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Abstract

Risk measurement of options that is computationally efficient is important to research

and industry. Currently, there exist few methods and they have significant model

risk, which negates their risk management purpose. In this paper we propose a new

approach to computationally efficient option risk measurement. This is achieved using

the idea of a replicating portfolio and coherent risk measurement, rather than relying

on mathematical approximations (as is currently done).

We find our replicating portfolio approach to option risk measurement provides fast

computation by practically eliminating nonlinear computational operations. We reduce

model risk by mostly using inputs that are observable data, we do not admit arbitrage

opportunities for complex option portfolios, nor ignore liquidity risk or model misspec-

ification, and enables portfolio optimisation. We also conduct numerical experiments

to validate our new approach.

Key words: Options, model risk, contingent claims, risk measurement, delta method,

portfolios, liquidity risk, option trading strategies, static replication.
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1 Introduction and Outline of Paper

Computationally efficient risk measures of options are of paramount importance to

research and industry, especially with the progressive increase in options trading and

hedging. The events of the global credit crisis and past financial crises have demon-

strated the necessity for adequate option risk management and measurement; poor

risk measurement and management can result in bankruptcies and threaten collapses

of an entire finance sector (Kabir and Hassan, 2005). This is further exacerbated by

the nonlinear losses associated with options and low margin requirements for options

trading which magnify losses. Although there exists a large body of literature on as-

set risk measures (e.g. stocks and bonds) there is very little literature on option risk

measurement.

To measure option risk requires Monte Carlo simulation of its loss distribution as

there is typically no analytic solution. However, this can be computationally time con-

suming even for the simplest option pricing models because it requires computation of

nonlinear functions (relating to the option pricing equation). Such long computation

times are unsuitable for many financial applications e.g. high frequency trading. Con-

sequently, this has led to the development of more computationally efficient methods

of option risk measurement.

To improve the computation speed of option risk, the typical approach has been to

apply some mathematical approximation to the option’s loss distribution (e.g. Delta

method). However, such computational improvements have been generally achieved

at the cost of model risk, that is unforeseen losses associated with using a model e.g.

calibration errors, implementation errors etc.. Since the purpose of such models are

to measure or manage risk, such model risks defeat the purpose of the models and

represents a significant flaw.

Model risk is becoming increasingly important in risk management due to the in-

creasing reliance on models in the financial industry and its potential to cause signifi-

cant losses. For instance, model risk has been cited as a partial cause in past financial

crises. Many institutions prefer to use models with lower model risk than models that

are theoretically more consistent. For instance, single factor interest rate models are

preferred to multi-factor ones despite their theoretical consistency. Multi-factor mod-

els may be more realistic at explaining interest rate movements but they can result in

higher estimation errors compared to single factor models. Consequently, single factor

models are commonly preferred in industry.

In this paper we approach option risk measurement from a new direction. Rather
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than pursuing approximation methods, we model option risk in terms of its replicating

portfolio and measuring the risk of this portfolio. This replicating portfolio method

practically eliminates the requirement for calculating nonlinear operations for option

risk and so provides faster computation times. Moreover, our replicating portfolio ap-

proach has lower model risk compared to other computationally efficient option risk

models. The replicating portfolio method does not admit arbitrage opportunities for

portfolios containing put and call options (unlike other models), our method also has

lower calibration risk, it can take into account liquidity risks and model misspecifica-

tion, it can model the option risk of option portfolios without losing computational

tractability and enables portfolio optimisation.

The outline of the paper is as follows: firstly we introduce option risk measurement

and review current computationally efficient methods for measuring option risk. In the

next section we then introduce our replicating portfolio approach to risk measurement.

We then discuss the advantages of the replicating portfolio approach with respect to

computational efficiency and model risk. We then conduct numerical experiments and

finally end with a conclusion.

2 Introduction to Option Risk Measurement and

Related Literature

In this section we introduce risk measurement, review the current literature on com-

putationally efficient methods for option risk measurement and their relation to model

risk. We denote a risk measure by ρ(.) and measuring risk by ρ(Z), where Z(t) for

the purpose of this paper is simply the loss distribution associated with some asset or

derivative. For example

Z(t) = C(0)− C(t),

where C(0) and C(t) represent the call option price at time now and time t respectively.

A popular industry risk measure is VaR (Szegö, 2005) (that is F (Z(t) ≤ V aR) = β,

where F(.) is the cumulative probability distribution function and β is a cumulative

probability associated with threshold value VaR on the loss distribution of Z(t)). A

significant milestone in risk measurement was achieved when Artzner et al. (Artzner

et al., 1997) proposed the coherency axioms: axioms that risk measures ρ(.) should

obey to correctly measure risk. The coherency axioms are included in the Appendix

for reference.
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To measure option risk we apply some risk measure to the loss distribution governing

C(0)−C(δt), where C(δt) is the option value at some future time step δt. Whereas for

stocks it is possible to model the loss distribution in order to apply some risk measure,

for options the key difficulty in option risk measurement resides in modelling the loss

distribution of C(0)− C(δt) and in a computationally efficient method.

The current literature on option risk measurement is limited, particularly for com-

putationally efficient methods. The “brute-force” approach is to use the “full valuation

method” (Christoffersen, 2003). This involves Monte Carlo simulation of Si(δt) using

some stock price model (e.g. geometric Brownian motion), where i denotes the index of

the simulation sample. The option price value associated with Si(δt), that is Ci(δt), is

then calculated. The algorithm for the full valuation method is given in the Appendix

for the Black-Scholes option pricing model C(S(t),t,T,r,σ,K), which is also defined in

the Appendix.

The advantage of the full valuation method is that its accuracy can be improved by

increasing the number of simulations. The key disadvantage is that it is highly time

consuming, due to requiring computational calculations of Ci(δt) for each simulated

value Si(δt). This is because Ci(δt) requires computing nonlinear terms (e.g. the Black-

Scholes option pricing model requires calculating Ψ(d1) and Ψ(d2) for each S(δt)) ,

which is computationally time consuming. The computation time increases further for

portfolios of options.

The high computation time incurred by the full valuation method has led to the de-

velopment of alternative option risk methods with faster computation times. The most

popular option risk method is the Delta method (Britten-Jones and Schaefer, 1998).

The call option’s delta ∆ can give the option loss distribution of δC by approximation:

∆ ≈ δC

δS
,

δC ≈ ∆δS. (1)

We obtain δS by simulating S(δt) as we would under the full valuation method.

The main advantage of the Delta method is that it has a significantly lower compu-

tation time than the full valuation method (Christoffersen, 2003) as it mainly consists

of computing linear operations. To improve the accuracy of the Delta method the

Delta-Gamma method has been introduced, which takes a Taylor expansion of δC up

to squared terms (Christoffersen, 2003):

δC ≈ ∆δS +
γ

2
(δS)2, where γ =

∂2C

∂S2
.

