
Model-Checking Iterated Games

Chung-Hao Huang1 Sven Schewe2 Farn Wang1,3,4

1: Graduate Institute of Electronic Engineering, National Taiwan University
2: Department of Computer Sciences, University of Liverpool

3: Department of Electrical Engineering, National Taiwan University
4: Center for Information Technology Innovation (CITI), Academia Sinica, Taiwan, ROC

Abstract. We propose a logic for the definition of the collaborative power of
groups of agents to enforce different temporal objectives. The resulting tempo-
ral cooperation logic (TCL) extends ATL by allowing for successive definition of
strategies for agents and agencies. Different to previous logics with similar aims,
our extension cuts a fine line between extending the power and maintaining a low
complexity: model checking TCL sentences is EXPTIME complete in the logic,
and NL complete in the model. This advancement over nonelementary logics is
bought by disallowing a too close entanglement between the cooperation and
competition. We show how allowing such an entanglement immediately leads to
a nonelementary complexity. We have implemented a model checker for the logic
and shown the feasibility of model checking on a few benchmarks.

1 Introduction

While the verification of traditional linear and branching time logics like LTL, CTL,
and CTL* [27, 12] has been reduced to (repeated) reachability [15, 19], the satisfiability
checking and synthesis problem has been tightly linked with game theory ever since
the seminal works of Büchi and Landweber [8, 7]. Since the seminal work of alternating

time logic (ATL) by Alur, Henzinger, and Kupferman [2] and in automaton-based µ-
calculus model-checking (e.g., [36]), game theory has also emerged as a technology with
great potential in verifying the correctness of reactive systems. With game theoretic
challenges moving to the focus of researchers studying the specification and design of
reactive systems, traditional problems of multi-player games are replacing the traditional
distinction between an adversarial environment and a supportive system. Instead, we
have groups of players that cooperate on some objectives while competing on others.

For particular properties, the intuition that some players represent the system while
other players represent the environment is, however, still useful. Following this intuition,
the system wins the game in an execution (or a play in the jargon of game theory) if
the system specification is fulfilled along the execution . System design as a whole for
specifications in game logics can rather be compared to designing a game board and to
show that the respective group of players (or: agency) has the coalition power required
by the system specification.

There are various established game-based specification languages, including ATL,
ATL∗, and the alternating µ-calculus (AMC), game logic (GL) [2], strategy logics [11, 21,
24, 22], coordination logic [14], stochastic game logic [5], and basic strategy interaction



logic (BSIL) [35] for the specification of the interplay in open systems. Each language
also comes with a verification algorithm that determines whether a winning strategy
for the system exists. However, there is a gap between the available techniques and the
scalability required for industrial applications. It would be interesting to see whether
the expressiveness for close interaction among agent strategies and the efficiency for the
verification or refutation of compliance with a specification can be better combined.

On the one hand, logics like ATL, ATL∗, AMC, and GL [2] allow us to specify the
collaborative power of groups of players to enforce a common objective. This falls short
from specifying even the simple properties in a typical game. For example, it was shown
in [35] that ATL, ATL∗, AMC, and GL [2] cannot express that the same strategy of a
banking system must allow the clients both, to withdraw and to deposit money. This is
arguably a severe restriction when representing (or reasoning about) real-world examples.

On the other hand, to solve the expressiveness problem in the above example, strategy

logics (SL) were proposed in [5, 11, 24, 22]. They allow for the flexible quantification over
strategies in logic formulas. However, their verification complexity is prohibitively high
and has inhibited practical application.

A previous attempt to tame the complexity of strategy interaction [35], on the other
hand, results in a full temporalization. This leads to severe restrictions in the entan-
glement between temporal operators and strategy binding and thus prevents reasoning
about Nash equilibria.

However, in our opinion, the previous work still lacks some important ingredients
for practical specifications in real-world projects. In the following, we use the following
example to explain the inadequacy of those languages in expressing real-world properties.

Example 1. Consider the example of a bank (Bank A) that would like to specify
their information system embodied as a system security strategy that allows a
client to use a strategy to transfer money from another bank (Bank B), and to
use a strategy to transfer to Bank B. Moreover, the same system strategy should
forbid any illegal operation on the banking system. This example looks similar to
the one in the introduction of [35] for the argument that ATL∗, AMC, and GL are
inadequate in expressing certain important game properties in real-world projects.
As explained in [35], such a property involves the interaction of one strategy of
Bank A with two different strategies of the client and cannot be expressed with
ATL∗, AMC, and GL.

However, the logic BSIL proposed in [35] still lacks some important ingredients
in specifying fine-grained control of a multi-agent systems. Consider the banking
system example in the last paragraph. A typical transfer session usually consists
of at least five segments roughly in timing order.
S1: The client and Bank A collaborate to initiate the transfer.
S2: Bank A and Bank B collaborate to carry out the transfer via the internet.
S3: Bank B updates the account balance.
S4: Bank A updates the account balance.
S5: Bank A and B commit the transaction.
As can be seen, the whole session involves the collaboration of the client, Bank A,
and Bank B. However, in S1, the strategy of Bank B is irrelevant. In S2 and S5, the
strategy of the client is irrelevant. In S3, only the strategy of Bank B matters. In
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S4, only the strategy of Bank A matters. Since BSIL does not allow pure strategy
interaction quantification inside temporal modalities, it is impossible to express a
fine-grained control in specific timing intervals. For example, it is not possible to
express in BSIL the following.
• After S1 finishes and before S3 and S4 start, Bank A can use the same strategy
that initiates the transfer session and enforces the security to collaborate with Bank
B to fulfill the transfer via internet.

• After S2 finishes, Bank B can use the same strategy that collaborates with Bank A
to fulfill the internet transfer to again finish updating account balance.

Certainly, BSIL can be viewed as a compromise between expressiveness and its rela-
tively low PSPACE model-checking complexity. Still, the above example motivates us
for identifying a more expressive class of strategy logics while maintaining a relatively
low model-checking complexity.

We thus propose to adapt the logic in [35] to a new temporal logic called temporal

cooperation logic (TCL) for this purpose. Let us introduce TCL informally on a game
with a variation of the classic game problem of Prisoners’ dilemma.

Example 2. Iterated prisoners’ dilemma. Inspired by the famous prisoners’
dilemma, we consider a model where three suspects, who are initially in custody,
are interrogated concurrently, and have the choices to either admit or deny the
charges made against them. If all deny, they will be released based on lack of
evidence.

However, a suspect may decide to collaborate with the police and betray her
peers. A sole collaborator will be acquitted as a crown witness, while her peers
will be sentenced. But if two or more suspects collaborate with the police, all will
be sentenced.

In an iterated prisoners’ dilemma, the interplay can continue up to an un-
bounded number of times. Such a game is very useful in modeling collaboration
and competition in networks. For example, a strategy in prisoners’ dilemma is
nice if it does not suggest betrayal initially and only suggests betrayal if in the
previous round, another prisoner betrayed [4]. The following TCL sentence refers
to nice strategies of Prisoner 1.

¬betray1 ∧ 〈1〉�((〈+〉 © ¬betray1) ∨
∨

a 6=1 betraya) (A)

〈1〉 is a strategy quantifier (SQ), which states that there exists a strategy of Pris-
oner 1 to achieve the temporal goal. 〈+〉 is a strategy interaction quantifier (SIQ)
that inherits the strategy from its parent formula. Proposition betrayi is an
atomic proposition for the betrayal of prisoner i at the present state. Similarly, we
can reflect more involved strategies, such as ‘Prisoner 2 will always betray when
she does not have the power to force Player 1 to always play nice.’

〈2〉((〈+〉�betray2) ∨ 〈+〉�((〈+〉 © ¬betray1) ∨
∨

a 6=1 betraya)) (B)

Similar properties can be used to specify forgiving1 or other related strategies
[4]. A forgiving strategy of Prisoner 1 is reflected by the following TCL property.

1 A strategy is forgiving if it does not always punish betrayal in the previous round.
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〈1〉♦((〈+〉 © ¬betray1) ∧
∨

a 6=1 betraya) (C)

We can also reason about the existence of Prisoner 2’s strategy that avoid betrayal
if Prisoner 1 is always unforgiving under this strategy.

〈2〉((〈+〉�¬betray2) ∨ 〈+1〉♦((〈+〉 © ¬betray1) ∧
∨

a 6=1 betraya)) (D)

As can be seen, properties like (B) and (D) are relevant in network environment where
plays can be extended round by round without termination. Every agent may track
each others’ records to decide whether or not to cooperate. Such a property cannot
be expressed in ATL∗, GL, AMC, and BSIL. While it can be expressed with SL, the
verification complexity of SL is prohibitively high at 2EXPTIME-hard [21].

In [35], SIQs can neither override or revoke strategies assigned by SQ or SIQ in
whose scope they are. Consequently, BSIL cannot express deterministic Nash equilibria.
To overcome this restriction, we introduce a strategy reset operator that revokes previous
strategy assignments.

Let jaila be a proposition, which says that for prisoner a in jail. In TCL,

〈1, 2, 3〉
∧

a∈[1,3]

(
(〈+∅〉♦¬jaila) ∨ 〈−a〉�jaila

)
(E)

requires that no agent stays in jail indefinitely, if she can avoid it under the current
strategies of the remaining prisoners. The SIQ 〈−a〉ψ revokes the binding of the (the
singleton agency that contains only) agent a to her strategy.

In this work, we establish that TCL is incomparable with ATL∗, GL, and AMC in
expressiveness. Although strategy logics proposed in [5, 11, 21, 24] subsume TCL with
their flexible quantification of strategies and binding to strategy variables, their model-
checking complexity are all doubly exponential time hard. In contrast, TCL enjoys an
EXPTIME-complete model-checking complexity and fixed parameter tractability when
using the length of the formula as parameter, as well as 2EXPTIME completeness of
the TCL satisfiability problem for turn-based game graphs. TCL is thus a step toward a
better balance between expressiveness and complexity/efficiency compared to ATL∗, GL
[2], and SL [11, 24, 22]. Given the expressive power as exemplified by the specifications
from above, TCL can be viewed as an expressive yet inexpensive subclass of SL [24, 22].

Organization or the Paper. Section 2 reviews related work. Section 3 explains concur-
rent game graphs and turn-based game graphs for the description of multi-agent systems
and section 4 presents the syntax and semantics of TCL. Section 5 discusses the expres-
siveness of TCL. In particular, we establish that CTL, ATL, LTL, and CTL* can be
viewed as syntactic fragments of TCL and show that TCL is more expressive than any
of these logics while incomparable with ATL∗, AMC, and GL [2] in expressiveness, and
discuss the effect of a mild extension of TCL. In the following sections, we develop an
automaton-based model-checking algorithm and establish the EXPTIME-completeness
and 2EXPTIME-completeness of the TCL model-checking and satisfiability problem, re-
spectively. Finally, we have implemented a model checker and validated the feasibility of
using TCL on a set of benchmarks.
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2 Related work

2.1 Before strategy logics

Alur, Henzinger, and Kupferman presented ATL (alternating-time temporal logic), ATL∗,
AMC (alternating-time µ-calculus), and GL (game logic) with strategy quantifier 〈〈M〉〉
[2].

