
An Investigation of Errors and of Quasi stationary
behaviour for Pairwise Epidemic Models

by

Chris Adedapo LOYINMI
under the supervision of:

Dr. Kieran, J. SHARKEY

Thesis submitted in accordance with the requirements

of the University of Liverpool for the

degree of Doctor in Philosophy

March, 2016



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Table Of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List Of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1

1.1 Epidemic and modeling . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Simple Epidemic models . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The SI model . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The SIR model . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 The SIS model . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Stochastic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 The Quasi Stationary Distribution . . . . . . . . . . . . . . 11

1.4 The event driven approach - the SIR model . . . . . . . . . . . . . 12

1.5 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 Structure Of Networks . . . . . . . . . . . . . . . . . . . . . 15

1.6 Types of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.1 Small world . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.2 Scale Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Network-based Modeling . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.1 Edge-based model . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7.2 Degree-based model . . . . . . . . . . . . . . . . . . . . . . . 25

1.7.3 Pairwise model . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Exact Equations for the SEIR Epidemics on Tree Networks 40

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

i



2.3 The star graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Differential equations for general system and subsystem states . . . 51

2.5 The general closure relation: The main result . . . . . . . . . . . . 57

3 Approximating the Global Error for an SIR Epidemic model on

Ring networks 66

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Statement of the Problem and Procedure . . . . . . . . . . . . . . . 68

3.3 The Triangular Network . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 Closure for S-S-I . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.2 Closure for I-S-I . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.3 Taylor Polynomial . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 The Square Network . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4.1 Closure for S-S-I . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Closure for I-S-I . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 The Pentagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Closure for S-S-I . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.2 Taylor Expansion Hypothesis . . . . . . . . . . . . . . . . . 84

3.6 The Hexagonal Network . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.1 Closure for S-S-I . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6.2 Closure for I-S-I . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.7 The Trend of En and β . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Quasi-Stationary Distribution of the pair-based SIS Epidemic model

on line graphs 97

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Defining the QSD for SIS dynamics on a Network . . . . . . . . . . 100

4.3 Calculating the QSD on a lattice . . . . . . . . . . . . . . . . . . . 102

4.4 Approximations for the QSD . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 Individual-approximation . . . . . . . . . . . . . . . . . . . . 106

4.4.2 Pair-approximation . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 QSD on larger networks . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Discussion and Conclusion 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

ii



Dedication

This thesis is dedicated to the MIGHTY WARRIOR, THE ANCIENT OF DAYS

from whom perfect gifts come.

iii



Acknowledgement

My profound gratitude goes to my supervisor, Doctor Kieran J. Sharkey, for his

great support, guidance, time and patience throughout my doctoral studies at the

University of Liverpool.

My undiluted gratitude also goes to the entire staff and students of the de-

partment of Mathematics especially, the HOD, Professor kurt Langfeld, the De-

partmental Director of Postgraduate Research, Dr. Vladimir Guletskii and to the

Mathematical Biology group of the department.

I am indeed very grateful to my Uncle, Pastor Adebayo Israel for all his prayers

and moral support and I owe much to my Mum, siblings, children and my wife,

Adetoun Mary Adeniji, for believing in me and for the pains my absence caused

them. l also appreciate my special friends, Suulola Akinyanju and brother Lanre

Sangobunmi for their support.

Finally, I want to appreciate the entire staff of the Department of Mathematics

and Management of Tai Solarin University of Education, Nigeria for their love and

support.

Dapo LOYINMI

Liverpool, 2016.

iv



Abstract

There are various modelling approaches designed to incorporate the complexities

of the spread of infectious diseases in populations. At the level of individuals,

the epidemic dynamics with Poisson transmission and removal processes can be

described by a hierarchy of moment equations starting from the equations for the

states of single individuals. In such equations, lower order quantities are expressed

in terms of higher order quantities and for numerical feasibility the system is usually

closed at some level through an approximate moment closure relation leading to

lower-dimensional ordinary differential equations(ODE) models.

Here we focus our attention on pair-approximation models where hierarchy is

closed at the level of pairs by approximating higher order terms. This method

enables considerable heterogeneity that may be present in the network to be in-

corporated. It also provides insights into the connection between stochastic and

deterministic models. Most of the work presented in this thesis is based around

this type of model.

In chapter 2, we first develop a class of deterministic Susceptible-Exposed-

Infectious-Removed (SEIR) epidemic models on time-independent weighted contact

networks where the exposed, infection and removal processes are Poisson. Follow-

ing earlier work on SIR dynamics, we then prove that a pair-level closed form of this

model generates an exact representation of the expected infection time series for

tree networks under the condition that the transmission rate across all links in the

network is constant and the recovery rate for an infected individual is also constant.

It has been identified that there is a connection between the structure of net-

works and the validity of the type of moment closure that we consider here. In

chapter 3, we make an investigation of the accuracy of moment closure relations.

In particular, the presence of lower-order cycles such as triangles, is a major prob-

lem with network-based epidemic models that are approximated by second order

moment closure equations. Cycles make it difficult to match a low-dimensional ap-

proximate model with its corresponding stochastic counterpart. Our study focusses

on trying to understand and quantify the errors that emerge in SIR dynamics on

networks comprising of a single cycle; triangle, square, pentagon and hexagon.

Finally, we look at SIS dynamics on networks. These dynamics eventually ap-

proach an absorbing state but nevertheless can appear to be stationary over a rea-

sonable period of time. The time it takes for some absorbing stochastic process to

v



absorb can sometimes be long. The concept of quasi-stationary distribution(QSD)

is used to represent this stationary-like behaviour. We employ the Master equation

to calculate the average of the QSD on small networks and compare this with sim-

ulations. This approach is not feasible for larger networks due to the huge number

of equations the method generated. We then develop a pair approximation method

for accurately approximating the average of the QSD on large networks.
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Chapter 1

Introduction

1.1 Epidemic and modeling

Infectious diseases have remained the major cause of mortality in developing coun-

tries of the world despite the availability of effective antibiotic and vaccination

programmes to fight and subsequently eliminate them [25, 27]. An infection out-

break may happen in one settlement or even extend to many countries [33]. It is

also possible for the infection to persist from days to years and a single case of a

new disease or an occurrence of a disease which has been away from a population

for a long time may be considered an outbreak [1, 162]. An outbreak becomes

epidemic when it spreads rapidly to many individuals.

Infectious diseases have inflicted terrible damage to mankind causing economic

damage and social disruption throughout the centuries. Whole populations were

almost completely wiped out, blood lines ended and more casualties have been

claimed by epidemics than wars [25].

Early human beings came in contact with disease-causing microbes in drinking

water, food and the environment. Once in a while an outbreak might considerably

reduce the population of a small group but they never came close to experiencing

the extensive diseases of more recent times [24, 25]. The fact that Ebola virus,

among other deadly zoonists, is believed to be transmitted to people from wild

animals is evidence that animal or human invasion of new ecosystems provides

the opportunity for new and existing diseases and that humans opened themselves

up to new and deadlier diseases by domesticating animals that have their own

microbes [170, 171]. Human beings built wells and ditches to sustain their expanded

population and by so doing they unconsciously provided more standing water to

breed disease-carrying mosquitoes, hence as human expand their territory they

came into close contact with microbes they might otherwise have never met so
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communicable diseases had the opportunity to spread to epidemic proportions as

human begin to come together in large number [25, 27].

New microbes could also easily find their way from a highly populated area to

another as technology allows for wider travel and trade. Ironically, scientific inven-

tion in the transportation industry paves the way for one of the greatest threat to

the modern human society. And as we continue to grow, so too microbes continue

to change and transform to more lethal and drug-resistant forms [24, 26]. New

diseases have emerged in recent times. Prominent epidemics include Smallpox, the

Great flu, the Black Death, Malaria, Tuberculosis, Cholera, AIDS, Yellow fever

and Typhus.

In recent times, we have witnessed at a frightening rate, the occurrence of new

diseases and re-occurrence of old diseases in many parts of the world. An example

of the coming back of an old menace is the Ebola disease that recently ravaged three

West African countries-Liberia, Sierra Leone and Guinea [21, 48]. The virus which

is particular to West Africa was first discovered nearly four decades ago in Congo

in a village near the Ebola river and since then there have been random outbreaks.

The recent outbreak, the largest in history, sickened and killed thousands of people

since March 2014 [48].

Another threat to humanity is the recent emergence of ‘MERS ’ infection in

South Korean. In this era of ever growing population and national and interna-

tional interactions, epidemic diseases are major threat. The occurrence and re

occurrence of diseases encouraged interest in communicable diseases. Epidemics

are dangerous occurrences, not only from a biological perspective, as infectious

diseases, but also from a technological point of view, as malware propagation [92,

178]. Without a doubt, epidemics can cause great damage, and so developing the

proper and useful models for epidemics is necessary to effectively use scarce control

resources.

Epidemic models help us to understand how infectious diseases spread in a

population and how various complexities of the pattern of interactions affect its

propagation. It presents an epidemiologist with an ideal-world where different fac-

tors, such as number of partners [2, 17, 45, 49] and the effect of localized spread

of infection [91, 92, 95] responsible for disease propagation can be isolated and

examined in a fairly general framework, and where every stage of the disease is

recorded in detail. Epidemic models as an approximation to reality are typically

based on some simple assumptions, ignoring some individual differences such as the
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susceptibility of individuals to infection, variation in the immunological response

and transmissibility and so on. Biological characteristics such as the transmission

rate are then translated into mathematical variables which leads to sets of equa-

tions that can be analysed to give meaningful mathematical conclusions from which

meaningful biological interpretations can be derived [2, 74].

In epidemic models of communicable infections, individuals with some level of

immunity which has not contracted a disease yet but could catch it if they come in

contact with someone who does is referred to as Susceptible. When they become

infected with a micro parasite, the pathogen begins to grow within the host and

there is an interaction between the pathogen and the host’s immune response [1,

75, 78]. The abundance of the pathogen grows over time and at this early stage,

the host may show no symptoms of infection as the abundance of the pathogen may

be too low to transmit infection to a susceptible individual. At this stage, the host

is referred to as Exposed. As the growth rate of the pathogen increases and the

level of parasite is large enough to transmit infection to a susceptible individual,

the original host is referred to as being Infectious.

Finally, when the host’s immune system has subdued the parasite and the host

is no longer infectious, then the host is referred to as Recovered. It is worth

mentioning that removal can happen either through quarantine (i.e. isolation of

an infected individual from the rest of the population to prevent further spread of

a contagious disease) or through immunization against infection or through death

caused by the disease. These categorization are equivalent from a modelling point

of view which only consider the infection status of individuals. For any model, the

progression between these classes are translated into formal mathematical terms to

make quantitative predictions.

1.2 Simple Epidemic models

In basic epidemic models, individuals in a population are grouped into different

compartments according to their infection status. Notations such as S(t), E(t),

I(t) and R(t) are often used to represent the number of individuals in the re-

spective compartments of being susceptible, exposed, infectious and removed. The

independent variable in this type of model is time, t, and the rate of change of this

quantities from one compartment to the other are usually expressed as derivatives

based on the assumption that the population size in each compartment is differ-

entiable with respect to time. A differential equations based epidemic model is a

3



reasonable approximation provided there are many members in each compartment,

and the epidemic process of such model is assumed deterministic.

Among notable early deterministic epidemic models was that formulated by

Daniel Bernoulli in 1760 [41] to investigate the efficiency of variolation of healthy

people with the smallpox virus. Another one was the discrete time model analysed

by William Heaton Hamer in 1906 to understand the recurrence of measles epi-

demics [71]. Hamer’s model was probably the first to assume that the number of

cases per unit time depends on the product of the densities of the susceptible and

infective [71].

Important properties, such as the final size of the epidemic and its duration

can be predicted once an infectious disease is modelled by simple compartmental

models [7, 41, 59, 62].

1.2.1 The SI model

Some infections, especially of plants, where the infected host remains infected for-

ever, are better described by the SI (Susceptible-Infectious) model [2, 71].

Although this two-states categorisation of individuals as either being susceptible

or infectious hides lots of biological information. It captures some of the many

features of disease dynamics and simplifies our consideration of what goes on in

the population rather than what goes on within the host [2, 8]. This model which

can be modified in many ways to fit the description of specific infection dynamic

applies to fatal infections such as HIV and the Highly Pathogenic Avian Influenza

(H5N1) [1, 62] whereby the host remains infected and infectious forever.

The progression from state S to state I in such a closed population can be

conceptually represented by a flow diagram of figure (1.1). It is essential to note

that the choice of which compartments to include in a model depends on the

characteristics of the particular infection under investigation and the purpose of

the model. Acronyms for epidemic models such SEIR, SIR, SI and SIS are usually

based on the flow pattern between the compartments.

Let us consider an infection spreading through a closed population of size N

and denote the respective number of susceptible and infectious individuals at time

t by S and I. We first note that ‘effective contact’ between a susceptible and infec-

tious individuals transmits infection. The transition rate between susceptible and

infectious individuals is βI, where β takes into consideration the probability that

infection is contracted when susceptible and infectious individuals make contact

[62, 114]. The total rate of new infection is βI S
N

and the compartmental flow rate

equations for a fixed population can then be written as

4



Figure 1.1: Flow of S → I in a well-mixed closed population.

dS

dt
= −βI S

N
,

dI

dt
= βI

S

N
.

(1.1)

We can also use variables defined as fraction of the population:

x =
S

N
and y =

I

N

In terms of these, equation (1.1) becomes

dx

dt
= −βxy,

dy

dt
= βxy.

(1.2)

Since S+I = N , or equivalently x+y = 1, we can remove x from the equations

by putting x = 1 − y as every individual is either susceptible or infectious, and

from (1.2) we have

dy

dt
= β(1− y)y. (1.3)

The solution of (1.3) by integration of its partial fractions is given as

y(t) =
y0e

βt

1− y0 + y0eβt
. (1.4)

where y0 is the initial fraction of infective in the population.
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Equation (1.4) is referred to as logistic growth equation in biological studies,

physics and many science fields [114].

For a typical population of 1,000, β = 1.5 and with one initial infected indi-

vidual, equation (1.4) produces an S-shaped curve, figure (1.2) showing an initial

exponential growth of infection. As the figure illustrates, the whole population gets

infected. This is possible because an infected individual in the population remains

infected and can infect any other susceptible.
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Figure 1.2: The logistic growth curve of the SI model for a population with 1000
individuals, transmission rate, β = 1.5 and a single initially infected individual.

1.2.2 The SIR model

Some diseases such as measles give permanent immunity to the host after treat-

ment and consequently their dynamics are best described by an SIR (Susceptible-

Infectious-Recovered) model. This model which is an extension of the SI model

is first formulated (though never published) by Lowell Reed and Wade Hampton

Frost in the 1920s [68].

An infected individual is assumed to recover from an infection at a constant

rate γ and the progression from state S to I and to R in a closed population can

be conceptually represented by a flow diagram as shown in figure (1.3). In general,

the rate at which a susceptible individual moves into the infected compartment and

from the infected compartment to the recovery class yield the coupled non-linear

differential equation (1.5).
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Figure 1.3: Flow of S → I and I → R in a closed population.

dx

dt
= −βxy,

dy

dt
= βxy − γy,

dz

dt
= γy.

(1.5)

where x + y + z = 1 is a constant, with x0 > 0, y0 > 0. It is assumed z0 = 0 and

so zt > 0 ∀t > 0. z = R
N

, R is the number of removed or recovered individual(s).

Although these equations can not be solved explicitly but the second expression

in (1.5), i.e. dy
dt

= (βx− γ)y indicates that when βx ≤ γ, the rate of change of the

number of infected decreases with time. On the other hand when βx > γ, then
dy
dt
> 0 at least initially, and the number of infected increases at the beginning. We

just observed the threshold phenomena R0 = β
γ

where the infection spreads.

The critical quantity, β
γ

= R0 is referred to as the basic reproductive ratio and

it is defined as the average number of secondary cases arising from an average

primary case when introduced into an entirely susceptible population[75, 78]. For

an infection to invade a population, R0 must be greater than 1. Control measures

such as vaccination can be applied to reduce R0 below this value and thus the

infection from the population before invasion.

For a closed population of N=1,000 with I0 = 1, β = 1.5 and γ = 1, equation

(1.5) gives the curves in figure (1.4)

1.2.3 The SIS model

This model is another extension of the SI model where recovery of an infected

individual is temporary and recovery of host is immediately followed by the indi-

viduals becoming susceptible. Examples of human infections that give temporary

immunity to victims are many of the sexually transmitted diseases (STDs) such

as gonorrhoea and Syphilis [49, 52, 75]. The infected after recovery immediately

replenishes the susceptible pool.

The dynamics of such infections are best described by an SIS (Susceptible-

Infectious-Susceptible) model which was first introduced in 1971 by Weiss and

7
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Figure 1.4: The SIR epidemic dynamics: The trend of S, I and R in a closed
population of N = 1, 000 for I0 = 1, β = 1.5 and γ = 1.

Dishon [177]. The disease is able to remain in the population in the presence of an

infected individual. With a constant recovery rate γ of an infected individual, the

Figure 1.5: Flow of S → I and I → S in a closed population.

differential equations for this model are

dx

dt
= −βxy + γy,

dy

dt
= βxy − γy.

(1.6)

And writing x = 1− y and we have

dy

dt
= (β − γ − βy)y (1.7)
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which after solving gives

y(t) = y0
(β − γ)e(β−γ)t

β − γ + βy0e(β−γ)t
. (1.8)

For same parameter values; N = 1, 000, β = 1.5, γ = 1 and with one initially

infected individual, equation (1.8) gives a logistic growth curve similar to that for

SI model but different in the sense that the whole population is never infected with

the disease.
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Figure 1.6: The logistic growth curve of the SIS model for a 1,000 population,
transmission rate, β = 1.5, recovery rate γ = 1, initiated with a single infected
individual.

The endemic state

In the long run the SIS model reaches a stable state where the rate at which

individual(s) are infected equals the rate at which people recover and a steady

fraction of the population is always infected with the disease [111, 120]. The

fraction infected at this stage can be obtained from and by setting (1.7) to zero.

That is:
dy

dt
= (β − γ − βy)y = 0 which gives y =

β − γ
β

This steady state is an example of an endemic disease state [75, 114]. Pro-

vided R0 > 1, the disease persists in the population. It is worth mentioning that
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apart from the application of the SIS model to modelling the spread of diseases in

humans and animals, it has a range of other applications such as modelling of the

spread of viruses in computer networks [92, 127, 178].

The SIS and SIR models are two behavioural extremes where immunity simply

does not occur or is lifelong [75, 78]. An intermediate assumption is that the

host immunity after treatment or immune response lasts for a limited time before

waning and thereby becoming susceptible again. The description of such infection

dynamics can be represented by an SIRS model where removed individuals can

move back to being susceptible. An example of an infection with such a profile is

the 9-10 cycle observed in the Syphilis case in the United State case in 2005 [54].

Another variation of the SIR model is the inclusion of latent periods. This a

period when the infected individual shows no symptoms of infection but carries

the disease causing pathogens. At this stage the pathogens undergo unchallenged

reproduction within the host. The host are referred to as being exposed and are

duly represented by the variable E when the infection profile is being adequately

captured by the SEIR model[75, 152].

1.3 Stochastic models

All the models described above can be studied in a more realistic stochastic frame-

work by a class of stochastic models called Markov processes. ‘Stochastic’ indicates

being or having a random variable [6, 11]. A stochastic model is a means of simu-

lating or calculating probability distributions of possible outcomes by giving room

for random variation in one or more inputs over time [37, 43]. Stochastic models

are good tools when these fluctuations matter and are particularly useful when

considering small populations [59, 76].

The so called Kolmogorov forward equation, also known as the master equation,

permits one to examine the probability of occurrence of each state as a function of

time. This equation which provides simple exact methods for evaluating population

infection size is linear and has a natural matrix formulation of dynamics which

absorbs the non-linearity associated with disease transmission processes, say for

example, of systems (1.2), (1.5) and (1.6). Markov processes, using integer-based

events (infection and recovery in this case) model stochastic population processes

with the future state of the population determined by the current state- the system

has no memory[76, 94, 146, 167]. The fundamental procedure allows the entire

combination of stochastic activity to be predicted by a large set of deterministic

equations. For example, the SIS dynamic will require N + 1 differential equation

10



while SIR dynamic will require (N+1)(N+2)
2

differential equation, where N is the

number of individual in the population[76, 167].

Essentially, the Kolmogorov (or master equation) equation consists of a single

matrix equation for the probability of being in each possible state, with the dy-

namics governed by the transition rates between states [76]. Hence, one can find

a complete description of all possible behaviours of the stochastic system, solving

one set of differential equations. For example, the N + 1 differential equations for

SIS dynamics correspond to the states I = {0, 1, ...., N}. Letting PI(t) be the

probability that there are I infectious individuals at a time t in the population

and construct a set of differential equations for these probabilities, the so called

Kolmogorov forward equations are:

d

dt
PI = [β(N − I + 1)(N − 1)]PI−1 + [γ(I + 1)]PI+1

− [β(N − 1)I + γI]PI ,
(1.9)

with P−1 = 0 and PN+1 = 0 because the population of infectious can not be

negative and can also not be greater than N . The first term of (1.9) corresponds

to increment in I from I+1 by infection, the second term corresponds to reduction

in I from I+1 by recovery from infection and the third term corresponds to no

recovery and no infection, and so the population of infection remains I.

System (1.9) can be written in terms of simpler matrix and vector form, that is

dP

dt
= P (t)Q, (1.10)

where P is the row vector of the N + 1 probabilities and Q is the transition rate

matrix between states (see [76, 167] for more detail). The solution of (1.10) can be

put in the form

P (t) = P (0)eQ(t) =
N+1∑
n=1

qne
λnt, (1.11)

where the eigenvectors, qn and eigenvalues, λn are determined from the matrix Q

and the initial distribution, P (0).

1.3.1 The Quasi Stationary Distribution

One of the most important difference between the stochastic and the deterministic

models is their asymptotic dynamics. For example, the SIS model for a closed

population predicts infection growth and attains a lasting steady state as long as

R0 > 1, while its stochastic counterpart predicts ultimate extinction of infection
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at I= 0 irrespective of the initial condition(s). In such cases, we may be interested

in the distribution of the dynamic conditioned on non absorption. This is the

distribution, given that the disease is still in the population. This is described by

the concept of quasi stationary distribution (QSD) which can be estimated

adequately by forming a matrix Q∗ from matrix Q by removing the first row and

column which correspond to the transition process of the absorbing state, I= 0.

The first normalized eigenvector λ∗ of Q∗ is the QSD of the SIS dynamics in a

closed population.

This concept is used to model the behaviour of some some stochastic systems

which eventually approach an absorbing state but nevertheless appear stationary

over a reasonable period of time. It is a powerful tool in many area of scientific

studies. For example, in wild life management, it is used to predict persistence

times, and the distribution of the number of individuals in animal populations that

are subject to large-scale mortality or emigration [129, 133, 145]. It is also used to

model the spread of a computer virus across a network with cure and reinfection

[79, 105].

We consider this concept extensively in chapter 4 where we evaluate the average

of the number of infectious individual in the quasi stationary state of the Markovian

SIS epidemic dynamics on graphs.

1.4 The event driven approach - the SIR model

We outline a step by step pseudo code which can be used for implementing the

Gillespie algorithm [53] to simulate a Markovia process (or model) for, say an

SIR epidemic dynamics in a closed population. Transmission of infection is a

chance event. The event-driven approach is one way of defining the fluctuation

in population processes that happens as a result of the random nature of events

in terms of individual. Here, the number of susceptible, infectious and recovery

individual is treated as integer.

Consider an SIR model on a closed population of size N where infection and

recovery are Poisson processes with respective constant rate of τ and γ. Let S,

I and R as the respective number of susceptible, infectious and removed in the

population at any time t, written as (S, I, N-S-I), there are two possible events in

the population- either infection with rate τSI or recovery with rate γI.

• The total event pressure on the process as a whole is λ = τSI + γI.

• The time to next event is a Poisson process with rate, λ. That is, t→ t+ δt

12



where δt = − ln(r)
λ

is the waiting time for the next event and r is a uniformly

generated random number between 0 and 1.

• The probability that the event is infection is τSI
λ

, and the probability that

the event is recovery is γI
λ

.

• After the waiting time, if the event on the process is infection then the popula-

tion of infectious individuals increases by 1 while the population of susceptible

is reduced by 1, that is, (S, I, N-S-I) → (S-1, I+1, N-S-I)

• If the event is recovery then the population of recovered individuals increases

by 1 while the population of infectious is reduced by 1, that is, (S, I, N-S-I)

→ (S, I-1, N-S-I+1)

This code is run repeatedly, updating the various variables at each time step, until

the number of infective goes to zero. Two realizations from implementing the

pseudo code with the same set of parameter values of figure (1.4) is given in figure

(1.7). For many epidemic models, averaging over such many realizations of the

process converges to that of their deterministic counterparts in the limit of infinite

population.
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Figure 1.7: Two different realizations of the stochastic SIR compartmental model
for N = 1000, β = 1.5, one initially infected individual and γ = 1
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1.5 Networks

The assumption of a well mixed population is an inadequate one for the dynam-

ics of many infectious diseases. Human interactions are limited by many factors,

hence heterogeneous mixing is a fact for many epidemiological system as the infec-

tion status of an individual in a population depends on the interaction with limited

neighbours. Among the potential limitations to possible contacts between individ-

uals in the population are proximity, socio-economic status and culture [12, 46,

49]. Many social systems such as friendship networks, biological systems such as

the food web and communication systems such as the internet can be adequately

represented by complex networks whose nodes represent individuals or group of

individuals, and connections represent the interactions among them [114]. These

connections between individuals or group of individuals which ultimately allow in-

fectious disease to spread naturally define a network. The wide applicability of

networks as a modelling tool has revolutionalized research into the dynamics of

interacting units.

Modelling population growth in different biological systems is often very similar.

For example, studying forest population growth with suitable and non suitable

habitats (ecology) is mathematically similar to studying the growth of infection in

a host population of susceptible and infectious individuals (epidemiology) [18, 88,

92, 127]. An important application of networks is epidemiology where mathematical

models involving networks give fundamental insights into epidemic dynamics.