In addition to the Delta and Delta-Gamma method, other less well-known option

risk methods exist which apply approximation methods. For example, one method is to
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apply the Cornish-Fisher approximation (Christoffersen, 2003), where we assume the

underlying return distribution is Gaussian with mean 0 and constant variance. Using

a quadratic approximation we can obtain the first 3 moments of the distribution of

δC, we can then approximately calculate VaR using a Cornish-Fisher approach. Other

researchers have also applied moment matching and approximations to measure option

risk by VaR e.g. (El-Jahel et al., 1999). The Delta-Gamma method has been developed

in terms of a Cornish-Fisher expansion in (Jaschke, 2002); in (Glasserman et al., 2001)

Delta-Gamma is used to provide more efficient Monte Carlo simulated estimates of

VaR; in (Siven et al., 2009) Delta-Gamma is used along with Fourier inversions to

calculate VaR.

In (Sorwar and Dowd, 2010) a simulation-lattice computational method is proposed.

This enables one to estimate risk for various option positions, for a range of options

(including exotic options and early exercise feature) as well as important underlying

distribution features, such as heavy tails. However, such a computational method is

computationally intensive and so does not offer fast computation, which is the focus

of our paper.

In (Hao and Yang, 2011) option risk is measured but under the assumption of

a regime switching stock price process. Also, the risk measurement is restricted to

scenario based risk measures, hence its applications (and accuracy) are limited. In

(Broda, 2012) computable expressions for risk are given, however this is restricted to

the expected shortfall risk measure and that portfolios follow an elliptic multivariate

t-distribution.

For all the option risk methods mentioned, the computational speed is improved

at the expense of model risk typically increasing. Model risk is defined as the risk of

working with a potentially incorrect model, which leads to unexpected losses. The types

of model risks incurred (to achieve improved computational speed) can be increased

calculation error, increased calibration errors or violation of fundamental principles of

Finance e.g. arbitrage (to be addressed in later sections).

Model risk is a key problem in Finance; model errors can result in significant losses

(e.g. Long Term Capital Management), they are playing an increasingly important

role in industry and institutions are becoming ever more reliant on them for a variety

of purposes. In option risk models, model risk is a particularly important issue because

such models are used for risk management purposes. Hence it is important that such

models have low model risks to prevent the models themselves incorrectly measuring

risk or becoming a source of risk themselves.

To give an example of increased model risk, the Delta-Gamma method is theoreti-

5



cally more accurate than the Delta method however the Delta-Gamma method requires

calculation of γ. For many option pricing models γ may not be available in analytic

form and so can only be calculated by computational methods, which can distort accu-

racy and increase computation time. In fact it should be noted that computationally

evaluating second order partial differential equations (such as γ) in general can be in-

accurate. Hence the model risk (and computational efficiency) of the Delta-Gamma

method may be worse than the Delta method despite its theoretical advantage. Fur-

thermore, there is no longer a linear relation between δS and δC (unlike in the Delta

method), which significantly complicates valuing portfolios with options and portfolio

optimisation (see later sections for more details).

The current literature on model risk is limited in finance, although the area is cur-

rently growing. Consequently, the literature including model risk and computationally

efficient option risk methods is non-existent to the best of our knowledge. In (Kerkhof

et al., 2010), model risk is taken into account to determine capital reserves for banks.

In particular, estimation risk, identification and misspecification models risks are ad-

dressed and combined with standard risk measures such as Value at Risk. In (Kondo

and Saito, 2012), a Bayesian method is proposed for measuring model risk for the insur-

ance loss ratio. This method makes specific distribution assumptions and is focussed

around Value at Risk calculations, rather than application to any specific risk measure.

In (Alexander and Sarabia, 2012) develop a method for calculating model risk with

respect to quantile risk measurement only. This allows institutions to adjust capital

reserves to meet potential losses arising from model risk. In Schmeiser et al. (2012)

analyses model risk with respect to solvency measures in the insurance sector. In all the

aforementioned articles, there is no explicit address of model risk with respect to option

risk measurement. In (Guillaume and Schoutens, 2012) model risk is investigated

specifically with respect to calibration risk for vanilla and exotic options. However no

reference is made with respect to computationally efficient option risk methods.

3 Option Risk Measurement by Replicating Port-

folio

As can be seen from the previous section, option risk methods are typically based on

some approximation method and can incur significant model risk, which is an important

issue as such models are used for risk management purposes. In this section, we show

that we can measure option risk with a computationally efficient method by taking a

different approach: using its replicating portfolio. This also provides significant model
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risk advantages.

In this section we first explain how our replicating portfolio method provides com-

putational advantages in measuring option risk; we also show this method has computa-

tional advantages for a portfolio of options and portfolio optimisation. We also discuss

key model risk advantages of our method, specifically put-call parity consistency, lower

implementation risk, calibration risk and can take into account model misspecification

and liquidity risk. It should also be noted that the replicating portfolio method can be

applied to any contingent claim with a replicating portfolio and not just options.

We note that the usage of a replicating portfolio implies that one has a complete

market. Although the Black-Scholes model and the replicating portfolio method do

not take into account incompleteness, both models are sufficiently accurate approxi-

mations to incomplete market models for the purpose of faster computation. In fact in

(Fouque et al., 2000) it is noted that the Black-Scholes equation is an accurate approx-

imation to option prices for at the money options, when incompleteness arises from

stochastic volatility. Moreover, the Delta and Delta-Gamma methods both assume a

Black-Scholes and complete market model for their approximations. Hence the repli-

cating portfolio method is not any more deficient in complete market assumptions than

competing methods.

3.1 Option Risk Calculation Method

The key insight of Black and Scholes (Black and Scholes, 1973) is that we can represent

a European option by a replicating portfolio V(t), based on a no arbitrage argument.

A replicating portfolio V(t) consists of φ1(t) number of shares in the underlying of the

option and φ2(t) number of units in a riskless bond:

V (t) = φ1(t)S(t)− φ2(t)B(t), (2)

where B(t) is the price of a riskless bond at time t (see Appendix for full equation).

The negative sign for bonds means we short φ2(t)B(t) bonds rather than purchase

them. In the case of the Black-Scholes equation we have φ1(t) = ∆(t).

We achieve computationally efficient risk measurement of options by using its repli-

cating portfolio for risk measurement and applying the coherency axioms. This allows

the elimination of nonlinear operations in the computational calculation of option risk

and so significantly reduces computation time. We now state this in our theorem.

Theorem 1. For a coherent risk measure ρ(.) the risk of an option or any contingent

claim replicated by a replicating portfolio (∆(t)S(t), φ2(t)B(t)) is given by

ρ(dC(t)) = ∆(t)ρ(dS(t)) + (∆(t)S(t)− C(t))rdt. (3)
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Hence it can be seen from equation (3) that, excluding ρ(.), the number of operations

that are a nonlinear function of dS(t) is zero.