Walther, van der Hoek, and Michael Wooldridge presented ATLES that allows a
specified strategy to interact with strategy quantification [34]. Specifically, we can write
ATLES formulas of the form:

〈1〉{1 7→ρ1}((〈2〉{1 7→ρ1}�p) ∧ 〈2〉{1 7→ρ1}♦¬p)

where ρ1 is the symbolic name for a strategy of agent 1 and 〈A〉{b 7→ρb}φ means that the
collaborating strategy of agents in A \ {b} can work with agent b with strategy ρb to
enforce φ. Intuitively, ρb functions as a working variable that records the same strategy
used across several strategy quantifiers. In the complexity aspect, [34] only considers
memoryless strategies in the model-checking problem. If ρ1 is prescribed, then their
PTIME model-checking algorithm in [34] can check whether ρ1 satisfies the formula.
If ρ1 is not prescribed, their model-checking algorithm runs in NP. As stated in [34],
specifiying fine-grained interaction among strategies can result in combinatorial explosion
in formula sizes.

Brihaye, Lopes, Laroussinie, and Markey introduced a very expressive extension to
ATL∗ with other players’ strategies and memory constraints [6]. They also showed that
the model-checking problem of this extension is decidable, in fact, PSPACE-complete for
memoryless strategies and EXPSPACE for strategies with bounded memory.

Pinchinat introduced a way to specify expressive constraints on strategies in con-
current games by extending µ-calculus with decision modalities [26]. Laroussinie and
Markey reported decidability of satisfiability problems in this direction with new context
constraints, e.g., the number of moves by agents are bound [20].

2.2 Strategy logics

Chatterjee, Henzinger, and Piterman introduced a strategy logic allowing for first-order
quantification over strategies [11]. The decision procedure is however non-elementary.

Mogavero, Murano, Perelli, Sauro, and Vardi also identified fragments of strategy
logics which enjoy a doubly exponential time complexity model-checking algorithm [24,
22, 23]. For example, in [23], conjunction and disjunction cannot happen in the same
scope of strategy quantification. TCL is also a fragment of strategy logic with restriction
on the hierarchy of SIQs and sometimes can be handy in expressing boolean relation
among strategies. Moreover, the restriction on our TCL results in a much lower model-
checking complexity of EXPTIME.

Another interesting extension to ATL is ATL∗
sc by Laroussinie, Lopes, and Markey

[21] that interprets nested strategy quantification as composition, instead of revocation,
of strategy profiles. This is similar to the semantics of our SIQs. However, TCL keeps
both the SQs from ATL (for strategy profile revocation) and new SIQs (for strategy
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profile composition). In this way, TCL does not subsume ATL∗ while still allows for
flexible and practical specifications.

Moreover, with their special interpretation of nested strategy quantification, ATL∗
sc

[21] allows for strategy interaction across temporal modal operators and makes ATLsc

as expressive as ATL∗
sc. As a result, the model-checking complexity of ATLsc is also

2EXPTIME. In contrast, TCL allows for strategy interaction in the same state while
strictly forbids strategy interaction across temporal modal operators. As a result, TCL
is carefully designed for a EXPTIME model-checking complexity while maintaining some
practical expressiveness.

BSIL [35] is a strict subclass of our TCL and enjoys a lower model-checking complexity
than TCL. But BSIL did not admit strategy quantification to interact across temporal
modalities.

TCL and the various fragments of strategy logics all can express certain interaction
and collaboration relation among strategies used by agents in a multi-agent game. They
are designed with different consideration in balancing between expressiveness and verifi-
cation efficiency. TCL is also special in that its design takes the natural way that strategy
collaboration can happen in rounds and need be specified with this consideration.

2.3 Tools

There are several model-checkers for ATL, including MOCHA [3] and ATL Designer [31,
32]. RB±ATL is an extension to ATL with resource bound requirement [1]. However,
unlike our model-checker for TCL and BSIL, those tools can only reason with memoryless
strategies specified with ATL.

One model-checker that allows for the specification of strategy logics for close strategy
interaction is MCMAS-SLK [9] which also incorporates syntax for epistemic requirement.
However, MCMAS-SLK only synthesizes memoryless strategies.

As far as we know, our model-chcker for TCL and BSIL is the only one for mem-
oryful strategies for a non-trivial fragment of strategy logics. It is thus not meaningful
to compare the performance of our model-checker with the model-checkers mentioned
in the above since the strategies that our implementation synthesized in the experiment
cannot be synthesized by the other model-checkers.

3 System models

A vector of dimension m is a sequence of m elements. Notationally, we use
−→
d to denote

a vector and
−→
d [1], . . . ,

−→
d [m] for its m elements.

3.1 Concurrent games

A general framework of game structure is concurrent game that allows the agents to
make concurrent decisions. A concurrent game is played by a finite number m of agents,
indexed 1 through m. A game is a tuple G = 〈m,Q, r, P, λ,Σ, δ〉, where
• Parameter m is the number of agents in the game.
• Q is the set of states and r ∈ Q is the initial state (or root) of G.
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• P is a finite set of atomic propositions.
• λ : Q → 2P is a proposition labeling function.
• Σ = S1× . . .×Sm is a set of joint decisions where Sa is a set of decisions available to

an agent a ∈ [1,m]. Conceptually, elements in Σ are vectors of m dimensions with
their a’th elements from Sa.

• δ : Q × Σ → Q is a transition function that maps a state q and a joint decision
−→
d ∈ Σ to the respective successor state δ(q,

−→
d ) reached from q on the joint decision

−→
d .

During a transition, each agent selects a token. For the convenience of presentation
and proof of the lemmas, usually δ is defined for all token vectors. In practice, when
some token vectors are not admitted, we may introduce an artificial failure state as the
destination state or simply add self-loop transitions for those undefined token vectors.

For convenience, we let EG = {(q, δ(q,
−→
d )) | q ∈ Q,

−→
d ∈ Σ} be the set of unlabeled

transitions.

In Figure 1, we have the graphical representation of a concurrent game graph. The

Fig. 1. A concurrent game graph for the iterated prison dilemma
m = 2; S1 = S2 = {a, d}; ‘*’ represents the set of all tokens.

ovals represent states while the arcs represent state transitions. We also put down the λ
values inside the corresponding states. The transitions are labeled with the decisions, d
for deny and a for admit, made by the agents, shown as [decision of agent 1,decision of

agent 2]. [∗, ∗] represents the set of all token vectors.

For convenience, in the remaining part of the manuscript, we assume that we are
always in the context of a given game graph G = 〈m,Q, r,P, λ,Σ, δ〉 with E = EG .

A play ρ is an infinite path q0q1 . . . in G such that, for every k ∈ N, (qk, qk+1) ∈ E .
ρ is initial if q0 = r. For every k ≥ 0, we let ρ(k) denote qk. Also, given h ≤ k, we let
ρ[h, k] denote ρ(h) . . . ρ(k) and ρ[h,∞) denote the infinite tail of ρ from ρ(h).

A play prefix is a finite segment of a play from the beginning of the play. Given a play
prefix π = q0q1 . . . qn, |π| = n+1 denotes the length of the prefix. Given a k ∈ [0, |π|−1],
we let π(k) = qk. For convenience, we use last(π) to denote the last state in π, i.e.,
π(|π| − 1).
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Given a vector
−→
d with m elements, we use

−→
d [a] to denote the a’th element of

−→
d . A

strategy κ is a function from Q∗ to Σ. A play ρ is compatible with a strategy κa of an agent

a ∈ [1,m] if, and only if, for every k ∈ N, there exists a
−→
d such that

−→
d [a] = κa(ρ[0, k])

and δ(ρ(k),
−→
d ) = ρ(k + 1).

3.2 Turn-based game graphs

Another popular game structure is turn-based game in which at each state, at most
one agent gets to decide the next state. For example, in Figure 2, we have the graphical
representation of a turn-based game graph. The ovals and squares represent states owned

© belongs to Agent 1 and � belongs to Agent 2.

Fig. 2. A turn-based game graph

by agent 1 and 2 respectively. The arcs represent state transitions. Many popular games,
e.g., chess, GO, Bridge, Queen of Spades, etc., are turn-based. In the investigation of
many research issues, turn-based game graphs are easier to handle than concurrent game
graphs since there tends to be less decision vectors from each state. Moreover, many
turn-based games are determined2 while many concurrent games are not and may need
randomization for meaningful analysis [10].

In fact, turn-based games can be represented as special cases of concurrent games.
Specifically, a turn-based game G = 〈m,Q, r, P, λ,Σ, δ〉 is a concurrent game such that for
every q ∈ Q, there is an a ∈ [1,m], called the owner of q, such that for every a′ 6= a, the
decision of agent a′ at q does not affect the destination state. Specifically, for every two

token vectors
−→
d and

−→
d′ , if a is the owner of q and

−→
d [a] =

−→
d′ [a], then δ(q,

−→
d ) = δ(q,

−→
d′ ).

For convenience, for a turn-based game, we use ownerSat(a, q) to denote the following
predicate that says agent a can be a owner of state q.

∀
−→
d ∈ Σ ∀

−→
d′ ∈ Σ

( −→
d [a] =

−→
d′ [a] → δ(q,

−→
d ) = δ(q,

−→
d′ )

)
.

2 A game is determined if a player knows whether she/he has a winning strategy even before
the game is played.
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Then the owner of q, in symbols ω(q), is defined as the minimum agent index a satisfying
ownerSat(a, q). For ease of notation, we denote with Qa = {q ∈ Q | ω(q) = a} the states
owned by an agent a.

In fact, there are temporal logic formulas that cannot be satisfied by turn-based game
structures. For example, one such ATL formula is the following for a 2-player game.

(〈1, 2〉 © p) ∧ (¬〈1〉 © p) ∧ (¬〈2〉 © p) (#)

The reason is the following, Assuming a turn-based game, the second conjunct ¬〈1〉© p

and the third conjunct ¬〈2〉© p together say that no matter whether the initial state is
owned by player 1 or player 2, p is false in all successor states. Thus, the first conjunct
〈1, 2〉 © p cannot be satisfied. But the formula can be satisfied by the concurrent game
in figure 3.

Fig. 3. A concurrent game graph satisfying formula (#)
m = 2; S1 = S2 = {a, b}; ‘*’ represents the set of all tokens.