Networks can be defined as a collection of points (vertices/nodes) joined by

lines(edges) (figure (1.8)). Networks can be represented mathematically by an

Figure 1.8: Simple undirected networks

adjacency matrix G where,

gij =

1, if node i is connected to node j,

0, otherwise.
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For the network in fig 1.8(ii);

G =


g11 g12 g13 g14 g15

g21 g22 g23 g24 g25

g31 g32 g33 g34 g35

g41 g42 g43 g44 g45

g51 g52 g53 g54 g55

 =


0 1 1 0 0

1 0 1 1 1

1 1 0 1 0

0 1 1 0 1

0 1 0 1 0


A number of important quantities can be derived from the adjacency matrix. For

a population of size N, the average number of neighbours per individual is

〈k〉 =
1

N

∑
ij=1

GN
ij =

1

N
||G||

where ||G|| represents the number of ordered links in the network. The degree k of

a node i in a network is the number of connections it has to other nodes. That is,

ki =
N∑
j=1

Gij

For example, node 2 in fig (1.8) has degree 4 which corresponds to the sum of the

second row of matrix G above.

1.5.1 Structure Of Networks

Networks provide a rich framework for studying the propagation of infection in hu-

man and animal populations. However, modelling transmission through networks

is mathematically and computationally daunting due to the high-dimensionality of

networks themselves. Robust analytical results remain scarce though some progress

has been made to improve the practical usefulness of network-based models by tak-

ing into consideration realistic features of mixing patterns. There is some structure

behind social interaction; this structure, which can be represented by a contact net-

work, determines the relationships that are permitted and the individuals capable

of transmitting infection to each other [45, 46, 73, 99, 111, 112].

Good knowledge of this structure in epidemiology is essential to understanding

routes through which diseases spread in a population and this leads to designing

effective control measure. For example, contact tracing [75] which is a highly effec-

tive public health control identifies possible transmission network connections from

known infected individuals and treats or regulates their contacts thereby reducing

the spread of infection. A ready example is the first case of the dreaded Ebola
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disease in Nigeria. In early April 2014, the Liberian Ebola infected air passenger

(Mr. Sawyer) from Liberia reportedly showed no Ebola symptoms when boarding

the plane to Nigeria but was vomiting and had diarrhoea by the time he arrived

Nigeria’s biggest city, Lagos. Although before then, there have not been case(s) of

Ebola spreading through air travel, nearly 50 other passengers on the flight were

quickly traced and monitored for signs of Ebola. With contact tracing combined

with other robust control intervention, Ebola was successfully tamed and stamped

out from the country within a relatively short period as World Health Organisation

declared the country Ebola-free six months after the first case [48].

Important network properties which characterise the pattern of network struc-

ture and which can have profound effects on epidemic process on networks include

the network link density, degree distribution, associativity of nodes, clustering coef-

ficient, component size, path lengths between nodes, betweenness, and so on. The

importance of some of these network properties are briefly explained below.

Network link density

Let m be the number of links in a network, we have that 2m =
∑N

ij=1Gij, i.e the

sum of the degree of all the nodes in the network [114]. Therefore, the number of

links, m, in a network is given by

m =
1

2

N∑
ij=1

Gij. (1.12)

The average degree, c of a node in an undirected loopless network is given by

c =
1

N

N∑
ij=1

Gij, (1.13)

where N is the number of nodes in the network. Equations (1.12) and (1.13)

combine to give

c =
2m

N
.

The maximum possible number of links present in an undirected loopless network

is (
N

2

)
=
N

2
(N − 1).
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The fraction, ρ of these links that are actually present in the network is the density

of the network [114]. That is

ρ =
m(
N
2

) =
2m

N(N − 1)
=

c

N − 1
with 0 ≤ ρ ≤ 1.

For large network, ρ is approximated as ρ = c
N

. The network is said to be sparse

Figure 1.9: Examples of sparse and dense networks

if ρ → constant as N → ∞ and dense if ρ → 0 as N → ∞. The internet

and the World Wide Web are examples of sparse networks [114]. Diverse mixing

patterns support diverse epidemic dynamics, invariably influencing the effectiveness

of control measure such as contact tracing, which attempts to detect and separate

nodes with infectious contact [80]

The Degree Distribution

The degree of a vertex is the number of edges (neighbours) attached to it [107]. It

naturally captures the heterogeneity in individual’s tendency to become infected as

well as cause further infection by specifying the number of individuals connected

to each individual in the population. For, example, the degree of vertices a, b and

d in figure (1.8)(i) are respectively 2, 4 and 1.

For a network of N nodes, we write Nk for the number of nodes of degree k,

and define Pk = Nk

N
as the fraction of nodes in the network that have degree k. The

network in figure (1.8(i)) has ten nodes, i.e. N = 10 out of which 1 (i.e only node

j) has degree 0 (i.e. not connected to any node), 2 (i.e. nodes d and f) have degree

1, 4 (i.e. nodes a, c, i and h) have degree 2, 2 (i.e. nodes e and f) has degree 3,

and 1 (i.e. only node b) has degree 4, if chosen at random.
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The values P0 = 1
10
, P1 = 2

10
, P2 = 4

10
, P3 = 2

10
and P4 = 1

10
are the respective

fraction or probability of a node in the network having degree 0, 1, 2, 3 and 4.

The quantities

Pk =

{
1

10
,

2

10
,

4

10
,

2

10
,

1

10
, 0, 0, ...

}
represent the degree distribution of the network.

Intuitively, the more neighbours an individual has, the more likely the individ-

ual is to cause more infection in the population, and also the higher the number

of connection (edges) an individual has, more likely that they are connected to an

already infected neighbour. All these depends on whether the network is directed

or not.

Note:
∑∞

k=0 Pk = 1.

Assortativity

Assortative mixing is a bias of connection between network nodes with identical

features. In social networks, for example, individuals usually prefer to associate

with others of the same age, nationality, race, educational level, religion or language

as themselves. The friendship paradox is a situation where most people have fewer

friends than their friends have, on average. The tendency of higher-degree nodes

connecting to other higher-degree nodes, that is assortative mixing by degree is

of special interest to epidemiologists owing to its ability to determine direction

of disease spread because many diseases are known to have different prevalence in

different population groups. The rare case is the disassortative mixing where nodes

attach preferentially to dissimilar nodes which is the case with partnerships between

individuals of opposite sex. Part (a) of figure (1.10) is a network that is assortative

by degree displaying the typical dense core of high-degree vertices surrounded by a

periphery of lower degree ones. Part (b) is a disassortative network, displaying the

star-like structure typical of this case [114]. These structural properties can help

understand the spread of diseases or cure in the population. Diseases targeting

high degree individuals in the assortative mixing are likely to spread to other high-

degree nodes and the removal of a section of the network’s node for example, may

correspond to curing or quarantining individuals.
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Figure 1.10: Examples of assortative and disassortative networks (Adapted from
Hao et al. (2011) PLOS ONE, DOI:10.1371/journal.pone.0028322)

Clustering Coefficient

Clustering coefficient(cc) in the context of social network is an measure of the extent

to which one’s friends are also friends of each other. Study[176] indicates that in

most real world networks, in particular social networks, nodes tend to form firmly

bonded groups characterised by a relatively high density of clusters; this possibility

have the tendency of being greater than the average probability of a connection

randomly established between two nodes. In other word, Clustering coefficient is a

measure that determine the frequency at which two neighbours of a node are also

neighbours of each other.

Mathematically, the clustering coefficient (cc), φ is typically defined as the

number of triangles divided by the number of triples (closed or unclosed) [100, 114,

126]. The powers of the adjacency matrix can be used to calculate this quantity:

φ =
trace(G3)

||G2|| − trace(G2)
, φ ∈ [ 0, 1] .

One simple alternative way to calculate the cc of a network is to start off by

talking about the cc(b) for example, of node b in the simple graph of figure (1.11).

Let us define kb as the degree of node b, and Nb the number of links between

neighbours of b. Then, cc(b) is given as

cc(b) =
2Nb

kb(kb − 1)
.

The clustering coefficient φ = cc(G) of the graph is the average of cc(b), b ∈ G.

In the case of figure (1.11), node b is connected to nodes a, c and d so the degree
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Figure 1.11: A simple network to explain the concept of clustering coefficient

kb = 3. Of these three neighbours of b, only nodes c and d are connected so Nb = 1,

therefore,

cc(b) =
2× 1

b× 2
=

1

3

And of course because cc(b) is a fraction of the possible interconnection between

the neighbours of b, 0 ≤ cc(b) ≤ 1.

Figure 1.12: Example of a node respectively forming a Star and Clique in a network

If cc(b) = 0, then node b forms a star graph within the network as shown by

node A in figure (1.12) where none of its neighbours are connected and if cc(b) = 1,

node b forms a clique in the network as shown by node B in figure (1.12) where

all its neighbours are connected. Clustering coefficient of a network is a relevant

parameter that influences the speed of the spread of infection in the network.

The Shortest Path

The shortest path length, dij, between two distinct nodes i and j specifies the

distance between two nodes in terms of the minimum number of edges between them

[114]. This idea in a network can be used to access how central an individual is in
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the network. Intuitively, central nodes are more likely to be infected very quickly

at the beginning of an epidemic, and also rapidly cause onward transmissions, and

are hence essential targets when applying control measures to tackle infection in a

population.

Network Component

In most real-world undirected networks, there is a large component (giant compo-

nent) that fills most of the network while the rest of the network is divided into a

group of small components disconnected from the rest. That is, a network is said

to have a giant component if a single component contains majority of the nodes in

the network. Network representations of epidemic system will normally be useful

Figure 1.13: Components of network

if most of the network is connected together. If the network is sparsely connected

as to be made of small components, then there is the possibility of a contagious

infection being unable to spread to all the components parts, having been con-

strained to stay in the component of origin. In a strongly connected components,

an infectious disease has the potential to reach any individual in the population.

1.6 Types of Networks

Infectious diseases motivate a significant proportion of network evaluation analysis

[38, 82]. Mathematically, model networks can be configured following specific rules.

For example, a random graph (i.e. network) is a model network in which some

specific set of parameters take fixed values [113]. An example of a random graph

is a network with a fixed number of vertices and edges [46]. That is, say n vertices

and place m edges among them at random. One of the Erdos-Renyi graph, the
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G(n, p) model, is constructed by connecting nodes randomly, putting links in the

network with probability p independently from every other link. Equivalently, all

networks with n nodes and m links have equal probability of pm(1 − p)(
n
2)−m. p

is assumed a weighting function that defines networks with varying structure as it

increases from 0 to 1. Specifically, p = 0.5 is the situation where all 2(n
2) networks

on n nodes are constructed with equal probability.

Figure 1.14: Examples of random networks with increasing randomness from the
left to the right. First on the left is a regular graph with low path length, L = dij
and low clustering coefficient, C = φ. The middle graph is an example of small
world with low path length but high clustering coefficient. The graph to the right is a
another graph with both low path length and low clustering coefficient. Image copied
form the internet-http://images.slideplayer.com/24/7334623/slides/slides 8.jpg

1.6.1 Small world

The small-world network of contacts which typifies many biological settings and

human social networks is known for being able to have a high level of clustering

(i.e. significant value φ), while having relatively short path lengths (i.e. low integer

value dij). Exemplary biological insight into the “small-world” effect is provided

by the Black Death that spread quickly through Europe which could be worse now

as modern age transportation system mean epidemics can spread across continents

in hours [34, 73, 99]. Epidemic spreading through small-world networks is usually

rapid compared with that on sparse networks and is unlikely to be curbed in a

small area of a population [114]. The mixing behaviour of a population can be

regulated as a necessary mean of checking the spread of contagious disease. This

measure is exemplified in the August 2015 flights cancellation from and to Liberia

and Sierra Leone by British Airways and some other airline operators to prevent

importation of the deadly Ebola virus into Europe.
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1.6.2 Scale Free

The degree distribution of some highly structured networks such as the internet

can be expressed as a function of k, the node degree. For example, studies [79,

122, 123, 178] have indicated, among other details, that the probability of a node

in an internet network to be connected to k nodes follows a distribution Pk ∼ k−α,

2 ≤ α ≤ 3 [122]. That is the distribution varies as a power of k. This distribution

is referred to as power-law and networks with such distribution are called scale-free

(SF) networks. In such a network most of the nodes have low degree but there are

few nodes with substantially higher degree.

Figure 1.15: The degree distribution of a typical Scale free network.

These few ‘very connected’ nodes, hubs of connectivity influence the way the

network behaves. SF networks has been used to describe among many behaviours,

such as the spread of computer virus [87, 115] and the spread of contagious infec-

tion in a population [14, 116]. The existence of nodes with a very large number

of connections is of major interest in the modelling of epidemic dynamics of net-

works[88]. These nodes are mostly targeted for vaccination in the population to

control the spread of infection.
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1.7 Network-based Modeling

There are several approaches to representing epidemic dynamics on networks.

These include Degree-based [72, 74], Probability generating function [14, 15, 122,

123] , edge-based [102, 103] and pair approximations [18, 40, 49] approaches, all

differing in the choice of variables at which they are formulated [49, 85, 153], and

whether averages are taken at the population level or a probabilistic approach is

adopted where either infection starts at a node or the entire space of the possible

system states is investigated.

1.7.1 Edge-based model

The edge-based compartmental modeling approach has at its root the recognition

of the effect(s) of social heterogeneity and partnership between individuals in a

population on the dynamics of infectious diseases. Miller,J.C et all [102] presented

an edge-based compartmental modeling, motivating this approach using the the

standard mass action SIR epidemic model (1.14) of Kermack and McKendrick

[ 78] which assumed individual’s equal contact rate and short-lived partnership

between individuals.
Ṡ(t) = −βIS,

İ(t) = βIS − γI,

Ṙ(t) = γI.

(1.14)

where S(t), I(t) and R(t) are the respective proportion of the population in sus-

ceptible, infectious and removed states at time t. He focused on evaluating these

quantities using an alternative method by considering the probability that a ran-

domly chosen node u is susceptible, infectious or recovered because if u is chosen

randomly, then the probability that u is susceptible equals the proportion suscep-

tible, and similarly for infection and removed [102]. The probability that a node

u is susceptible depends on how many partner u has, the rate its partners change

and that a random partner is likely infected at any given time.

He described the process of evaluating the probability that an individual u is

susceptible as the probability that no partner of u has ever transmitted infection

to u by applying system (1.14) to populations of different structure where partners

were assigned to individual u according to a specific rule. He considered this for

example, on a configuration model networks with N nodes and assigned each node

u its degree ku with probability P (ku) and then give it ku stubs (half-edge). Once

all the nodes are allocated stubs, these stubs are then randomly paired into edges,

representing partnership.
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The probability that a randomly selected node u has degree k is P (k), but in

contrast, the probability a stub of u connects to some stubs v is proportional to

kv, so the probability a randomly chosen neighbour of u has degree k is

Pn(k) =
kP (k)

〈K〉

where 〈K〉 is the average network degree.

Defining θ(t) as the probability that a randomly chosen partner has not trans-

mitted to u, where for large configuration network, neighbours of u are independent

and so given its degree, u is susceptible at time t with probability

S(k, θ(t)) = θ(t)k.

Thus

S(t) =
∑
k

P (k)s(k, θ(t)) = ψ(θ(t))

where

ψ(x) =
∑
k

P (k)xk

is the probability generating function of the degree distribution [96].

This edge-based modeling approach allows more realistic effects and has helped

to study, among many important variables, the spread of infection in a population

for which some individual have different propensity to form partnerships (see [102,

103] for more detail).

1.7.2 Degree-based model

If networks are to be used for epidemiological intentions, then connections should

only be assumed if they represent associations capable of allowing the transmission

of infection [72]. However in many situations, it is not obvious how to illustrate

such an interaction; how much contact is it required to have with somebody with

influenza, say, prior to a significant risk? The problem is likely to be most se-

vere where link representation should be more direct, such as for STDs, there are

problems [72.

It is realised that because different infections are passed through different routes

a mixing network is certainly disease specific [72, 114]. Consequently, a mixing net-

work considered in the situation of HIV transmission would be different from one

considered to study influenza; in such a situation, one might imagine the networks

to be nested, that is, with the connections applicable for HIV spread to be a subset
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of the ones important for influenza [74].

Several forms of computer-generated mixing networks have been studied in rela-

tionship to spread of infections. One of the most standard mixing network measure

is of the degree-distribution. Networks are constructed dynamically by introducing

new individual to a network one by one with a connection mechanism that imitates

the natural evolution of social network[72]. An example of network constructed this

way is the scale-free network where each new individual added to the population

connects preferentially to people that already have a large number of connections,

which amounts to individual desiring to be friends with the most popular individ-

uals. This give rise to the number of connections per individual taking a power

law distribution, P (k) ∼ k−γ, where an exponent γ ranges between 2 and 3. It

is often the case that many individuals in the population have a small number of

neighbours, while few have a lot more connections [13]. This extreme heterogeneity

which is observable in real networks such as the World Wide Web and the inter-

net, revealed that having too many contacts puts the individual at greater risk of

infection and, once infected, can transmit the disease to many others [13, 122].

Pastor et al [ 122], among others, considered an SIS epidemic dynamic on

complex networks of varying connectivity to determine and compare the behaviour

of some fundamental epidemic variables. He specifically considered the Barabasi-

Albert scale-free graph [13], constructing it by starting from a small number m0

of disconnected of nodes and then every time step a new vertex is added, with m

links that are connected to an old node i with probability

∏
(ki) =

ki∑
j kj

,

where ki is the connectivity of theith node. After iterating this scheme a sufficient

number of time, a network composed of N nodes was obtained with connectivity

distribution P (k) ∼ k−3 and average connectivity 〈k〉 = 2m. This study was

conducted for m0 = 5 and m0 = 3

He also considered the model on a generalised scale-free network with a normalised

connectivity distribution

P (k) = (1 + γ)m1−γk−2−γ,

approximating the connectivity k as a continuous variable and assuming m the

minimum connectivity of any node. In both cases, numerical analysis confirms the

analytical results, pointing out an absence of any epidemic threshold or critical

point for γ = 1 but a non-trivial threshold, γ−1
mγ

is observed for 1 < γ < 2 in the
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second case (see [122] for more detail).

1.7.3 Pairwise model

In the pairwise method, the number of different types of pairs are included as

variables rather than approximated in terms of individuals. It is vital to understand

that the biological assumption that individuals interact in pairs is not just a matter

of mathematics. The effects of neighbours on the infectious status of an individual is

assumed to depend on pairs and the fate of a pair of individuals depends on triples

[135]. The inclusion of the number of connected individuals as basic variables

captures the mutual relationship between neighbouring individuals that emerge in

the system.

Keeling,M.J [72] used an SIR epidemic model to investigate and emphasize the

importance of individuals and spacial correlation on the capacity of infection to

invade and persist in a population. Undirected network of different number of

nodes, N with varying number of connections per nodes and clustering coefficient,

ψ were formed by placing nodes randomly in two dimensions and weighting the

probability of a connection between nodes by the distance. The dynamics of indi-

vidual, pairs and triples were considered by defining the numbers of singles, pairs

and triples of each type in the network. Number of pairs = ||G|| = nN and number

of triples= ||G2||−trace(G2), where ||G|| =
∑

i,j Gij is the sum of all element in

the transmission matrix G and n is the average number of neighbours per node. A

measure, φ of how interconnected the local community is, is obtained as

φ =
number of triangles

number of triples
=

trace(G3)

||G2|| − trace(G2)
.

Such correlation model showed the effects of the average numbers of neighbours

per node and the interconnectedness of a contact network on the dynamics of

infectious diseases, particularly sexually transmitted infections where most of the

partners come from a small communal group (see [72] for more detail).

Pair Approximation

Pair approximation models present a simple way of extending the mean-field mod-

els, say for example of section (1.2.3), to accommodate observable connectivity of

individuals in a population. Pair approximation has found applications in many

areas of ecology, disease biology and evolutionary biology [40, 134, 135].
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We explain the pair approximation process by considering SIS epidemic dy-

namics. In the mean field, the total rate of new infection is approximated as β S
N
I

(see section (1.2.1)) while in this model it is written as τ [SI], τ being the constant

transmission rate across an S-I link and SI is interpreted as the expected number

of partnership between susceptible and infected individuals [82, 84].

With infection and recovery both Poisson processes, the pairwise model is writ-

ten as:

d

dt
[S] = −τ [SI] + γ[I],

d

dt
[I] = τ [SI]− γ[I].

(1.15)

where γ is the constant rate of recovery of an infected individual.

Equation (1.15) gives an exact infection dynamic of the model provided we

know the exact number of S-I pairs in the network. One of the options open

to us to close this system for mathematical solution is to approximate the term

τ [SI] as τ [I] [S]
N

, N being the population size, which of course takes us back to the

assumption of well-mixed population thereby leading us to the basic SIS model of

(1.6). Note that τ ×n = β where n is the number of links in the network [81]. The

other option is to write an expression for the rate at which the number of the pair

[SI] in the network evolve since it will not be difficult to identify the number of

such pairs in a network given an initially infected node.

This number SI of S-I pairs changes over time by either external or internal

infection or recovery of infected individual [49, 74, 84]. The rate at which this

number of pairs changes is given as

d

dt
[SI] = τ [SSI] + γ[II]− τ [ISI]− τ [SI]− γ[SI]. (1.16)

Systems (1.15) and (1.16) combine to give

d

dt
[S] = −τ [SI] + γ[I],

d

dt
[I] = τ [SI]− γ[I],

d

dt
[SI] = τ [SSI] + γ[II]− τ [ISI]− τ [SI]− γ[SI].

(1.17)

where of course the initial numbers of possible pairs, SI, the triples, SSI and

higher moments can be obtained from available network of contacts, given the

initial condition of the system.

28



From (1.17), the system is not closed as the model expresses the number of

pairs in the network in terms of the number of triples. Knowledge of the rate of

change of higher order moments is required and this leads to a system with a large

number of equations for large networks.

As the name pair approximation suggest, higher orders are ignored and the

system is closed at the level of pairs by applying a moment closure. For example,

a commonly used moment closure is

[ABC] ≈ n− 1

n

[AB][BC]

[B]
. (1.18)

which reduces the system to a size that is mathematically solvable. A, B and C

represent state S or I in our case and n the degree of the middle susceptible node

B in the triple, ABC.

This approach instead of modelling a complete network of contacts explicitly

makes use of the various types of connected pairs that appear within a population.

It has been used to approximate important epidemic quantifiers such as the final

size of some childhood infection[70, 161], and the spread and control of some STDs

in population with different connectivity [42, 49].

Individual-level moment closure

While stochastic models allow for the inclusion of contact heterogeneity, it has been

more difficult to construct network-based deterministic models. One method is to

build up the entire epidemic system from the perspective of the infectious status of

an individual to the population level leading to a set of differential equations [153,

154, 155]. We explain the nodal infection process by considering SIR epidemic

dynamics on an arbitrary finite sized network which has an associated adjacency

matrix G.

We assume that transmission and recovery from infection are Poisson processes

where all rates are equal. We describe the infection status of an individual at any

given time in the network by the components of the vectors I and S where Ii = 1

if individual i is infected and Ii = 0 otherwise, Si = 1 if individual i is susceptible

and Si = 0 otherwise, i = {1, 2, ..., N}. We also define a general contact network

T = τG where Tij represents the rate parameter of the Poisson process by which

an infected individual j infects a susceptible individual i. Inherent in T thus

defined are the individuals interacting rates and the probability that infection is

transmitted from an infected individual to a susceptible individual when they come

in contact.
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Let λi be the infectious pressure on individual i. Similarly, let µi be the recovery

pressure on an infected individual i. The approximated underlying stochastic model

[153] is given as

λi =
N∑
j=1

TijSiIj,

µi = γiIi.

(1.19)

The total infection process rate λi on a susceptible individual i is by virtue of its

links to neighbouring infected individual(s). Given an initial state of the system,

direct simulation can be used to obtain statistically accurate realisations for any

T . This is, by analogy, the Gillespie algorithm we explained in section (1.4) for the

mean-field SIR epidemic dynamics.

Hierarchy of moment equations can be written for the time evolution of the

probabilities of these infection states. Sharkey et al [153] presented a deterministic

representation of the Markovian SIR epidemics on networks. For any pair of nodes

i and j and any transmission matrix T for a contact network of finite size, N , the

following differential equations are satisfied:

˙〈Si〉 = −
N∑
j=1

Tij〈SiIj〉,

˙〈Ii〉 =
N∑
j=1

Tij〈SiIj〉 − γi〈Ii〉,

i, j ∈ 1, 2, ..., N.

(1.20)

where notations 〈Ai〉 represents the time dependent probability of individual i

having infection status A, 〈AiBj〉 represents the time dependent probability of

individual i being in state A and individual j being in state B in the pair AiBj.

The dot notation here is the derivative of quantities with respect to time.

System (1.20) is not closed as the probabilities of for example, singles are ex-

pressed in terms of pairs. Using a moment closure relation of first order

〈AiBj〉 ≈ 〈Ai〉〈Bj〉

closes the system at the level of individual for mathematical feasibility, hence the

name individual-based model. This closure expresses the probability of pairs as

statistically independent of the probabilities of constituent individuals.

Including the rate of change of probabilities of pairs, equation (1.20) is extended
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to

˙〈Si〉 = −
N∑
j=1

Tij〈SiIj〉,

˙〈Ii〉 =
N∑
j=1

Tij〈SiIj〉 − γi〈Ii〉,

˙〈SiIj〉 =
N∑

k=1,k 6=i

Tjk〈SiSjIk〉 −
N∑

k=1,k 6=j

Tki〈IkSiIj〉 − (Tij + γj)〈SiIj〉,

˙〈SiSj〉 = −
N∑

k=1,k 6=j

Tik〈IkSiSj〉 −
N∑

k=1,k 6=i

Tjk〈SiSjIk〉.

(1.21)

with similar definition above for notation 〈AiBjCk〉. The average number of infec-

tious is generally given by

[I] =
N∑
i=1

〈Ii〉.

System (1.21) is also not closed as the probabilities of pairs are expressed in that

of triples. The probabilities of the triples in this case be can expressed in terms of

the probabilities of pairs, using a moment closure relation of the form

〈AiBjCk〉 ≈
〈AiBj〉〈BjCk〉

〈Bj〉
. (1.22)

Considering an open triple in figure (1.16) where nodes i, j and k are in different

Figure 1.16: An open triple

states, A, B and C respectively, equation (1.22) basically implies that, conditioned

on node j being in state B, the states of individuals i and k are assumed statistically
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independent, that is;

〈Ai|Bj〉 × 〈Ck|Bj〉 ≈ 〈AiCk|Bj〉
〈AiBj〉 × 〈CkBj〉

〈Bj〉2
≈ 〈AiBjCk〉

〈Bj〉
〈AiBj〉 × 〈CkBj〉

〈Bj〉
≈ 〈AiBjCk〉,

which is the same as (1.22).