Proof:

dC(t) = ∆(t)dS(t)− φ2(t)dB(t) by self-financing property, (4)

ρ(dC) = ρ(∆(t)dS(t)− φ2(t)dB(t)), (5)

= ρ(∆(t)dS(t)) + φ2(t)dB(t) by translation invariance axiom, (6)

= ∆(t)ρ(dS(t)) + φ2(t)dB(t) by homogeneity axiom, (7)

since dB(t)=rB(t)dt then we have

ρ(dC(t)) = ∆(t)ρ(dS(t)) + φ2(t)B(t)rdt,

substituting

φ2(t)B(t) = ∆(t)S(t)− C(t),

we have

ρ(dC(t)) = ∆(t)ρ(dS) + (∆S(t)− C(t))rdt.¥

To be able to understand our method it is important to understand the variables

that are functions of S(δt), since such (non-linear) functions significantly increase com-

putation time as they must re-calculated for every simulated value of S(δt). This is

achieved by understanding the principles relating to a replicating portfolio, namely no

arbitrage and self-financing.

The replicating portfolio V(t) is an adapted process to C(t); it has identical values to

C(t) for all t, assuming the market is arbitrage free (see the Appendix for a definition).

Therefore

C(t) = V (t),∀t ≤ T.

This also implies the risk of V(t) and C(t) must be identical because their loss functions

must be identical. In other words, we have:

ρ(C(t)) = ρ(V (t)),∀t ≤ T.

A replicating portfolio also has the important property that it must be self-financing.

This is not normally important in option theory, however for the purposes of option

risk measurement it is important. By self-financing we have:

dV (t) = φ1(t)dS(t)− φ2(t)dB(t), (8)

= φ1(t)dS(t)− φ2(t)rB(t)dt. (9)
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In terms of option risk, the key part of equation (8) is that neither φ1(t) nor φ2(t)

change when we calculate dV (or dC), for they are constant. Therefore to determine

the option loss distribution associated with dC we do not need to calculate φ1(t) and

φ2(t) for each simulated value of S(δt). This is because both φ1(t) and φ2(t) are

functions of S(0) but not S(δt). If V(t) were not a self-financing portfolio then we

would have under standard differentiation (Kwok, 1998)

dV (t) = φ1(t)dS(t)− φ2(t)dB(t) + dφ1(t)S(t)− dφ2(t)B(t).

This equation would significantly complicate computational calculation of option price

changes because we would need to simulate changes in dφ1 and dφ2, in addition to dS.

In such a case it may be better to use the full valuation method instead.

The reasons that both φ1(t) and φ2(t) are functions of S(0) but not S(δt) in equation

(8) are financial and mathematical. Mathematically the theory is related to forward

differences in stochastic differentials (the reader is referred to (Björk, 2004) for a thor-

ough discussion). Essentially, if we were to discretise equation (9) we would have

(Jarrow and Turnbull, 1996)

δV ≈ φ1(t)(S(t + δt)− S(t))− φ2(t)rB(t)δt.

At time t we have only observed S(t) and not S(t+δt); φ1(t) remains unchanged during

the time period t to t + δt. After time t + δt (so δt has elapsed), S(t + δt) has been

observed and then we adjust the number of shares and bonds to give the new values

φ1(S(t+ δt), t+ δt) and φ2(S(t+ δt), t+ δt). From a financial point of view, we cannot

have φ1(t) (or φ2(t)) changing until we observe S(t) because the number of stocks and

bonds we trade depend on the stock price we actually observe now.

In conclusion we can say that ∆(t), C(t) and S(t) are not functions of dS (they are

constants in dC) due to the self-financing property. Hence in calculating ρ(dC(t)) we do

not need to re-calculate them and perform nonlinear operations for each simulated value

of dS. In fact other than calculating the option ∆ there are no nonlinear operations

and ∆ is only calculated once during the entire simulation, hence does not represent

a significant computational operation. The replicating portfolio method is therefore a

computational efficient method of calculating option risk.

It is also worth pointing out that ∆ is generally calculated for contingent claims

even if no risk measurement is conducted, hence it generally imposes no additional

computational or analytical ’cost’. We also note that ∆(t) and φ2(t) represent the

number of units of stocks and bonds respectively (and are constants) so we can apply

the homogeneity axiom and take them outside ρ(.) (see equation (7)). They are also
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normally given in equation and so do not increase computation (alternative expressions

for them are given in the Appendix).

The replicating portfolio method is also able to achieve computational efficiency

without sacrificing accuracy. The replicating portfolio option risk measure is based on

equation (9); this equation is an identity for dC, therefore it is identical to dC for all

states of the world and is not an approximation. We can therefore always increase

accuracy by increasing the number of simulations and reducing δt to produce results of

δC equivalent to that of the full valuation method. On the other hand, to increase the

accuracy of the full valuation method involves increasing the number of simulations

and so the number of nonlinear operations, which is computationally expensive.

It is worth noting in passing that in the past 10-20 years trading has become in-

creasingly dominated by automated or computerised trading (rather than fundamental

based trading) in many markets. Consequently, many trades are opened and closed on

scales of the order of milliseconds (see for example algorithmic trading). Hence even

marginal improvements in computing times can make the difference between profit or

loss trades.

The Delta method (and other computational methods) are fundamentally limited in

accuracy because they are approximations. For instance, the Delta and Delta-Gamma

methods are taken from an approximation of the Taylor series expansion of δC; in order

to achieve full accuracy we require the Taylor series to an infinite series expansion with

increasingly more nonlinear terms (which cause increasing computational cost). The

Delta and Delta-Gamma methods will therefore never reach a fully accurate calculation

of δC as that of the full valuation method, regardless of the number of simulations

executed. Such inaccuracies can be particularly important in high volume trading

(e.g. high frequency trading), where minor inaccuracies can be magnified and cause

unforeseen trading losses.

3.2 Portfolios with Options: Option Risk Calculation and Op-

timisation

In (Christoffersen, 2003) the Delta and Delta-Gamma methods are discussed in terms

of their computational efficiency for calculations involving portfolios contain n units of

a stock and options on the same stock (underlying) with the same or different K and

T. We now do the same for the replicating portfolio method and show that it retains

computational efficiency when applied to such portfolios, furthermore, the replicating

portfolio also has computational benefits in portfolio optimisation.
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For a portfolio D(t) containing n units of a stock and an option on the same stock

(underlying)

D(t) = nS(t) + C(S(t)),

using the replicating portfolio method to model the change in the portfolio’s value

δD(t) we have

δD(t) ≈ (n + ∆)δS(t) + φ2δB.

For a full detail of the proof, please see the Appendix. Hence the change in the

portfolio’s value involves linear operations and so is not computationally expensive.

Furthermore, if D(t) is extended to include a set of n options with different K and T

(but on the same underlying stock), that is

D(t) =
n∑

i=1

Ci(S(t), Ki, Ti),

then by the replicating portfolio method we have

δD ≈
n∑

i=1

φ1nδS + φ2nδB.