4 TCL

4.1 Syntax

An agency A of [1,m] is a subset of [1,m]. In a short hand notation, we often drop
the curly brackets in the set notation, in particular for singleton and empty sets. For
example, “1, 3, 4” is a short hand for {1, 3, 4}.

A TCL formula φ is constructed with the following three syntax rules.

φ ::= p | ¬φ1 | φ1 ∨ φ2 | 〈A〉ψ
ψ ::= φ1 | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | 〈+A〉ψ1 | 〈+A〉 © ψ1 | 〈+A〉ηUψ1 | 〈+A〉ψ1Rη

| 〈−A〉ψ1 | 〈−A〉 © ψ1 | 〈−A〉ηUψ1 | 〈−A〉ψ1Rη
η ::= φ1 | η1 ∨ η2 | η1 ∧ η2 | 〈+〉 © η1 | 〈+〉η1Uη2 | 〈+〉η1Rη2

| 〈−A〉 © η1 | 〈−A〉η1Uη2 | 〈−A〉η1Rη2

Here p is an atomic proposition in P and A ⊆ {1, . . . ,m} is an agency. Property 〈A〉ψ1 is
an (existential) strategy quantification (SQ) specifying that there exist strategies of the
agents in A that make all plays satisfy ψ1. Property 〈+A〉ψ1 is an (existential) strategy
interaction quantification (SIQ) and can only occur bound by an SQ. Intuitively, 〈+A〉ψ1
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means that there exist strategies of the agents in A that work with the strategies declared
by the ancestor formulas.

Property 〈−A〉ψ1 is an strategy interaction quantification (SIQ) that revokes the
binding of strategies to agents in A from the context. For example, 〈1, 2, 3〉pU〈−2〉 © r

specifies that a state q satisfying 〈−2〉© r will be reached via collaboration of agents 1,
2, and 3. However, the fulfillment of ©r at state q will only require the collaboration of
agents 1 and 3.

‘U’ is the until operator. The property ψ1Uψ2 specifies a play along which ψ1 is true
until ψ2 becomes true. Moreover, along the play, ψ2 must eventually be fulfilled. ‘R’ is
the release operator. Property ψ1Rψ2 specifies a play along which either ψ2 is always
true or ψ2U(ψ1 ∧ ψ2) is satisfied. (Release is dual to until: ¬(φ1Uφ2) ⇔ ¬φ2R¬φ1.)

In the following we may use 〈?A〉ψ to conveniently denote an SQ or SIQ formula with
‘?’ is empty, ‘+’, or ‘-’. An SIQ 〈±A〉ψ is called non-trivial if A is not empty, and trivial
otherwise.

4.2 Rationale for the design of TCL

As explained in the introduction, BSIL does not admit strategy interaction to cross
temporal modality and TCL is aimed to gain expressiveness in this aspect with a balance
between expressiveness and verification efficiency in mind. We observe that if we can
always limit our attention to a bounded number of strategies and analyze their interaction
in choosing the next states, the techniques for model-checking BSIL formulas can still
apply.

If there is no alternation in the quantification of strategies, then the number of strate-
gies that we need consider is bounded by the number of strategy quantifications in the
formula. For example, in formula

〈1〉 © ((〈+2〉p) ∧ 〈+2〉¬p),

we only have to consider three strategies.
• κ1 for agent 1 from the initial state.
• κ2, κ3 for agent 2 from the next state.

Then from the next state on in every play, we can reason the interaction among κ1, κ2,
and κ3 by investigating how they issue tokens in a state. Similarly, for formula

〈1〉((♦〈+2〉p) ∧ ♦〈+2〉¬p),

we only have to consider the interaction among three strategies from the destination
state of the eventualities along every play. In fact, for any nesting depth of the eventuality
modality, it is easy to see that we still only have to focus on bounded number of strategies.

In contrast, when there is an alternation of strategy declaration, the number of strate-
gies that we need to consider may become unbounded. For example, in formula

〈1〉((〈+2〉♦p) ∧ ¬〈+2〉♦¬p),

for a fixed strategy κ1 of agent 1, we need to prove that no strategy of agent 2 can
collaborate to fulfill ♦¬p. In the worst case of such nestings, this will force us to consider
the patterns of interaction between κ1 and infinitely many strategies of agent 2. As can
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be seen from the strategy logics, this can easily blow up the model-checking complexity to
2EXPTIME. Thus, the first thing that we need to constrain is no strategy quantification
alternation is allowed until all strategies are revoked by an SQ.

However, there is a subtle strategy quantification alternation embedded with temporal
modalities. Consider formula

〈1〉((〈+2〉♦p) ∧�〈+2〉¬p).

The strategy that agent 2 used to enforce ¬p can can be different from state to state
due to the modality of �. In the worst case, such nestings can also force us to enumerate
different patterns of interaction between one strategy of agent 1 and all strategies of
agent 2. This can also blow up the model-checking complexity of TCL to those of strategy
logics. The same argument also applies to modality φUψ when an SIQ happens in the
path subformula φ.

To summarize, we observe that to maintain relatively low model-checking complexity
of TCL, we need to do the following.

• No alternation of non-trivial SIQs is allowed.
• No implicit alternation of SIQs induced by nontrivial SIQs inside �-modalities and

the path subformulas of U-modalities.

The above two constraints lead us to the following definition of TCL.

Formulas φ are called TCL formulas, sentences, or state formulas. Formulas ψ and η
are called tree formulas. Note that we strictly require that non-trivial strategy interaction
cannot cross path modal operators. This restriction is important because it offers a
sufficient level of locality to efficiently model-check a system against a TCL property.
To illustrate this and to provide a simple extension that offers more expressive power to
the cost of a much higher complexity, we informally discuss a small extension, extended

TCL (ETCL), where the production rule of ψ also contains ¬ψ and show that it can be
used to encode ATL∗, and the realizability problem of prenex QPTL can be reduced to
ETCL model-checking.

For convenience, we also have the following shorthands.

true ≡ p ∨ (¬p) false ≡ ¬true

φ1 ∧ φ2 ≡ ¬((¬φ1) ∨ (¬φ2)) φ1 ⇒ φ2 ≡ (¬φ1) ∨ φ2
♦φ1 ≡ trueUφ1 �φ1 ≡ falseRφ1

¬© φ1 ≡ ©¬φ1 〈A〉 © ψ1 ≡ 〈A〉〈+〉 © ψ1

〈A〉ψ1Uψ2 ≡ 〈A〉〈+〉ψ1Uψ2 〈A〉ψ1Rψ2 ≡ 〈A〉〈+〉ψ1Rψ2

In general, it would also be nice to have the universal SQs and SIQs respectively as
duals of existential SQs and SIQs. Could we not add, or encode by pushing negations
to state formulas, a property of the form [+A]ψ1, meaning that, for all strategies of
agency A, ψ1 will be fulfilled? In principle, this is indeed no problem, and extending the
semantics would be simple. This logic would be equivalent to allowing for negations in
the production rule of ψ. The problem with this logic is that it is too succinct. We will
briefly discuss in the following section that model checking becomes nonelementary if we
allow for such negations.

From now on, we assume that we are always in the context of a given TCL sentence.

11



4.3 TCL semantics

In order to prepare the definition of a semantics for TCL formulas, we start with the
definition of a semantics for sentences of the form 〈A〉ψ, where ψ does not contain an
SQs. We call these formulas primitive TCL formulas.

Due to the design of TCL, strategy bindings can only effectively happen at non-
trivial SQs 〈A〉 and when a non-trivial SIQ 〈+B〉 is interpreted. To ease referring to
these strategies, we first define the bound agency of a subformulas φ of a TCL sentence
χ, denoted bnd(φ), as follows.
• For state formulas φ, bnd(φ) = ∅.
• For state formulas 〈A〉ψ, bnd(ψ) = A.
• For tree formulas ψ1 = 〈+A〉ψ2, bnd(ψ2) = bnd(ψ1) ∪A.
• For tree formulas ψ1 = 〈−A〉ψ2, bnd(ψ2) = bnd(ψ1)rA.
• For all other tree formulas ψ1 or ψ2 with either ψ = ©ψ1 or ψ = ψ1OPψ2, with

OP ∈ {∧,∨,U ,R}, we have bnd(ψ1) = bnd(ψ) or bnd(ψ2) = bnd(ψ), respectively.
Function bnd shows, which agents have strategies assigned to them by an SIQ or SQ.
Note that this leaves the bnd undefined for all state formulas not in the scope of an SQ
formulas. For completeness, we could define bnd as empty in these cases, but a definition
will not be required in the definition of the semantics.

As the introduction of additional strategies through non-trivial SIQ 〈+B〉 is governed
by a positive boolean combination, all strategy selections can be performed concurrently.
Such a design leads us to the concept of strategy schemes.

A strategy scheme σ is the set of strategies introduced by any non-trivial SQ 〈A〉 or
SIQ 〈+A〉. By abuse of notation, we use σ[φ, a] to identify such a strategy. Read in this
way, σ can be viewed as a partial function from subformulas and their bound agencies
to strategies. Thus, σ[φ, a] is defined if a ∈ bnd(φ) is in the bound agency of φ.

For example, given a strategy scheme σ for a TCL sentence 〈1〉♦((〈+2〉©p)∧〈2〉�q),
the strategy used in σ by Agent 1 to enforce the whole formula can be referred to by

σ[〈1〉♦((〈+2〉 © p) ∧ 〈2〉�q), 1]

but also by σ[〈+2〉 © p, 1], while σ[〈2〉�q, 1] is undefined.
We use a simple tree semantics for TCL formulas. A (computation) tree Tr is obtained

by unraveling G from r and expand the ownership and labeling functions from G to Tr
in the natural way. Technically, we have the following definition.

A computation tree for a game G from a state q, denoted Tq, is the smallest set of
play prefixes that contains q and for all π ∈ T and (last(π), q′) ∈ E , πq′ ∈ T .

The strategy-pruned tree for a tree node π, a strategy scheme σ, and a subformula ψ1

of χ from a state q, in symbols Tq〈π, σ, ψ1〉, is the maximal subset of Tq such that:
• π ∈ Tq〈π, σ, ψ1〉;

• for all π′ ∈ Tq〈π, σ, ψ1〉 and π′q′ ∈ Tq〈π, σ, ψ1〉, there exists a
−→
d ∈ Σ such that

δ(last(π′),
−→
d ) = q′ and for all a ∈ bnd(ψ1), σ[ψ1, a](π

′) =
−→
d [a].