Closing system (1.21) at the level of pair using equation (1.22)gives

〈Ẋi〉 = −
N∑
j=1

Tij〈XiYj〉,

〈Ẏi〉 =
N∑
j=1

Tij〈XiYj〉 − γi〈Yi〉,

〈 ˙XiYj〉 =
N∑

k=1,k 6=i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
−

N∑
k=1,k 6=j

Tik
〈YkXi〉〈XiYj〉
〈Xi〉

− (Tij + γj)〈XiYj〉,

〈 ˙XiXj〉 = −
N∑

k=1,k 6=j

Tik
〈YkXi〉〈XiXj〉

〈Xi〉
−

N∑
k=1,k 6=i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
,

(1.23)

hence the name pair-based model with X and Y emphasizing respective approxi-

mation for susceptible and infectious. The beauty of this approach is that it gives a

unifying connection between the deterministic model and its stochastic counterpart

[154, 155].

Example of pair-based model on simple networks

We shall consider and investigate the validity of the first and second order moment

closure on simple networks for the Markovian SIR infection dynamics [155]. We

assume the same transmission rate τ across all links and the same recovery rate γ

for an infected individual.

For the open triple in figure (1.17), the transmission matrix via the adjacency

matrix is:

Tij =

0 τ 0

τ 0 τ

0 τ 0
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Figure 1.17: Simple networks

From (1.21) we have the following equations for the single nodes

˙〈S1〉 = −τ〈S1I2〉,
˙〈S2〉 = −τ〈I1S2〉 − τ〈S2I3〉,
˙〈S3〉 = −τ〈I2S3〉,
˙〈I1〉 = τ〈S1I2〉 − γ〈I1〉,
˙〈I2〉 = τ〈I1S2〉+ τ〈S2I3〉 − γ〈I2〉,
˙〈I3〉 = τ〈I2S3〉 − γ〈I3〉.

(1.24)

And for the pairs:

˙〈S1I2〉 = τ〈S1S2I3〉 − (τ + γ)〈S1I2〉,
˙〈I1S2〉 = −τ〈I1S2I3〉 − (τ + γ)〈I1S2〉,
˙〈S2I3〉 = −τ〈I1S2I3〉 − (τ + γ)〈S2I3〉,
˙〈I2S3〉 = τ〈I1S2S3〉 − (τ + γ)〈I2S3〉,
˙〈S1S2〉 = −τ〈S1S2I3〉,
˙〈S2S3〉 = −τ〈I1S2S3〉.

(1.25)

In similar manner, we can write equations for the triples because the graph in this

case has three nodes:

˙〈S1S2I3〉 = −(τ + γ)〈S1S2I3〉,
˙〈I1S2I3〉 = −2(τ + γ)〈I1S2I3〉,
˙〈I1S2S3〉 = −(τ + γ)〈I1S2S3〉.

(1.26)
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For the individual based model, the set of Odes for the system is

˙〈S1〉 = −τ〈S1〉〈I2〉,
˙〈S2〉 = −τ〈I1〉〈S2〉 − τ〈S2〉〈I3〉,
˙〈S3〉 = −τ〈I2〉〈S3〉,
˙〈I1〉 = τ〈S1〉〈I2〉 − γ〈I1〉,
˙〈I2〉 = τ〈I1〉〈S2〉+ τ〈S2〉〈I3〉 − γ〈I2〉,
˙〈I3〉 = τ〈I2〉〈S3〉 − γ〈I3〉.

(1.27)

Assuming τ = 1 across both links, a removal rate γ = 0.5 for an infected

individual and initiating the system with node 3 being infected, the numerical

solution of system (1.27) is compared with the solution of the entire system (1.24)

to (1.26) in figure (1.20).
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Figure 1.18: The average infection time series of the individual-based SIR model
compared with the full system for an open triple shows that the first order moment
closure approximation is not exact

Although, model (1.20) which was closed with statistical independence between

individuals to obtain equation (1.27) for the open triple is less computationally

involved, it is significantly less accurate as depicted in figure (1.20).

Expressing a quantity such as 〈S1S2I3〉 as

〈S1S2I3〉 ≈
〈S1S2〉〈S2I3〉
〈S2〉

.
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in the full system (1.24) to (1.26) reduces the number of equations to

˙〈S1〉 = −τ〈S1I2〉,
˙〈S2〉 = −τ〈I1S2〉 − τ〈S2I3〉,
˙〈S3〉 = −τ〈I2S3〉,
˙〈I1〉 = τ〈S1I2〉 − γ〈I1〉
˙〈I2〉 = τ〈I1S2〉+ τ〈S2I3〉 − γ〈I2〉,
˙〈I3〉 = τ〈I2S3〉 − γ〈I3〉,

˙〈S1I2〉 = τ
〈S1S2〉〈S2I3〉
〈S2〉

− (τ + γ)〈S1I2〉,

˙〈I1S2〉 = −τ 〈I1S2〉〈S2I3〉
〈S2〉

− (τ + γ)〈I1S2〉,

˙〈S2I3〉 = −τ 〈I1S2〉〈S2I3〉
〈S2〉

− (τ + γ)〈S2I3〉,

˙〈I2S3〉 = τ
〈I1S2〉〈S2S3〉
〈S2〉

− (τ + γ)〈I2S3〉,

˙〈S1S2〉 = −τ 〈S1S2〉〈S2I3〉
〈S2〉

,

˙〈S2S3〉 = −τ 〈I1S2〉〈S2S3〉
〈S2〉

.

(1.28)

The numerical solution of the full system (i.e equations (1.24)-(1.26)) and the

pair-based mode (1.28) are compared in figure (1.19).
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Figure 1.19: The pair-based SIR model compared with the full system for an open
triple shows the second order moment closure appears an exact approximation.
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We mention that system (1.21) can also be closed at the level of triples or higher

terms but this will increase the number of equations and the system will become

less practical for large networks.

Exactness of the second order moment closure

From figure(1.19), the second order moment closure appears to be exact for the

SIR model on open triple. For example if

〈S1S2I3〉 =
〈S1S2〉〈S2I3〉

S2

,

and we write α(t) = 〈S2〉〈S1S2I3〉 − 〈S1S2〉〈S2I3〉, then if the closure is exact,

α(t) = 0 for all t ≥ 0. In fact, this type of closure is true for any tree graph [155].

In the case we consider here, the argument presented in [155] works as follows.

The derivative of α with respect to time yields:

α̇(t) = 〈Ṡ2〉〈S1S2I3〉+ 〈S2〉〈 ˙S1S2I3〉 − 〈 ˙S1S2〉〈S2I3〉 − 〈S1S2〉〈 ˙S2I3〉

Substituting the corresponding derivatives and quantities in from system (1.24) to

(1.26) and cancelling all relevant terms gives:

α̇(t) = −(τ + γ)α(t)

which when solved directly gives:

α(t) = α(0)e−(τ+γ)

Of course α(0) = 0 if the system is initiated in a pure state, S1S2I3. So α(t) = 0

for all t ≥ 0, hence the closure is exact.

The second order moment closure approximation is not exact for the SIR epi-

demic model on all kind of networks. There is always a connection between the

topology of the network of contacts and the accuracy of closure. Earlier study [155]

proved and established the exactness of the second order moment closure (i.e. the

pair-based model) for an SIR infection dynamic on a finite undirected and static

tree networks for constant transmission and recovery rates.

The presence of loops makes it difficult to match a low-dimensional approxi-

mate model with its corresponding stochastic model. For example, if we consider

SIR epidemic dynamics for the closed triangle of figure (1.17)b, the corresponding
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transmission matrix is

Tij =

0 τ τ

τ 0 τ

τ τ 0


with the corresponding system of equations for the singles as:

˙〈S1〉 = −τ〈S1I2〉 − τ〈S1I3〉,
˙〈S2〉 = −τ〈I1S2〉 − τ〈S2I3〉,
˙〈S3〉 = −τ〈I1S3〉 − τ〈I2S3〉
˙〈I1〉 = τ〈S1I2〉+ τ〈S1I3〉 − γ〈I1〉,
˙〈I2〉 = τ〈I1S2〉+ τ〈S2I3〉 − γ〈I2〉,
˙〈I3〉 = τ〈I1S3〉+ τ〈I2S3〉 − γ〈I3〉.

(1.29)

And for the pairs:

˙〈S1I2〉 = τ〈S1S2I3〉 − (τ + γ)〈S1I2〉 − τ〈S1I2I3〉,
˙〈I1S2〉 = τ〈S1S2I3〉 − (τ + γ)〈I1S2〉 − τ〈I1S2I3〉,
˙〈S1I3〉 = τ〈S1I2S3〉 − (τ + γ)〈S1I3〉 − τ〈S1I2I3〉,
˙〈I2S3〉 = τ〈I1S2S3〉 − (τ + γ)〈I2S3〉 − τ〈I1I2S3〉,
˙〈S1I3〉 = τ〈S1I2S3〉 − (τ + γ)〈S1I3〉 − τ〈S1I2I3〉,
˙〈I1S3〉 = τ〈S1I2S3〉 − (τ + γ)〈I1S3〉 − τ〈I1I2S3〉,
˙〈S1S2〉 = −2τ〈S1S2I3〉,
˙〈S2S3〉 = −2τ〈I1S2S3〉,
˙〈S1S3〉 = −2τ〈S1I2S3〉.

(1.30)

The equations for the triples are:

˙〈S1S2I3〉 = −2(τ + γ)〈S1S2I3〉,
˙〈I1S2S3〉 = −2(τ + γ)〈I1S2S3〉,
˙〈S1I2S3〉 = −2(τ + γ)〈S1I2S3〉,
˙〈I1S2I3〉 = −2(τ + γ)〈I1S2I3〉+ τ〈S1S2I3〉+ τ〈I1S2S3〉,
˙〈S1I2I3〉 = −2(τ + γ)〈S1I2I3〉+ τ〈S1S2I3〉+ τ〈S1I2S3〉,
˙〈I1I2S3〉 = −2(τ + γ)〈I1I2S3〉+ τ〈I1S2S3〉+ τ〈S1I2S3〉.

(1.31)

The individual and pair approximation of system (1.29) to (1.31) are compared

with the full system in figure (1.20) for the same parameter values of the open
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triple. Results seems to show that none of these approximation is exact for this

type of network.
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Figure 1.20: Both the individual and pair approximation of SIR model compared
with the full system for a closed triple. shows the second order moment closure
appears an exact approximation

Progress have been made to extend the loopless network results to networks

with loop [55, 113]. Kiss et al [85] investigated the relationship between the struc-

tural property of network and the viability of the second order moment closure by

considering the Markovian SIR epidemic dynamic for various networks with small

cycles. The study revealed the types of closure that are feasible in the network.

It was established that the closures where the loops are kept intact are exact. In

other words, closure at the full system must be written in a way to preserve the

loops. In figure 1.17(b) for example, exact closure can not be written for 〈S1S2I3〉
in both the closed triangle the lollipop networks.

That is

〈S1S2I3〉 =
〈S1S2〉〈S2I3〉
〈S2〉

can not be exact but closure can be written for 〈S1S2I3S4〉, that is

〈S1S2I3S4〉 =
〈S1S2I3〉〈S2S4〉

〈S2〉

is exact. The preservation of the loop by S1S2I3 is evidence in the closure defined

for S1S2I3S4.
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1.8 Summary

In this chapter, we have given a background to the research covered in this thesis.

The underlying methodology of this thesis has been the pair approximation of the

network-based epidemic models.

Earlier study [155] has established the exactness of the moment closure (1.22)

for SIR on tree networks. In chapter two we develop an SEIR epidemic model and

extend the above analysis of the pairwise moment closure (1.22) for SEIR epidemic

models on tree network.

We mentioned earlier that there is a connection between the connectivity of

networks and the accuracy of moment closure defined for epidemic models on net-

works. In fact, the presence of small cycles makes it difficult to establish a low-

dimensional approximate model that will match the output of the corresponding

stochastic model [85]. From the hindsight of this interdependency of the validity of

moment closure and network topology, we consider and examine in chapter three,

the deviation from being exact of the moment closure (1.22) for SIR epidemic

model on graphs with a single cycle.

There are a lot of stochastic systems emerging in different areas such as chemical

kinetics and wildlife management, which in the long run approach an absorbing

state but nevertheless occur to be stationary over a sensible time scale. The time

to absorption of some of these systems can be considerably large. The concept of

a quasi-stationary distribution has been very helpful in modelling the behaviour

of important quantifiers in this region of stationary equilibrium. Almost all the

earlier study on the QSD of endemic infection is on the mean-field-especially SIS

dynamics. In chapter four, we extend the idea of QSD to the model. We consider

the Markovian SIS epidemic dynamic which is assumed suitable to describe the

dynamic of endemic infections and we conceptually examine if the pair based SIS

epidemic model without fadeout describes the quasi-stationary distribution of the

number of infected individuals on graphs obtained from the method of the master

equation. This will help us with the interpretation of the approximate equations.
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Chapter 2

Exact Equations for the SEIR

Epidemics on Tree Networks

2.1 Introduction

Factors such as proximity, culture, economic status of individual(s) are among

the factors that determine whether or not individuals or group of individuals will

relate with one another. Despite these numerous and obvious determining factors

to possible interaction among individuals in a population, early epidemic models

were based on the assumption of homogeneous mixing of individuals in a host

population. There have been various modelling approaches to incorporate the

observable complexities of interacting units for the best representation of the spread

of infectious diseases.

One approach involves examining the various types of connected pairs found

within the population. Such pairwise models capture the correlations between

neighbouring individuals that are present in the network by including connected

individuals as its basic variables. In such models, higher order quantities are usually

expressed in terms of lower order quantities and for numerical tractability the

system is usually closed at some level through a moment closure relation leading to

low dimensional system models [40, 70, 85,154]. Pairwise models have proved very

relevant in examining the evolution of pathogen virulence and in the spread and

control of sexually transmitted diseases [17,40, 49, 84] where partnership between

individuals plays a major role.

At the level of individuals, the subsystem method yields a unifying approach

that gives a link between the deterministic and the stochastic model. The entire

epidemic system is built up from the perspective of the probability of the infectious

status of an individual to the population level leading to hierarchy of moment
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equations. A special case of this approach is the pair-based SIR epidemic dynamic

considered in [155] where a second order moment closure relation that was applied

to close the system of equations at the level of pairs was proved to be exact for the

model on tree networks.

An SIR model takes into account only those diseases which makes a suscep-

tible individual immediately infectious upon making ‘effective’ contact. Here, we

consider a modification of this model which describes diseases with an incubation

period, during which the individual is infected but not contagious. It takes a while

for infected individuals to show symptoms of infection from a disease with a long

incubation period, allowing it to spread initially undetected.

An application of an SIR model to examine the initial phase of such an infectious

disease could be misleading. This new category of individuals that are infected but

not yet infectious is duly represented by the variable E in an SEIR model. SEIR is

an important class of model that covers wide of diseases with latent states [2 ,8, 47,

71, 75]. For example, Measles, Smallpox, Mumps and HIV. Such model becomes a

valuable tool in understanding and predicting the delay prior to detecting outbreak

and then proffer effective control strategy before outbreak.

In this study, we are interested in the development of an individual-level pairwise

SEIR model and to determine the differences which the exposed state make while

going through the same argument to prove exactness for the SIR model in [155]. It

is not immediately obvious that the same argument can be applied. As in the SIR

case, we consider the model on finite time-independent tree-networks of contacts

with exponentially distributed transmission, exposed and removal processes. We

apply a second order moment closure (1.22) to close the system at the level of pair

and prove that the closed form describes an exact representation of the expected

infection time series for tree networks. We document the differences with the SIR

case as they arise.

2.2 The Model

We consider an SEIR compartmental model with N individuals whose infectious

states are described at any point in time by vectors I, E and S with respective

component for i = {1, 2, ..., N} as

Ii =

1, if individual i is infectious,

0, otherwise.
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Ei =

1, if individual i is exposed,

0, otherwise.

and

Si =

1, if individual i is susceptible,

0, otherwise.

with λi, βi and µi as the respective Poisson process rate parameters for transmis-

sion, becoming infectious and recovery where λi =
∑N

j=1 TijSiIj, βi = σiEi and

µi = γiIi. T and its elements Tij are as defined in section (1.7.3), σi and γi repre-

sent the respective rate parameter for an infective individual i to become infectious

and recover from infection.

We comment that a definition for Ri is not necessary as the definitions of Ii, Ei

and Si define Ri.

Similar definitions in section (1.7.3) go for notations 〈Ai〉 and 〈AiBj〉 and then

the following differential equations are satisfied for any transmission matrix T and

any pair of nodes i and j,

〈Ṡi〉 = −
N∑
j=1

Tij〈SiIj〉,

〈Ėi〉 =
N∑
j=1

Tij〈SiIj〉 − σi〈Ei〉,

〈İi〉 = σi〈Ei〉 − γi〈Ii〉,

〈 ˙SiIj〉 = σj〈SiEj〉 − Tij〈SiIj〉

− γj〈SiIj〉 −
N∑

k=1,k 6=j

Tik〈IkSiIj〉,

〈 ˙SiEj〉 =
N∑

k=1,k 6=i

Tjk〈SiSjIk〉 −
N∑

k=1,k 6=j

Tik〈IkSiEj〉

− σj〈SiEj〉,

〈 ˙SiSj〉 = −
N∑

k=1,k 6=j

Tik〈IkSiSj〉 −
N∑

k=1,k 6=i

Tjk〈SiSjIk〉,

(2.1)

where the dot notation denotes derivative with respect to time.

This system can also be continued up to the full system by writing differential

42



equations for triples, quadruples and so on. For example, equation for the triple

〈SiSjEk〉 will be written as

〈 ˙SiSjEk〉 =
N∑

n=1,n 6=i,j

Tkn〈SiSjSkIn〉 −
N∑

n=1,n6=j,k

Tin〈InSiSjEk〉

−
N∑

n=1,n6=i,k

Tjn〈SiInSjIk〉 − σk〈SiSjEk〉.

We then apply the second order moment closure (1.22) to obtain system (2.2)

〈Ẋi〉 = −
N∑
j=1

Tij〈XiZj〉,

〈Ẏi〉 =
N∑
j=1

Tij〈XiZj〉 − σi〈Yi〉,

〈Żi〉 = σi〈Yi〉 − γi〈Zi〉,

〈 ˙XiZj〉 = σj〈XiYj〉 − Tij〈XiZj〉

− γj〈XiZj〉 −
N∑

k=1,k 6=j

Tik
〈ZkXi〉〈XiZj〉

〈Xi〉
,

〈 ˙XiYj〉 =
N∑

k=1,k 6=i

Tjk
〈XiXj〉〈XjZk〉

〈Xj〉
− σj〈XiYj〉

−
N∑

k=1,k 6=j

Tik
〈ZkXi〉〈XiYj〉
〈Xi〉

,

〈 ˙XiXj〉 = −
N∑

k=1,k 6=j

Tijk
〈ZkXi〉〈XiXj〉

〈Xi〉

−
N∑

k=1,k 6=i

Tjk
〈XiXj〉〈XjZk〉

〈Xj〉
.

(2.2)

where X, Y and Z are used for S, E and I respectively to emphasize that they are

approximations of their respective quantities based on the closure relation.

Our aim is to show that when matrix T has no cycles (that is, the network

represents a tree) and the system is initiated in one of the 4N possible pure system

states then 〈Xi〉 = 〈Si〉, 〈Yi〉 = 〈Ei〉 and 〈Zi〉 = 〈Ii〉. In other word, the closure

(1.22) is exact.
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2.3 The star graph

We shall consider the case of the undirected star graph of figure (2.1) ( where in-

fection can be transmitted in either direction between connected nodes) to prove

the case of an initially pure system state. We assume a constant transmission rate

τ , across all edges, the rate of an infected individual becoming infectious as σ and

removal rate for an infectious individual as γ.

Figure 2.1: A star graph

The star graph graph in figure (2.1) has the transmission matrix

T =


0 0 0 τ

0 0 0 τ

0 0 0 τ

τ τ τ 0

 .

Following equation (2.1), the single node subsystem equations are

〈Ṡ1〉 = −τ〈S1I4〉,

〈Ṡ2〉 = −τ〈S2I4〉,

〈Ṡ3〉 = −τ〈S3I4〉,

〈Ṡ4〉 = −τ〈I1S4〉 − τ〈I2S4〉 − τ〈I3S4〉,

〈Ė1〉 = τ〈S1I4〉 − σ〈E1〉,

〈Ė2〉 = τ〈S2I4〉 − σ〈E2〉,

〈Ė3〉 = τ〈S3I4〉 − σ〈E3〉,

〈Ė4〉 = τ〈I1S4〉+ τ〈I2S4〉+ τ〈I3S4〉 − σ〈E3〉,

〈İ1〉 = σ〈E1〉 − γ〈I1〉,

〈İ2〉 = σ〈E2〉 − γ〈I2〉,

〈İ3〉 = σ〈E3〉 − γ〈I3〉,

〈İ4〉 = σ〈E4〉 − γ〈I4〉.

(2.3)
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With the equations for pairs as

〈 ˙S1I4〉 = σ〈S1E4〉 − (τ + γ)〈S1I4〉,

〈 ˙S2I4〉 = σ〈S2E4〉 − (τ + γ)〈S2I4〉,

〈 ˙S3I4〉 = σ〈S3E4〉 − (τ + γ)〈S3I4〉,

〈 ˙I1S4〉 = σ〈E1S4〉 − (τ + γ)〈I1S4〉 − τ〈I1I2S4〉 − τ〈I1I3S4〉,

〈 ˙I2S4〉 = σ〈E2S4〉 − (τ + γ)〈I2S4〉 − τ〈I1I2S4〉 − τ〈I2I3S4〉,

〈 ˙I3S4〉 = σ〈E3S4〉 − (τ + γ)〈I3S4〉 − τ〈I1I3S4〉 − τ〈I2I3S4〉,

〈 ˙S1E4〉 = −σ〈S1E4〉+ τ〈S1I2S4〉+ τ〈S1I3S4〉,

〈 ˙S2E4〉 = −σ〈S2E4〉+ τ〈I1S2S4〉+ τ〈S2I3S4〉,

〈 ˙S3E4〉 = −σ〈S3E4〉+ τ〈I1S3S4〉+ τ〈I2S3S4〉,

〈 ˙E1S4〉 = −σ〈E1S4〉 − τ〈E1I2S4〉 − τ〈E1I3S4〉,

〈 ˙E2S4〉 = −σ〈E2S4〉 − τ〈I1E2S4〉 − τ〈E2I3S4〉,

〈 ˙E3S4〉 = −σ〈E3S4〉 − τ〈I1E3S4〉 − τ〈I2E3S4〉,

〈 ˙S1S4〉 = −τ〈S1I2S4〉 − τ〈S1I3S4〉,

〈 ˙S2S4〉 = −τ〈I1S2S4〉 − τ〈S2I3S4〉,

〈 ˙S3S4〉 = −τ〈I1S3S4〉 − τ〈I2S3S4〉.

(2.4)

Systems (2.3) to (2.4) are not closed as the probabilities of the pairs are expressed

in terms of triples. We approximate the triples of the form: I − S − I, S − S − I
and E − S − I with the relation (1.22) to close the system. To do this, we need

expressions for the triples which appear in system (2.3) to (2.4) and these are given

as:

〈 ˙I1I2S4〉 = σ〈I1E2S4〉+ σ〈E1I2S4〉 − 2(τ + γ)〈I1I2S4〉 − τ〈I1I2I3S4〉,

〈 ˙I1I3S4〉 = σ〈I1E3S4〉+ σ〈E1I3S4〉 − 2(τ + γ)〈I1I3S4〉 − τ〈I1I2I3S4〉,

〈 ˙I2I3S4〉 = σ〈I2E3S4〉+ σ〈E2I3S4〉 − 2(τ + γ)〈I2I3S4〉 − τ〈I1I2I3S4〉,

〈 ˙S1I2S4〉 = σ〈S1E2S4〉 − (τ + γ)〈S1I2S4〉 − τ〈S1I2I3S4〉,

〈 ˙S1I3S4〉 = σ〈S1E3S4〉 − (τ + γ)〈S1I3S4〉 − τ〈S1I2I3S4〉,

〈 ˙I1S2S4〉 = σ〈E1S2S4〉 − (τ + γ)〈I1S2S4〉 − τ〈I1S2I3S4〉,

〈 ˙I1S3S4〉 = σ〈E1S3S4〉 − (τ + γ)〈I1S3S4〉 − τ〈I1I2S3S4〉,

〈 ˙I2S3S4〉 = σ〈E2S3S4〉 − (τ + γ)〈I2S3S4〉 − τ〈I1I2S3S4〉,

〈 ˙E1I2S4〉 = σ〈E1E2S4〉 − (σ + τ + γ)〈E1I2S4〉 − τ〈E1I2I3S4〉,

〈 ˙E1I3S4〉 = σ〈E1E3S4〉 − (σ + τ + γ)〈E1I3S4〉 − τ〈E1I2I3S4〉,

(2.5)
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〈 ˙I1E2S4〉 = σ〈E1E2S4〉 − (σ + τ + γ)〈I1E2S4〉 − τ〈I1E2I3S4〉,

〈 ˙E2I3S4〉 = σ〈E2E3S4〉 − (σ + τ + γ)〈E2I3S4〉 − τ〈I1E2I3S4〉,

〈 ˙I1E3S4〉 = σ〈E1E3S4〉 − (σ + τ + γ)〈I1E3S4〉 − τ〈I1I2E3S4〉,

〈 ˙I2E3S4〉 = σ〈E2E3S4〉 − (σ + τ + γ)〈I2E3S4〉 − τ〈I1I2E3S4〉,

〈 ˙S2I3S4〉 = σ〈S2E3S4〉 − (σ + τ + γ)〈S2I3S4〉 − τ〈I1S2I3S4〉.

Where
〈 ˙E1E2S4〉 = −2σ〈E1E2S4〉 − τ〈E1E2I3S4〉,

〈 ˙E1E3S4〉 = −2σ〈E1E3S4〉 − τ〈E1I2E3S4〉,

〈 ˙E2E3S4〉 = −2σ〈E2E3S4〉 − τ〈I1E2E3S4〉,

〈 ˙S1E2S4〉 = −σ〈S1E2S4〉 − τ〈S1E2I3S4〉,

〈 ˙S1E3S4〉 = −σ〈S1E3S4〉 − τ〈S1I2E3S4〉,

〈 ˙E1S2S4〉 = −σ〈E1S2S4〉 − τ〈E1S2I3S4〉,

〈 ˙E1S3S4〉 = −σ〈E1S3S4〉 − τ〈E1I2S3S4〉,

〈 ˙E2S3S4〉 = −σ〈E2S3S4〉 − τ〈I1E2S3S4〉,

〈 ˙S2E3S4〉 = −σ〈S2E3S4〉 − τ〈I1S2E3S4〉.