Now if we assume we have a more complex portfolio:

D(t) =
n∑

i=1

viSi +
m∑

j=1

vjCi(Si(t), Ki, Ti),

where vi and vj represent the number of units stocks and options respectively and

m equals the total number of different stocks. Using the same modelling assumption

employed by the Delta method for modelling such portfolios we assume all stocks and

options are uncorrelated, therefore using the replicating portfolio approach we have

δD(t) ≈
n∑

i=1

viδSi +
m∑

j=1

vj∆jδSj(t) + φ2jδB.

In all cases, the replicating portfolio method still retains computational efficiency as

we do not need to re-calculate any non-linear terms with each simulation, hence it is

not computationally costly.

In addition to computing portfolio value changes, the replicating portfolio method

offers computational advantages in portfolio optimisation. Portfolios are optimised

computationally (rather than analytically) by adjusting stock and option portfolio
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weights. We would therefore like to optimise the problem for a portfolio L(t) containing

N stocks and M options

max
wi,wj∀i,j

f(dL(t)) =
N∑

i=1

widSi(t) +
M∑

j=1

wjdCj(t),

where wi, wj are the stock and option weights respectively. The inclusion of options

in L(t) means the optimisation of f(dL(t)) is nonconvex, which is non-trivial. Firstly

there exist fewer algorithms for nonconvex optimisation, so there may not exist an

optimisation solution. Secondly, an optimal solution that is found may be locally

optimal but not necessarily globally optimal.

If one were able to replace options with a linear expression then one would have a lin-

ear optimisation, which is highly desirable as they enable powerful and well-developed

algorithms to be applied (such as linear programming and stochastic programming)

to large portfolios. Linear optimisation of L(t) is possible by using the replicating

portfolio approach to options. Therefore we would have:

max
wi,wj∀i,j

f(dL(t)) =
N∑

i=1

widSi(t) +
M∑

j=1

wj(∆j(t)(dSj(t)) + (∆j(t)Sj(t)− Cj(t))rdt),

=
N∑

i=1

widSi(t) +
M∑

j=1

wj∆j(t)dSj(t).

The last line is possible because ((∆j(t)Sj(t) − Cj(t))rdt) is a constant and so does

not affect the optimisation (other than in the possible case there are linear constraints

imposed in the optimisation).

3.3 Calibration and Implementation Risk

A key model risk that is frequently incurred is calibration risk, that is unexpected losses

arising from incorrect model calibration. In fact in industry, local volatility models are

preferred to stochastic volatility models due to the lower calibration risk. Another

important area of model risk is implementation risk, that is unexpected losses arising

from implementing the model for use e.g. approximation errors, model assumptions

etc.. We will now explain how our replicating portfolio method has significant model

risk advantages compared to other computationally efficient option risk methods.

Firstly, other than ∆ the remaining parameters in equation (3) (that is S(t),C(t)

and r) are observable variables and so do not require calculation or calibration to the

market. Furthermore the calculation of ∆ is a function of observable variables (except
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volatility). Therefore the number of parameters that could cause model risk are sig-

nificantly limited; our method requires no more observability than the observability

required for the Black-Scholes model itself, which is considered a highly observable

model. Additionally, the limited calibration required increases the stability of calibra-

tion because fewer parameters mean that calibration error is less likely to change with

time.

Secondly, the estimation error will be lower for extreme values using the replicating

portfolio method compared to other methods. It is important to be able to measure

the risk of extreme losses, in fact the most important aspect of risk management is

concerned with extreme loss management. However, managing risk under extreme

values poses a number of significant problems: firstly, many option risk measures cannot

value at extreme values because they are only valid over small changes e.g. the Delta

method. Secondly, there may not exist sufficient observations to confidently estimate

extreme values and thirdly, fitting the correct distribution to stock data can be non-

trivial (Dowd, 2011). Consequently, determining extreme option or underlying values

by Monte Carlo simulation may not be feasible. Finally, the inability to accurately fit

distributions (or accurately estimate) for extreme values means that we cannot provide

an analytical solution to extreme value risks e.g. VaR.

In risk management theory, one applies EVT (extreme value theory) to determine

the risk of extreme values on stocks. Our replicating portfolio method can also be

applied to EVT to obtain risk measures. From (3) it can be seen that we can obtain

extreme risk measurement values of ρ(dC) from extreme risk measurement of ρ(dS)

and other observable or tractable parameter estimates. In other models this is not

necessarily possible. For instance in the Delta-Gamma model to obtain extreme value

measurements in dC we would require simulations of dS and dS2, hence any estimation

errors in simulation would be squared. Such errors would be magnified further when

calculating extreme values using Extreme Value Theory. Additionally, we must mul-

tiply the dS2 term by γ, which is a partial derivative and so is difficult to accurately

compute or estimate, leading to higher potential extreme value errors.

Thirdly, our replicating portfolio method reduces implementation risk by its tractable

computational implementation. Other than the observable variables, all that is required

is the ∆ calculation, which is computationally tractable. It can be numerically eval-

uated (e.g. for non-trivial S(t) processes or contingent claims) with sufficient level of

accuracy e.g. binomial tree or finite difference methods. For example, for an American

option we can easily calculate the ∆ using a binomial tree method. The ∆ calculation

would not form part of the Monte Carlo simulation; the ∆ is always a one-off calcu-
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lation and so the replicating portfolio method still remains computationally efficient.

For a basket option the replicating portfolio method only requires calculation of φ1 for

each asset in the portfolio (and φ2 can be deduced using equations (26) and (25)).

To implement the replicating portfolio method we require ∆ and this is generally

analytically possible to determine for a range of option pricing models and contingent

claims. Other risk measuring methods are not as easy to implement. For instance, the

Delta-Gamma method requires calculating γ and this is a second order partial deriva-

tive. Such a derivative may not be easily available and may be analytically intractable

to derive, especially for complex contingent claims or non-trivial S(t) processes. Fur-

thermore, it is well known that numerical computation can be intractable for second

order partial derivatives, leading to inaccurate calculations. In the case of a basket op-

tion the Gamma method requires a second order partial differential equation for each

asset in the portfolio (by applying multivariate Taylor’s Theorem), which can become

intractable for large portfolios.

The implementation risk is reduced further as the replicating portfolio is also analyt-

ically more tractable compared to other option risks, in particular we can analytically

derive ρ(dC) from ρ(dS) and using equation (3). For instance, we can easily calculate

VaR using equation (3):

V aR(dC(t)) = ∆(t)V aR(dS(t)) + (∆(t)S(t)− C(t))rdt,

(we note that VaR only fails as a coherent risk measure in terms of subadditivity, hence

the previous equation is applicable to VaR). Furthermore, if we assume dS follows

geometric Brownian motion then VaR will be the VaR for a Gaussian distribution (for

which many equations exist), multiplied by ∆(t), with its centre shifted by the drift

term and the expression (∆(t)S(t)− C(t))rdt.