Given a computation tree (or a strategy-pruned tree) T and a node π ∈ T , for every
πq ∈ T , we say that πq is a successor of π in T . A play ρ is a limit of T , in symbols

ρ
∞
∈ T , if there are infinitely many prefixes of ρ ∈ T .
We now define the semantics of subformulas of primitive TCL formulas inductively as

follows. Given the computation tree Tq of G, a tree node π ∈ Tq, and a strategy scheme
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σ, we write Tq, π, σ |= ψ1 to denote that Tq satisfies ψ1 at node π with strategy scheme
σ.
• For state formulas φ other than SQ formulas, we use the state formula semantics:
Tq, π, σ |= φ iff G, last(π) |= φ, with the usual definition.
− G, q |= p if, and only if, p ∈ λ(q),
− G, q |= ¬φ if, and only if, G, q 6|= φ,
− G, q |= φ1 ∨ φ2 if, and only if, G, q |= φ1 or G, q |= φ2, and
− G, q |= φ1 ∧ φ2 if, and only if, G, q |= φ1 and G, q |= φ2.

(Note that this allows for using negation for state formulas.)
• Tq, π, σ |= ψ1∨ψ2 iff Tq, π, σ |= ψ1 or Tq, π, σ |= ψ2. (These ψi are no state formulas.)
• Tq, π, σ |= ψ1 ∧ ψ2 iff Tq, π, σ |= ψ1 and Tq, π, σ |= ψ2.
• Tq, π, σ |= 〈±A〉©ψ iff, for all successors πq′ of π in Tq〈π, σ, 〈±A〉©ψ1〉, Tq, πq

′, σ |=
ψ.

• Tq, π, σ |= 〈±A〉ψ1Uψ2 iff, for all limits ρ
∞
∈ Tq〈π, σ, 〈±A〉ψ1Uψ2〉, there is a k ≥

|π| − 1 such that Tq, ρ[0, k], σ |= ψ2 and, for all h ∈ [|π| − 1, k− 1], Tq, ρ[0, h], σ |= ψ1

hold.
• Tq, π, σ |= 〈±A〉ψ1Rψ2 iff, for all limits ρ

∞
∈ Tq〈π, σ, 〈±A〉ψ1Rψ2〉, one of the following

two restrictions are satisfied.
− For all k ≥ |π| − 1, Tq, ρ[0, k], σ |= ψ2.
− There is a k ≥ |π|−1 such that Tq, ρ[0, k], σ |= ψ1∧ψ2, and, for all h ∈ [|π|−1, k],
Tq, ρ[0, h], σ |= ψ2.

• Tq, π, σ |= 〈±A〉ψ1 iff Tq, π, σ |= ψ1.
• G, q |= 〈A〉ψ1 iff there is a strategy scheme σ such that Tq, q, σ |= ψ1.

If φ1 is a TCL sentence then we write G |= φ1 for G, r |= φ1.
Note that, while asking for the existence of a strategy scheme refers to all strategies

introduced by some SQ or SIQ in the TCL sentence, only the strategies introduced by
the respective SQ and the SIQs in its scope are relevant.

The simplicity of the semantics is owed to the fact that it suffices to introduce new
strategies at the points where eventualities become true for the first time. Thus, they
do not really depend on the position in which they are invoked and we can guess them
up-front. (Or, similarly, together with the points on the unraveling where they are in-
voked.) This is possible, simply because the validity of state formulas (and hence of TCL
sentences) cannot depend on the validity of the left hand side of an until (or the right
hand side of a release) after the first time it has been satisfied.

5 Expressiveness of TCL

Note that TCL is not a super-class of BSIL since BSIL allows for negation in front of SIQs
while TCL does not. However, by examining the proofs in [35] for the inexpressibility of
BSIL properties by ATL∗, GL, and AMC, we find that the BSIL property used in the
proof, i.e.,

〈1〉((〈+2〉�p) ∧ 〈+2〉�q)

is in fact also a property in TCL. This observation leads us to the conclusion that there
are properties expressible in TCL but cannot be expressed in ATL∗, GL, and AMC.
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Lemma 1. There are TCL properties that cannot be expressed in any of ATL∗, GL, and

AMC.

Proof. By the same proof in [35] for the for the inexpressibility of BSIL properties by
ATL∗, GL, and AMC. �

TCL is, in fact, not only a powerful logic, but also contains important logics either as
syntactical fragments or can embed them in a straightforward way. ATL and CTL can
be viewed as syntactic fragments of TCL.

But it is also simple to embed LTL and even CTL∗.

Lemma 2. TCL is more expressive than CTL∗ and LTL.

Proof. Since LTL is a subclass of CTL∗, we only have to prove that TCL is more expres-
sive than CTL∗. Following lemma 1, we know that CTL∗ is not as expressive as TCL
since CTL∗ is a subclass of ATL∗.

Now we want to prove that every CTL∗ formula can be converted to an equivalent
TCL formula. The basic intuition is that in CTL∗ properties, the universal path quan-
tification ∀ is equivalent to SQ 〈 〉 saying that no collaboration is needed to enforce the
property following the SQ. Symmetrically, the existential path quantification ∃ is equiv-
alent to SQ 〈1, . . . ,m〉 saying that a unique path is collaboratively selected by all agents
to enforce the property following the SQ.

Specifically, we can convert any CTL∗ formula φ to an equivalent TCL formula
C∗(φ, 0) according to the following inductive definition.

• C∗(true, 0) = true.
• C∗(false, 0) = false.
• C∗(true, 1) = false.
• C∗(false, 1) = true.
• C∗(p, 0) = p.
• C∗(p, 1) = ¬p.
• C∗(∃ψ, 0) = 〈1, . . . ,m〉C∗(ψ, 0).
• C∗(∃ψ, 1) = 〈 〉C∗(ψ, 1).
• C∗(∀ψ, 0) = 〈 〉C∗(ψ, 0).
• C∗(∀ψ, 1) = 〈1, . . . ,m〉C∗(ψ, 1).
• C∗(¬ψ1, b) = C∗(ψ1, 1− b).
• C∗(ψ1 ∨ ψ2, 0) = C∗(ψ1, 0) ∨ C

∗(ψ2, 0).
• C∗(ψ1 ∨ ψ2, 1) = (C∗(ψ1, 1) ∧ C

∗(ψ2, 1).
• C∗(ψ1 ∧ ψ2, 0) = C∗(ψ1, 0) ∧ C

∗(ψ2, 0).
• C∗(ψ1 ∧ ψ2, 1) = (C∗(ψ1, 1) ∨ C

∗(ψ2, 1).
• C∗(©ψ1, b) = 〈+〉 © C∗(ψ1, b).
• C∗(ψ1Uψ2, 0) = 〈+〉C∗(ψ1, 0)UC

∗(ψ2, 0).
• C∗(ψ1Uψ2, 1) = 〈+〉(C∗(ψ1, 1) ∧ C

∗(ψ2, 1))RC
∗(ψ2, 1).

• C∗(ψ1Rψ2, 0) = 〈+〉C∗(ψ1, 0)RC
∗(ψ2, 0).

• C∗(ψ1Rψ2, 1) = 〈+〉(C∗(ψ1, 1) ∧ C
∗(ψ2, 1))UC

∗(ψ2, 1).
Then according to the semantics of CTL∗, it is clear that φ specifies the same set of
traces that C∗(φ, 0) does.

Together with lemma 1, thus the lemma is proven. �
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Lemma 2 shows the advantage of TCL over BSIL [35] which is not more expressive
than CTL∗ and LTL. However, this conversion does not extend to ATL∗. In fact, we have
the following lemma.

Lemma 3. ATL∗ and TCL are incomparable in expressiveness.

Proof. ATL∗ is not as expressive as TCL according to lemma 1. The following example
shows an ATL∗ property that cannot be expressed with TCL.

〈1〉((�p) ∨�q) (*)

The property says that there exists a strategy of agent 1 that enforces either �p or �q.
Note that this is different from the ATL property (〈1〉�p) ∨ 〈1〉�q, which says that two
strategies of agent 1 respectively enforce �p and �q. Property (*) is also different from
the TCL property 〈1〉((〈+〉�p) ∨ 〈+〉�q), which says that there exists a strategy of agent
1 that either enforces �p along all plays or enforces �q along all plays.

Rigorously speaking, we can employ an inductive argument that shows TCL formu-
las of any number of operators (boolean, temporal, or strategy quantifications) cannot
express ATL∗ formula (*). Note that since only one agent is used in the strategy quan-
tification in formula (*), there is no point to consider TCL formulas with SQs and SIQs
other than 〈1〉 and 〈+〉. But since all such SQs and SIQs will be succeeded by exactly
one temporal operator in TCL, all paths in the strategy tree cannot guarantee to satisfy
two path modalities. Thus we can build our arguments from the base case of atomic
propositions, and then from the inductive case of formulas with k + 1 operators. This
inductive argument then suffices to prove that formula (*) is not expressible by any TCL
formula. �

In fact, the proofs and examples from [35] can also be applied in this work to show
that there are properties of GL and AMC that cannot be expressed with TCL. This leads
to the following lemma.

Lemma 4. TCL is incomparable in expressiveness with either of GL and AMC.

Proof. Due to lemma 1, we know that GL and AMC are not as expressive as TCL. Then
with the same argument in [2], we can prove that TCL is as expressive as neither GL
nor AMC. �

Note, however, that allowing for boolean negations preceding SIQs in the definition
of ψ would change the situation. Then an ATL∗ formula 〈A〉ψ (assuming for the sake of
simplicity that ψ is an LTL formula), would become 〈A〉¬〈+[1,m] r A〉C∗(ψ, 1) in the
extended version of TCL. The translation extends to full ATL∗, but this example also
demonstrates why negation is banned: even without nesting, we can, by encoding ATL∗,
encode a 2EXPTIME complete model-checking problem, losing the appealing tractability
of our logic.

Moreover, it is easy to reduce the realizability problem of prenex QPTL (Quantified

Propositional Temporal Logic) [17], and hence a non-elementary problem, to the model-
checking problem of this extended version of TCL. For convenience, TCL extended with
negation operator in front of SIQs is called extended TCL (ETCL).

Lemma 5. The model-checking problem of ETCL is non-elementary.
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Proof. Using the following game structure, we can encode the realisability of a prenex
QPTL formula with n−1 variables, for the sake of simplicity of the form ∀p2∃p3∀p4 . . . ∃pnφ,
where p2, . . . , pn are all propositions occurring in φ.

We reduce this to the model-checking of the formula

φ′ = 〈1〉¬〈+2〉¬〈+3〉¬〈+4〉¬ . . .¬〈+n〉(ψφ ∧ 〈+〉�p1),

where ψφ can be obtained from φ̂ by replacing
• every literal pi by 〈−1〉〈+1〉 © (pi ∧ 〈+〉 © pi), and
• every literal ¬pi by 〈−1〉〈+1〉 © (pi ∧ 〈+〉 © ¬pi),

and by preceeding every temporal operator in φ by an empty SIQ 〈+〉.
For the reduction of checking validity of the prenex QPTL formula from above (or:

realizability, as the prenex QPTL formula has no free variables this is the same thing)
to model-checking φ′ on the game shown in Figure 4, we first recall that ‘∀p’ is an
abbreviation of ‘¬∃p¬’, such that ∀p2∃p3∀p4 . . . ∃pnφ is equivalent to

¬∃p2¬∃p3¬∃p4 . . . ∃pnφ.

