calculated (correctly) as the average squared 

difference from the exact value of damping ratio (1%) rather than the sample mean, the 

resulting sample c.o.v. (frequentist measure) would not have agreed with the RMS of 

posterior c.o.v. (Bayesian measure).  

7 Conclusions 

Averaging concepts are useful for producing a smooth spectrum for visualization but as far as 

modal identification is concerned it is fundamentally unnecessary, as evidenced by the 

Bayesian FFT formulation. Despite the apparent mathematical equivalence in the likelihood 

function of the Bayesian FFT and PSD method, the FFT in the latter is calculated based on 

shorter data segments and so is more vulnerable to deviation from long data asymptotics. 

This can lead to modeling error and bias in the identification results if the likelihood function 

is based on long data asymptotics. A single time history can be considered sufficiently long 

for the Bayesian FFT method but the same need not be true for the PSD method, depending 

on the number of segments divided for averaging. 

 

Long data asymptotics is responsible for the independence of FFTs at different frequencies 

and the asymptotic form of the likelihood function. The numerical study reveals that the 

independence of FFTs is insensitive to the number of segments but the same is not true for 

the asymptotic form of the likelihood function, in particular, the theoretical expectation of the 

sample PSD matrix. When the number of segments is not small the actual expectation of the 

sample PSD is significantly smaller than the asymptotic value. The resulting bias is therefore 

essentially due to spectral leakage. The numerical study reveals that the bias in the damping 

ratio is insignificant when the FFT is calculated with a data length of 500 natural periods. 

This applies to both the Bayesian FFT and PSD method. Implementing the PSD method with 

a given set of data, the number of segments should be as small as possible. As the complex 

Wishart distribution (basis of the PSD method) is valid as long as the number of segments is 



greater than the number of measured DOFs, the number of segments in the PSD method 

should be simply taken as the number of measured DOFs. 

 

Although for simplicity of discussion the numerical study considers only one measured DOF, 

the findings are generally applicable to multiple measured DOFs. This is supported by 

recently derived uncertainty laws [27][28], where the measured DOFs affect only the modal 

s/n ratio but which has a diminishing effect for good quality data. The findings are also 

applicable to close modes as long as the modal s/n ratio is reasonable (e.g., >100) and the 

measured mode shapes are linearly independent, as evidenced by a recent numerical study 

[30]. Guidelines on non-Bayesian identification methods based on PSD may be referred to 

[31].     
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