The ability to analytically calculate VaR(dC(t)) and ρ(dC) for various coherent

risk measures reduces model risk because when can analytically verify the model’s

risk or error, whereas other option risk methods do not enable this. Furthermore,

analytical tractability of the replicating portfolio method enables one to analytically

determine ρ(dC) if we need to approximate dS. For instance, we may wish to de-

termine VaR(dC(t)) for non-trivial dS processes and so VaR(dS) may be analytically

intractable. However, if we apply an approximation of dS we could derive an analytical

solution for VaR(dS).

If one were to apply another method we would not necessarily be able to derive

analytical solutions for any risk measure. For instance, if we wished to determine VaR
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using the Delta-Gamma method then

V aR(dC) = V aR
(
∆δS +

γ

2
(δS)2

)
.

This would not be a tractable method of measuring risk by VaR or any other risk

measure. Firstly, the measurement of VaR(dC) is a function of γ, which can difficult

to accurately determine for some contingent claims. Secondly, the VaR measurement

is now on a non-trivial distribution: the distribution obtained from adding the distri-

butions of δS and (δS)2. There may not exist any analytical solution for the overall

distribution, let alone the VaR equation (or any risk measure) for such a distribution.

Furthermore, computational implementation to obtain VaR or any other risk measure

would be computationally expensive.

Fourthly, the replicating portfolio method reduces implementation risk and gen-

eral model risk by having a parsimonious model of few modelling and unrestrictive

assumptions. The replicating portfolio method is based on an identity for δC using the

self-financing property and arbitrage free assumption (both of these are not restrictive

assumptions). Our method is not restricted to any risk measure, particular assets or

distributions. Other risk methods make restrictive assumptions about stock price dis-

tributions, numerous variables (e.g. state of the economy) and apply to particular risk

measures only (e.g. VaR).

3.4 Arbitrage Free Option Modelling: Put-Call Parity Con-

sistency

The put-call parity is an important theorem between calls C(S(t),t,T,r,K) and puts

P(S(t),t,T,r,K); it is model independent, holds under a range of conditions and its

disobedience is considered a serious mispricing. An explanation of the put-call parity

is given in the Appendix 9.

The replicating portfolio method must obey the put-call parity by construction and

so does not admit arbitrage opportunities arising from this (for completeness we give

the proof in the Appendix). However, other option risk methods violate the put-call

parity, specifically the Delta and the Delta-Gamma methods (two of the most popular

option risk models), and so allow arbitrage opportunities. We will now prove this.

Lemma 1. For any given underlying and any option pricing model, the Delta and

Delta-Gamma methods do not obey the put-call parity. Therefore the Delta and Delta-

Gamma methods admit arbitrage opportunities in porfolios containing at least any two

of the following: put option, call option or shares in the underlying.
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Proof:

By Delta-Gamma method we have

δP ≈ ∆pδS +
γ2

2
(δS)2, (10)

where ∆p is the option delta for a put.

By the put-call parity we also have

P = Ke−r(T−t) − S(t) + C, (11)

dP = dC + d(Ke−r(T−t))− dS, (12)

δP ≈ δC + δ(Ke−r(T−t))− δS. (13)

By the Delta-Gamma method we can express δC as

δC ≈ ∆δS +
γ2

2
(δS)2. (14)

Also for any option pricing model it is known that

∆p = ∆− 1. (15)

Now if we substitute δC from equation (14) into equation (13) then we have

δP ≈ (∆δS +
γ2

2
(δS)2) + δ(Ke−r(T−t))− δS, (16)

≈ δS(∆− 1) +
γ2

2
(δS)2 + δ(Ke−r(T−t)), (17)

≈ δS∆p +
γ2

2
(δS)2 + δ(Ke−r(T−t)) by equation (15). (18)

Hence equation (10) and equation (18) are not equal and so does not obey put-call

parity and so allows arbitrage. ¥

Remark 1. The Delta method is a special case of the Delta-Gamma method and it can

be easily seen by the same proof that the Delta method allows arbitrage opportunities.

An explanation of the proof is as follows: if the Delta-Gamma method obeyed the

put-call parity then substitution of an equation or expression from the put-call parity

equation should give the same equation for δP , that is equations (10) and equation

(18) should be equal. However these 2 equations are not equal and so this implies

the put-call parity is not obeyed. An example of the Delta-Gamma method giving

arbitrage opportunities in the put-call parity is given in the Appendix.

The inability for some option risk methods to obey the put-call parity has signifi-

cant consequences upon the applicability and risk management. Firstly, such methods
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cannot be used for option trading strategies and static replication of exotic derivatives.

Option trading strategies (e.g. a butterfly, a strip and a strangle to name a few) in-

volve purchasing a range of put and call options on the same underlying (Hull, 2000).

This portfolio of options is bought in such a way as to construct a net position that

will benefit from a particular movement in the underlying. Static replication involves

using a portfolio of plain vanilla European puts and calls to hedge an exotic derivative

(Derman et al., 1995). Both option trading strategies and exotic derivatives hedging

are becoming increasingly popular in industry and so important to risk manage.

The existence of modelling methods allowing arbitrage opportunities to occur also

encourages ‘internal’ arbitrage opportunities. This is when 1 department within an

institution takes advantage of the mispricing of derivatives and securities by another

department (within the same institution) to enable riskless profit taking. Internal

arbitrage is a significant problem and in some institutions they do not use particular

models to prevent this occurring (Alexander, 2001). The replicating portfolio method

eliminates the possibility of internal arbitrage opportunities as it will always guarantee

obeying the put-call parity.

Finally, option risk methods that do not obey the put-call parity can give different

risk measurements on the same portfolio. For instance, in equations (29) and (28) we

have 2 different values for exactly the same option, which would give 2 different risk

measurements for the same option. This can lead to inconsistent risk management of

the same portfolio.

3.5 Model Misspecification

Model misspecification is becoming an increasing important factor in model risk, for

instance modelling volatility as a constant instead of as a stochastic or time varying

variable. A popular method for addressing misspecification is the banded parameter

model (Wilmott et al., 1998); in this model we subsume the misspecification into an

appropriate variable and allow this variable’s value to vary between a maximum and

minimum limit. For example, if we choose the variable volatility then its value will be

allowed to vary between the limits σ− < σ < σ+; alternatively we could have chosen r

so that r would be bounded by so that r− < r < r+. Using the banded model we can

determine worst and best case scenarios for option risk, which are extremely useful as

they are frequently used in risk management.

We would like to be able to use the banded parameter model in option risk modelling

to take into account model misspecification risk. However, this may not possible as

the banded parameter method is only applicable under the assumption that there are
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no arbitrage opportunities with the model. Therefore the Delta and Delta-Gamma

methods would not be applicable as they allow arbitrage opportunities through the

put-call parity.

Using the replicating portfolio method to option risk, it is possible to apply the

banded parameter model because the replicating portfolio method is based on assuming

no arbitrage conditions. For the purposes of option risk measurement we will restrict

our attention to varying volatility in bands (first proposed by (Avellaneda et al., 1995))

because it is a common source of model misspecification. In the banded parameter

model, the worst and best case scenarios are not simply obtained by using the lowest

and highest volatility values but applying arbitrage principles.