We then take a look at the game shown in in Figure 4. The game has n nodes, agents,
and atomic propositions. The nodes in Figure 4 are labeled with the agent that owns the
nodes, and the atomic proposition pi is true exactly in node i. From his state, Agent 1
can move to any node, while all other agents can either stay in their node or return to
the node owned by Agent 1.

Fig. 4. The turn-based game graph from the non-elementary hardness proof of extended TCL.

Considering our translation, the first important observation is that the game starts
in the node owned by Agent 1, and in order to comply with the specification, 〈1〉�p1
must be satisfied. The outermost strategy chosen by Agent 1 must therefore choose to
stay in the initial state forever. The (only) relevant main path is therefore 1ω, the path
that simply loops in node 1. (Decisions of Agent 1 on places different from 1∗ have no
influence on acceptance, see below.)

The next relevant observation is that ψφ changes φ at the level of its literals. (Recall
that we have defined the temporal logic such that it is in negative normal form. Each
of these literals therefore occurs positively.) The way the literals are changed, pi to
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〈−1〉〈+1〉©(pi∧〈+〉©pi) and ¬pi to 〈−1〉〈+1〉©(pi∧〈+〉©¬pi), consists of an opening
part, 〈−1〉〈+1〉 © (pi ∧ . . . that says “we can change the strategy of Agent 1 such that,
in the next move, pi holds and . . . ”. Reconsidering the only feasible strategy for Agent 1
(which is revoked by the leading 〈−1〉 operation), this operation is interpreted after
an initial sequence of visits to node 1. From node 1, there is exactly one continuation,
the continuation to node i, that will satisfy the 〈+1〉 © pi part. Whether or not the
continuation ‘〈+〉 © pi)’ or ‘〈+〉 © ¬pi)’, respectively, holds entirely depends on the
strategy of Agent i as fixed in the prenex part of the extended TCL formula.

Thus, on each position of the main path 1ω, either 〈−1〉〈+1〉 © (pi ∧ 〈+〉 © pi)
or 〈−1〉〈+1〉 © (pi ∧ 〈+〉 © ¬pi) holds when evaluating ψφ. This is determined by the
strategy selected by 〈+i〉 in the prenex part of the extended TCL formula. Moreover,
two strategies of Agent i that agree on their choices (to stay in node i or to return to
node 1) on all histories of the form 1∗i are equivalent for all formulas ψφ. For the only
viable outermost strategy of Agent 1 to stay in node 1, this provides an obvious bijection
between the selection of assignments to pi in the infinite word in the prenex QPTL
formula and the selection of strategy classes for the extended TCL formula from our
translation, interpreted over the turn-based game graph from Figure 4. Consequently,
the prenex QPTL formula is valid / realizable if, and only if, the turn-based game graph
from Figure 4 is a model of its translation to ETCL. �

It is not hard to develop a matching upper bound for the model-checking of extended
TCL.

6 Complexity of TCL

In this section, we show that model-checking TCL formulas is EXPTIME-complete in the
formula and P-complete in the model for fixed formulas, while the satisfiability problem
for TCL is 2EXPTIME-complete. As the proof of inclusion of the satisfiability problem
in 2EXPTIME builds on the proof of the inclusion of model-checking in EXPTIME, we
start with an outline of the EXPTIME hardness argument for the TCL model checking
problem and then continue with describing EXPTIME and 2EXPTIME decision proce-
dures for the TCL model and satisfiability checking problem, respectively. 2EXPTIME
hardness for TCL satisfiability is implied by the inclusion of CTL* [33] as a de-facto
sublanguage.

6.1 Automata and tree models

Trees. We use trees as a representation for a simple class of models. As usual, a (full)
tree is given as the set Υ ∗ of all finite words over a given set of directions Υ .

For given finite sets Π and Υ , a Π-labeled Υ -tree is a pair 〈Υ ∗, l〉 with a labeling
function l : Υ ∗ → Π that maps every node of Υ ∗ to a letter of Π. For a set Ξ × Υ of
directions and a node x ∈ (Ξ × Υ )∗, hideΥ (x) denotes the node in Ξ∗ obtained from x

by replacing (ξ, υ) by ξ in each letter of x.
For a Σ × Π-labeled Υ -tree 〈Υ ∗, l〉 we call the Σ-labeled Υ -tree 〈Υ ∗, lΣ〉 and the

Π-labeled Υ -tree 〈Υ ∗, lΠ〉 with l(D) =
(
lΣ(D), lΠ(D)

)
for all D ∈ Υ ∗ the Σ and Π

projection, respectively, of 〈Υ ∗, l〉, denoted projΣ
(
〈Υ ∗, l〉

)
and projΠ

(
〈Υ ∗, l〉

)
, respectively.
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For a Π-labeled Ξ-tree 〈Ξ∗, l〉 we define the Υ -widening of 〈Ξ∗, l〉, denoted by
wideΥ (〈Ξ

∗, l〉), as the Π-labeled Ξ × Υ -tree 〈(Ξ × Υ )∗, l′〉 with l′(x) = l(hideΥ (x)). In
wideΥ (〈Ξ

∗, l〉), nodes that are indistinguishable for someone who cannot observe Υ (i.e.,
nodes x, y with hideΥ (x) = hideΥ (y)) have the same label.

Trees are a useful representation for the unraveling of a concurrent game structure.
For the concurrent game structure G = 〈m,Q, r, P, λ,Σ, δ〉, the Q-labeled Σ-tree 〈Σ∗, lG〉
where lG is inductively defined such that lG : ε 7→ r maps the root of the tree to the
initial state of the concurrent game structure and l : D 7→ q implies l : D · d 7→ δ(q, d)
for all D ∈ Σ∗, d ∈ Σ, and q ∈ Q, is called the state unraveling of G, and the 2P -labeled
Σ-tree 〈Σ∗, l〉 with l : D 7→ λ

(
lQ(D)

)
is called the unraveling of G. Note that this is a

more expansive notation of the computation tree Tr obtained from unravelling G from
the root as discussed in Section 4. The notation in this section is the standard notation
for automata constructions. It has been chosen to make the connection to the standard
automata constructions clear.

Automata. ω-automata are finite automata that are interpreted over trees—or on con-
current game structures, where they are interpreted over their unraveling. They recognize
ω-regular languages.

Alternating parity automata are tuples A = (Q,Π, Υ, q0, δ, pri : Q→ N), where

– Q is a finite set of states and q0 ∈ Q is a designated initial states,
– Π is an input alphabet
– Υ is a set of directions,
– δ : Q ×Π → B

+(Q × Υ ) is a transition function that maps states and input letters
to positive boolean combinations of states and directions, and

– pri : Q→ N is a mapping from the states to the nonnegative integers.

Such an alternating automaton is interpreted over a Π-labeled Υ -tree 〈Υ ∗, l〉. Accep-
tance for such an automaton can be defined in several equivalent ways. We define it as
acceptance games played between a verifier and a falsifier on Q×Υ ∗ that start in (q0, ε).
From a state (q, u) ∈ Q × Υ ∗, the verifier (resp. falsifier) wins immediately if δ

(
q, l(u)

)

is true (resp. false). Otherwise, the verifier selects a (minimal) subset S of Q × Υ that
satisfies δ

(
q, l(u)

)
and the falsifier selects an element (q′, υ) ∈ S of this subset. The game

then proceeds to (q′, u ·υ). This way, the verifier and the falsifier jointly construct a play
(q0, u0)S0 (q1, u1)S1 (q2, u2)S2 (q3, u3) . . .. The verifier wins if lim supi→∞ pri(qi) is even,
and the falsifier wins if lim supi→∞ pri(qi) is odd. Such games are memoryless determined
[13]: one of the player has a winning strategy, where his or her moves (the selection of a
subset and the selection of an element of this subset, respectively) only depend on the
current state (q, u) ∈ Q× Υ ∗ (verifier) or the current set S ⊆ Q× Υ (falsifier). (The set
of satisfying assignments can be viewed as a state in the acceptance game.)

〈Υ ∗, l〉 is accepted by A if, and only if, the verifier has a winning strategy. The set of
trees accepted by the automaton is called its language.

Parity automata are called Büchi automata if the image of pri is in {1, 2}, Co-Büchi
automata if the image of pri is in {0, 1}, and weak if all minimal satisfying assignments
of δ(q, π) contain only sets with elements (q′, υ), where pri(q′) ≥ pri(q). (Weak automata
can easily be rewritten as language equivalent Büchi and Co-Büchi automata.)

Special cases of alternating automata are
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– universal automata, which are automata where all functions in the image of δ have
a unique minimal satisfying assignment, and

– nondeterministic automata, which are automata where all functions in the image of
δ contain only minimal satisfying assignments S ⊆ Q×Υ that satisfy (q, υ), (q′, υ) ∈
S ⇒ q = q′.

Automata that are both universal and nondeterministic are called deterministic.
Nondeterministic automata intuitively sent (at most) one state into each direction.

A given strategy of the verifier therefore defines a run tree, a Q-labeled3 Υ tree, which
is accepting if, for every path on the tree, the highest priority of the labels that occur
infinitely often on the path is even.

6.2 Model checking complexity

We show EXPTIME hardness by a reduction from the PEEK-G6 [30] game. An instance
of PEEK-G6 consists of two disjoint sets of boolean variables, P1 = {p1, . . . , ph} (owned
by a safety agent) and P2 = {ph+1, . . . , ph+k} (owned by a reachability agent), a subset
I ⊆ P1∪P2 of them that are initially true, and a boolean formula γ in CNF over P1∪P2

that the reachability agent wants to become true eventually. The game is played in turns
between the safety and the reachability agent (say, with the safety agent moving first),
and each player can change the truth value of one of his or her variables in his/her turn.

Lemma 6. TCL model-checking is EXPTIME hard for primitive TCL formulas.

Proof. To reduce determining the winner of an instance of a PEEK-G6 game to TCL
model-checking, we introduce a 2-agent game G = 〈2,Q, r, ω,P, λ, E〉 as shown in Figure
5, where Agent 1 (he, for convenience) represents the safety agent, while Agent 2 (she,
for convenience) represents the reachability agent. States th+k and fh+k are the only
states owned by Agent 2.

Fig. 5. The turn-based game graph from the EXPTIME hardness proof.