(2.6)

For the quadruples that appear in systems (2.5) to (2.6) we have that:

〈 ˙I1I2I3S4〉 = σ〈E1I2I3S4〉+ σ〈I1E2I3S4〉+ σ〈I1I2E3S4〉 − 3(τ + γ)〈I1I2I3S4〉,

〈 ˙S1I2I3S4〉 = σ〈S1E2I3S4〉+ σ〈S1I2E3S4〉 − 2(τ + γ)〈S1I2I3S4〉,

〈 ˙I1S2I3S4〉 = σ〈E1S2I3S4〉+ σ〈I1S2E3S4〉 − 2(τ + γ)〈I1S2I3S4〉,

〈 ˙I1I2S3S4〉 = σ〈E1I2S3S4〉+ σ〈I1E2S3S4〉 − 2(τ + γ)〈I1I2S3S4〉,

〈 ˙E1I2I3S4〉 = σ〈E1E2I3S4〉+ σ〈E1I2E3S4〉 − (σ + 2τ + 2γ)〈E1I2I3S4〉,

〈 ˙I1E2I3S4〉 = σ〈E1E2I3S4〉+ σ〈I1E2E3S4〉 − (σ + 2τ + 2γ)〈I1E2I3S4〉,

〈 ˙I1I2E3S4〉 = σ〈E1I2E3S4〉+ σ〈I1E2E3S4〉 − (σ + 2τ + 2γ)〈I1I2E3S4〉,

〈 ˙E1E2I3S4〉 = σ〈E1E2E3S4〉 − (2σ + τ + γ)〈E1E2I3S4〉,

〈 ˙E1I2E3S4〉 = σ〈E1E2E3S4〉 − (2σ + τ + γ)〈E1I2E3S4〉,

〈 ˙I1E2E3S4〉 = σ〈E1E2E3S4〉 − (2σ + τ + γ)〈I1E2E3S4〉,

〈 ˙S1E2I3S4〉 = σ〈S1E2E3S4〉 − (σ + τ + γ)〈S1E2I3S4〉,

〈 ˙S1I2E3S4〉 = σ〈S1E2E3S4〉 − (σ + τ + γ)〈S1I2E3S4〉,

〈 ˙E1S2I3S4〉 = σ〈E1S2E3S4〉 − (σ + τ + γ)〈E1S2I3S4〉.
(2.7)
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Where
〈 ˙E1I2S3S4〉 = σ〈E1E2S3S4〉 − (σ + τ + γ)〈E1I2S3S4〉,

〈 ˙I1S2E3S4〉 = σ〈E1S2E3S4〉 − (σ + τ + γ)〈I1S2E3S4〉,

〈 ˙I1E2S3S4〉 = σ〈E1E2S3S4〉 − (σ + τ + γ)〈I1E2S3S4〉,

〈 ˙E1E2E3S4〉 = −3σ〈E1E2E3S4〉,

〈 ˙S1E2E3S4〉 = −2σ〈S1E2E3S4〉,

〈 ˙E1S2E3S4〉 = −2σ〈E1S2E3S4〉,

〈 ˙E1E2S3S4〉 = −2σ〈E1E2S3S4〉.

(2.8)

We first consider closure for I1S4I2, and following the notation in [155], we shall

be using ψISI142 to mean I1S4I2 and this applies to other states by extension.

We consider:

〈ψISI142 〉 =
〈ψIS14 〉〈ψSI42 〉
〈ψS4 〉

.

Then we define α1(t) as

α1(t) = 〈ψS4 〉〈ψISI142 〉 − 〈ψIS14 〉〈ψSI42 〉. (2.9)

If the system is initiated in a definite state, then following the approach used in

[155] as explained in section (1.7.3), the closure is exact if α1(t) = 0 for all t ≥ 0.

Differentiating α1(t) and substituting relevant derivatives and quantities from

system (2.3)-(2.8) we have

α̇1(t) = −(2τ + 2γ)α1(t)− τα2(t)− σα3(t)− τα4(t)− σα5(t). (2.10)

where:
α2(t) = 〈ψS4 〉〈ψIIIS1234 〉 − 〈ψIS14 〉〈ψIIS234 〉,

α3(t) = 〈ψES14 〉〈ψIS24 〉 − 〈ψS4 〉〈ψEIS124 〉,

α4(t) = 〈ψIS34 〉〈ψIIS124 〉 − 〈ψIS24 〉〈ψIIS134 〉,

α5(t) = 〈ψIS14 〉〈ψES24 〉 − 〈ψS4 〉〈ψIES124 〉.

Differentiating α2(t) we have

α̇2(t) = −(3τ + 3γ)α2(t)− σα6(t)− σα7(t)− τα8(t)− τα9(t)− σα10(t). (2.11)
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where
α6(t) = 〈ψES14 〉〈ψIIS234 〉 − 〈ψS4 〉〈ψEIIS1234 〉,

α7(t) = 〈ψIS14 〉〈ψEIS234 〉 − 〈ψS4 〉〈ψIEIS1234 〉,

α8(t) = 〈ψIS24 〉〈ψIIIS1234 〉 − 〈ψIIS124 〉〈ψIIS234 〉,

α9(t) = 〈ψIS34 〉〈ψIIIS1234 〉 − 〈ψIIS134 〉〈ψIIS234 〉,

α10(t) = 〈ψIS14 〉〈ψIES234 〉 − 〈ψS4 〉〈ψIIES1234 〉.

Differentiating α6(t) we have

α̇6(t) = −(2τ + 2γ + σ)α6(t)− τα11(t)− τα12(t)− σα13(t)− σα14(t), (2.12)

where
α11(t) = 〈ψEIS124 〉〈ψIIS234 〉 − 〈ψIS24 〉〈ψEIIS1234 〉,

α12(t) = 〈ψEIS134 〉〈ψIIS234 〉 − 〈ψIS34 〉〈ψEIIS1234 〉,

α13(t) = 〈ψS4 〉〈ψEEIS1234 〉 − 〈ψES14 〉〈ψEIS234 〉,

α14(t) = 〈ψS4 〉〈ψEIES1234 〉 − 〈ψES14 〉〈ψIES234 〉.

Differentiating α11(t) we have

α̇11(t) = −(3τ + 3γ + σ)α11(t)− σα15(t), (2.13)

where

α15(t) = 〈ψIS24 〉〈ψEIES1234 〉 − 〈ψEIS124 〉〈ψIES234 〉.

Differentiating α15(t) we have

α̇15(t) = −2(τ + γ + σ)α15(t), (2.14)

which implies

α15(t) = α15(0)e−2(τ+γ+σ)t.

Since the system is initiated in a pure state, we have that α15(0) = 0. Conse-

quently, α15(t) = 0 for all t ≥ 0. Therefore, from (2.13), α11(t) = α11(0)e−(3τ+3γ+σ)t

and by the same argument of starting the system in a pure state, α11(0) = 0 and

this implies α11(t) = 0 for all t ≥ 0 .

Differentiating α12(t) we have

α̇12(t) = −(3τ + 3γ + σ)α12(t)− σα16(t), (2.15)
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where

α16(t) = 〈ψIS34 〉〈ψEEIS1234 〉 − 〈ψEIS134 〉〈ψEIS234 〉.

Differentiating α16(t) we have

α̇16(t) = −2(τ + γ + σ)α16(t). (2.16)

That is, α16(t) = α16(0)e−2(τ+γ+σ)t and for the same reason above, α16(0) = 0.

Consequently, α16(t) = 0 for all t ≥ 0. Hence from (2.15), α12(t) = α12(0)e−(3τ+3γ+σ)t

and since α12(0) = 0 for the same reason above, this also implies α12(t) = 0 for all

t ≥ 0.

Differentiating α13(t) we get

α̇13(t) = −(τ + γ + 2σ)α13 − τα16 − σα17, (2.17)

where

α17(t) = 〈ψES14 〉〈ψEES234 〉 − 〈ψS4 〉〈ψEEES1234 〉.

Differentiating α17(t) we have

α̇17(t) = −3σα17(t). (2.18)

We then also have that α17(t) = α17(0)e−3σt. For the same reason as above

α17(0) = 0 and we have that α17(t) = 0 for all t ≥ 0. Then from (2.17), α13(t) =

α13(0)e−(τ+γ+2σ)t and because α13(0) = 0 this also implies α13(t) = 0 for all t ≥ 0.

Differentiating α14(t) from (2.12) we have

α̇14(t) = −(τ + γ + 2σ)α14 − σα16 − τα17. (2.19)

where already α16(t) = 0 for all t ≥ 0 from (2.16) and α17(t) = 0 for all t ≥ 0 from

(2.18). We then have that α14(t) = α14(0)e−(τ+γ+2σ)t and since α14(0) = 0 for the

same reason above, this means α14(t) = 0 for all t ≥ 0.

Since α11(t) = 0 , α12(t) = 0, α13(t) = 0 and α14(t) = 0 for all t ≥ 0, then by

backward substitution into (2.12) we have that α6(t) = α6(0)e−(2τ+2γ+σ)t and from

the initial condition that α6(0) = 0, we finally have that α6(t) = 0 for all t ≥ 0.

The derivatives for α2(t) to α10(t) and subsequent α’s follow similar analysis as

shown above. Results show that all the α(t), from α1(t) to α17(t) are all zero for

all t ≥ 0. Hence the closure is exact.

The proof for the closure of the other triples: S-S-I and E-S-I follows same

procedure as above and we comment that the presence of an intermediate state
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‘E’ between a node being susceptible and infectious has resulted in more α’s to be

differentiated and shown to be zero for all time, t ≥ 0.

We observed that each of the closure relation proved here consists of two pairs of

the form, 〈ψAW 〉〈ψBX〉 and 〈ψCY 〉〈ψDZ 〉, which can be termed compatible pairs (CPs).

The CPs that emerge in this process exhibited the following properties

• Any given node i appearing as Si, Ei or Ii appears equal number of times

on both the left and right pair. For example, in α12 = 〈E1I3S4〉〈I2I3S4〉 −
〈I3S4〉〈E1I2I3S4〉, node 1 appears as E once in the left pair and also once in

the right pair. For α15(t) = 〈I2S4〉〈E1I2E3S4〉 − 〈E1I2S4〉〈I2E3S4〉, node 2

appears as I twice on the left pair 〈I2S4〉〈E1I2E3S4〉 and twice on the right

pair 〈E1I2S4〉〈I2E3S4〉.

• Any pair SI or SE on the left pair appears equal number of time on the right

pair of the CPs. In the above example of α12, the pair I3S4 appears twice

in each of the pairs while the pair E1S4 appears once in each of the pair.

For α15, the pair I2S4 appears twice in each of the pair while the pair E3S4

appears once in each pair of the CPs.

Such pairs, for example, the 〈I2S4〉〈E1I2E3S4〉 and 〈E1I2S4〉〈I2E3S4〉 for α15 of

equation (2.13)are termed compatible pairs.

We shall quickly formalise our observation of the term ‘compatible pairs’ in

definition 2.3.1 as we will need them in the general proof of the exactness of the

closure relation (1.22):

Definition 2.3.0: ψai ⊂ ψAW if ∃j such that Wj = i and Aj = a. ψa1a2i1,i2
⊂ ψAW if

∃j1, j2 such that Wj1 = i1,Wj2 = i2 and Aj1 = a1, Aj2 = a2

Definition 2.3.1: Two pairs of motif states ψAW , ψ
B
X and ψCY , ψ

D
Z are called com-

patible pairs if

• CP(i) ψai ⊂ ψAW or ψai ⊂ ψBX implies ψai ⊂ ψCY or ψai ⊂ ψDZ

• CP(ii) ψai ⊂ ψAW and ψai ⊂ ψBX implies ψai ⊂ ψCY and ψai is in ψDZ

• CP(iii) ψISi1,i2 ⊂ ψAW or ψISi1,i2 ⊂ ψBX implies ψISi1,i2 ⊂ ψCY or ψISi1,i2 ⊂ ψDZ

• CP(iv) ψISi1,i2 ⊂ ψAW and ψISi1,i2 ⊂ ψBX implies ψISi1,i2 ⊂ ψCY and ψISi1,i2 ⊂ ψDZ

• CP(v)ψESi1,i2 ⊂ ψAW or ψESi1,i2 ⊂ ψBX implies ψESi1,i2 ⊂ ψCY or ψESi1,i2 ⊂ ψDZ

• CP(vi)ψESi1,i2 ⊂ ψAW and ψESi1,i2 ⊂ ψBX implies ψESi1,i2 ⊂ ψCY and ψESi1,i2 ⊂ ψDZ

• CP(v) and CP(vi) hold but with SS pairs.
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We comment that CP(v) and CP(vi) are additional CPs when compared with

those CPs observed for the SIR case of [155]. These extra CPs are due to the

presence of the intermediate state, E between of a node being susceptible and

being infectious.

2.4 Differential equations for general system and

subsystem states

We prove the general case by formulating how the differential equations (2.1) of

the subsystem states are generated. The stochastic system (Γ) consists of N in-

dividuals, each of which can be in any of the S, E, I or R states at any time.

This corresponds to 4N possible states. That is Γα, α ∈ {1, 2, ..., 4N}. We want to

comment that the master equation (2.20) completely describes the time-evolution

of the probabilities of these states and that when T represents a tree, then system

(2.20) implies system (2.1)

〈Γ̇α〉 =
4N∑
β=1

Qαβ〈Γβ〉 −
4N∑
β=1

Qβα〈Γα〉. (2.20)

where Q is the constant matrix of Poisson rate parameters.

We shall make use of some notations of [155] and define some function to help

our derivation of the subsystem states:

Let Ai be in any of the infection states S, E, I and R for all i ∈ {1, 2, ..., r}.
We define A = (A1, A2, ..., Ar) as a sequence of S, E, I and R symbols of length

r such that the state of node Wi is Ai in ψAw . That is ψSi (= Si) means node i is

susceptible and the length (i.e. number of nodes in) of ψSi is 1, and ψSEij = SiEj

means node i is susceptible and node j is exposed in the pair SiEj and the length

of ψSEij is 2.

The definitions for motif of in [155] also apply here. That is, for example, ψSI12

is a 2−motif system if there is an edge between nodes 1 and 2. And the state of

an r −motif is an r − state. For example, ψSI12 is a 2− state system.

Definition 2.4.0: For the subsystem ψAW , if node Wk is I (i.e. infectious) then;

hWk
(ψAW ) = ψ

A1...Ak−1EAk+1...Ar

W
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If node Wk is S (i.e. susceptible) then;

hWk
(ψAW ) = ψ

A1...Ak−1SAk+1...Ar

W

If node Wk is E (i.e. exposed) then;

hWk
(ψAW ) = ψ

A1...Ak−1EAk+1...Ar

W

If node Wk is R (i.e. removed) then;

hWk
(ψAW ) = ψ

A1...Ak−1RAk+1...Ar

W

This means, if node Wk is infectious, this operator changes the state of the node to

E but leaves the state unchanged if it is originally susceptible, exposed or removed.

For example;

h2(ψ
SI
12 ) = ψSE12 , h2(ψ

SE
12 ) = ψSE12 and h2(ψ

SR
12 ) = ψSR12 .

We comment that for a network without cycles, this transformation function hk

on node k in any of the motifs that make up compatible pairs does not alter the

compatibility of the pairs (see proposition 3.2 of [155]).

Definition 2.4.1: For an undirected network, we say node j is a neighbour to

node i if there is an edge connecting i and j. Let N∗i denote the set of neighbours

of node i. From the transmission matrix, this implies Tij = 1 ∀j ∈ N∗i .

Definition 2.4.2: A subsystem of (r + 1) nodes can be generated from the sub-

system state ψAW of r node(s). Let k ∈ {1, 2, ...r} and consider a neighbour n of Wk

outside of the subsystem with a network link towards Wk,i.e. let node n which is

outside the subsystem ψAW has a link towards its node k, that is, n ∈ NWk
, n /∈ W .

If Ak = S, then the generated (r + 1) state is given by the generating rule:

gnWk
(ψAW ) = ψA1...ArI

W1,...,Wr,n
.

In other words, If the node Wk is originally susceptible, S, then its state is not

changed by the generating function while connecting an external infectious node,

In to it. For example:

gn1 (ψSI12 ) = ψISIn,12

provided node In is connected to S1.
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If Ak is E, then the generated subsystem state is given by:

gnWk
(ψAW ) = ψ

A1...Ak−1,S,Ak+1,...,Ar,I
W1,...,Wr,n

.

That is, node Wk which is originally exposed, E, is first changed to susceptible,

S, and then an external infectious node, In which has undirected link with Wk is

connected to it. For example:

gn2 (ψSE12 ) = ψSSI12,n

provided node In is external to the subsystem ψAW and is linked to E2.

If Ak = R i.e. removed or Ak = I i.e. infectious, then the generator gnWk
leaves

the system unchanged. Generally, when there is no link between Ak and node n in

matrix T , the subsystem is also left unchanged.

LEMMA 2.4.3: For a tree network, the transformation hk acting on an infectious

node k in any of the motifs of CPs generates CPs.

PROOF: The transformation hk satisfies CP(i) and CP(ii) by changing an infec-

tious node k to exposed without altering the form of the conditions of CP(i) and

CP(ii). hk also satisfies CP(iii) and CP(iv) by changing node I to E in an SI pair.

The number(s) of SI pairs is reduced by this transformation and this reduction is

reflected in the increased number of SE pairs. The transformation also leaves an

existing ES pair as it is if node k is E thereby satisfying CP(v) and CP(vi) while

a new pair of SE is formed from an SI pair by hk. Also hk satisfies CP(v) and

CP(vi) leaving an existing SS pair in it original form.

As described by the generating rule, gnWk
(ψAW ), it is observed from (2.1) that the

infection process which starts and build up from the exposed states of the single

nodes ψEi , i ∈ {1, 2, ...N} depends on the 2− states ψSIij , j ∈ N∗i . The differential

equation for the 2 − state ψSIij is also expressed in terms of the 3 − states ψISIkij ,

k ∈ N∗i . The differential equations for the 3− states will contain the 4− states and

so on.

We comment here that similar transformation function for the (r + 1) motif in

the SIR model in [155] replaces an infected node I with an SI edge while in this

model an exposed node E is replaced with an SI edge.

LEMMA 2.4.4: The dependency of the r − states on the (r + 1) states for
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r ∈ {1, 2, ..., (N−1)} implies that if the neighbours of E are susceptible in r−motif,

their neighbours in (r + 1) motif are also susceptible.

PROOF: According to the rules hk and gnk of definitions 2.4.0 and 2.4.2, the process

of building up the states never give rise to removed That is, a subsystem such as

ψA where A = S1R2R3I4.... can not arise on tree network.

Definition 2.4.5: For any subsystem ψW of r node(s) in state ψAW and a single

node k ∈ {1, 2, ..., r} in state ψWk
, we define according to [155]

DAa
k =

1, if Ak = a,

0, otherwise.

Then, provided lemma 2.4.4 holds, the rate of change of the probability of an

r-state subsystem ψAW is

〈ψ̇AW 〉 =
r∑

k=1

[DAE
k

N∑
n=1,n/∈w

TWkn〈gnWk
(ψAW )〉 −DAE

k σWk
〈ψAW 〉

−DAS
k

N∑
n=1,n/∈w

TWkn〈gnWk
(ψAW )〉 −DAS

k

∑
l=1

TWkWl
DAI
l 〈ψAWk

〉

+DAI
k σWk

hWk
〈ψAW 〉 −DAI

k γWk
〈ψAWk

〉].

(2.21)

The subsystem states that emerged in this study satisfy equation (2.21) and showed

no removed, hence we can use equation (2.21) to obtain the set of equations in

(2.1).

We want to state that system (2.21) is not valid for non-tree networks. Let us

consider system (2.21) for, for example, the term 〈E1S4〉 in figure (2.2). Equation

(2.21) is reduced to:

〈ψ̇SEij 〉 = −
N∑

n=1,n 6=j

Tin〈ψISEn,ij 〉+
N∑

n=1,n 6=i

Tjn〈ψSSIij,n 〉 − σj〈ψSEij 〉,

which gives

〈E1S4〉 =− τ〈E1I2S4〉 − τ〈E1I3S4〉+ τ〈I5S1S4〉

+ τ〈S1I2S4〉 − σ〈E1S4〉.
(2.22)
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Writing this equation directly from the graph gives

〈E1S4〉 =− τ〈E1I2S4〉 − τ〈E1I3S4〉+ τ〈I5S1S4〉

+ 2τ〈S1I2S4〉 − σ〈E1S4〉.
(2.23)

Figure 2.2: A simple graph to invalidate equation (2.21) for non-tree graphs.

The coefficients of the term 〈S1I2S4〉 in the two equations are different. This

difference is due to the presence of triangle in the network and of course these two

equations can not define same distribution for the term 〈E1S4〉, hence equation

(2.21) breaks down for non-tree networks.

We comment that while the generation of the subsystems ψSi and ψSSij from

(2.21) is similar to that for the SIR model of [155], (2.21) implies different equations

for the subsystems ψEi , ψIi , ψ
SI
ij and ψSEij . For example,

• If the subsystem is a susceptible individual, say ψSi , then r = 1 so k can

only take the value k = 1 where W1 = i and A1 = S. The equation for this

subsystem state comes from the third term of (2.21) which is:

〈ψ̇Si 〉 = −DAS
k

1∑
n=1

Tin〈gni (ψSi )〉.

That is;

〈ψ̇Si 〉 = −
N∑

n=1,i 6=n

Tin〈ψSIi,n〉.

This term and that generated for subsystem 〈ψSSij 〉 have similar form of that

in [155].
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• For an exposed individual, say ψEi , the first two terms of (2.21) generate the

subsystem state:

〈ψ̇Ei 〉 = DAE
k

N∑
n=1

Tin〈gni (ψEi )〉 −DAE
k σi〈ψEi 〉.

That is;

〈ψ̇Ei 〉 =
N∑

n=1,i 6=n

Tin〈ψSIi,n〉 − σi〈ψEi 〉.

This generator takes a different form compared to that of the SIR model in

[155] for the same subsystem.

• For an infectious individual, say ψIi , the last two terms of (2.21) combine to

generate the subsystem state:

〈ψ̇Ii 〉 = DAI
i

∑
i=1

σihi〈ψIi 〉 −
∑
i=1

DAI
i γi〈ψIi 〉.

That is;

〈ψ̇Ii 〉 = σi〈ψEi 〉 − γi〈ψIi 〉.

Note the effect of the operator hWk
which transforms Ii to Ei. This is also a

new term when compared with those terms for the SIR model in [155].

• If the subsystem is the pair ψSIij , r = 2 and the sum over k is over k = 1 and

k = 2, and W1 = i and W2 = j, A1 = S and A2 = I, the last four terms of

(2.21) combine to generate the subsystem and so (2.21) reduces to

〈ψ̇SIij 〉 = −DAS
i

∑
n=1,n6=j

Tin〈gni (ψSIij )〉 −DAS
i

∑
i=1

TijD
AI
j 〈ψSIij 〉

+DAI
j σjhj〈ψSIij 〉 −DAI

j γj〈ψSIij 〉.

That is,

〈ψ̇SIij 〉 = −
N∑

n=1,n6=i

Tin〈ψISIn,ij〉 − Tij〈ψSIij 〉+ σj〈ψSEij 〉 − γj〈ψSIij 〉.

where the first two terms correspond to k = 1 and the last two terms corre-

spond to k = 2. This is also a new term.

• If the subsystem is the pair ψSEij , then r = 2, the sum over k will be over

k = 1 and k = 2, so W1 = i, W2 = j, A1 = S and A2 = E, the 1st, 2nd and
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fourth terms combine to generate the subsystem and this reduces (2.21) to

〈ψ̇SEij 〉 = −DAS
i

∑
n=1,n 6=j

Tin〈gni (ψSEij )〉

+DAE
j

∑
n=1,n6=i

Tjn〈gnj (ψSEij )〉 −DAE
j σj〈ψSEij 〉.

That is,

〈ψ̇SEij 〉 = −
N∑

n=1,n6=j

Tin〈ψISEn,ij 〉+
N∑

n=1,n6=i

Tjn〈ψSSIij,n 〉 − σj〈ψSEij 〉,

where the first term corresponds to k = 1 and the remaining two terms

correspond to k = 2. This is also a new term.

2.5 The general closure relation: The main result

The symmetry we observed in the star graph is more general and so we want to

show that the closure relation (1.22) is exact for tree graph. We specify in general

that these closure relations are composed of two pairs of motif states (ψAW , ψ
B
X) and

(ψCY , ψ
D
Z ) and that the closure is exact if

α = 〈ψAW 〉〈ψBX〉 − 〈ψCY 〉〈ψDZ 〉 = 0 for all t ≥ 0.

As defined in [155], if ψAW is an r-state motif and ψBX is a q− state motif, then

the order of the pair (ψAW , ψBX) is defined as r + q. Also, if (ψAW , ψBX) and (ψCY ,

ψDZ ) are compatible pairs as given by definition 3.1.1, then their order is equal. For

example α15(t) of equation (2.13) has the compatible pairs 〈I2S4〉〈E1I2E3S4〉 and

〈E1I2S4〉〈I2E3S4〉 which are of equal order of 6.

LEMMA 2.5.0. Let (ψAW , ψ
B
X) and (ψCY , ψ

D
Z ) be compatible pairs of order R and

ψAW , ψBX , ψCY and ψDZ be in the extended state space. Let

α0 = 〈ψAW 〉〈ψBX〉 − 〈ψCY 〉〈ψDZ 〉

Then

α̇0 =
m∑
p=1

cpαp +
n∑
r=1

µrαr + c0α0, (2.24)
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where each αp can be expressed as:

αp = 〈ψA∗W ∗〉〈ψB
∗

X∗〉 − 〈ψC
∗

Y ∗〉〈ψD
∗

Z∗ 〉,

where ψA
∗

W ∗ , ψ
B∗
X∗ , ψ

C∗
Y ∗ and ψD

∗
Z∗ are compatible pairs of order (R + 1) and each αr

can be expressed as:

αr = 〈ψA
′

W 〉〈ψB
′

X 〉 − 〈ψC
′

Y 〉〈ψD
′

Z 〉,

where ψA
′

W , ψB
′

X , ψC
′

Y and ψD
′

Z are compatible pairs of order R, here, c0, µr and

cp are constants and m and n are integers denoting the number of terms in the

summation.

We remark that (2.24) contains an extra term

n∑
r=1

µrαr,

when compared with its counterpart for the SIR model of [155] and it is also a

general statement of equations (2.10) to (2.19) .

PROOF. The derivative of α0 is

α̇0 = 〈ψ̇AW 〉〈ψBX〉+ 〈ψAW 〉〈ψ̇BX〉 − 〈ψ̇CY 〉〈ψDZ 〉 − 〈ψCY 〉〈ψ̇DZ 〉. (2.25)

We shall consider the terms associated with removal, exposed, transmission

terms of order R and R + 1 separately.

Considering the removal term of (2.21) in (2.25) following the approach of [155],

the removal term of order R in (2.21) is

−
r∑

k=1

DAI
k γWk

〈ψAW 〉.