The Black-Scholes equation is derived on the assumption that it constructs a riskless

hedge; for a call option we have

dC −∆dS = −φ2dB.

Now to avoid arbitrage opportunities we assume the return on the worst case replicating

portfolio earns the riskless rate, that is

min
σ−<σ<σ+

(dC −∆dS) = −φ2dB,

min
σ−<σ<σ+

dΠ = −φ2dB,

where dΠ = dC −∆dS. Our objective is

min
σ−<σ<σ+

(
∂C

∂t
+

σ2S2γ

2

)
.

It can be shown that we minimise dΠ if σ = σ+ for γ > 0 and σ = σ− for γ < 0.

Therefore to find the best case option risk measurement we use σ = σ+ if γ < 0 and

σ = σ− if γ > 0; for the worst case option risk measurement we would use σ = σ+ for

γ > 0 and σ = σ− for γ < 0.

3.6 Liquidity Risk

An increasingly important component of model risk is liquidity risk, which is the po-

tential cost of transactions (T ). Transaction costs can form a significant part of risk

because they can substantially increase the losses incurred in trading, they are not

known with certainty, they can vary with trading volume, the state of the economy

and the market size to name a few factors.

Although there exist many liquidity models for stocks, currently there do not exist

many liquidity models for options. One model by Krakovsky (Krakovsky, 1999) prices
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liquidity costs into options by modifying the partial differential equation governing

the option pricing equation. However the resulting partial differential equation has

no analytic solution, so it must be solved computationally, which is computationally

expensive. Krakovsky’s model (Krakovsky, 1999) also ignores bid-ask spreads changing

with time, which is an important factor in liquidity risk.

There is currently no apparent method of adapting option risk models to take into

account liquidity risk. For example, the Delta method does not measure transaction

costs, nor provide any method for measuring liquidity risk over short time intervals δt

or δC. Using the replicating portfolio method of option risk modelling it is possible to

take into account liquidity risk because the replicating portfolio principle is frequently

utilised in other financial models (such as liquidity models), hence our option risk

method can be adapted.

One popular and well known liquidity model is Leland’s transaction cost model

(Leland, 1985). This can be applied to our replicating portfolio model of option risk

because Leland’s model is based on the replicating portfolio principle, unlike other

option risk models. In Leland’s model the transaction costs T are proportional to the

total value of the underlying transacted:

T = S(t)n(t)k,

where n(t) is the number of units (e.g. shares for equities) bought or sold at time t

and k/2 is the transaction cost for one share (sold or bought).

To model δC with transaction costs we apply Leland’s model:

δC ≈ ∆δS(t)− rB(t)δt− k

2
|δ∆|S(t),

where the last term represents the transaction cost. It has been shown by Leland that

k

2
|δ∆|S ≈ σ2

2
LS2γδt,

where the Leland number L is

L =

√(
2

π

) (
k

σ
√

δt

)
.

Hence our option risk model with liquidity risk is

ρ(δC) ≈ ∆ρ(δS) + rB(t)δt +
σk√
2π

S2γ
√

δt. (19)

We note from equation (19) that in order to measure option risk with liquidity risk

there is no significant increase in the level of computation. This is because the last
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term in equation (19) is not a function of S(t + δt) but S(t); hence it does not require

recalculation for each simulated S(t + δt). We also notice from equation (19) that

the option risk measurement with liquidity risk does not require significant parame-

ter estimation. In fact, most of the parameters contributing to the transaction costs

can be observed or calculated from observable variables. Furthermore, Leland’s model

(Leland, 1985) and the replicating portfolio method are both derived without admit-

ting arbitrage opportunities, which is important to model risk and preventing internal

arbitrage opportunities.

4 Numerical Experiments

In this section we conduct numerical experiments to demonstrate and validate the

replicating portfolio method of measuring option risk. To gauge the performance of

the replicating portfolio method we also conducted numerical experiments on the Delta

method to act as a fair benchmark. In this section first we explain our method, present

the results of our experiments and then discuss them.

4.1 Method

In this section we conducted two numerical experiments. Firstly, we conducted a

numerical experiment to measure the computation time of the replicating portfolio

method against the Delta and full valuation methods. Secondly we evaluated the

accuracy of the Delta and replicating portfolio methods in determining changes in

option prices. All the numerical experiments were executed on a 1.61 GHz computer,

with 992MB RAM, running Matlab version 6.5.

For the computation time experiment we measured the time taken to compute the

distribution of the change in call option price δC under a Black-Scholes model. The

time measured was for a δC distribution consisting of one million samples. To obtain

one million sample points we required one million random samples of δS = S(δt)−S(0).

The δS random samples were obtained by generating the distribution of S(δt) under

the Black-Scholes model (geometric Brownian motion).

Using the samples of δS we calculated δC: for the full valuation method we applied

the method outlined in the Appendix, for the Delta method we used equation (1) and

for the replicating portfolio method we used equation (3). We note that the choice

of Black-Scholes parameters K,T, etc. do not affect any of the computation times.

The Black-Scholes option pricing equation along with other Black-Scholes parameters

(e.g. option delta) did not require implementation as they are already available in the
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Matlab financial toolbox. The entire experiment was repeated ten times to obtain an

average value of computation times. The results are presented in the next section.

In the second experiment we compared the accuracy of the Delta method against the

replicating portfolio method. This was done by calculating δC over one day (although

any time period could have been chosen) and comparing the methods’ accuracies over a

range of K and σ. We chose our range of K for |K/S(0)−1| ≤ 10% to test well beyond

the range of actively traded options; the range of K for actively traded options tend to

be within a range of |K/S(0) − 1| ≤ 3% (Fouque et al., 2000) and beyond this range

option prices tend to suffer from significant liquidity effects (Fouque et al., 2000). We

also tested a range of volatility values σ from 5% to 20%. The typical volatility for an

index is σ = 10%, with σ = 20% considered to be high volatility (possibly occurring

during a financial crisis).

The range of dS/S was chosen to be ±1%, ±2% and ±5% to reflect possible price

changes in the underlying under different scenarios. Since a 10% return is the average

return over one year for an index (Hull, 2000), a range of dS/S of ±5% in one day

reflects a scenario of a large price change. A ±1% price change would be considered

a normal price change and so reflects a typical price change scenario. A ±2% change

would be considered a significant change, although a possible scenario.

The following option input parameters were chosen to reflect the typical values an

option may take (although any values could have been chosen): r=5%; T=100 days;

S(0)=1000. We compared the accuracy of each method using the percentage relative

error, taking the full valuation method as our correct answer. For example, for the

Delta method the percentage relative error was calculated as

|vFV M − vD|
|vFV M | × 100,

where vFV M is the δC calculated by the full valuation method and vD was δC calculated

by the Delta method. A similar equation was applied to the replicating portfolio

method. To calculate the average relative percentage error we took the average of

these results over 1000 samples for each K and σ.