3 If immediate acceptance is possible, a Q ∪ {accept,reject} labeled tree. In this case, the
complete subtrees rooted in a state labeled with ‘accept’ (resp. ‘reject’) are also labeled with
‘accept’ (resp. ‘reject’), where ‘accept’ is assigned an even and ‘reject’ an odd priority.
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The game is played in rounds, and a round starts each time the game is at state r.
If the game goes through ti this is identified with the variable pi to be true. Likewise,
going through fi is identified with the variable being false.

It is simple to write a TCL specification that forces the safety player to toggle the
value of exactly one of his variables in each round, and to toggle the value of the variable
ph+i of the reachability player defined by the state i she has previously moved to, while
maintaining all other variable values. Requiring additionally that the safety agent can
guarantee that the boolean formula is never satisfied provides the reduction. �

The details of the construction are moved to Appendix A. It is interesting that a
game with only two agents suffices for the proof. Two agents are also sufficient to show
P hardness for fixed formulas, as solving a reachability problem for AND-OR graphs [16]
naturally reduces to showing 〈1〉♦p.

Lemma 7. TCL model-checking for fixed formulas is P hard for primitive TCL formu-

las.

In order to establish inclusion in EXPTIME and P, respectively, we use an automaton-
based argument. For this, we first describe how to adjust the model to obtain a simple
automaton-based model checking procedure. We then recall the basic automata trans-
formations required to turn this automaton into an automaton that runs on the model
itself.

Outline. Before discussing the details of the model transformation, we describe what
we want to achieve and the problems that need to be addressed for model checking and
satisfiability checking.

Especially in satisfiability checking, it is often convenient to encode all information
required in the tree the automaton reads when using automata to produce a standard
model. Similarly, it is often easier for model checking to start with model checking such
rich models, and then use standard techniques like projection and narrowing to remove
additional information.

When checking the satisfiability of a CTL formula, for example, a standard model has
one direction for each path quantifier, and encodes the truth value of each state formula
in the label. A proof obligation to show that a formula Eφ holds is always send into the
direction identified with the subformula Eφ.

For alternating time logics, it would be attractive to have a model that also encodes
the strategies. The problem with this is that, while the simple strategy mentioned above
for CTL is always encodable, states of a model of an alternating time logic normally refers
to an unbounded number of strategies. In order to be able to represent the strategies
for satisfiability checking, the key ingredient is to supply every agent with two choices
for each strategy name it may use. (Recall that every agent a has a separate strategy
name for each SQ and SIQ, where a strategy for a is introduced.) It has two such names
(rather than one) to distinguish newly introduced and continued strategies. Using this,
every node is reachable under at most one strategy for agent a, and the node in the tree
where this strategy has been introduced can be identified. This allows for encoding the
strategies of each agent in its decisions.
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Model transformation. Let φ = 〈A〉ψ be a primitive TCL formula. The first obser-
vation is that a concurrent game structure G = 〈m,Q, r, P, λ,Σ, δ〉 is a model of φ iff its
unraveling 〈Σ∗, l〉 is, where the joint decision remains the same product Σ = S1×. . .×Sm

of the individual decisions of the agents.
For this primitive TCL formula φ, we first widen the model by extending the set of

decisions for each agent that occurs in an agency in the formula (in the SQ or in the
agency of an SIQ 〈+A〉) by two names for each occurrence: one name for continuation,
and one name for a fresh introduction. Intuitively, we use this name to refer to the
selected strategy. The transitions themselves, however, are not affected by this additional
information: they depend only on the old part of the decisions.

Let us refer to the set of strategy names extended by the ‘new/continued’ information
as the set rolea of roles of an agent a. If an agent a does neither occur in the SQ nor in
any SIQ in ψ, then rolea is a singleton. Then the new set of decisions for a is

S′
a = Sa × rolea.

For role = role1 × . . .× rolem, we use

Σ′ = Σ × role = S′
1 × . . .× S′

m,

noting that the order is irrelevant.
Note that the additional information has no effect on the transitions. In particular,

widening does not affect whether or not any TCL formula holds in this model.

Lemma 8. 〈Σ∗, l〉 is a model of ψ if, and only if, widerole
(
〈Σ∗, l〉

)
is a model of ψ.

Proof. The model property is defined by the existence of strategies. If such strategies
exist for 〈Σ∗, l〉, any extension of these strategies by the additional role information will
do. Vice versa, if there is a strategy using the additional role information, the strategy
obtained by projecting this additional information away maintains the property. �

While the additional roles are not important for the existence of strategies, they affect
how strategies can be represented. The irrelevance of the new roles for the existence is,
indeed, a relevant feature: it allows for focusing on strategies with a certain property,
namely strategies that identify what they go out to establish. This technique is inspired
by [29], where it has been pivotal to establish the complexity of ATL∗.

An SQ or SIQ, heading a subformula φ′ = 〈?A〉ψ′ of φ, that introduces a strategy
for agent a reasons about the existence of a strategy, which can be represented by a
Sa-labeled Σ∗-tree 〈Σ∗, sa〉, where sa is the strategy σ[φ′, a] from Section 4.3. We can
now extend sa with a role name, yielding the S′

a-labeled Σ∗-tree 〈Σ∗, sra〉, as follows:

– sra : ε 7→
(
sa(ε), (φ

′,new)
)

for the root ε and

– sra : D 7→
(
sa(D), (φ′,cont)

)
for all other nodes of the tree ε 6= D ∈ Σ∗.

We then expand it to the widened tree, using widerole
(
〈Σ∗, sra〉

)
.

Note that we can similarly start in all positions of the (widened) tree.
This way, no agent makes the same local decision when selecting strategies that refer

to different subformulas in a strategy scheme, or that refer to selections of strategies
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that refer to the same subformula, but to different nodes of the tree. Consequently, the
strategies can be made explicit by encoding the local decisions for each role, where ‘new’
refers to the existential choice that needs to be made to establish that φ′ is true. At the
same time, the truth for the subformulas headed by an SQ or SIQ for the selected strategy
can be made explicit. Both pieces of information can be depicted in an extended label4.
We refer to a model with such an extended annotation as an extended model. Note that
it is required for an extended model that the annotation is consistent: when a formula
starting with an SQ or SIQ is marked as true, then the strategies encoded for it must
witness this.

With the previous lemma, we get:

Lemma 9. 〈Σ∗, l〉 is a model of ψ if, and only if, there exists an extended model 〈Σ′∗, l′〉
of ψ such that widerole

(
〈Σ∗, l〉

)
= proj2P

(
〈Σ′∗, l′〉

)
holds.

Note that the truth value both for the complete formula and for the subformulas
headed by an SIQ is monotonous in the valuation of the subformulas that start with an
SIQ. This allows us to only validate that these subformulas are true, while we do not
have to validate that they are not.

Note also that the widening can be implemented on the concurrent game structure
by simply increasing the set of decisions there.

Automaton transformations. The above lemma allows us to build an automaton
that recognizes annotated models, and then project the annotation away. It is simple to
construct a weak universal tree automaton U that recognizes the set of trees 〈Σ′∗, l′〉
that are extended models of φ, where U has a size polynomial in the length of φ.

For U , we can then apply a number of automaton transformations.

Determinization. The weak universal tree automaton Uφ can then be translated into
a language equivalent deterministic Büchi tree automaton Dφ, using a breakpoint
construction or the simulation theorem [25]. This step incurs an exponential blow-
up.

Projection. In the next step, the additional annotation is projected away, resulting in
a nondeterministic Büchi tree automaton Nφ that recognizes the widened trees that
can be annotated consistently.

Note that projection does not change the statespace of the automaton. This estab-
lishes the following lemma.

Lemma 10. The model-checking problem of primitive TCL formulas against concurrent

game structures is in EXPTIME, and in P for fixed formulas.

Together with Lemma 6, this observation makes it easy to establish EXPTIME-
completeness.

4 This is in contrast to the original concurrent game structure and also to its unraveling, where
the number of strategies a state / node can refer to is unbounded.
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Theorem 1. The model-checking problem of TCL formulas against concurrent game

structures and against turn-based games is EXPTIME-complete. Both problems are P-

complete for fixed formulas.

Proof. Lemma 10 establishes that the problems are in EXPTIME and P for primitive
TCL formulas. To expand this observation to full TCL, we can observe that this can be
achieved by evaluating the truth of formulas of the form 〈A〉ψ from the leaves of the
formula tree to the root. The result of this model checking can be treated as a fresh
atomic proposition, and it can be used instead of the respective subformula.

Hardness is inherited from Lemma 6. �

Note that this argument shows more. For fixed formulas, TCL model checking reduces
to solving a number of Büchi games. The size of the game and the number of games to
be played is polynomial in G.

Corollary 1. Viewing the size of a TCL sentence as a parameter, TCL model checking

is fixed parameter tractable.

6.3 Satisfiability checking complexity

The automaton construction from the previous subsection extends to a construction for
satisfiability checking.

For satisfiability checking, it is more convenient to reduce to the original set of deci-
sions.

Narrowing. The additional directions are then removed using the narrowing operation5

from [18]. The resulting alternating Büchi automaton Aφ runs on the original set of
decisions. The size of the automaton is not effected.

Complementation. Complementation can be achieved by dualization, where the com-
plement Ac

φ of an alternating Büchi automaton Aφ can be obtained from Aφ by
dualizing its transition function (swapping disjunctions and conjunctions as well as
true and false) and decreasing the priority of all states by 1, resulting in an alternating
Co-Büchi automaton that recognizes the complement of the language of Aφ.

Theorem 2. For a fixed set of decisions, the TCL satisfiability problem for concurrent

game structures can be solved in time doubly exponential in the length of a TCL for-

mula φ.

Proof. As usual, it is convenient to construct an enriched model that contains the truth
of all subformulas for a TCL sentence φ that start with an SQ.

In a first step, we construct an alternating tree automaton A that recognizes the
(unraveled) enriched models of a specification for a given set of joint decisions Σ. This
is quite simple: A merely has to check that the boolean combination of SQ formulas

5 Narrowing is a standard operation, where all atoms
(

q, (x, y)
)

are replaced by (q, x). The
narrowing operation thus turns an automaton B that recognizes a labeled Σ ×Π trees into
an automaton A that recognize those labeled Σ trees, whose Π widenings are accepted by B.
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that forms the TCL sentence φ is satisfied in the root of the tree, and that the truth
assignment of each SQ is consistent.

This is simple, as we can use the alternating Büchi tree automaton Aφ′ from above
to validate the claim that a subformula φ′ of φ that starts with an SQ is satisfied, and
its dual Ac

φ′ to validate that it is not satisfied.
Hence, such an automaton has only two states more than the sum of the states of

the individual Aφ′ and its dual Ac
φ′ . In particular, it is exponential in φ.