Putting this in (2.25) we have

α̇0 =−
∑
k1

DAI
k1
γWk1
〈ψAW 〉〈ψBX〉 −

∑
k2

DBI
k2
γXk2
〈ψBX〉〈ψAW 〉

+
∑
k3

DCI
k3
γYk3 〈ψ

C
Y 〉〈ψDZ 〉+

∑
k4

DDI
k4
γZk4
〈ψDZ 〉〈ψCY 〉.

The sums over k1, k2, k3 and k4 are over all nodes in the motifs ψW , ψX , ψY

and ψZ respectively. These sum total of these constants in the each pair of the
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CPs are equal because they are equally matched, satisfying conditions(i) and (ii)

of definition 3.1.1, so ∑
k1

DAI
k1
γWk1

−
∑
k2

DBI
k2
γXk2

=
∑
k3

DCI
k3
γYk3 +

∑
k4

DDI
k4
γZk4

= a constant, say υ.

That is

α̇0 = −υ[〈ψAW 〉〈ψBX〉 − 〈ψCY 〉〈ψDZ 〉] = −υα0,

with −υ contributing to c0 of (2.24).

Considering the infection term of order R in (2.25), the infection term from

(2.21) is
r∑

k=1

−DAS
k

∑
l

TWkWl
DAI
l 〈ψAW 〉.

Putting this into the RHS of (2.25) gives

−
∑
k1

DAS
k1

∑
l1

TWk1
Wl1

DAI
l1
〈ψAW 〉〈ψBX〉

−
∑
k2

DBS
k2

∑
l2

TXk2
Xl2
DBI
l2
〈ψBX〉〈ψAW 〉

+
∑
k3

DCS
k3

∑
l3

TYk3Yl3D
CI
l3
〈ψCY 〉〈ψDZ 〉

+
∑
k4

DDS
k4

∑
l4

TZk4
Zl4
DDI
l4
〈ψDZ 〉〈ψCY 〉

The sums over k1, k2, k3, k4, l1, l2, l3 and l4 are over all nodes in the relevant

motifs. These CPs satisfy condition (iii) and (iv) of definition 3.1.1 and so

$ =
∑
k1

DAS
k1

∑
l1

TWk1
Wl1

DAI
l1

+
∑
k2

DBS
k2

∑
l2

TXk2
Xl2
DBI
l2

=
∑
k3

DCS
k3

∑
l3

TYk3Yl3D
CI
l3

+
∑
k4

DDS
k4

∑
l4

TZk4
Zl4
DDI
l4

= a constant, say $ for same reason as above.

That is;

−$[〈ψAW 〉〈ψBX〉 − 〈ψCY 〉〈ψDZ 〉] = −$α0,

with −$ also contributing to c0 of (2.24).

Considering the exposed term of order R in (2.25), this term consists of two
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parts. one part is
r∑

k=1

DAE
k σWk

〈ψAW 〉, (2.26)

which is the rate of leaving the exposed state, and the other part

r∑
k=1

DAI
k σWk

hWk
〈ψAW 〉, (2.27)

which is the rate of becoming infectious.

Putting (2.26) into the RHS of (2.25) gives

−
∑
k1

DAE
k1
σWk1
〈ψAW 〉〈ψBX〉 −

∑
k2

DBE
k2
σXk2
〈ψBX〉〈ψAW 〉

+
∑
k3

DCE
k3
σYk3 〈ψ

C
Y 〉〈ψDZ 〉+

∑
k4

DDE
k4
σZk4
〈ψDZ 〉〈ψCY 〉.

The sums over k1, k2, k3 and k4 are over all nodes in the relevant motifs. These

CPs satisfy conditions CP(v) and CP(vi), so

υρ =
∑
k1

DAE
k1
σWk1

+
∑
k2

DBE
k2
σXk2

=
∑
k3

DCE
k3
σYk3 +

∑
k4

DDE
k4
σZk4

= a constant for same reason as above.

That is;

−υρ[〈ψA
′

W 〉〈ψB
′

X 〉 − 〈ψC
′

Y 〉〈ψD
′

Z 〉] = −υραr,

with −υρ also contributing to µr of (2.24).

Putting (2.30) in the RHS of (2.25) gives∑
k1

DAI
k1
σWk1

hWk1
〈ψAW 〉〈ψBX〉+

∑
k2

DBI
k2
σXk2

hXk2
〈ψBX〉〈ψAW 〉

−
∑
k3

DCI
k3
σYk3hYk3 〈ψ

C
Y 〉〈ψDZ 〉 −

∑
k4

DDI
k4
σZk4

hZk4
〈ψDZ 〉〈ψCY 〉.

Note: Here, hi transforms node I to E in each pair of the CPs without increasing

the motif of the CPs. The CPs thus satisfy conditions (iii) and (iv) of definition

3.1.1. The sum is over all nodes in the relevant motifs. We have that

−υ∗ρ∗ [〈ψ
A
′

W 〉〈ψB
′

X 〉 − 〈ψC
′

Y 〉〈ψD
′

Z 〉] = −υ∗ρ∗αr,
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with −υ∗ρ∗ also contributing to µr of (2.24).

The transmission terms with motifs of order R+ 1 in (2.21) which corresponds

to the term 〈ψ̇AW 〉〈ψBX〉 in the derivative of α0 in (2.25) is

r∑
k1

(DAE
k1
−DAS

k1
)
∑

n=1,n/∈W

TWk1n
〈gnWk1

(ψAW )〉

 , (2.28)

which can be considered for when a node is either susceptible, S, or exposed,E.

It is necessary to show that there is a unique one-to-one pairing of each term of

order R + 1 in all the four terms on the RHS of (2.25). To show this, we take an

element from the sum and choose a node Wk, k ∈ W = {1, 2, ..., r} and consider

a neighbouring node n which is connected to Wk but not in W , that is n ∈ NWk
,

n /∈ W . As earlier mentioned, two cases are possible from the sum either Ak = S

or Ak = E.

case 1: Let Ak=S then (2.28) reduces to

−DAS
k TWkn

〈gnWk
(ψAW )〉 = −TWkn

〈gnWk
(ψAW ). (2.29)

We desire to show that the term (2.28) can be matched with a term in 〈ψ̇CY 〉〈ψDZ 〉
or in 〈ψCY 〉〈ψ̇DZ 〉 to form a CP in such a way that −TWkn

contributes to cρ.

Note that if we take an element in each of the relevant subsystem which is

responsible for transmission term of order R + 1 in (2.25) and input them into

(2.24) we have the expression below for α̇0

α̇0 =− TWkn
〈gnWk

(ψAW )〉〈ψBX〉 − TXxn〈gnXx
(ψBX)〉〈ψAW 〉

+ TYyn〈gnYy(ψCY )〉〈ψBX〉+ TZzn〈gnZz
(ψDZ )〉〈ψCY 〉.

. (2.30)

Since Ak = S, conditions (i) and (ii) of definition 3.1.1 imply we can assume

that Ak = E ∈ Y . In other word ∃y = k ∈ Y such that Cy = S. The neighbour

node n of k which is considered not in W could either be or not in the subsystem

ψCY , giving rise to two possible subcases.

• Subcase 1: Suppose the external node n is not Y, then by CP(i) node n is

either in or not in Z.If n is in Z, CP(i) implies n is in X since n is not in W .

Therefore the necessary corresponding term that pair with the first term of
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(2.30) is

+TYyn〈gnYy(ψCY )〉〈ψDZ 〉,

with TYyn also contributing to cp.

• Subcase 2: Suppose the external node n is in Y. Then the link n −→ Yy

must be either an S-S or I-S link and it is the same edge in B by CP (iii)

to (vii) because n is not in W , that is,∃z = k ∈ Z such that Dz = S. The

corresponding compatible term with (2.29) is therefore +TZzn〈ψCY 〉gnZz
(ψDZ )〉

where In is attached to Zz in D by the generating function. That is

αp = −TWkn
〈gnWk

(ψAW )〉+ TZzng
n
Zz

(ψDZ )〉〈ψCY 〉,

from where we can see TZzn also contributing to cp.

case 2: Let Ak =E, a term in (2.28) is reduced to

DAE
k TWkn

〈gnWk
(ψAW )〉 = −TWkn

〈gnWk
(ψAW )〉. (2.31)

We have being able to show from above the transmission term of R+1 motif

when Ak is susceptible. The process of obtaining a corresponding compatible term

to when Ak = E follows from above with node Ak =E being first transformed to

S.

This process is different from that of the SIR case of [148] where an S-I edge

is replaced with a triple S-S-I with the I node being replaced by an S node with

a connection to an external I node. Here, in an S-E edge where Ak =E, node E is

first changed to S before a neighbouring external node In is attached (see definition

2.4.2).

It is essential to state that equation (2.24) can be written in Matrix form

α̇R(t) = AαR+1(t) +BαR(t). (2.32)

where α(t) is a vector of all the CPs and A and B are the respective coefficient

matrices of CPs of order R + 1 and order R.

We give an example of BαR(t) from equations (2.10) to (2.19) for CPs of order

4 as Matrix A for CPs of order 5 from these equations is too big to be included.

For CPs of order 4, we have from equations (2.10) to (2.19) that matrix B is

multiplied by the column vector [α1(t) α3(t) α5(t) α18(t)]
T where α18(t) =

〈ψS4 〉〈ψEES124 〉 − 〈ψES14 〉〈ψES24 〉 and
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B =


−2k1 −σ −σ 0

0 −k2 0 σ

0 0 −k2 −σ
0 0 0 −2σ

 (2.33)

where k1 = τ + γ and k2 = τ + γ + σ.

LEMMA 2.5.1: Let us suppose that that an epidemic process is initiated in

a definite state. In other word, there is a system state A with an initial probability

1. That is ∃A ∈ {I, E, S}N such that 〈ψA1,2,...,N〉 = 1. If (〈ψAW 〉, 〈ψBX〉) and (〈ψCY 〉,
〈ψDZ 〉) are CPs, then for any network

〈ψAW 〉〈ψBX〉 − 〈ψCY 〉〈ψDZ 〉 = 0 at t = 0.

PROOF: The proof of this lemma is established in lemma 3.2 of [155] for the SIR

model on graphs and by extension it applies to our study.

THEOREM 2.5.2: Let us assume that the contact network we consider represents

a tree and epidemic is initiated in a pure state, and also (ψAW , ψ
B
X) and (ψCY , ψ

D
Z )

be compatible pairs. Then

〈ψAW 〉〈ψBX〉 − 〈ψCY 〉〈ψDZ 〉 = 0 for all t ≥ 0.

PROOF: We prove this theorem by induction in line with the order of the closure

following the process we used to arrive at equations (2.10) to (2.19) for the star

graph.

If each of 〈ψAW 〉, 〈ψBX〉, 〈ψCY 〉 and 〈ψDZ 〉 is of order N , forming a CP of order 2N ,

which is of course the highest possible order of any CPs in this study, then (2.32)

which is equivalent to (2.24) becomes

α̇R(t) = BαR(t), (2.34)

since there can not be term(s) of order 2N + 1.

The general solution of (2.34) is

α
(R)
i (t) =

n∑
i=1

Cie
λitVi, (2.35)

where λi and Vi are the corresponding eigenvalues and eigenvectors of matrix B.
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By lemma 2.5.1, the initial condition is α
(R)
i (0) = 0 for i = 1, 2, ..., n.

From (2.35) the initial conditions αi(0) = 0 implies

C1V1 + C2V2 + ...+ CnVn = 0.

That is, C1 = C2 = ... = Cn = 0 because Vi 6= 0 for all i and assuming matrix B is

invertible. Therefore, αR(t) = 0 for all t ≥ 0. Hence theorem 2.5.2 is true for 2N .

If theorem 2.5.2 is true for R + 1, then we have from (2.32) that

α̇R(t) = BαR(t).

This is the same form as equation (2.34). So, by the same argument, theorem 2.5.2

is true for R. Since is true for 2N , then by induction, it is true for R ≤ 2N .

Conclusion

The study has developed an individual-level SEIR pairwise epidemic model and

examined the validity of the exactness of a second order moment closure on the

model on contact networks of a finite size, particularly on tree networks. This study

is in line with similar result for the SIR epidemic model on tree networks where

it was shown that the SIR epidemic dynamics of infection on some unclustered

network can also be exactly defined by a pair-based model under some special

initial conditions[154, 155]. The extension of this process to prove the validity of

the second order moment closure for our model on trees is more complex because

there are more compatible pairs to be validated. The extra compatible pairs are

as a result of a new infectious status E, in our model.

The S-E link (as against the S-I link in the SIR model) is involved in the gen-

eration of higher motifs of the infection transmission process. The single equation

(2.21) from which the rate of change of the probability of all motifs can be derived

is more complex and contain extra terms compared similar result obtained from

earlier of the SIR model. More steps are involved to validate the generation of a

higher motif of the infection transmission process when compared with the process

in [155].

We believe it is worthwhile to extend such earlier study of the SIR epidemic

model to SEIR because the two models behave differently at invasion with the

presence of an exposed class slowing down the infection dynamic of some infections,

especially when there is a silent spread. The SEIR model is one of the simplest

models commonly used for simulating measles. We note that, in the limit of the
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incubation period going to zero, the SEIR model is equivalent to the SIR model.

Another approach, developed after this study is the network partitioning method[85,

156]. Using this method to obtain exact results for the SEIR model should be

straightforward. However, the method presented here gives a complementary per-

spective with its own utility as seen in the next chapter.
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Chapter 3

Approximating the Global Error

for an SIR Epidemic model on

Ring networks

3.1 Introduction

The main reason for modelling epidemics is to understand the way they spread

and then give a sound basis for prescribing efficient control measures. Although

the traditional homogeneous models describe the essential features of epidemic,

helping us to extrapolate infection characteristics from the individual viewpoint to

population level, studies [12, 13] show that, for most models, such mean field equa-

tions underestimate the true infection threshold, meaning the mean-field systems

may hide away important details of infection process.

Epidemic dynamics are dominated by complementary interactions between dis-

crete individuals and these dynamics are usually well captured by correlation equa-

tions with assumptions that can be experimentally investigated, so an improvement

on the mean-field dynamics on network is achieved with the pairwise models to in-

corporate these interacting tendencies of constituent units. In this type of model

the dynamics of individuals are usually expressed in terms of the number of pairs

and that of the pairs expressed in terms of triples, and so on. Generally nth moment

depends on (n+ 1)th moment and this usually lead to unclosed system.

For numerical evaluation to be possible and in other to achieve analysis by

standard process, these systems must be closed at some level. This challenge led to

various closure methods [40, 49, 84, 163] and the evaluation and validity of these

closures are usually done by numerically comparing the stochastic and deterministic

dynamics which incorporate them.
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Although there could be noticeable variations in higher order approximation

when details of higher order interacting units are known [135], studies [40,49,52,

82] showed that the second-order approximation which closes the system by ap-

proximating triple as product of pairs gives remarkable result to the true dynamic

of infection. An example of infection which is dominated by pairwise interaction

and which is well captured by pair approximation model is the dynamics of sexually

transmitted diseases (STDs).

Different network means different accuracy of a defined closure because the net-

work structure has a profound effect on invasion and the establishment of infection.

The exactness of the second order moment closure for the SIR model on tree net-

work is one of many evidence of this [154, 155]. The presence of cycles of higher

order, of which triangle is the smallest, is the major problem with network-based

epidemic models which are based on second order moment closure. Cycles make it

difficult to match a low - dimensional approximate model with its corresponding

stochastic model.

In order to explain the relationship between the underlying topology of mixing

networks and the feasibility of the second order moment closure, Kiss et al [85]

considered the Markovian SIR epidemic dynamic for some simple networks with

lower order cycles-triangles and showed that the closures where the triangles are

kept intact are exact. Although progress have been made towards finding solution

to this challenge [15, 55, 100], pairwise models are generally less accurate when

connections are strongly localized, that is when the presence of lower order cycles

is relatively high [49, 81].

Pair approximation models on contact networks of varying structures have been

investigated. Particularly, the effects of triangles in networks on the propagation

of infection has greatly being exploited [55, 73, 81, 100]. The common approach

has been to investigate infection features from simulations but not providing a par-

ticular analytic bound for when the closures work. Our motivation for the present

study comes from the existing gap between simulations and possible analytical

bound for when a second order moment closure works.

Our interest in this study also stem from the hindsight that the underlying

topology determines the type of closure that are feasible. Earlier study [155] proved

that the second order moment closure of the SIR epidemic model is exact on tree

networks under certain conditions. Following the process of earlier study, we

want to try to understand and quantify, if possible, the error in second order
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moment closure of SIR epidemic dynamics on time-independent cycle with a

constant transmission rate across all links and a constant recovery rate for an

infected individual. We simply want to investigate if the error from the deviation

from being exact of a second order moment closure of SIR epidemic model on

networks of contacts containing a single cycle can be quantified and then write a

general representation for cycle of any size.

3.2 Statement of the Problem and Procedure

We consider an SIR epidemic model on ring network of N individuals whose infec-

tions status are as described in section (1.7.3). The transmission and recovery are

both Poisson processes with respective constant rates τ and γ and system (1.21)

holds for any pair of nodes i and j and transmission matrix T .

We begin our investigation with the smallest loop, the triangle and assume an

initial pure system state- SaSbIc (see figure (3.1)). We then introduce a susceptible

node at a time, creating an additional S-S link to define a sequence of cycles:-

square, pentagon and hexagon respectively. We maintain node c as the only ini-

tially infected node in all the networks and apply the second order moment closure

(1.22) to the two possible triples that appear in the hierarchy of moment equations

generated from (1.21) for each network.

To test the validity of the moment closure, we follow the usual approach of

the previous chapter by differentiating the respective αSSI(t) and αISI(t) in each

network and observe if the deviation of the closure for these triples from being exact

follows an obvious pattern from which a general representation can be written for

a ring network.

Figure 3.1: Cycles of three, four, five and six nodes respectively where the node
marked as red is the only initially infectious node in the networks.

The labelling of nodes with a specific node c been marked as the only initially

infectious node in each network is to simplify our notation and ease representation

and has no effect whatsoever on the dynamic of infection. We consider closure for

two possible forms of triples, the S-S-I and the I-S-I.
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3.3 The Triangular Network

In this section we shall consider the second order moment closure for both the S-S-I

and I-S-I for the triangular network of figure (3.1) whose transmission matrix is

T =

0 τ τ

τ 0 τ

τ τ 0

 .
The single node equations from (1.21) for this network are

˙〈Sa〉 = −τ〈SaIb〉 − τ〈SaIc〉,
˙〈Sb〉 = −τ〈IaSb〉 − τ〈SbIc〉,
˙〈Sc〉 = −τ〈IaSc〉 − τ〈IbSc〉,
˙〈Ia〉 = τ〈SaIb〉+ τ〈SaIc〉 − γ〈Ia〉,
˙〈Ib〉 = τ〈IaSb〉+ τ〈SbIc〉 − γ〈Ib〉,
˙〈Ic〉 = τ〈IaSc〉+ τ〈IbSc〉 − γ〈Ic〉.

(3.1)

The following are for pairs

˙〈SaIb〉 = τ〈SaSbIc〉 − τ〈SaIbIc〉 − (τ + γ)〈SaIb〉,
˙〈IaSb〉 = τ〈SaSbIc〉 − τ〈IaSbIc〉 − (τ + γ)〈IaSb〉,
˙〈SaIc〉 = τ〈SaIbSc〉 − τ〈SaIbIc〉 − (τ + γ)〈SaIc〉,
˙〈IaSc〉 = τ〈SaIbSc〉 − τ〈IaIbSc〉 − (τ + γ)〈IaSc〉,
˙〈SbIc〉 = τ〈IaSbSc〉 − τ〈IaSbIc〉 − (τ + γ)〈SbIc〉,
˙〈IbSc〉 = τ〈IaSbSc〉 − τ〈IaIbSc〉 − (τ + γ)〈IbSc〉,
˙〈SaSb〉 = −2τ〈SaSbIc〉,
˙〈SaSc〉 = −2τ〈SaIbSc〉,
˙〈SbSc〉 = −2τ〈IaSbSc〉.

(3.2)
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Finally for the triples we have;

˙〈IaSbSc〉 = −(τ + γ)〈IaSbSc〉,
˙〈SaIbSc〉 = −(τ + γ)〈SaIbSc〉,
˙〈SaSbIc〉 = −(τ + γ)〈SaSbIc〉,
˙〈IaSbIc〉 = −2(τ + γ)〈IaSbIc〉+ τ〈IaSbSc〉+ τ〈SaSbIc〉,
˙〈SaIbIc〉 = −2(τ + γ)〈SaIbIc〉+ τ〈SaIbSc〉+ τ〈SaSbIc〉,
˙〈IaIbSc〉 = −2(τ + γ)〈IaIbSc〉+ τ〈IaSbSc〉+ τ〈SaIbSc〉.

(3.3)

3.3.1 Closure for S-S-I

We shall first apply the closure relation to 〈SaSbIc〉 and examine the accuracy of

〈SaSbIc〉 ≈
〈SaSb〉〈SbIc〉
〈Sb〉

.

We write αSSI(t) as

αSSI(t) = 〈Sb〉〈SaSbIc〉 − 〈SaSb〉〈SbIc〉. (3.4)

We take the derivative of αSSI(t) with respect to time and substitute the terms

in from (3.1)-(3.3) as follows

α̇SSI(t) = 〈Ṡb〉〈SaSbIc〉+ 〈Sb〉〈 ˙SaSbIc〉 − 〈 ˙SaSb〉〈SbIc〉 − 〈SaSb〉〈 ˙SbIc〉

= [−τ〈IaSb〉 − τ〈SbIc〉]× 〈SaSbIc〉+ 〈Sb〉 × [−(2τ + γ)〈SaSbIc〉]

− [−2τ〈SaSbIc〉]× 〈SbIc〉

− 〈SaSb〉 × [τ〈IaSbSc〉 − τ〈IaSbIc〉 − (τ + γ)〈SbIc〉].

(3.5)

When expanded we have

α̇SSI(t) =− τ〈IaSb〉〈SaSbIc〉 − τ〈SbIc〉〈SaSbIc〉

− (2τ + γ)〈Sb〉〈SaSbIc〉+ 2τ〈SaSbIc〉〈SbIc〉

− τ〈SaSb〉〈IaSbSc〉+ τ〈SaSb〉〈IaSbIc〉

+ (τ + γ)〈SaSb〉〈SbIc〉.

(3.6)
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Rewriting this in order to collect compatible pairs, we have

α̇SSI(t) =− (τ + γ)〈Sb〉〈SaSbIc〉+ (τ + γ)〈SaSb〉〈SbIc〉

+ τ〈SbIc〉〈SaSbIc〉 − τ〈Sb〉〈SaSbIc〉

− τ〈IaSb〉〈SaSbIc〉 − τ〈SaSb〉〈IaSbSc〉

+ τ〈SaSb〉〈IaSbIc〉.

Then we finally have

α̇SSI(t) =− (τ + γ)αSSI(t) + τβ1(t)− τβ2(t)

− τβ3(t)− τβ4(t) + τβ5(t).
(3.7)

where
β1 = 〈SbIc〉〈SaSbIc〉, β2 = 〈Sb〉〈SaSbIc〉,

β3 = 〈IaSb〉〈SaSbIc〉, β4 = 〈SaSb〉〈IaSbSc〉,

β5 = 〈SaSb〉〈IaSbIc〉.

(3.8)

Fundamentally and from the previous chapter, the closure is exact if and only

if α̇SSI(t) is expressed solely in terms of ‘compatible pairs’ and by so doing the

solution for αSSI(t) must be zero at all time given a pure initial state. Of course

αSSI(0) = 0 but α̇SSI(t) in equation (3.7) contains some terms which are not all

initially zero.

The initial configuration of the triangular network means that β1(0) = 1,

β2(0) = 1, β3(0) = 0, β4(0) = 0 and β5(0) = 0 and this might lead us to con-

clude that their total effect cancels out by merely looking at equation (3.7). Such

assumption will be erroneous because the behaviour of the βs is not that obvious

so the solution of αSSI(t) cannot necessarily be zero at all time.

If the solution for αSSI(t) 6= 0 ∀t ≥ 0, then we want to conclude these βs

represent cause of the deviation of the approximation from exactness and we refer

to them here as ‘error terms’ in α(t).

By simple differentiation and substitution where necessary, we also have that;

β̇1(t) = −(3τ + 2γ)β1(t) + τβ6(t)− τβ7(t),

β̇2(t) = −(2τ + γ)β2(t)− τβ1(t)− τβ3(t),

β̇3(t) = −(3τ + 2γ)β3(t)− τβ7(t) + τβ8(t),

β̇4(t) = −(2τ + γ)β4(t)− 2τβ6(t),

β̇5(t) = −2(τ + γ)β5(t) + τβ4(t)− 2τβ7(t) + τβ9(t),

(3.9)
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β̇6(t) = −2(2τ + γ)β6(t),

β̇7(t) = −(4τ + 3γ)β7(t) + τβ6(t) + τβ8(t),

β̇8(t) = −2(2τ + γ)β8(t),

β̇9(t) = −(2τ + γ)β9(t)− 2τβ8(t).

where
β6 = 〈IaSbSc〉〈SaSbIc〉, β7 = 〈IaSbIc〉〈SaSbIc〉,

β8 = 〈SaSbIc〉〈SaSbIc〉, β9 = 〈SaSb〉〈SaSbIc〉.
(3.10)

From the initial configuration of the system we have that β1(0) = 1 , β2(0) = 1,

β8(0) = 1 and β9(0) = 1 with all other β’s being zero at t = 0. From these, the

solution of the βs can be obtained by direct integration and then by backward

substitution. We have from system (3.9) that β6(0) = 0 =⇒ β6(t) = 0 for all

t ≥ 0 =⇒ β4(t) = 0 for all t ≥ 0. Following this process lead us to obtain;

β8(t) = e−2(2τ+γ)t,

β9(t) =
2τ

2τ + γ
e−2(2τ+γ)t +

γ

2τ + γ
e−(2τ+γ)t,

β7(t) =
τ

γ
e−2(2τ+γ)t − τ

γ
e−(4τ+3γ)t,

β5(t) =
2τ 2

γ(2τ + γ)
e−2(2τ+γ)t +

τ

2τ + γ
e−(2τ+γ)t

− 2τ 2

γ(2τ + γ)
e−(4τ+3γ)t − τ

2τ + γ
e−2(τ+γ)t

β3(t) = −γ − τ
γ

e−2(2τ+γ)t − τ 2

γ(τ + γ)
e−(4τ+3γ)t

+
γ

τ + γ
e−(3τ+2γ)t,

β2(t) =
τ

γ
e−2(2τ+γ)t − τ 2

γ(τ + γ)
e−(4τ+3γ)t

+
γ

τ + γ
e−(3τ+2γ)t,

β1(t) =
2τ 2 − τγ
γ(2τ + γ)

e−2(2τ+γ)t − τ 3

γ(τ + γ)2
e−(4τ+3γ)t,

+
2τγ

(τ + γ)2
e−(3τ+2γ)t +K6e

−(2τ+γ)t.