4.2 Results
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Table 1: Computation Time for Calculating δC (Seconds)

Experiment Delta Method Replicating Portfolio Full Valuation Method

1 166.375 166.812 504.312

2 167.609 166.578 508.312

3 165.485 168 510.297

4 167.734 168.078 510.25

5 167.453 167.453 507.469

6 167.282 167.437 533.313

7 167.469 167.906 512.562

8 169.437 168.546 532.89

9 169.656 166.859 510.015

10 167.657 166.703 511.984

Average 167.4157 167.4372 514.1404

Table 2: Average Relative Percentage Error for ± 1% Stock Range

Strike σ = 5% σ = 10% σ = 15% σ = 20%

K R D R D R D R D

900 0 15.6 1.25 15.46 6.2 20.43 16.29 33.18

950 0.48 15.26 5.96 21.61 13.34 27.99 24.01 39.43

1000 15.84 53.68 14.55 29.40 24.21 39.76 38.58 55.57

1050 25.89 40.62 27.2 42.21 38.3 54.78 46.78 62.15

1100 45.79 58.99 47.61 64.87 68.79 90.29 136.94 171.62

Table 3: Average Relative Percentage Error for ± 2% Stock Range

Strike σ = 5% σ = 10% σ = 15% σ = 20%

K R D R D R D R D

900 0.00 7.27 0.91 8.26 3.32 9.97 6.35 12.84

950 0.61 7.84 3.68 9.82 7.82 15.08 10.74 17.38

1000 8.3 13.35 9.47 15.53 14.89 22.94 24.19 34.42

1050 27.57 32.26 17.40 23.37 24.41 33.28 26.64 34.96

1100 52.05 56.61 37.78 47.86 24.98 31.39 111.86 139.58
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Table 4: Average Relative Percentage Error for ± 5% Stock Range

Strike σ = 5% σ = 10% σ = 15% σ = 20%

K R D R D R D R D

900 0.02 3.09 1.39 4.86 2.92 4.82 4.21 6.22

950 1.86 5.10 5.26 7.00 6.28 8.14 6.96 8.94

1000 19.74 21.05 13.46 15.32 12.31 14.98 20.56 29.90

1050 63.38 64.71 24.51 26.19 16.58 18.44 14.16 16.17

1100 117.07 118.13 38.89 41.10 24.55 26.95 19.79 22.20

Note: R denotes the replicating portfolio method and D denotes the Delta method.

4.3 Discussion

The numerical experiments in Table 1 demonstrate that full valuation is computation-

ally far more expensive than the Delta method; it takes approximately three times as

long. The experiments also confirm that the replicating portfolio method is signifi-

cantly less time consuming (computationally) than the full valuation method, in fact

its computation time is practically identical to the Delta method.

We expect both the Delta and replicating portfolio methods to have far lower com-

putation times than the full valuation method because they require practically no

calculation of nonlinear functions (other than for the one-off calculation of the op-

tion’s Delta). The full valuation on the other hand must calculate the Black-Scholes

equation (highly nonlinear function) for each sampled stock price. The replicating

portfolio method therefore provides a significant saving in computation time, at a time

comparable to the Delta method.

The savings in computation time become particularly important as we increase the

number of options in a portfolio and the frequency with which the portfolio is val-

ued during the day. Hence it can be seen that the full valuation method becomes

increasingly impractical compared to the Delta and replicating portfolio methods. Ad-

ditionally, we have used the Black-Scholes model to value the options, for which there

exist many optimised computational implementations. For other option pricing mod-

els (e.g. with different underlying processes) the full valuation method will increase

computation time.

The numerical experiments in Tables 2-4 demonstrate that the replicating portfolio

is more accurate than the Delta method and most importantly, this is achieved with

little additional computation time. The numerical experiments demonstrate that the
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replicating portfolio outperforms the Delta method over all K, σ and price ranges.

This is because the additional terms obtained from the replicating portfolio argument

(and are not present in the Delta method) enable more accurate modelling. To be

more specific, the replicating portfolio takes into account the change in option price

more accurately due to taking into account the impact of the option variables time and

riskless rate affecting option prices. This is not achieved in the Delta method.

We observe that both the Delta and replicating portfolio increase in error as we

increase with K. This is because the Black-Scholes call Delta is ∆ = Ψ(d1), therefore

∆ decreases as K increases. As we multiply dS by ∆ in both the Delta method and

replicating portfolio equation, a reduction in ∆ has the effect of changes in stock price

being unable to model changes in option price. However, it should be noted in all cases

the replicating portfolio method still provides a lower error than the Delta method.

The effect of increasing σ generally has the impact of increasing the error of both the

Delta and replicating portfolio method. However the influence of σ is less predictable

due to its relation with ∆. Since ∆ = Ψ(d1) for call options it can be shown that σ

has no monotonic increasing or decreasing relation with ∆ whilst all other parameters

are kept constant. Moreover, whilst we vary K and σ both will affect ∆, which in turn

will affect the accuracies of our method.

The numerical experiments show that the replicating portfolio method is more ac-

curate over all K, σ and price ranges than the Delta method. In portfolios containing

a range of options at different K (e.g. option trading strategies or static replicating

portfolios) therefore the replicating portfolio offers a more accurate modelling method

than the Delta method. Additionally, the replicating portfolio method does not admit

arbitrage opportunities to occur in the modelling, unlike the Delta method. Most im-

portantly, all these advantages are achieved without increasing computation cost, which

is the main purpose behind such methods. Hence our replicating portfolio method is

better suited to valuing portfolios of contingent claims than the Delta method.

In conclusion our numerical experiments show that our computational method is

significantly faster than the full valuation method and has a computation time compa-

rable to the delta method, underlining the fast computation of our method. Secondly,

our computation method is more accurate than the delta method for a range of volatil-

ities, strike and expiries. Hence the negligible increase in computation time using our

computation method is worthwhile given the significant gain in accuracy. Additionally,

our method does not admit arbitrage opportunities and other model risk errors.
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5 Conclusion

In this paper we have proposed a new method of measuring option risk (and other

contingent claims) using the replicating portfolio method. We have shown that this

method provides a fast computation of options by practically eliminating the require-

ment for evaluating nonlinear functions. This has resulted in computation times that

are practically identical to the Delta method.

We have shown that the replicating portfolio approach provides many significant

model risk advantages; one key advantage is that the model does not allow arbitrage

opportunities for complex portfolios of options (unlike other methods). Furthermore,

our model has lower calibration risk (only requiring observable market data to be im-

plemented (except ∆)), it has parsimonious implementation and fewer model assump-

tions which reduce implementation risk. Unlike other methods, the replicating portfolio

method can be applied to current models to take into account important model risk

factors (e.g. liquidity risk and model misspecification). Another key advantage is that

our method enables linear optimisation of portfolios containing options.