For the resulting alternating automaton, we can again invoke the simulation theorem
[25] to construct an equivalent nondeterministic parity automaton, which has doubly
exponentially many states in φ (and whose transition table is doubly exponential in φ)
and whose priorities are exponential in φ. Solving the emptiness game of this automaton
reduces to solving a parity game, which can be done in time doubly exponential in φ,
e.g., using [28]. �

In the above proof, the size of the set of joint decisions enters through the individual
alternating automata Aφ′ and Ac

φ′ . Thus, in order to establish a doubly exponential
complexity independent of Σ, we have to show that choosing a set Σ that is exponential
in φ suffices. We establish this by providing a model transformation from an arbitrary
model to a standard model, which is exponential in φ.

Preparation and goals of the model transformation. For this definition, let us
assume that we have an arbitrary enriched model. For this model, we now revisit the
transformations we have performed on the model for model checking in the previous
subsection and refine the definition of the nondeterministic automaton.

The first observation is that we can widen the set of decisions Sa of an agent a in a
similar fashion as described in the previous subsection to a set S′

a, where S′
a = Sa× rolea

is a product of the ‘old’ decisions Sa and the roles of a. Note that the set of roles rolea
now refers to the full formula. (It is a union of the roles for the subformulas.) We can
then unravel the model to a tree.

We now re-visit the translation from the deterministic Büchi automaton Dφ′ for a
primitive TCL formula6 and its translation to the nondeterministic Büchi automaton
Nφ′ . The verifier in Nφ′ has to guess two things: the strategy of the players for each
role, and the set of valid subformulas of φ′ that start with an SIQ. This selection defines
which state is sent into which direction / joint decision. The falsifier then selects a joint
decision.

Dualizing Nφ′ to its complement Cφ′ changes the roles of the verifier and the falsifier.
That is, for Nφ′ , the verifier selects the truth of SIQ subformulas and the strategy; once
the selection is made, the falsifier can select the joint decision to be executed. For its
dual Cφ′ , the falsifier can select the truth of SIQ subformulas and the strategy; once the
selection is made, the verifier can select the joint decision to be executed.

For the selection of the joint decision by the verifier, it is important to note that the
verifier tries to show that an obligation represented by the state is not met. This raises
the question, which obligation—represented by the automaton state—is sent along which
path.

6 Recall that we use an enriched model, where all TCL formulas that start with an SQ have a
truth assignment and can therefore be treated as a primitive TCL formula.
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For a primitive TCL formula φ′, the obligation that the verifier tries to establish in
Nφ′—or to refute in its dual Cφ′—is defined by the set of previous SIQs that have been
claimed to hold and the representation of the strategies. Recall that the strategy for an
agent a and a strategy σ[φ′′, a] is only represented in terms of Sa, as the role information
is canonically selected such that different strategies of a never concur.

Thus, the set of basic obligations bob of an agent a represented in a state of Nφ′ (or
Cφ′) is a subset B ∈ bob of the subformulas of φ′ that start with an SQ or SIQ. This set
B refers to obligations defined by the path to this point through the decisions Sa of each
agent a ∈ A and therefore satisfy side constraints. In particular, for all such subformulas
ψ,ψ′ ∈ B, it holds that, for all agents a ∈ bnd(ψ) ∩ bnd(ψ′) in the intersection of the
bound agencies of ψ and ψ′, ψ and ψ′ refer to the same strategy of a (σ[ψ, a] = σ[ψ′, a]).
In addition to these obligations, states only keep the information, which untility is to be
discharged next for a state to be accepting (has priority 2) for Nφ′ and rejecting (has
priority 0) for Cφ′ , respectively.

For a basic obligation B ∈ bob, we call the agents A = {a | a ∈ ψ ∈ bob} bound in
B and the agents [1,m]rA free in B.

We define a set of extended obligations for each agent a, eoba, as a triple of

– a basic obligation B ∈ bob such that a is free in B,

– the additional bookkeeping information (next utility) that defines a state together
with the basic obligation, and

– a check integer in [1,m],

and define a standard decisions Sa = rolea ∪ eoba for each agent a ∈ [1,m], which
consists of its roles and extended set of obligations. We also define an arbitrary fallback
role r0a ∈ rolea for each agent.

We now define a translation from the joint standard decisions Σ = S1 × . . .× Sm to
Σ′ in three steps, and then discuss how accepting strategies of the verifier translate.

In a first step, the translation takes a joint standard decision, and replaces a decision
E ∈ eoba with basic obligation B ∈ bob of an agent a by her fallback decision r0a if

– there is an agent a′ free in B who has not selected the same state (basic obligation
and next utility) or

– the sum of the check integers from extended obligations selected by any agent does
not equal to a number that identifies an agent a′ free in B modulo m.

This translation ensures that there is at most one state selected, and that all agents
free in the basic obligation B represented in it have selected it. Intuitively, they respond
to the same choice of the remaining agents.

In a second step, we simply remove the check integer.

In a third step, we first translate the decisions ra ∈ rolea for each agent a who has
made such a decision. For this, we use a memoryless verifier strategy for Nφ′ to select
the direction (D, ra) ∈ S′

a for the role ra selected. We then use a memoryless falsifier
for Nφ′ to select a joint decision for the obligation defined by the state. This selection is
used to define the decisions for the remaining players.

This translation is then extended from transitions to define a labeled Σ-tree 〈Σ∗, l〉.
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Translation of winning strategies. The translation describes how a play on the translation
simulates a play on the original. It suffices to describe a single step of each translation.
Let us start with the translation for Nφ′ . The verifier selects the set of valid subformulas
and the strategy, and the falsifier a direction. For convenience, we split the choice of the
falsifier into first choosing the state to send, and then the direction.

We now describe how a step of the winning strategies of the verifier and falsifier,
respectively, in the original are translated. It is important to note that a memoryless
strategy for the verifier and a memoryless strategy for the falsifier have been used in the
translation of the concurrent game graph, where one of these strategies is winning. This
fact is the central ingredient in the argument.

We now look at the three individual sub-steps each step in the acceptance game
consists of.

1. The verifier chooses his strategy.
2. The falsifier chooses the state.
3. The falsifier chooses a direction this state is sent to.

Note that (1) and (3) are hard coded into the agents’ decisions in the translated game.
The verifier strategy for making a decision of agent a is one of its roles: a name of one
of the strategies of a plus a flag that shows if it is new or continued. The translation of
this strategy is then simply the assignment of this strategy from the memoryless strategy
used in the translation of the concurrent game graph.

If the falsifier wins the original, she can choose the same state in the translation in
sub-step (2). The state then defines which of the agents are free in this state, and the
falsifier chooses an extended obligation (with correct checksum) for all of these agents.
In the translation, this state is then sent into the direction, where all agents that are
bound in the basic obligation choose the according basic obligation, and all agents that
are free choose the according extended basic obligation. This translates back to the same
direction, the falsifier would have selected in the original.

The case where the verifier wins is even simpler. Whichever state is selected by the
falsifier, it refers to a basic obligation. It was sent by the verifier in all directions, where
the agents bound in this basic obligation have made the according choice (extended
strategy name), which is translated back to the same choice in the original game.

When the falsifier then selects a direction in the translation, it can only fix the
decisions of the agents free in this basic obligation: the decisions of the agents bound in
the basic obligation are determined by the basic obligation selected. Thus, the falsifier
has effectively a restricted choice, as she can only select directions in the image of the
translation, which might not cover all decisions of agents that are free in the basic
obligation. Naturally, this cannot alter the fact that she loses the game.

For Cφ′ , the roles of verifier and falsifier are changed, but the plays defined by them
are the same.

Theorem 3. The TCL satisfiability problem for concurrent games can be decided in

2EXPTIME time.

Note that the case of turn-based games is simpler: if we mark which player owns a
state, then all claims translate to “for some successor” or ‘for all successors’. In particular,
inclusion in 2EXPTIME is maintained.
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Noting that hardness is inherited (both for turn-based and concurrent games) from
the embedding of CTL∗ and the 2EXPTIME-completeness of CTL∗ satisfiability checking
[33], we get completeness results for TCL.

Theorem 4. The TCL satisfiability problem is 2EXPTIME-complete for turn-based games

and for concurrent game structures.

7 Implementation and experimental results

As a proof of concept, we have implemented a model-checker, tcl, in C++. Our tool tcl
accepts models composed of extended automata that communicate with synchronizers
and shared variables. A game graph is then constructed as the product of the extended
automata. Such an input format facilitates modular description of the interaction among
the agents. However, the main purpose of this experiment report is to demonstrate the
feasibility of the ideas and techniques discussed in this article. The implementation is very
basic. Research on further techniques to enhance the performance of the implementation
and a comparison with related tools are left for future research.

7.1 Implementation

The implementation builds on a prototype for a PSPACE logic [35]. The extension is
possible because we can reduce the complexity of TCL to PSPACE by simply restricting
the number of operators in the η production rules in the scope of any SQ to be logarithmic
in the size of the TCL sentence. We show this for primitive TCL sentences.

Lemma 11. Model checking can be done in space bilinear in the size of the turn-based

game structure and the state and tree formulas that are produced using the ψ production

rules and exponentially only in the number of η produced tree formulas.

Proof. We have seen that, for a primitive TCL sentence φ, we can use a single strategy
scheme and only have to refer to the first position that the right hand side of an until
or the left hand side of a release operator is true. Moreover, it suffices to guess just a
minimal set of positions where tree formulas are true. In particular, the left hand side
of a release, the right hand side of an until, and a next formula are then marked true
exactly once, and the respective release and until formulas never need to be marked as
true after such an event.

We can therefore use an alternating algorithm that guesses such minimal truth claims.
The algorithm alternates between a verifier who guesses a truth assignment and the
current decisions of the strategy scheme, and a falsifier, who guesses the direction into
which to expand the path.

It is now easy to see that they will produce an infinite path in this way, and on
this path each obligation referring to a tree subformula from a ψ production rule can
appear only on a continuous interval. In particular, the points where these obligations
change, is linear in the size of φ. However, it also needs to track the truth value of tree
formulas produced by the η production rule. (If there are multiple untilities introduced
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by η production rules, this also includes a marker that distinguishes a leading until,
which is changed in a round robin fashion when the leading untility is fulfilled.)

The number of possible assignments is then exponential in the number of tree sub-
formulas from η production rules. Note that � formulas can be excempt from this rule:
they are monotonous and hence incur a small impact similar to the formulas introduced
using the ψ production rule.

Hence, if |G| denotes the size of the turn-based game and k the number of temporal
operators (different to �) introduced by η production rules, we end up in a cycle if
there is no change in the truth assignment temporal operators that are introduced by ψ
production rules or � operators we reach a cycle within |G| ·k · 2k steps. Hence, we reach
a cycle in a number of steps that is linear in |G| and the size of φ, and exponential only
in the size of η-produced temporal operators (different to �).