(3.11)

where

K6 =
3τγ + γ2 − 2τ 2

γ(2τ + γ)
+
τ 3 − 2τγ2

γ(τ + γ)2
.

Since β4(0) = 0 for all t ≥ 0, equation (3.7) is reduced to

α̇SSI(t) = −(τ + γ)αSSI(t) + τβ1(t)− τβ2(t)− τβ3(t) + τβ5(t). (3.12)
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Plugging in the solutions of the βs from (3.11), the solution of (3.12) is obtained

by method of integrating, and it yields

αSSI(t) = − τ

2τ + γ
e−2(2τ+γ)t − C1

3τ + 2γ
e−(4τ+3γ)t

+
2τ 2γ

(2τ + γ)(τ + γ)2
e−(3τ+2γ)t − C2

τ
e−(2τ+γ)t

+
τ 2

(2τ + γ)(τ + γ)
e−2(τ+γ)t +K7e

−(τ+γ)t.

(3.13)

where

C1 =
τ 4(2τ + γ)− 2τ 3(τ + γ)2

γ(τ + γ)2(2τ + γ)
, C2 =

τ 2

2τ + γ
− τK6

And

K7 =
τ

2τ + γ
+

C1

3τ + 2γ
+
C2

τ

− 2τ 2γ

(2τ + γ)(τ + γ)2
− τ 2

(2τ + γ)(τ + γ)
.

In figure (3.2), we verify that equation (3.13) corresponds with the solution of

αSSI(t) from the hierarchy of moment equation (3.1) to (3.3).
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Figure 3.2: For the triangular network, with τ = 0.4 and γ = 0.2, we evaluate
αSSI(t) from the hierarchy moment equations of system (3.1) to (3.3) and compare
with that derived analytically in equation (3.13)
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3.3.2 Closure for I-S-I

In this second part, we follow the procedure above to consider the closure for the

triple of the form I-S-I for the same triangular network. We investigate the closure

for 〈IaSbIc〉. Of course

〈IaSbIc〉 ≈
〈IaSb〉〈SbIc〉
〈Sb〉

.

so we write

αISI(t) = 〈Sb〉〈IaSbIc〉 − 〈IaSb〉〈SbIc〉

We find the derivative of αISI(t), substitute for terms in the same sets of system

of equations (3.1) to (3.3) to obtain

α̇ISI(t) = −2(τ + γ)αISI(t)− τβ1(t) + τβ2(t)− τβ10(t) + τβ11(t). (3.14)

where
β10(t) = 〈IaSb〉〈IaSbSc〉, β10(0) = 0,

β11(t) = 〈Sb〉〈IaSbSc〉, β11(0) = 0.
(3.15)

With β1 and β2 retaining the form in the first part of this section.

In similar manner from the first part, simple differentiation of the βs leads us

to obtain
β̇10(t) = −(3τ + 2γ)β10(t) + τβ6(t)− τβ12(t),

β̇11(t) = −(2τ + γ)β11(t)− τβ10(t)− τβ14(t),

β̇12(t) = −(4τ + 3γ)β12(t) + τβ6(t) + τβ13(t),

β̇13(t) = −2(2τ + γ)β13(t),

β̇14(t) = −(3τ + 2γ)β14(t)− τβ12(t) + τβ13(t).

(3.16)

where
β12 = 〈IaSbIc〉〈IaSbSc〉, β12(0) = 0,

β13 = 〈IaSbSc〉〈IaSbSc〉, β13(0) = 0,

β14 = 〈SbIc〉〈IaSbSc〉, β14(0) = 0.

(3.17)

Except for β1(t) and β2(t) which are initially unity, all the extra βs in this part

are zero at t = 0 due to the initial pure state of the network. Hence from (3.16),we

have that β10(t) = β11(t) = β12(t) = β13(t) = β14 = 0 for all t ≥ 0. Then, equation

(3.14) is reduced to a simple form;

α̇ISI(t) = −2(τ + γ)αISI(t)− τβ1(t) + τβ2(t). (3.18)

which is also solved by method of integrating and it is;
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αISI(t) =
τ

2τ + γ
e−2(2τ+γ)t − τ 3

(2τ + γ)(τ + γ)2
e−(4τ+3γ)t

− γ(τ − γ)

(τ + γ)2
e−(3τ+2γ)t +

τK6

γ
e−(2τ+γ)t

+K7e
−2(τ+γ)t,

(3.19)

with K6 as defined for (3.11) and

K7 =
τ 3

(2τ + γ)(τ + γ)2
+
γ(τ − γ)

(τ + γ)2
− τ

2τ + γ
− τK6

γ
.

We also validate in figure (3.3) that computation of equation (3.19) corresponds

with its solution from the moment equations (3.1) to (3.3) for the same parameters

values.
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Figure 3.3: For the triangular network, with τ = 0.4 and γ = 0.2, we also eval-
uate αISI(t) from the hierarchy moment equations and compare with that derived
analytically in equation (3.19)

To go beyond the triangular network with this approach, computation for equa-

tion of the forms of (3.13) and (3.19) for higher order cycles becomes infeasible due

to the large number of βs involved and the complexity of the interdependency of

their derivatives. In that case, we take a different approach to approximate the

75



respective α(t) by a zero polynomial of a finite order and invariably bound the

error. That is, we will show that the truncating error for doing this is an upper

bound for this approximation and that this truncating error degenerates for a finite

time.

3.3.3 Taylor Polynomial

We shall find an approximating zero polynomial of degree n for the two forms of

α(t) about t = 0 and show that the truncating error converges to zero for a finite

t.

Generally, Taylor series for α(t) about t = 0 is

α(t) = α(0) + α(1)(0)
t

1!
+ α(2)(0)

t2

2!

+ α(3)(0)
t3

3!
+ ..+ α(n)(0)

tn

n!
+ En

= Pn(t) + En.

(3.20)

where

α(n)(t) =
dn

dtn
α(t).

Pn(t) is the approximating or Taylor polynomial of degree n and En is the trun-

cating error. The Lagrange form of En is

|En| ≤M
|t|n+1

(n+ 1)!
where |α(n+1)| ≤M, 0 ≤ t <∞.

In spite that we got result for the triangular network, we discuss the Taylor’s

polynomial for it to explain what we actually intend to do.

Taylor Polynomial for αSSI(t)

To consider the Taylor polynomial for αSSI(t) in the triangular network, we need

to recall the initial condition for αSSI(0). That is

αSSI(0) = 〈Sb〉〈SaSbIc〉 − 〈SaSb〉〈SbIc〉 = 0.

From the first derivative of α(t) in equation (3.12) and the initial condition of

β1(0) = 1, β2(0) = 1, β3(0) = 0 and β5(0) = 0 we also have that

α̇(SSI)(0) = −(τ + γ)× 0 + τ × 1− τ × 1− τ × 0 + τ × 0 = 0.
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To avoid clumsy representation, we shall use α and αSSI interchangeably in this

section and thereafter. Recalling that β4(t) = 0 for all t ≥ 0 and also β6(t) = 0 for

all t ≥ 0, then plugging in the various derivatives of the respective β’s from (3.9)

into the derivative of (3.12), the second derivative of α(t) at t = 0 is obtained as

follows
α(2)(t) =− (τ + γ)α̇(t) + τ β̇1(t)− τ β̇2(t)− τ β̇3(t) + τ β̇5(t)

=− (τ + γ)α(t) + τβ1(t)− τβ2(t)− τβ3(t) + τβ5(t)

+ τ [−(3τ + 2γ)β1(t)− τβ6(t)− τβ7(t)]

− τ [−(2τ + γ)β2(t)− τβ1(t)− τβ3(t)]

− τ [−(3τ + 2γ)β3(t)− τβ7(t) + τβ8(t)]

− τ [−2(τ + γ)β5(t)− 2τβ7(t) + τβ9(t)],

α(2)(0) = [τ − 2τγ − 2τ 2] + [2τ 2 + τγ − τ ]

= −τγ.

Summarily, for the triangle αSSI(0) = 0, α̇SSI(0) = 0 and α̈SSI(0) = −τγ. The

Taylor series for α(t) can therefore be written as

α(t) = 0× t0

0!
− 0× t1

1!
− τγ t

2

2!
− ...− α(n)(0)

tn

n!

= P1(t) + E1.

(3.21)

where P1(t) = 0 − 0 = 0 is a zero polynomial of order 1 and the truncation error

E1 is

|E1| ≤ | − τγ|
t2

2!
. (3.22)

Taylor Polynomial for αISI(t)

Equation (3.18) is differentiated to obtain the coefficients of the approximating

polynomial that we are about to obtain. From the initial conditions of αISI(0) = 0,

β1(0) = 1 and β2(0) = 1 we have from (3.18) that α̇(0) = 0. The second derivative

of αISI(t) is direct from (3.18). That is

α(2)(t) =− 2(τ + γ)α̇(t)− τ β̇1(t) + τ β̇2(t)

=− 2(τ + γ)α(t)− τβ1(t) + τβ2(t)

− τ [−(3τ + 2γ)β1(t)− τβ6(t)− τβ7(t)]

+ τ [−(2τ + γ)β2(t)− τβ1(t)− τβ3(t)],

α(2)(0) = [2τ 2 + 2τγ − 2τ ] + [2τ − 2τ 2 − τγ]

= τγ.
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That is, in this case, αISI(0) = 0, α̇ISI(0) = 0 and α̈ISI(0) = τγ. The Taylor series

for α(t) can therefore be written as

αISI(t) = 0× t0

0!
+ 0× t1

1!
+ τγ

t2

2!
+ ..+ α(n)(0)

tn

n!

= P1(t) + E1.

where P1(t) = 0 + 0 = 0 is also a zero polynomial of order 1 and the truncation

error E1 is

|E1| ≤ τγ
t2

2!
. (3.23)

We proceed to do similar analysis for the two forms of triple for the square

network.

3.4 The Square Network

We shall also consider the closure for both the S-S-I and I-S-I triple in the square

network of figure (3.1) whose transmission matrix is

T =


0 τ 0 τ

τ 0 τ 0

0 τ 0 τ

τ 0 τ 0

 .

With the single node equations from (1.21)as

˙〈Sa〉 = −τ〈SaI1〉 − τ〈SaIc〉,
˙〈S1〉 = −τ〈IaS1〉 − τ〈S1Ib〉,
˙〈Sb〉 = −τ〈I1Sb〉 − τ〈SbIc〉,
˙〈Sc〉 = −τ〈IaSc〉 − τ〈IbSc〉,
˙〈Ia〉 = τ〈SaI1〉+ τ〈SaIc〉 − γ〈Ia〉,
˙〈I1〉 = τ〈IaS1〉+ τ〈S1Ib〉 − γ〈I1〉,
˙〈Ib〉 = τ〈I1Sb〉+ τ〈SbIc〉 − γ〈Ib〉,
˙〈Ic〉 = τ〈IaSc〉+ τ〈IbSc〉 − γ〈Ic〉.

(3.24)
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For the pairs we have;

˙〈SaI1〉 = τ〈SaS1Ib〉 − τ〈SaI1Ic〉 − (τ + γ)〈SaI1〉,
˙〈IaS1〉 = τ〈SaS1Ic〉 − τ〈IaS1Ib〉 − (τ + γ)〈IaS1〉,
˙〈S1Ib〉 = τ〈S1SbIc〉 − τ〈IaS1Ib〉 − (τ + γ)〈S1Ib〉,
˙〈I1Sb〉 = τ〈IaS1Sb〉 − τ〈I1SbIc〉 − (τ + γ)〈I1Sb〉,
˙〈SbIc〉 = τ〈I1SbSc〉 − τ〈IaSbIc〉 − (τ + γ)〈SbIc〉,
˙〈IbSc〉 = τ〈I1SbSc〉 − τ〈IaIbSc〉 − (τ + γ)〈IbSc〉,
˙〈SaIc〉 = τ〈SaIbSc〉 − τ〈SaI1Ic〉 − (τ + γ)〈SaIc〉,
˙〈IaSc〉 = τ〈SaI1Sc〉 − τ〈IaIbSc〉 − (τ + γ)〈IaSc〉,
˙〈SaS1〉 = −τ〈SaS1Ic〉 − τ〈SaS1Ib〉,
˙〈S1Sb〉 = −τ〈IaS1Sb〉 − τ〈S1SbIc〉,
˙〈SbSc〉 = −τ〈I1SbSc〉 − τ〈IaSbSc〉,
˙〈SaSc〉 = −τ〈SaI1Sc〉 − τ〈SaIbSc〉.

(3.25)

The triples are expressed in quadruples, some of which are

˙〈SaS1Ib〉 = −(τ + γ)〈SaS1Ib〉+ τ〈SaS1SbIc〉 − τ〈SaS1IbIc〉,
˙〈S1SbIc〉 = −(τ + γ)〈S1SbIc〉+ τ〈IaS1SbSc〉 − τ〈IaS1SbIc〉,
˙〈IaS1Ib〉 = −2(τ + γ)〈IaS1Ib〉+ τ〈SaS1IbIc〉+ τ〈IaS1SbIc〉,
˙〈SaI1Ic〉 = −2(τ + γ)〈SaI1Ic〉+ τ〈SaS1IbIc〉+ τ〈SaI1IbSc〉.

(3.26)

3.4.1 Closure for S-S-I

We first examine the closure for the triple 〈S1SbIc〉 by writing

αSSI(t) = 〈Sb〉〈S1SbIc〉 − 〈S1Sb〉〈SbIc〉.

We find its derivative with respect to time, substitute the relevant terms from

(3.24) to (3.26) to obtain;
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α̇SSI(t) =− (τ + γ)αSSI(t)− τα2(t)− τα3(t)

− τβ1(t) + τβ2(t),

α̇2(t) =− (τ + γ)α2(t) + τβ3(t)− τβ4(t)

+ τβ5(t)− τβ6(t)− τβ7(t)

− τβ8(t) + τβ9(t),

α̇3(t) =− 2(τ + γ)α3(t)− τβ8(t) + τβ9(t)

+ τβ10(t)− τβ11(t) + τβ12(t)− τβ13(t).

(3.27)

where
α2 = 〈S1Sb〉〈IaSbSc〉 − 〈Sb〉〈IaS1SbSc〉,

α3 = 〈Sb〉〈IaS1SbIc〉 − 〈SbIc〉〈IaS1Sb〉,

With
β1 = 〈I1Sb〉〈S1SbIc〉, β2 = 〈S1Sb〉〈I1SbIc〉,

β3 = 〈S1Sb〉〈SaI1SbSc〉, β4 = 〈S1Sb〉〈IaI1SbSc〉,

β5 = 〈I1Sb〉〈IaS1SbSc〉, β6 = 〈SbSc〉〈IaS1SbSc〉,

β7 = 〈IaSbSc〉〈S1SbIc〉, β8 = 〈IaSbSc〉〈IaS1Sb〉,

β9 = 〈Sb〉〈IaS1SbSc〉, β10 = 〈Sb〉〈SaS1SbIc〉,

β11 = 〈I1Sb〉〈IaS1SbIc〉, β12 = 〈I1SbIc〉〈IaS1Sb〉,

β13 = 〈SbIc〉〈SaS1SbIc〉.

(3.28)

The derivatives of the βs are expressed in terms of other form of βs, for example

β̇1(t) = −2(τ + γ)β1(t) + τβ5(t)− τβ12(t)− β14(t)− β15(t),

β̇2(t) = −2(τ + γ)β2(t) + τβ4(t)− τβ12(t)− β14(t) + β16(t),

β̇47(t) = −2(2τ + 2γ)β47(t).

(3.29)

where
β14(t) = 〈I1SbIc〉〈S1SbIc〉,

β15(t) = 〈IaS1Sb〉〈S1SbIc〉,

β47(t) = 〈SaS1SbIc〉〈SaS1SbIc〉.

(3.30)

The interdependency of the derivatives of these βs on one another resulted in

forty seven (47) βs for this first part for the square network (see Appendix for list of

βs), and as mention earlier, it is not feasible to obtain the solution of (3.27) due to

the huge number of the solutions of βs to be substituted into it before integration.

We proceed in the same manner above to derive the Taylor’s polynomials for

the two forms of α(t) for this square network.
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Figure 3.4: For the square network, with τ = .04 and γ = 0.2, we evaluate both
αSSI(t) and αISI(t) from the corresponding hierarchy moment equations (3.24) to
(3.26). We want to extrapolate that the respective analytical representations of
these quantities will correspond with them if all the βs involved in their derivation
can completely be evaluated.

Taylor Polynomial for αSSI(t)

The process of computing the coefficients of the Taylor polynomial for the case

of triangular network yield a value different from zero at the second derivative.

Computation of similar coefficients for the square network is a step further to

obtain a value different from zero,i.e. the third derivative of (3.27) gives a value

different from zero at t = 0. We can not write down all these equations due to

their enormity.

That is, we obtain αSSI(0) = 0, α̇SSI(0) = 0, α̈SSI(0) = 0 and α(3)(0) = −τ 2γ
and so the Taylor polynomial for αSSI(t) can therefore be written as

αSSI(t) = 0× t0

0!
− 0× t1

1!
− 0× t2

2!
− τ 2γ t

3

3!
− ..− α(n)(0)

tn

n!

= P2(t) + E2.

where P2(t) = 0 − 0 − 0 = 0 is a zero polynomial of order 2 and the truncation

error E2 is;

|E2| ≤ | − τ 2γ|
t3

3!
. (3.31)
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3.4.2 Closure for I-S-I

In this part, we follow the above procedure and write

αISI(t) = 〈Sb〉〈I1SbIc〉 − 〈I1Sb〉〈SbIc〉.

to examine the pair closure for 〈I1SbIc〉. We take its derivative with respect to time

as usual and substitute the relevant derivatives. We then have

α̇ISI(t) = −2(τ + γ)αISI(t)− τα2(t)− τα3(t),

α̇2(t) = −2(τ + γ)α2(t) + τβ8(t)− τβ9(t)

+ τβ48(t) + τβ49(t) + τβ50(t)− τβ51(t),

α̇3(t) = −2(τ + γ)α3(t) + τβ8(t)− τβ9(t)

− τβ11(t) + τβ12(t) + τβ13(t)− τβ52(t).

(3.32)

where
α2 = 〈I1Sb〉〈IaSbSc〉 − 〈Sb〉〈IaI1SbSc〉,

α3 = 〈SbIc〉〈IaS1Sb〉 − 〈Sb〉〈IaS1SbIc〉,

with
β48 = 〈I1Sb〉〈S1I1SbSc〉, β49 = 〈Sb〉〈SaI1SbSc〉,

β50 = 〈SbIc〉〈IaI1SbSc〉, β51 = 〈I1SbIc〉〈IaSbSc〉,

β52 = 〈SbIc〉〈SaI1SbSc〉.

(3.33)

The derivatives of these extra βs are similarly expressed in terms of other βs

and we have a total of fifty nine βs to deal with while examining closure for both

the S-S-I and I-S-I triples for the square network. The solution of (3.32) is also

not feasible for same reason above and we proceed to obtain a Taylor polynomial

for αISI(t).

Taylor Polynomial for αISI(t)

From the subsequent derivative of system (3.32) at t = 0, we have that α(3) = τ 2γ

and with α̈(t) = 0, α̇(t) = 0 and α(0) = 0 we can then write

αISI(t) = 0× t0

0!
+ 0× t1

1!
+ 0× t2

2!
+ τ 2γ

t3

3!
+ ..+ α(n)(0)

tn

n!

= P2(t) + E2.

where P2(t) = 0 + 0 + 0 = 0 is a zero polynomial of order 2 and the truncation

error E2 is;
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|E2| ≤ τ 2γ
t3

3!
. (3.34)

We follow the above process to investigate the closure of the two forms of triples

for the pentagon.

3.5 The Pentagon

The transmission matrix for this network in figure (3.1) is

T =


0 τ 0 0 τ

τ 0 τ 0 0

0 τ 0 τ 0

0 0 τ 0 τ

τ 0 0 τ 0

 .

3.5.1 Closure for S-S-I

Writing out the sets of differential equations from (1.21), we also consider the

accuracy of the second order moment closure for the triple 〈S2SbIc〉 following the

same procedure of writing

αSSI(t) = 〈Sb〉〈S2SbIc〉 − 〈S2Sb〉〈SbIc〉.

We take the derivative of αSSI(t) and substitute the relevant terms from the cor-

responding hierarchy of moment equations to get

α̇SSI(t) =− (τ + γ)αSSI(t)− τα2(t)− τα3(t)− τβ1(t)− τβ2(t),

α̇2(t) =− (τ + γ)α2(t)− τα4(t)− τα5(t)− τβ3(t) + τβ4(t)

+ τβ5(t)− τβ6(t),

α̇4(t) =− (τ + γ)α4(t)− τβ7(t)− τβ8(t)− τβ9(t) + τβ10(t)

+ τβ11(t)− τβ12(t) + τβ13(t),

α̇5(t) =− 2(τ + γ)α5(t)− τβ8(t) + τβ10(t) + τβ14(t)− τβ15(t)

− τβ16(t) + τβ17(t) + τβ18(t)− τβ19(t),

α̇3(t) =− 2(τ + γ)α3(t)− τα5(t)− τα6(t) + τβ20(t)− τβ21(t),

α̇6(t) =− 2(τ + γ)α6(t) + τβ14(t)− τβ19(t)− τβ22(t) + τβ23(t)

+ τβ24(t)− τβ25(t).

(3.35)
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where
α2 = 〈SbS2〉〈IaSbSc〉 − 〈Sb〉〈IaS2SbSc〉,

α3 = 〈Sb〉〈I1S2SbIc〉 − 〈SbIc〉〈I1S2Sb〉,

α4 = 〈Sb〉〈SaI1S2SbSc〉 − 〈S2Sb〉〈SaI1SbSc〉,

α5 = 〈I1S2Sb〉〈IaSbSc〉 − 〈Sb〉〈IaI1S2SbSc〉,

α6 = 〈SbIc〉〈IaS1S2Sb〉 − 〈Sb〉〈IaS1S2SbIc〉.

and where the βs are

β1(t) = 〈I2Sb〉〈S2SbIc〉, β2(t) = 〈S2Sb〉〈I2SbIc〉,

β3(t) = 〈S2SbIc〉〈IaSbSc〉, β4(t) = 〈I2Sb〉〈IaS2SbSc〉,

β5(t) = 〈SbIc〉〈IaS2SbSc〉, β6(t) = 〈S2Sb〉〈IaI2SbSc〉,

β7(t) = 〈I2Sb〉〈SaI1S2SbSc〉, β8(t) = 〈SbIc〉〈SaI1S2SbSc〉,

β9(t) = 〈Sb〉〈SaI1S2SbSc〉, β10(t) = 〈I1S2Sb〉〈SaI1SbSc〉,

β11(t) = 〈S2SbIc〉〈SaI1SbSc〉, β12(t) = 〈S2Sb〉〈SaS1I2SbSc〉,

β13(t) = 〈S2Sb〉〈SaI1I2SbSc〉, β14(t) = 〈IaS1S2Sb〉〈IaSbSc〉,

β15(t) = 〈I1S2SbIc〉〈IaSbSc〉, β16(t) = 〈I1S2Sb〉〈IaI2SbSc〉,

β17(t) = 〈I2Sb〉〈IaI1S2SbSc〉, β18(t) = 〈SbIc〉〈IaI1S2SbSc〉,

β19(t) = 〈Sb〉〈IaS1S2SbSc〉, β20(t) = 〈I2SbIc〉〈I1S2Sb〉,

β21(t) = 〈I2Sb〉〈I1S2SbIc〉, β22(t) = 〈I2SbIc〉〈IaS1S2Sb〉,

β23(t) = 〈SbIc〉〈SaS1S2SbIc〉, β24(t) = 〈I2Sb〉〈IaS1S2SbIc〉

β25(t) = 〈Sb〉〈SaS1S2SbIc〉.

(3.36)

For this network, the number of βs involved is large and the interdependency

of their derivatives show no sign of stopping. To go beyond this level to obtain

results for cycles of higher order, we want to state a relevant hypothesis.

3.5.2 Taylor Expansion Hypothesis

We hypothesise that throwing away the βs that are initially zero makes no difference

in obtaining the coefficients for the Taylor’s polynomials of both the αSSI(t) and

αISI(t) for cycle.

As noted and stated earlier, exact analysis is prohibited for higher order cycle

due to the massive βs involved. Applying this hypothesis considerably reduces the

number of βs in the derivatives of αSSI(t) and αISI(t) in all the networks and the

process still lead to obtaining the same coefficients for the Taylor’s polynomial of

αSSI(t) and αISI(t) in all the networks.
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Although we already have results for the two forms of α for both the triangle and

square networks, we shall validate this hypothesis by applying it to these networks.

Triangle - αSSI(t) and αISI(t)

Invoking the Taylor’s expansion hypothesis (TEH ), the initial configuration of the

triangular network in figure (3.1) means β3(0) = 0, β4(0) = 0 and β5(0) = 0. This

reduces (3.7) to

α̇SSI(t) = −(τ + γ)αSSI + τβ1(t)− τβ2(t). (3.37)

with the relevant βs as

β1(t) = 〈SbIc〉〈SaSbIc〉, β1(0) = 1

β2(t) = 〈Sb〉〈SaSbIc〉, β2(0) = 1.
(3.38)

and their derivatives as

β̇1(t) = −(3τ + 2γ)β1(t),

β̇2(t) = −(2τ + γ)β2(t)− τβ1(t).
(3.39)

Of course, from the initial conditions and equation (3.37) we have that

αSSI(0) = 0, α̇SSI(0) = −(τ + γ)× 0 + τ × 1− τ × 1 = 0.

By differentiating (3.37), the second derivative of αSSI(t) at t = 0 is obtained as

α̈(t) = −(τ + γ)α̇(t) + τ β̇1(t)− τ β̇2(t)

= −(τ + γ)[−(τ + γ)α(t) + τβ1(t)− τβ2(t)]

+ τ [−(3τ + 2γ)β1(t)]− τ [−(2τ + γ)β2(t)− τβ1(t)]

= (τ + γ)2αSSI − τ(τ + γ)β1(t) + τ(τ + γ)β2(t)

− τ(3τ + 2γ)β1(t) + τ(2τ + γ)β2(t) + τ 2β1(t),

α̈(0) = (τ + γ)2 × 0− τ(τ + γ) + τ(τ + γ)

− τ(3τ + 2γ) + τ(2τ + γ) + τ 2

= −3τ 2 − 2τγ + 2τ 2 + τγ + τ 2

= −τγ.