We conducted numerical experiments on our replicating portfolio method to validate

our method. These results have demonstrated that the replicating portfolio method

computes changes in option prices in times practically identical to those of the Delta

method whilst also giving lower relative error. In conclusion, we believe the replicating

portfolio offers significant modelling and computational advantages over alternative

modelling methods and this will be of significant interest to Academics and industry

professionals.

In terms of future possible areas of research, this includes developing the compu-

tational method for exotic options, such as energy options and barrier options; the

method could also be extended to other derivatives by application of a replicating

portfolio argument. Another area for future research is to develop the method with

relaxed Black-Scholes modelling assumptions, such as the explicit inclusion of taxes,

dividends and non-constant interest rates. Finally, the risk measurement method could

be extended to real options analyses, where a replicating portfolio existed, as risk mea-

surement is important for corporate finance applications.
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6 Appendix

6.1 Appendix 1: Black-Scholes Equation

The Black-Scholes option pricing model is given by

C(S(t), t, T, r, σ,K) = S(t)Ψ(d1)−Ke−r(T−t)Ψ(d2), (20)

where d1 =
ln(S(t)/K) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)
, (21)

d2 =
ln(S(t)/K) + (r − 1

2
σ2)(T − t)

σ
√

(T − t)
,

= d1 − σ
√

(T − t).

In C(S(t),t,T,r,σ,K) t is the time at which C is being priced, T is the expiration date,

Ψ(·) is the standard normal cumulative distribution function and K is the strike price.

6.2 Appendix 2: Algorithm for Full Valuation Method

Let index i = {1, 2, .., n} where n is the number of Monte Carlo simulations.

1. Calculate initial option price C(0): C(S(0),T,r,σ,K).

Set i=1.

2. Simulate S(δt) from S(0).

Denote simulated value for iteration i as Si(δt).

3. Calculate option price Ci(δt) using Si(δt): Ci(Si(δt), δt, T, r, σ,K).

4. Calculate loss: C(0)-Ci(δt).

5. Increment i.

If i=n+1 then stop, otherwise goto step 2.

6.3 Appendix 3: Bond Price Equation

The price of a bond B(t) is given by (Björk, 2004)

B(t) = B(0)exp

(∫ t

0

rdt

)
, (22)

dB = rB(t)dt. (23)
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6.4 Appendix 4: Arbitrage Definition

An arbitrage possibility in a financial market is a portfolio V (t) such that:

• V (0) ≤ 0;

• V (T ) ≥ 0 almost surely and

• E[V (T )] ≥ 0.

In words, arbitrage is an event where it is possible to make a profit without the possi-

bility of incurring a loss. We note that the assumption of no arbitrage in real markets

is not a stringent assumption because the existence of arbitrage is typically a symptom

of a highly dysfunctional market, which most studied markets do not exhibit.

6.5 Appendix 5: Expressions for Call Option Terms

For a call option it can be shown that (Baxter and Rennie, 1996)

φ1(t) = ∆(t), (24)

B(t)φ2(t) = Ke−r(T−t)Ψ(d2). (25)

Alternatively we can express B(t)φ2(t) as

B(t)φ2(t) = ∆S(t)− C(t), (26)

= φ1(t)S(t)− C(t). (27)

6.6 Appendix 6: Proof for Option Portfolio

δD(t) ≈ (n + ∆)δS(t) + φ2δB.

We have

δD(t) ≈ nδS(t) + δC(S(t)),

≈ nδS(t) + φ1dS + φ2δB,

≈ (n + φ1)δS(t) + φ2δB,

≈ (n + ∆)δS(t) + φ2δB.
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6.7 Appendix 7: Proof of Put-Call Parity of Replicating Port-

folio Method

A put option can be replicated by ∆p units of shares and a long position in φ2p(t) units

in bonds.

P = ∆pS(t) + φ2p(t)B(t),

dP = ∆pdS(t) + φ2p(t)dB(t),

δP ≈ ∆pδS(t) + φ2p(t)rB(t)δt(t). (28)

We also have

φ2p(t)B(t) = Ke−r(T−t) − φ2(t)B(t),

φ2p(t)dB(t) = d(Ke−r(T−t))− φ2(t)dB(t).

By put-call parity we have

δP ≈ δC + δ(Ke−r(T−t))− δS,

≈ (∆δS − φ2(t)δB(t)) + δ(Ke−r(T−t))− δS,

≈ ∆pδS + (δ(Ke−r(T−t))− φ2(t)δB(t)),

≈ ∆pδS + φ2p(t)δB(t). (29)

Hence equations (29) and (28) are equal, obeying the put-call parity.

6.8 Appendix 8: Coherency Axioms for Risk Measurement

A risk measure ρ(.) is coherent if it is:

1. monotonic: if Z1 ≤ Z2 then ρ(Z1) ≥ ρ(Z2);

2. homogeneous: ρ(κZ1) = κρ(Z1), where κ ∈ R+ is a positive constant;

3. translation invariant: ρ(Z1 + ν) = ρ(Z1) − ν, where ν ∈ R is a constant (or a

riskless bond portfolio);

4. subadditive: ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2).

6.9 Appendix 9: Put-Call Parity

The put-call parity states that (assuming the market is arbitrage free) a call C(S(t),t,T,r,K)

and put P(S(t),t,T,r,K) with the same S(t), K and T obey the relation:

P (S(t), t, T, r,K) = Ke−r(T−t) − S(t) + C(S(t), t, T, r,K). (30)
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6.10 Appendix 10: Example of Internal Arbitrage By Put-

Call Parity

Let us assume there are 2 departments, H1 and H2, in 1 company. Department H1

creates a portfolio M consisting of buying put option P, and short selling a call option

C. Hence:

M = P − C,

and

δM = δP − δC.

Both P and C are identical in terms of option parameters, that is T, r, K, σ, S(t) etc..

By the Delta-Gamma method:

δP ≈ ∆pδS +
γ2

2
(δS)2,

where ∆p is the option delta for a put and δC is

δC ≈ ∆δS +
γ2

2
(δS)2,

≈ (∆p + 1)δS +
γ2

2
(δS)2.

The previous line is possible because for any option pricing model it is known that

∆ = ∆p + 1. Therefore

δM = δP − δC,

= (∆pδS +
γ2

2
(δS)2)− ((∆p + 1)δS +

γ2

2
(δS)2),

= −δS.

Hence department H1 expects −δS payoff from its portfolio M. Now department H2

can sell H1 the portfolio M. By the put-call parity:

P = Ke−r(T−t) − S(t) + C,

P − C = Ke−r(T−t) − S(t).

So H2’s payout from the above portfolio will be:

dP − dC = d(Ke−r(T−t))− dS,

δP − δC ≈ Ke−r(T−δt) − δS.

Now H2 will only need to pay out −δS to H1 for the portfolio it sold to H1 because

H1 is expecting −δS from its model. Hence using the last equation we see that H2 will

always be able to make a riskless profit of Ke−r(T−δt), regardless of the value of S(t).

Hence this represents an arbitrage opportunity.
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