Upon reaching a cycle, is suffices to check if the cycle is accepting. (No standing
obligation by an until.) �

The model-checker uses a stack to explicitly enumerate all paths of all tree tops
with depth prescribed by Lemma 11. The tool (including source code) and experiment
materials can be downloaded at the following site:

https://github.com/yyergg/TCL

7.2 Experiments

We use the parameterized models of the iterated prisoners’ dilemma as our benchmarks
to check the performance of our implementation. A brief explanation of the models can
be found in the introduction. The unique parameter to the models are the number of
prisoners m. There is also a policeman in the models. We built a turn-based game graph
for each values of m in the experiment. The parameterization helps us in observing
how our algorithm and implementation scale to model and formula sizes. To simplify
the construction of the state-space representation, we assume that in each iteration,
the prisoners make their decisions in a fixed order. After all prisoners have made their
decisions in an iteration, the policeman make his decision and then the whole game moves
to the next iteration.

We have used seven benchmarks in our experiments. The first five benchmarks are
taken from the examples (A) through (E) used in the introduction to introduce TCL.
Benchmarks (F) and (G) are the following two properties, taken from [35].

• Property (F) specifies that all prisoners except Prisoner 1 can collaborate to release
Prisoner 1 and let Prisoner 1 decide their fate.

〈2, . . . ,m〉
(
(〈+〉♦¬jail1) ∧

∧
i∈{2,...m}(〈+1〉♦¬jaili) ∧ (〈+1〉�jaili

)
(F)

• Property (G) specifies that Prisoner 1 has a strategy to put all other prisoners in jail
while leaving her fate to them.

〈1〉
(
(
∧

i∈{2,...m}〈+〉�jaili) ∧ (〈2, . . . ,m〉♦¬jail1) ∧ 〈2, . . . ,m〉�jail1
)

(G)

For these benchmarks, we have collected the performance data for various parameter
values in Table 1. The experiment was carried out on an Intel i5 2.4G notebook with 2
cores and 4G memory running ubuntu Linux version 11.10.
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Table 1. Performance data of model-checking the TCL fragment

P
P
P

P
P
P
P

properties
m

2 3 4 5 6 7 8 9 10 11

(A) 0.71s 0.94s 5.41s 66.3s 945s >1000s
163M 165M 185M 350M 1307M

(B) 0.50s 0.52s 0.61s 0.71s 1.11s 1.62s 5.77s 20.9s 68.1s >1000s
163M 163M 164M 165M 168M 176M 214M 270M 376M

(C) 0.51s 0.51s 0.6s 0.82s 1.01s 1.81s 5.54s 18.2s 48.3s 158s
163M 163M 164M 165M 168M 176M 200M 241M 318M 480M

(D) 0.5s 0.51s 0.57s 0.74s 1.01s 1.79s 7.41s 33.8s 141s >1000s
163M 163M 164M 165M 168M 175M 232M 312M 430M

(E) 0.51s 0.66s 19.1s >1000s
163M 164M 194M

(F) 0.51s 0.53s 0.61s 0.71s 1.01s 1.70s 5.38s 15.2s 53.7s 177s
163M 163M 163M 165M 168M 175M 202M 243M 295M 629M

(G) 0.52s 0.52s 0.65s 0.72s 1.03s 1.85s 4.86s 16.1s 93.5s >1000s
163M 163M 164M 165M 169M 177M 189M 208M 235M

s: seconds; M: megabytes.
The models are with 1 policeman and m prisoners.

As discussed in Subsection 2.3, our tool is the first one that synthesizes memoryful
strategies for multi-agent systems. Its purpose is to demonstrate that TCL model check-
ing is feasible. Thus it is not really meaningful to compare with other tools [3, 1, 9, 31,
32], which would necessary compare those tools on the intersection of their languages,
e.g., on ATL for MOCHA [3] and ATL Designer [31, 32].

For small models, the memory usage is dominated by the normal overhead, such as
the representation of variable tables, state-transition tables, formula structures, etc. The
data shows that our prototype can handle the various benchmarks, and scales well on five
of the seven benchmarks. Ignoring the overhead, it also shows the exponential growth.
Note, however, that the models are growing exponentially, too, and we assume to be the
main cause of the exponential growth of the response time.

8 Conclusion

TCL results from an investigation of practical approaches for applying game theory to
the specification and control of groups of agents who balance their strategies in order to
cooperate with different partners to achieve different objectives. Thus, we have carefully
considered various aspects of specification expressiveness and synthesis efficiency in the
design of TCL. One the one hand, we can argue for the expressiveness of TCL with several
examples, including the classical problem of iterated prisoners’ dilemma [4]. Especially,
several properties in [4] can readily be specified in TCL. We also rigorously proved
that TCL subsumes CTL∗ and LTL while incomparable with ATL∗, GL, and AMC
in expressiveness. We feel that ATL at least has offered a new perspective in designing
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specification languages that enable the application of game theoretical techniques to real-
world projects. Whether the expressiveness offered by TCL is indeed valuable to real-
world projects is still an interesting and open problem that deserves further investigation.

On the other hand, TCL is an inexpensive logic in many ways. First and foremost,
it is fixed parameter tractable. Following folklore, specifications are tiny while models
are huge. In this situation, fixed parameter tractability is a very important property,
in particular as it is achieved by a natural and simple decision procedure, which is
merely exponential in the formula. As argued in the above, this appealing property is
not bought with inexpressivity. In particular, the popular temporal logics LTL, CTL,
ATL, and CTL∗ are contained as de-facto sublogics. Consequently, it can be excellently
used to extend existing specifications in these languages, without the need to develop
competitive models.

Finally, our experiment report seems encouraging in spite of the fact that our imple-
mentation is rather based on an ad-hoc extension of an existing algorithm for a different
logic, and neither fully exploit the low complexity, nor is a fully symbolic implementa-
tion. Our implementation certainly can be used as a basis for further investigation of
performance techniques in the implementation by our colleagues in the community. It
will be interesting to see by which extent symbolic representation like BDDs will enhance
the performance and how an automaton-based tool would fare.
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APPENDICES

A Proof of Lemma 6

This section contains the details of the reduction to PEEK-G6 from the proof of Lemma
6. Note that, while PEEK-G6 allows the agents to pass, we disllow it for simplicity. This
is, however, no restriction: to simulate passing, we could add a single boolean variable
for each agent that does not occur in the formula. Passing can then be identified with
toggling the value of this variable.

A.1 Full Proof

To reduce determining the winner of an instance of a PEEK-G6 game to TCL model-
checking, we introduce a 2-agent game G = 〈2,Q, r, ω,P, λ, E〉 as shown in Figure 5 with
the following restrictions. Agent 1 (he, for convenience) is the safety agent while Agent
2 (she, for convenience) is the reachability agent.
• Q = {r, t1, . . . , th+k, f1, . . . , fh+k, 1, . . . , k}. Specifically, there are two states ti and
fi for each variable in P1 ∪ P2.

• There are k + 3 atomic propositions in P = {s, p, c1, . . . , ck}.
• Initial state r is the only state where s is true (λ(q) = {s} iff q = r). For each
i ∈ [1, h+ k], λ(ti) = {p} and λ(fi) = ∅. For the remaining states i ∈ [1, k], we have
λ(i) = {ci}.

• The state r has two successors, t1 and f1 in E . For i < h+k, both ti and fi have two
successors, ti+1 and fi+1. th+k and fh+k have k+1 successors, 1, . . . , k, and they all
have one successor, r.

• th+k and fh+k belong to a reachability agent (rectangular nodes), while all other
states belong to a safety agent (circular nodes).

Note that ¬γ can be rewritten in DNF by dualizing the γ (which is in CNF), that is, by
swapping conjunctions and disjunctions and negating the literals.

The game is played in rounds. Every time the game is at state r, it enters a new
round. Formally, the safety agent makes his moves at states

t1, . . . , th+k−1, f1, . . . , th+k−1, 1, . . . , k,

and r, while the reachability agent makes her moves at states th+k and fh+k. The spec-
ification we provide, however, will require that the safety agent must change exactly the
variable of the reachability agent identified by the state the reachability agent has previ-
ously moved to. It also forces the safety agent to make his choice for the following round
each time at state r, and to make it in a way that the value of exactly one variable is
toggled.

For ease of notation we use, for any i ∈ N, the formula template 〈+〉©(i)ψ1 to denote
a sequence of i successive 〈+〉© followed by subformula ψ1. Such formulas are used to
assert that ψ1 is true in i steps of the game.

For this game, we model-check the following formula

φ
def

= 〈1〉(θ1 ∧ 〈+〉�(¬s ∨ (θ2 ∧ θ3 ∧ θ4))),

i



where θ1, θ2, θ3, and θ4 reflect the following guarantees:
• θ1 specifies the correctness of the initial condition. Specifically,

θ1
def

=
∧

pi∈I〈+〉 ©(i) p ∧
∧

pi∈P1∪P2−I〈+〉 ©(i) ¬p
• At every occurrence of r, the game enters a round in which the safety agent may

toggle at most one of p1, . . . , ph. This is specified with θ2.

θ2
def

=
∨

i∈[1,h] δi
∧

j∈[1,h],j 6=i ǫj , with

δi
def

=
(
(〈+〉©(i) (p∧ 〈+〉©(h+k+2) ¬p)

)
∨
(
(〈+〉©(i) (¬p∧ 〈+〉©(h+k+2) p)

)
and

ǫi
def

=
(
(〈+〉 ©(i) (p ∧ 〈+〉 ©(h+k+2) p)

)
∨
(
(〈+〉 ©(i) (¬p ∧ 〈+〉 ©(h+k+2) ¬p)

)
.

• The reachability agent declares her choice for a change by selecting a state i ∈
{1, . . . , k}. Choosing i ∈ [1, k] means the toggling of ph+i. This is specified by θ3.

θ3
def

=
∧

i∈[1,k] η
+
i ∨ η−i with

η+i
def

= (〈+〉©(h+i)p)∧〈+〉©(h+k+1)
(
(ci∧〈+〉©(h+i+1)¬p)∨(¬ci∧〈+〉©(h+i+1)p)

)
and

η−i
def

= (〈+〉©(h+i)¬p)∧〈+〉©(h+k+1)
(
(ci∧〈+〉©(h+i+1)p)∨(¬ci∧〈+〉©(h+i+1)¬p)

)
.

• Globally, at r the formula γ is not satisfied (using the truth of p in i steps for pi).
This is reflected by replacing every literal pi in ¬γ (recall that ¬γ is in DNF) by
〈+〉 ©(i) p and every literal ¬pi by 〈+〉 ©(i) ¬p.

The turn taking and the order of the moves are reflected as well as the competitive nature
of the game. It is apparent that the safety agent wins the PEEK game if the safety agent
has a strategy scheme σ, and it is easy to translate one into the other.
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