That is αSSI(0) = 0, α̇SSI(0) = 0 and α̈SSI(0) = −τγ which are the same

coefficients obtained above from the first method and these results validate the
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Taylor polynomial (3.21) for the triangular network.

By invoking the TEH, the derivative of αISI(t) in equation (3.14) is already in

its simplest form in equation (3.18) with β10(0) = 0 and β11(0) = 0 and the pro-

cess of finding the coefficients for the Taylor polynomial of αISI(t) follows directly

from section (3.3.3), giving us the same values and subsequently the same Taylor’s

polynomial and finally leading us to compute the same truncating error, E1(t) of

(3.23). We validate our hypothesis for the triangular network.

Square - αSSI(t) and αISI(t)

Considering first for αSSI(t) in this network, invoking the TEH reduces equation

(3.27) to

α̇SSI(t) =− (τ + γ)αSSI(t)− τα2(t)− τα3(t),

α̇2(t) =− (τ + γ)α2(t),

α̇3(t) =− 2(τ + γ)α3(t)− τβ1(t) + τβ2(t).

(3.40)

where
β1(t) = 〈SbIc〉〈SaS1SbIc〉, β1(0) = 1

β2(t) = 〈Sb〉〈SaS1SbIc〉, β2(0) = 1.
(3.41)

which correspond to β13(t) and β10(t) respectively in equation (3.28). We want to

state that the derivatives of these two βs are always of the form in (3.39).

With the initial conditions that αSSI(0) = 0, α2(0) = 0 and α3(0) = 0 we have

that

α̇SSI(0) = −(τ + γ)αSSI(0)− τα2(0)− τα3(0) = 0,

α̈SSI(0) = −(τ + γ)α̇1(0)− τ α̇2(0)− τ α̇3(0)

= −(τ + γ)× 0− τ [−(τ + γ)α2(0)]

− τ [−2(τ + γ)α3(0)− τβ1(0) + τβ2(0)

= 0− τ × 0 + τ × 0 + τ [0− τ + τ ] = 0,

α(3)(0) = −(τ + γ)α̈1(0)− τ α̈2(0)− τ α̈3(0)

= 0− τ × 0− τ [−2(τ + γ)α̇3(0)− τ β̇1(0) + τ β̇2(0)

= −τ [−2(τ + γ)[−2(τ + γ)α3 − τβ1 + τβ2]]

+ τ 2 [−(3τ + 2γ)β1]− τ 2 [−(2τ + γ)β2 − τβ1]

= 0− 3τ 3 − 2τ 2γ + 3τ 3 + τ 2γ = −τ 2γ.

(3.42)

That is, αSSI(0) = 0, α̇SSI(0) = 0, α̈SSI(0) = 0 and the third derivative

α(3)(0) = −τ 2γ. These are the same as the coefficients we obtained for αSSI(t)

of this network from the first approach which lead us to compute the correspond-
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ing polynomial and ultimately the truncation error E3(t) of equation (3.31) for

αSSI(t).

We go through the above process by invoking the TEH on (3.32) and this

reduces equation (3.32) to

α̇ISI(t) = −2(τ + γ)αISI(t)− τα2(t)− τα3(t),

α̇2(t) = −2(τ + γ)α2(t),

α̇3(t) = −2(τ + γ)α3(t) + τβ1(t)− τβ2(t).

(3.43)

with the relevant βs and their derivatives as given in equation (3.39). The progres-

sive differentiation of αISI(t) at t = 0 gives αISI(0) = 0, α̇ISI(0) = 0, α̈ISI(0) = 0

and α(3)(0) = τ 2γ leading to the corresponding Taylor’s polynomial and finally the

truncation error E3 in (3.34).

From here, we want to take a leap of faith based on the validity of the hypoth-

esis for both the triangular and square networks and extend it to find the Taylor

polynomials of the respective quantities for the pentagon and hexagon.

The Pentagon-Taylor Polynomial for αSSI(t)

From above, equation (3.35) is completely reduced to

α̇SSI(t) =− (τ + γ)αSSI(t)− τα2(t)− τα3(t),

α̇2(t) =− (τ + γ)α2(t)− τα4(t)− τα5(t),

α̇4(t) =− (τ + γ)α4(t),

α̇5(t) =− 2(τ + γ)α5(t),

α̇3(t) =− 2(τ + γ)α3(t)− τα5(t)− τα6(t),

α̇6(t) =− 2(τ + γ)α6(t) + τβ1(t)− τβ2(t).

(3.44)

where the relevant βs are

β1(t) = 〈SbIc〉〈SaS1S2SbIc〉, β1(0) = 1

β2(t) = 〈Sb〉〈SaS1S2SbIc〉, β2(0) = 1.
(3.45)

which were originally labelled as β23 and β25 respectively in equation (3.36).

Differentiating αSSI(t) at t = 0,we have that αSSI(0) = 0, α̇SSI(0) = 0,

α̈SSI(0) = 0, α(3)(0) = 0 and α(4)(0) = −τ 3γ. The Taylor polynomial for αSSI(t)

is therefore;

87



αSSI(t) = 0× t0

0!
+ 0× t1

1!
+ 0× t2

2!
+ 0× t3

3!

− τ 3γ t
4

4!
+ ..− α(n)(0)

tn

n!

= P3(t) + E3.

where P1(t) = 0 + 0 + 0 + 0 = 0 is a zero polynomial of order 3 and the truncation

error E3 is

|E3| ≤ | − τ 3γ|
t4

4!
. (3.46)

The Pentagon-Taylor Polynomial for αISI(t)

We write

αISI(t) = 〈Sb〉〈I2SbIc〉 − 〈I2Sb〉〈SbIc〉,

and following the process of differentiation as above, we have that

α̇ISI(t) =− (τ + γ)αISI(t)− τα2(t)− τα3(t),

α̇2(t) =− (τ + γ)α2(t)− τα4(t)− τα5(t),

α̇4(t) =− (τ + γ)α4(t),

α̇5(t) =− 2(τ + γ)α5(t)− τβ1(t) + τβ2(t),

α̇3(t) =− 2(τ + γ)α3(t)− τα4(t)− τα6(t),

α̇6(t) =− 2(τ + γ)α6(t).

(3.47)

Our usual process of evaluating the derivative of αISI(t) at t = 0 gives αISI(0) =

0, α̇ISI(0) = 0, α̈ISI(0) = 0, α(3)(0) = 0 and α(4)(0) = τ 3γ. Therefore, the Taylor

polynomial for αISI(t) is

αSSI(t) = 0× t0

0!
+ 0× t1

1!
+ 0× t2

2!
+ 0× t3

3!

+ τ 3γ
t4

4!
+ ..+ α(n)(0)

tn

n!

= P3(t) + E3.

where P1(t) = 0 + 0 + 0 + 0 = 0 is a zero polynomial of order 3 and the truncation

error E3 is;

|E3| ≤ τ 3γ
t4

4!
. (3.48)
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3.6 The Hexagonal Network

The transmission matrix for this network (see figure (3.1)) is

T =



0 τ 0 0 0 τ

τ 0 τ 0 0 0

0 τ 0 τ 0 0

0 0 τ 0 τ 0

0 0 0 τ 0 τ

τ 0 0 0 τ 0


.

3.6.1 Closure for S-S-I

We follow similar procedure as above and consider the closure for the triple 〈S3SbIc〉
by writing

αSSI(t) = 〈Sb〉〈S3SbIc〉 − 〈S3Sb〉〈SbIc〉.

We take the derivative of αSSI(t) with respect to time, substitute the relevant

derivatives from its hierarchy of moment equations to obtain

α̇SSI(t) = −(τ + γ)αSSI(t)− τα2(t)− τα3(t),

α̇2(t) = −(τ + γ)α2(t)− τα4(t)− τα5(t),

α̇4(t) = −(τ + γ)α4(t)− τα6(t)− τα7(t),

α̇6(t) = −2(τ + γ)α6(t),

α̇7(t) = −(τ + γ)α7(t),

α̇5(t) = −2(τ + γ)α5(t)− τα6(t)− τα8(t),

α̇8(t) = −2(τ + γ)α8(t),

α̇3(t) = −2(τ + γ)α3(t)− τα5(t)− τα9,

α̇9(t) = −2(τ + γ)α9(t)− τα8(t)− τα10(t),

α̇10(t) = −2(τ + γ)α10(t)− τβ1(t) + τβ2(t).

(3.49)

where α2(t) to α10(t) are some compatible pairs and after throwing away all the βs

that are zero at t = 0 we have

β1 = 〈SbIc〉〈SaS1S2S3SbIc〉, β1(0) = 1

β2 = 〈Sb〉〈SaS1S2S3SbIc〉, β2(0) = 1.
(3.50)
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Taylor Polynomial for αSSI(t)

We have α(0) = 0, α(1)(0) = 0, α(2)(0) = 0, α(3)(0) = 0, α(4)(0) = 0 and α(5)(0) =

−τ 4γ. The Taylor polynomial for αSSI(t) in this network is therefore

αSSI(t) = 0× t0

0!
+ 0× t1

1!
+ 0× t2

2!
+ 0× t3!

3!

+ 0× t4

4!
− τ 4γ t

5

5!
+ ..− α(n)(0)

tn

n!

= P4(t) + E4.

where P1(t) = 0+0+0+0+0 = 0 is a zero polynomial of order 4 and the truncation

error E4 is;

|E4| ≤ | − τ 4γ|
t5

5!
. (3.51)

3.6.2 Closure for I-S-I

We write

αISI(t) = 〈Sb〉〈I3SbIc〉 − 〈I3Sb〉〈SbIc〉

for the triple 〈I3SbIc〉. We differentiate it and substitute relevant terms from its

hierarchy of moment equations to obtain

α̇ISI(t) = −2(τ + γ)αISI(t)− τα2(t)− τα3(t),

α̇2(t) = −2(τ + γ)α2(t)− τα4(t)− τα5(t),

α̇4(t) = −2(τ + γ)α4(t),

α̇5(t) = −2(τ + γ)α5(t)− τα6(t)− τα7(t),

α̇6(t) = −2(τ + γ)α6(t) + τβ1(t)− τβ2(t),

α̇7(t) = −2(τ + γ)α7(t),

α̇3(t) = −2(τ + γ)α3(t)− τα4(t)− τα9(t),

α̇8(t) = −2(τ + γ)α8(t)− τα9(t)− τα10(t),

α̇9(t) = −2(τ + γ)α9(t)− τα10(t),

α̇10(t) = −2(τ + γ)α10(t).

(3.52)
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Taylor Polynomial for αISI(t)

We also have that α(0) = 0, α(1)(0) = 0, α(2)(0) = 0, α(3)(0) = 0, α(4)(0) = 0 and

α(5)(0) = τ 4γ. The Taylor expansion for α(t) in this network is therefore;

α(t) = 0× t0

0!
+ 0× t1

1!
+ 0× t2

2!
+ 0× t3!

3!

+ 0× t4

4!
+ τ 4γ

t5

5!
+ ..+ α(n)(0)

tn

n!

= P4(t) + E4.

where P1(t) = 0+0+0+0+0 = 0 is a zero polynomial of order 4 and the truncation

error E4 is;

|E4| ≤ τ 4γ
t5

5!
. (3.53)

We believe that using the first method without the hypothesis, we will obtain

the same Taylor’s polynomials of (3.46), (3.48), (3.51) and (3.53) for the respective

quantities provided the derivatives of the enormous βs involved in these networks

can be entirely carried out.

3.7 The Trend of En and β

Equations (3.6), (3.31), (3.46) and (3.51)show that the truncation error for ap-

proximating αSSI(t) with zero polynomial in all the network follows a trend that

indicate a general representation of

Ek ≤ −τ kγ
tk+1

(k + 1)!

where k = N − 2 and N the number of nodes in the ring. Of course the truncation

error Ek → 0 for a finite t, hence αSSI(t)→ 0 for a finite t.

Similar observation for αISI(t) from equations (3.23), (3.34), (3.48) and(3.53)

indicate that a general representation can also be written for the degenerating and

converging truncation error Ek as

Ek ≤ τ kγ
tk+1

(k + 1)!

where k is also as defined above. In figures (3.5) and (3.6), E1 is a bound for both

αSSI(t) and αISI(t) in the triangular network.
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Figure 3.5: For the square network, with τ = 0.4 and γ = 0.2, we evaluate both
αSSI(t) and αISI(t) from the corresponding hierarchy.
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Figure 3.6: For the square network, with τ = 0.4 and γ = 0.2, we evaluate both
αSSI(t) and αISI(t) from the corresponding hierarchy
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Our next intention will be to show that αSSI and αISI can be obtained for any

ring of size N by averaging thousands of simulations and that they are actually

bounded by there corresponding En, since the HME for large N is not feasible..

While numerical issues prevented us from obtaining results for rings of higher order,

we can only ascertain the robustness of our simulation process by comparing the

values of αSSI and αISI from simulations with that already obtained from the HME

for smaller networks - triangle and square. In figures (3.7) and (3.8), the respective

average of 200,000 simulations of αSSI and αISI for both graphs seems to compare

well with that obtained from their corresponding HMEs.
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Figure 3.7: The plot of αSSI and αISI from HME and average of 200,000 simulation
for the triangular network, with τ = 0.4 and γ = 0.2.

If we concentrate on the application and result of the hypothesis for approxi-

mating the respective αSSI(t) and αISI(t) in the various networks and given the

initial state of the system with node c being infectious we can see a general trend in

the evolution of β1(t) and β2(t) in all the network. The formation of the βs follows

a systematic pattern. From equations (3.38),(3.41), (3.45) and (3.50), the two β’s

have the general form

β1(t) = 〈SbIc〉〈SaS1S2S3...SmSbIc〉,

β2(t) = 〈Sb〉〈SaS1S2S3...SmSbIc〉,

where m is the number of susceptible nodes introduced between node a and b in

the basic triangular network. One of the two terms that make up each of the βs
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Figure 3.8: The plot of αSSI and αISI from HME and average of 200,000 simulation
for the square network, with τ = 0.4 and γ = 0.2.

have similar form (〈Sb〉 and 〈SbIc〉) in all the network considered with the other

term ‘increasing in length’ according to the number of susceptible nodes introduced

into the basic triangle.

Fundamentally and from (1.21) we have that for a finite size contact network;

〈 ˙SiIj〉 =
∑
k

Tjk〈SiSjIk〉 −
∑
k

Tik〈IiSjIk〉 − Tij〈SiIj〉 − γ〈SiIj〉 (3.54)

We recall the respective general second order moment closure for the possible

triples of S-S-I and I-S-I as

αSiSjIk(t) = 〈Sj〉〈SiSjIk〉 − 〈SiSj〉〈SjIk〉,

αIkSiIj(t) = 〈Si〉〈IkSiIj〉 − 〈IkSi〉〈SiIj〉,

with node Sj as the middle term in the triple SiSjIk and node Si as the middle

term in the triple IkSiIj. Expressing these two terms in term of the original triples

in (3.54) gives

〈SiSjIk〉 =

[
〈SiSj〉〈SjIk〉
〈Sj〉

+
αSiSjIk

〈Sj〉

]
and 〈IkSiIj〉 =

[
〈IkSi〉〈SiIj〉
〈Si〉

+
αIkSiIj

〈Si〉

]
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Plugging these terms into (3.54) gives;

〈 ˙SiIj〉 =
∑
k

Tjk〈SiSjIk〉 −
∑
k

Tik〈IiSjIk〉 − Tij〈SiIj〉 − γ〈SiIj〉

=
∑
k

Tjk

[
〈SiSj〉〈SjIk〉
〈Sj〉

+
αSSI

〈Sj〉

]
−
∑
k

Tik

[
〈IkSi〉〈SiIj〉
〈Si〉

+
αISI

〈Si〉

]
− Tij〈SiIj〉 − γ〈SiIj〉

By collecting like terms we have

〈 ˙SiIj〉 =
∑
k

Tjk
〈SiSj〉〈SjIk〉
〈Sj〉

−
∑
k

Tik
〈IkSi〉〈SiIj〉
〈Si〉

− Tij〈SiIj〉 − γ〈SiIj〉︸ ︷︷ ︸
familiar pair approximation of equation (3.54)

+

[∑
k

Tjk
αSiSjIk

〈Sj〉
−
∑
k

Tik
αIkSiIj

〈Si〉

]
︸ ︷︷ ︸

terms representing the error

(3.55)

where ∑
k

Tjk
αSiSjIk

〈Sj〉
−
∑
k

Tik
αIkSiIj

〈Si〉
,

can be described as term quantifying the error in 〈 ˙SiIj〉.

3.8 Conclusion

The presence of loops is a major challenge against defining suitable low dimensional

approximate epidemic model that readily matches the results of the corresponding

stochastic model. Here, we have investigated and attempted to quantify the error

in approximating triples by a second order moment closure for an SIR epidemic

model on a network with a single cycle where the clustering coefficient is zero (that

is, no triangle is present) and the average degree distribution is 2.

Proving the exactness of such closure can involve differentiation and integration

of the difference of some form of ‘compatible pair(s)’ to show that such difference

is consistently zero at all time. We believe the two unusual terms that appeared in

this process for ring networks are responsible for the deviation of the closure from

being exact and we refer to them as ‘error terms’.

We were able to write a representation for the error terms for cycle with 3-nodes

because the sets of differential equations here is of lower order. We validated this

representation with that computed from the numerical solution of the hierarchy of

moment equations. To go forward beyond the challenge posed by the large number
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of ‘error terms’ involved for cycles of higher order and the interdependency of their

derivatives, we stated an hypothesis which, although it is not proved in this study,

helped us to extrapolate results from cycles of lower to those of higher orders.

We were also able to show that the representation of the error term can be

be approximated by a zero polynomial for cycle of finite size with the truncating

error for this approximation as the upper bound. We observe that while network

size increases, the error rapidly decreases which is exactly what we are predicting

and this is consistent with what we observe numerically. A reason why we were

struggling going beyond N = 4.

Unfortunately, we can not say much about the error quantity of equation (3.55)

at the moment and we also hope that the Taylor’s expansion hypothesis (TEH)

will be rigorously proved presumably by induction method in future studies. We

recall TEH implies that all βi(0) = 0, i = 1, 2, 3, ..., N where

βi 6= 〈SbIc〉〈SaS1S2S3...SmSbIc〉 and 〈Sb〉〈SaS1S2S3...SmSbIc〉.

Using the formalism of chapter 2, we have shown in both the triangular and square

networks that β̇i(t) = 0 and that βi(t) = 0 for all t ≥ 0. If this is true for the

square network where m = 1 and it is true for the pentagon network by extension

of TEH where m = 2 ,then it will be nice to show, possibly by induction, that it

is true for all N .

96



Chapter 4

Quasi-Stationary Distribution of

the pair-based SIS Epidemic

model on line graphs

4.1 Introduction

The concept of quasi-stationary distributions (QSD) is used to model the behaviour

of some stochastic systems which eventually approach an absorbing state but nev-

ertheless appear to be stationary over a reasonable period of time.

For example, in modelling the spread of a computer virus across a network with

cure and reinfection, the number of computers infected attains some stationary-like

behaviour prior to the total cure of computers in the network [79, 105, 122]. The

idea of QSD has been used in this regard to describe the behaviour of the region

of this temporary equilibrium for computer virus spread[178].

Another example is provided by chemical reactions in which materials or cat-

alysts can be exhausted (corresponding to an absorbing state) yet the reactions

appear to attain a temporary equilibrium. QSDs have been applied in this context

to describe and understand the concentration of catalyst in this region of temporary

equilibrium [35, 36, 116 121 , 130].

QSDs are also powerful tools in area of wildlife management. They are useful

in predicting persistence times, and the distribution of the number of individuals,

in animal populations that are subject to large-scale mortality or emigration [133].

Despite the fact that the usual stochastic models predict ultimate extinction, these

populations can be amazingly resilient. The application of QSDs in wildlife man-

agement has been investigated in several papers [63, 86, 98, 118, 129, 145].
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The time it takes for some absorbing stochastic process to absorb can sometimes

be long. The time evolutions of the probability of the states in an absorbing

Markovian process during this temporary equilibrium state can be approximated

by the probability distribution under the condition that absorption has not taken

place. The limit of the distribution of the probabilities of states conditioned on

non-absorption is the QSD of the system.

Using the Frobenious theorem, Mandl (1960) [94] proved that for all initial

distributions, excluding the absorbing state, a unique and positive stationary dis-

tributions exists for a discrete time Markov Chain that has a finite state space.

Based on this fact, Cavender [23] amongst many researchers [19, 87, 115, 117, 167]

on the QSD, used the Birth-and-Death process to model a finite biological popu-

lations in order to investigate and then establish the existence and uniqueness of

stationary distributions of, among many variables, the population size(s) at time t

conditioned on non-extinction.

Darroch and Seneta [39] among others [107, 115, 117], considered the QSD of

absorbing discrete-time Markov chains with discrete finite state space and extended

this concept to the continuous-time Markov chain, giving a precise relationship

between the quasi-stationary distributions and the transition matrix.

The QSD does not necessarily exist for infinite state systems [115]. On the

assumption that absorption is certain, Seneta and Vere-Jones [148], using some

matrix properties and invariant distributions of transition matrix [128, 131, 132,

149, 150], extended Mandl proof by developing infinite-dimensional Frobenius the-

orems to find a large class of initial conditions under which a positive QSD exists

for discrete time discrete infinite states space system. By this, the QSD of a num-

ber of stochastic process with infinite state space, such as the branching process

have been studied.

The SIS model is considered as one of the simplest stochastic models for en-

demic infections [107]. This model allows an individual to fluctuate between two

infection states: Susceptible and Infectious. Recovery from infection is immedi-

ately followed by replenishing the susceptible pool. The deterministic model which

was introduced by Ross [141] leads to a logistic curve with the value of R0 deter-

mining the persistence or extinction of the disease from a population. There is an

equilibrium state of infection if R0 > 1 and extinction if R0 < 1 for all positive

initial fraction of infected individuals.

The Stochastic SIS model which was introduced by Weiss and Dishon [177] is a

continuous time Markov birth-and-death process with an absorbing state. Studies
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[6, 7, 115] established that for R0 greater than unity, time to extinction of the

stochastic SIS epidemic dynamics increases exponentially with population size and

can be extraordinarily large for small population size. The time to absorption can

also be very small and is independent on population size for small value of R0[107].

In the end, extinction of infection from the population is certain, regardless of the

value of R0.

Earlier studies of the QSD of endemic infections have concentrated on Marko-

vian mean-field models-especially SIS dynamics. Kriscio and Lefevre[87] used a

conditional birth-and-death process of a fixed population to approximate the QSD

of Markovian SIS epidemic dynamics in a closed population. Norden[115] also

considered Markovian SIS epidemic dynamics in a closed population to investigate

the distribution of the extinction times from both the numerical and the theo-

retical standpoint. Nassel[109] in the same manner considered the SIS epidemic

dynamics, using the concept of QSD, to account for the influence of epidemic and

demographic forces on the time to extinction of recurrent epidemics in a population.

Here, we investigate the average of the QSD of Markovian SIS epidemic dynam-

ics on networks. The study is first approached by considering line graphs with few

nodes where the master equation can feasibly be written for the dynamics of the

epidemic system. The solutions of these systems can readily be compared with sim-

ulation, but then, we have the problem where bigger networks cannot be analysed

due to the sheer size of the state spaces and subsequently the higher dimensional

sets of equations that are not numerically feasible.

We progress to adopt the ideas of the earlier chapters by considering the pair-

approximation of the SIS epidemic model conditioned on non-extinction to ap-

proximate the process of the Master equation dynamics and compare the results

with the QSD from averages of many simulations to validate its accuracy with the

results from the master equation for smaller networks.

We then advance to consider this pair-approximation model for larger networks

and compare the results with average of simulations for considerably bigger net-

works to see if this model can approximately describe the average of the QSDs for

more complex networks. This also enable us to gain better understanding of the

pair-approximation of the SIS dynamics.
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4.2 Defining the QSD for SIS dynamics on a Net-

work

For stochastic SIS epidemic dynamics on an arbitrary graph of finite size N , an

individual fluctuates between two infection status, i.e susceptible and infectious.

We suppose that an individual i is susceptible with probability 〈Si〉 or infectious

with probability 〈Ii〉, i ∈ {1, 2, ..., N}. Infection and subsequent recovery are both

Poisson processes with respective rates

λi =
N∑
j=1

TijSiIj and µj = γjIj,

where Tij, λi and µi are as defined in section (1.7.3). Here, an infected individual

after recovery immediately become susceptible.

Let Γ be the state space of the system and let Pα(t) denote the probability that

the system is in state α at time t, assuming an initial distribution {P (0)}. Let

Pσ(t) be the probability that the system is in the absorbing state, σ = S1S2...SN ,

representing the all-susceptible state which is the only absorbing state for the sys-

tem.

Let P ∗(t) represent the vector which contain all the component of P (t) except

the first element, Pσ(t), which corresponds to the probability distribution of the

ground state, σ. The QSD is defined as the probability of states conditioned on

non absorption. Let us assume Pσ(0) < 1; that is the probability of the system

being initiated at the ground state is not ‘certain’ and define that for any state α

qα(t) =
P ∗α(t)

1− Pσ(t)
. (4.1)

Thus, qα(t) will be used to describe the distributions of the conditioned system and

qx = lim
t→∞

qα(t),

is the QSD of the system. This is unique for any transient initial condition as

shown by Darroch and Seneta [39].

Since we are dealing with a continuous time Markov chain, the time evolution

of the probabilities of the system states can be represented by the Master equation,

a gain-loss equation

Ṗα(t) =
∑
β

[QαβPβ(t)−QβαPα(t)],
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or

Ṗα(t) = QPα(t). (4.2)

where QαβPβ(t) is the gain due to transmission from other states β to state α, and

QβαPα(t) is the loss due to transmission from α into other states β.

We emphasize qα(t) is the probability that at time t the system is in state α,

conditional on it not being in state σ and that qα(t → ∞) = q is the QSD. It is

essential to note that the system of differential equations for P ∗(t) is closely related

to the system in equation (4.2) [107]. That is

Ṗ ∗α(t) = AP ∗α(t), (4.3)

where A is the submatrix obtained from matrix Q by deleting the first row and the

first column which respectively correspond to the transmission rates into and out

of the ground state, σ.

The QSD can be evaluated by looking at the stationary behaviour of equation

(4.1). Differentiating equation (4.1) using product rule gives

q̇α(t) =
d

dt

{
P ∗α(t)

1− Pσ(t)

}
=

Ṗ ∗α(t)

1− Pσ(t)
+

P ∗α(t)Ṗσ(t)

(1− Pσ(t))2

=
AP ∗α(t)

1− Pσ(t)
+

[
P ∗α(t)

1− Pσ(t)

] [
Ṗσ(t)

1− Pσ(t)

]

= Aqα(t) + qα(t)
Ṗσ(t)

1− Pσ(t)
.

(4.4)

That is;

q̇α(t) = qα(t)A+
Ṗσ(t)

1− Pσ(t)
qα(t). (4.5)

For stationarity, q̇α(t) = 0 so we therefore have

qxA = λqx. (4.6)

where, at stationarity we have:

λ = lim
t→∞

Ṗσ(t)

Pσ(t)− 1
= lim

t→∞

∑N
j=1Q1,jPj(t)

Pσ(t)− 1
.

The process above is a general case for an arbitrary contact network.

From established results [39, 107, 130, 133] for the existence of a limiting proba-
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bility distribution for discrete state space models, we know that qα(t)→ qx for each

α ∈ Γ, regardless of the state α in which the system is initiated. Moreover, each qα

is positive. From (4.6), the QSD is a left eigenvector of the matrix A corresponding

to the eigenvalue λ. In this case, qx is the normalized eigenvector corresponding to

the maximum(or the leading) eigenvalue of A. An example of the QSD evaluated

in this manner is in Markovian reliability models where the stationary distribution

of the number of functioning units (conditioned on the system not having failed)

is obtained as the dominant left eigenvector of the transition-rate matrix restricted

to the transient states [115, 117]. This value can be evaluated numerically for a

system with reasonably small number of states such as the ones considered in the

next section.

Figure 4.1: Simple networks considered in this study

4.3 Calculating the QSD on a lattice

We begin our study by giving a step-by-step analysis of the methodology by treating

examples of SIS epidemic dynamics on line graphs with few nodes. This enables us

to write down low-dimensional set of equations which are mathematically tractable.

We assume a constant transmission rate, τ across all links and a constant recovery
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rate γ for an infected individual. We start by writing down the corresponding

transition rates matrix for each of the simple networks considered and then evaluate

the QSD using the master equation, following the process of equation (4.2) through

equation (4.6) as explained in the preceding section.

We start with the 3-nodes line graph of figure 4.1(a) with the state space given

as

Γ = {S1S2S3, S1S2I3, S1I2I3, S1I2S3, I1S2S3, I1I2I3, I1S2I3, I1I2S3}.

Note that the number of states for each network in our case is 2k where k is

the number of nodes in the network. In the case of the 3-nodes graph presently

considered, the number of states is 2k = 8, where k = 3.

The corresponding matrix of transition rates Q for this system in (4.2) is

Q =



0 γ γ γ 0 0 0 0

0 a 0 0 γ γ 0 0

0 0 b 0 γ 0 γ 0

0 0 0 a 0 γ γ 0

0 τ τ 0 c 0 0 γ

0 0 0 0 0 2a 0 γ

0 0 τ τ 0 0 c γ

0 0 0 0 τ 2τ τ −3γ


where a = −(τ + γ), b = −(2τ + γ) and c = −(τ + 2γ).

We numerically solve equation (4.2) for this system by starting the system in a

pure state, S1S2I3 with τ = 0.3 and γ = 0.1. Figure 4.2(a) shows the distributions

of states with the probabilities of the ground state S1S2S3 increasing from 0 to 1,

indicating final absorption of the system to the ground state while the distributions

of other states initially increase and then decrease to zero in the long run. The

expected number of infective of the system which can be calculated as

[I](t) =
∑
α

I(α)Pα(t), (4.7)

is shown in figure 4.2(b), where I(α) is the number of infected individuals in state

α ∈ Γ and Pα(t) is the corresponding probability distribution for state α. Having

initiated the system in state, S1S2I3, the number of infective as shown in figure

4.2(b) initially increases from 1, peaks and then decreases to zero indicating ex-

tinction of infection in the system.
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Figure 4.2: (a) The Probability distribution of states and (b) the corresponding
infection time series of SIS epidemic dynamics on a 3-node line graph with τ = 0.3,
γ = 0.1 and initiating the system in state S1S2I3

We now proceed to evaluate the distributions across states of this same system

in the QSD. We start by partitioning Γ, writing Γ as Γ = {S1S2S3}
⋃
{Γ′} where

Γ′ = {S1S2I3, S1I2I3, S1I2S3, I1S2S3, I1I2I3, I1S2I3, I1I2S3}. (4.8)

We comment here that the corresponding submatrix A, which appears in equations

(4.3) to (4.6) for this system is a 7 by 7 matrix which is obtained by deleting the

first row and column of matrix Q above. These entries correspond to the flow rates

of states into and out of the ground state, σ = S1S2S3.

The values of qα(t) for this system which are derived from equation (4.1) are

plotted in figure 4.3(a). Here, state I1I2I3 is the most likely in the QSD. The

expected number of infective for this system which can be written as

[I∗](t) =
∑
α 6=σ

I(α)qα(t). (4.9)

can be seen in the long-term behaviour of figure 4.3(b). I(α) is the number of

infectious individuals in state α ∈ Γ′ and where qα(t) the corresponding probability

distributions.

The stationary behaviour can also be determined by equation (4.6). Specifi-

cally, the maximum eigenvalue for this truncated matrix is −0.016 and its scaled
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Figure 4.3: (a)The quasi stationary distribution comprising of the seven transient
states and (b) the expected number of infectious individuals in the conditioned SIS
epidemic dynamics on a 3-nodes line graph with τ = 0.3, γ = 0.1 and initiating the
system in state S1S2I3.

eigenvector qx, is

qx =



0.0569

0.1596

0.0467

0.0560

0.4616

0.0589

0.1596


in the order given in equation (4.8). This coincides with the long-term behaviour

in figure 4.3(a). The expected number of infective Iq (marked in figure 4.3(b)),

in this stationary state can alternatively be estimated from the eigenvector as

Iq =
∑

α 6=σ I(α)qx = 2.3011 where I(α) = [1 2 1 1 3 2 2] for this case.

We can also compute the QSD directly from stochastic simulation. To do this,

we run many simulations from the same initial state (any state except σ). The

mean of these simulations is taken over time, but when fade-out occurs for a given
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simulation at time tf , it is not included in the average after tf . The plots for the

average of the QSD from 1,000,000 simulations is identical to the Master equation

results in figure 4.3(b) within the resolution of the figure. We compare extensively

with this simulation method in the following two sections.

4.4 Approximations for the QSD

While it is feasible to use the Master equation to determine the QSD for small

networks, for larger networks this is not feasible. Here we investigate the possibility

of using either individual or pair-level approximation method to approximate the

expected infection time series in the QSD.

Firstly note that from equations (4.1), (4.7) and (4.9)

[I∗] (t) =
∑
α 6=σ

I(α)qα(t)

=

∑
α 6=σ I(α)P ∗α(t)

1− Pσ(t)

=

∑
α I(α)Pα(t)

1− Pσ(t)

=
I(t)

1− Pσ(t)

That is

[I∗](t) =
[I](t)

1− Pσ(t)
, (4.10)

consequently

Iq = lim
t→∞

[I](t)

1− Pσ(t)
. (4.11)

Our objective is therefore to approximate [I](t) and Pσ(t) by investigating the

individual and pair-approximations of the Markovian SIS epidemic dynamics.

4.4.1 Individual-approximation

For any transmission matrix T as defined in section (1.7.3) and any pair of nodes i

and j, the stochastic individual based SIS epidemic dynamic[60] is consistent with

system (4.12)

˙〈Si〉 = −
N∑
j=1

Tij〈SiIj〉+ γi〈Ii〉,

˙〈Ii〉 =
N∑
j=1

Tij〈SiIj〉 − γi〈Ii〉.

(4.12)
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We consider its individual approximation by approximating the probabilities of

pairs as being statistically independent of the probabilities of constituent individ-

uals; that is,

〈SiIj〉 = 〈Si〉〈Ij〉,

and we write system (4.12) as

〈Ẋi〉 = −
N∑
j=1

Tij〈Xi〉〈Yj〉+ γi〈Yi〉,

〈Ẏi〉 =
N∑
j=1

Tij〈Xi〉〈Yj〉 − γi〈Yi〉,

(4.13)

with 〈Xi〉 and 〈Yi〉 as the respective approximations for 〈Si〉 and 〈Ii〉, and where

as in earlier chapters, notations such as 〈AiBj〉 represents the time dependent

probability of individual i being in state A and individual j being in state B in

the pair AiBj. The dot notation here is the derivative of quantity with respect to

time.

We define the infection time series of system (4.13) as

[I](t) ≈ [Xa](t) =
N∑
i=1

〈Xi〉,

and approximate the probability, Pσ(t) of the ground state 〈S1S2...SN〉 as

Pσ(t) ≈ S(t) =
N∏
i=1

〈Si〉.

The average number of infectious individuals conditioned on non-extinction is

therefore approximated as

[I∗](t) ≈ [X∗](t) =
[Xa](t)

1− S(t)
. (4.14)

And the corresponding average of the QSD is obtained as

[Iq] = lim
t→∞

[Xa](t)

1− S(t)
. (4.15)

The infection time series of equation (4.14) for all the line graphs considered ap-

pear not consistent with the estimate from the corresponding Master equation and

averages of simulations in figure (4.4).

107



0 5 10 15 20 25 30 35 40 45 50
1

1.5

2

2.5

3
A

v
rg

 N
o
 o

f 
In

fe
c
ti
v
e
s

Time

(a) 3−nodes line graph
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(b) 4−nodes line graph
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Figure 4.4: The average number of infectious individuals as obtained from the Mas-
ter equation, the conditional individual and pair based model and the average of
1,000,000 simulations for the SIS epidemic dynamics on (a) 3-nodes, (b) 4-nodes
and (c) 5-nodes line graphs with τ = 0.3 and γ = 0.1.
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4.4.2 Pair-approximation

For the pair-based model, stochastic SIS epidemic dynamics are consistent with

system (4.16), for any transmission matrix T and any pair of nodes i and j [60];

˙〈Si〉 = −
N∑
j=1

Tij〈SiIj〉+ γi〈Ii〉,

˙〈Ii〉 =
N∑
j=1

Tij〈SiIj〉 − γi〈Ii〉,

˙〈SiIj〉 =
N∑

k=1,k 6=i

Tjk〈SiSjIk〉 −
N∑

k=1,k 6=j

Tki〈IkSiIj〉 − (Tij + γj)〈SiIj〉,

˙〈SiSj〉 = −
N∑

k=1,k 6=j

Tik〈IkSiSj〉 −
N∑

k=1,k 6=i

Tjk〈SiSjIk〉.

(4.16)

Following the process of pair-approximation adopted in earlier chapters, we close

the system at the level of pairs with a second order moment closure of equation

(1.22), that is

〈AiBjCk〉 ≈
〈AiBj〉〈BjCk〉

〈Bj〉
.

which expresses the probabilities of triples in terms of that of pairs to obtain a

lower-dimensional system of differential equations (4.17).

〈Ẋi〉 = −
N∑
j=1

Tij〈XiYj〉+ γi〈Yi〉,

〈Ẏi〉 =
N∑
j=1

Tij〈XiYj〉 − γi〈Yi〉,

〈 ˙XiYj〉 =
N∑

k=1,k 6=i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
−

N∑
k=1,k 6=j

Tik
〈YkXi〉〈XiYj〉
〈Xi〉

− (Tij + γj)〈XiYj〉,

〈 ˙XiXj〉 = −
N∑

k=1,k 6=j

Tik
〈YkXi〉〈XiXj〉

〈Xi〉
−

N∑
k=1,k 6=i

Tjk
〈XiXj〉〈XjYk〉

〈Xj〉
.

(4.17)

where 〈Xi〉 and 〈Yi〉 also represent approximations of the respective probabilities,

〈Si〉 and 〈Ii〉, etc.

The approximate expected number of infectious individuals for system (4.17) is
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given by

[I](t) ≈ [X](t) =
N∑
i=1

〈Xi〉.

This system has been tested and established accurate for quantifying the apparent

stationary-like behaviour when the rate of absorption is small [60]. However, when

fade-out is rapid, equation (4.17) can still exhibit a genuine stationary state and

no longer matches numerical simulation. The main reason for this is that equation

(4.17) does not properly represent the absorbing state since this would represent

a correlation between the states of all individuals in the system. Here we will be

conditioning against the absorbing state and so hope to obtain the average of the

QSD when absorbing is rapid.

We need to approximate Pσ(t) from our pair-approximation model (4.17). To

approximate the all-susceptible state, we make use of a pair-level closure proposed

in [149]:

Pσ(t) ≈ S(t) =

∏N
j<iGij〈XiXj〉∏N
i 〈Xi〉ni−1

. (4.18)

where G is the adjacency matrix of the underlying graph (Gij = 1 if Tij > 0 or

Tji > 0, and is zero otherwise) and ni =
∑

j Gij, (i.e. the degree of susceptible

node Xi). Note that notation 〈.〉 denotes probability and that 〈σ〉(t) is the same

as Pσ(t).

As we have approximated [I](t) for the Master equation in (4.10), we also need

to approximate [I](t) from our pair-approximation model (4.17). We have

[I](t) ≈ [X∗](t) =
[X](t)

1− S(t)
. (4.19)

And

[I∗q ] = lim
t→∞

[X](t)

1− S(t)
. (4.20)

We proceed to numerically investigate the accuracy of [I∗q ] for quantifying the

average of the expected number of infectious in the QSD. We first compare (4.20)

with the average of the QSD derived from the Master equation and numerical

simulation for 3-node, 4-node and 5-node line graphs. These results are shown in

figure 4.4 where the same τ and γ as in figure 4.2 are used in each and where

stochastic simulation results are based on 1,000,000 simulations with an initial

condition of all infected.

Firstly we observe no difference at the scale of the graph between numerical

result for the pair-approximation and the Master equation results. The infection

time series shows that the pair based model seems to perform better with increased
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network size. The plots on the line graphs illustrate the problem of fade-out and

hence we obtain results much closer to the master equation by conditioning against

extinction for both the individual-based and pair-based model. Meanwhile, the

pair-approximation seems to adequately capture the solution of the various original

systems for the 5-nodes line graph where fade-out is not more pronounced compared

to the 3-nodes and 4-nodes line graphs. Inaccuracy is expected to arise from low-

order cycles(not relevant in the examples) and the error due to approximation

(4.20).

4.5 QSD on larger networks

While we have determined the QSD from the Master equation for a line graph

of order 5, this already entails a state space of size 25 = 32. However, the nu-

merical simulation for pair-approximation has proved to be a robust method for

determining the QSD, we therefore make comparison on larger networks between

stochastic simulation and pair-approximation, and also obtaining results for the

corresponding conditional individual-approximations..

We now consider graphs where it is not visible to compute the QSD from the

method of the master equation and compare the infection time series solution of

the pair-approximation with simulations. We solved for the pair based infection

time series for the 3by3 and 4by4 square lattices of figure (4.1), starting the systems

with all initially infected individuals with τ = 0.5 and γ = 0.2 (chosen to result in

a significant probability of fade out over the simulation time period) and compare

with the corresponding infection time series of the average of 1,000,000 simulations.

Figure (4.5) shows the two results from simulations and pair-approximation seem

to be on top of each other within the resolution of the graph.
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Figure 4.5: The average number of infectious individuals in the quasi stationary
distribution of the conditional individual based model, the conditional pair based
model and the average of 1,000,000 simulation of the SIS epidemic dynamics on
3by3 and 4by4 square lattices. The blue lines, the plots for QSD-pairbased look
obscure because it is completely overshadowed by the green dots, the plots for QSD-
simulation. The average of the QSD for the pair based model seems to coincide with
that obtained from the average of simulations. For the 3by3 lattice, 80 thousand
simulations of 1,000,000 simulations (which is 8%) went extinct over the time
period shown in the graph while about 6% went extinct for the 4by4 square lattice
over the time period shown in the graph.
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4.6 Conclusion

We have studied, for the first time, the stationary distribution of the average num-

ber of infective of Markovian SIS epidemic dynamics on networks. We numerically

show that the dynamics of an endemic infection can be approximated by the pair-

based SIS epidemic model conditioned on non-extinction of infection.

We started our analysis by considering SIS epidemic dynamics on graphs with

few nodes, particularly 3-nodes, 4-nodes and 5-nodes line graphs. These are of

particular interest because we saw in the SIR case [155], the lack of cycles generate

exact model. For each of the line graph, we wrote down the Master equation

leading us to compute the QSDs. From the eigenvector perspective, we were able

to compute the QSDs and the average number of infective in the QSD for the

various line graphs. The results seem identical with simulations.

This process of finding the QSDs from the Master equation and the eigenvector

approach is not feasible for bigger networks due to the high dimensionality of

equations involved. To go beyond the line graphs, we advanced to approximate

the Master equation by investigating the possibility of using either the individual

approximation or pair approximation of the SIS epidemic dynamics.

For the line graphs earlier considered, we attempted to compare the infection

time series from the Master equation with that from both the individual and pair

approximation processes. Results showed that there was divergent between the

QSD simulations and QSD pair based for the 3-nodes line graph. This is as a

result of the error due to the approximation of the probability of the ground state

for small populations. The pair-approximation seems to become more accurate

with network size while the individual approximation is not giving correct estimate

for all the graphs considered.

However, the numerical simulation has proved to be a robust method for de-

termining the QSD, we then make comparison between stochastic simulation and

pair-approximation on larger networks. Here, we considered the 3by3 and 4by4

square lattices and results show good performance of the pair-approximation in

computing the QSD. While plots on the line graphs explain the issue of fade-out,

leading to getting results much similar to the master equation by conditioning for

both the individual and pair-based models, the plots on the lattices show the ad-

vantage of the pair-based model in describing the average of the QSD over the

individual-based model.

Earlier studies of QSD have been on Markovian mean-field, particularly SIS

epidemic dynamics but we have given the first study of the quasi stationary distri-

bution of the number of infectious individuals on contact networks. It would be of

113



future interest to also consider the QSD of the SIS epidemic dynamics on adaptive

networks, although the transmission matrix will no longer be constant.
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Chapter 5

Discussion and Conclusion

Mean-field epidemic models typically neglect heterogeneity in the interactions among

individuals [8, 12, 13, 155]. It is increasingly clear that the assumption of a well-

mixed population can be a poor one for the dynamics of many diseases and that

connectivity between individuals significantly affects the dynamics of many of in-

fectious diseases. Integrating these interactions into models is therefore important

[82, 153].

In this thesis, we considered Markovian epidemic models propagated on contact

networks. In particular, we focused on moment closure models evaluated at the

level of individual. An entire epidemic system can be built from the perspective

of the probability of the infectious status of an individual. The probability of

an individual being in an infectious state is expressed in terms of the probability

of infectious status of pairs in which the individual is a constituent unit and the

probability of infectious status of pair is expressed in terms of the probability of

triples in which the pair is a constituent unit, and so on. This process leads to a

hierarchy of moment equations which are not closed unless we continue up until

the size of the system because lower order quantities are expressed in higher order

quantities [64, 153, 154, 155].

For mathematical feasibility, these equations are closed at some level by adopt-

ing some form of moment closure relation which approximates the probabilities

of higher order quantities in terms of the probabilities of constituent lower order

quantities. The systems, so obtained, are usually of lower-dimension compared to

a complete Master equation description. While they represent an approximation,

in some cases, they can be exact [85, 155, 156].

The moment closure approximation models have proved reliable and helpful

for calculating important parameters such as the epidemic peak and duration in

epidemics propagated on general networks without relying on full numerical sim-
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ulation [18, 22, 40, 46]. In our case, we have concentrated on pair-approximation

models. Pairwise models in general have proved very relevant, for example, in

investigating the propagation of sexually transmitted diseases where partnership

between individuals plays an important role [17, 45, 49, 52].

In chapter 2, we developed at the level of individuals, an SEIR epidemic model

and investigated the exactness of a second order moment closure of the infection

dynamics on tree network, where the transmission and recovery processes are Pois-

son and with respective constant rates. We considered in particular, a star graph

and initiated the epidemic process in a pure state to observe the evolution of the

various compatible pairs earlier defined, following the approach of an earlier study

[155]. We were able to write and prove a general equation from which the proba-

bility of all forms of system states can be obtained for tree graphs and we were also

able to establish the exactness of the second order moment closure of the model on

trees.

As the structure of contact networks has profound effects on the dynamics of

the infectious diseases that are transmitted through it, so also the exactness of the

moment closure of epidemic models largely depends on the underlying topology of

the contact network [85, 155]. The presence of lower order cycles in networks is

often highlighted as a major cause of inaccuracy in these models. In chapter 3,

we considered SIR epidemic model on contact networks containing a single cycle

thereby directly considering the simplest form of these problematic structure. We

applied a second order moment closure and set out to quantify a general represen-

tation for the error responsible for the deviation of moment closure models from

being exact. Considering the approximations for S-S-I and I-S-I triples, it will be

nice to develop expressions to bound the error in the infectious time series. With

an hypothesis which was not proved but reserved for further study, we were able

to define and obtain expressions for the error terms for large cycles and then show

that these error terms are bounded by the approximating Taylor’s polynomials.

Earlier studies of the quasi-stationary distributions (QSD) of, especially SIS

epidemic dynamics, and its approximation models has been on Markovian mean-

field models [19, 23, 29, 30, 39, 107, 115, 129]. In chapter 4, we set out to investigate

the number of infected individuals in the stationary distribution of infection of SIS

epidemic dynamics on graphs. We investigated and numerically showed that the

number of infected individuals at the stationary stage of the SIS epidemic dynam-

ics on networks can approximately be computed by the pair based Markovian SIS

epidemic dynamics for constant transmission rate across all links and a constant

recovery rate for infected individuals.
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Having investigated and proved the exactness of a second order moment closure

for SEIR epidemic dynamics on tree networks, it will be of future interest to

extend this study to SIRS epidemic model where an infected individual maintain

a temporary recovery and then becomes susceptible once again. Probably the

flipping of a recovered individual back to the susceptible pool which of course

affects the dynamics of infection could also affect the exactness of the second order

moment closure on trees.

While investigating errors involved in pair-approximation for SIR epidemic dy-

namics on cycles, we were able to established numerically that the errors involved

decrease with network size but needed to propose an hypothesis, the Taylor Expan-

sion Hypothesis (TEH), so that we can write a general approximate representation

for the error, given cycle of any size. This hypothesis is not proved here, so it will

make sense to consider establishing whether the hypothesis is true. It will also be

of interest to extend this study to embedded cycles within graphs.
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Appendix

β1(t) = 〈I1Sb〉〈S1SbIc〉 β31(t) = 〈S1SbIc〉〈SaS1SbIc〉

β2(t) = 〈S1Sb〉〈I1SbIc〉 β32(t) = 〈S1SbIc〉〈IaS1SbIc〉

β3(t) = 〈S1Sb〉〈SaI1SbSc〉 β33(t) = 〈S1Sb〉〈IaS1SbSc〉

β4(t) = 〈S1Sb〉〈IaI1SbSc〉 β34(t) = 〈S1Sb〉〈SaS1SbIc〉

β5(t) = 〈I1Sb〉〈IaS1SbSc〉 β35(t) = 〈SaS1SbIc〉〈SaI1SbSc〉

β6(t) = 〈SbIc〉〈IaS1SbSc〉 β36(t) = 〈IaS1SbIc〉〈SaI1SbSc〉

β7(t) = 〈IaSbSc〉〈S1SbIc〉 β37(t) = 〈IaS1SbSc〉〈SaI1SbSc〉

β8(t) = 〈IaSbSc〉〈IaS1Sb〉 β38(t) = 〈SaS1SbIc〉〈IaI1SbSc〉

β9(t) = 〈Sb〉〈IaS1SbSc〉 β39(t) = 〈IaS1SbIc〉〈IaI1SbSc〉

β10(t) = 〈Sb〉〈SaS1SbIc〉 β40(t) = 〈IaS1SbSc〉〈IaI1SbSc〉

β11(t) = 〈I1Sb〉〈IaS1SbIc〉 β41(t) = 〈IaS1SbIc〉〈IaS1SbSc〉

β12(t) = 〈I1SbIc〉〈IaS1Sb〉 β42(t) = 〈IaS1Sb〉〈SaS1SbIc〉

β13(t) = 〈SbIc〉〈SaS1SbIc〉 β43(t) = 〈IaS1SbIc〉〈IaS1SbIc〉

β14(t) = 〈I1SbIc〉〈S1SbIc〉 β44(t) = 〈IaS1SbIc〉〈SaS1SbIc〉

β15(t) = 〈IaS1Sb〉〈S1SbIc〉 β45(t) = 〈IaS1SbSc〉〈IaS1SbSc〉

β16(t) = 〈S1Sb〉〈IaS1SbIc〉 β46(t) = 〈SaS1SbIc〉〈IaS1SbSc〉

β17(t) = 〈IaS1Sb〉〈SaI1SbSc〉 β47(t) = 〈SaS1SbIc〉〈SaS1SbIc〉

β18(t) = 〈S1SbIc〉〈SaI1SbSc〉 β48(t) = 〈I1Sb〉〈SaI1SbSc〉

β19(t) = 〈IaS1Sb〉〈IaI1SbSc〉 β49(t) = 〈Sb〉〈SaI1SbSc〉

β20(t) = 〈S1SbIc〉〈IaI1SbSc〉 β50(t) = 〈SbIc〉〈IaI1SbSc〉

β21(t) = 〈I1SbIc〉〈IaS1SbSc〉 β51(t) = 〈I1SbIc〉〈IaSbSc〉

β22(t) = 〈IaSbSc〉〈IaS1SbSc〉 β52(t) = 〈SbIc〉〈SaI1SbSc〉

β23(t) = 〈IaSbSc〉〈IaS1SbIc〉 β53(t) = 〈I1SbIc〉〈SaI1SbSc〉

β24(t) = 〈IaSbSc〉〈SaS1SbIc〉 β54(t) = 〈IaSbSc〉〈IaI1SbSc〉

β25(t) = 〈I1Sb〉〈SaS1SbIc〉 β55(t) = 〈I1SbIc〉〈IaI1SbSc〉

β26(t) = 〈IaS1Sb〉〈IaS1SbIc〉 β56(t) = 〈IaSbSc〉〈SaI1SbSc〉

β27(t) = 〈I1SbIc〉〈IaS1SbIc〉 β57(t) = 〈SaI1SbSc〉〈IaI1SbSc〉

β28(t) = 〈I1SbIc〉〈SaS1SbIc〉 β58(t) = 〈IaI1SbSc〉〈IaI1SbSc〉

β29(t) = 〈S1SbIc〉〈IaS1SbSc〉 β59(t) = 〈SaI1SbSc〉〈SaI1SbSc〉

β30(t) = 〈IaS1Sb〉〈IaS1SbSc〉.
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