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Abstract

Safety-critical systems need to maintain their function-
ality in the presence of multiple errors caused by compo-
nent failures or disastrous environment events. We propose
a game-theoretic foundation for synthesizing control strate-
gies that maximize the resilience of a software system in
defense against a realistic error model. The new control
objective of such a game is called k-resilience. In order to
be k-resilient, a system needs to rapidly recover from in-
finitely many waves of a small number of up to k close er-
rors provided that the blocks of up to k errors are separated
by short time intervals, which can be used by the system to
recover. We first argue why we believe this to be the right
level of abstraction for safety critical systems when local
faults are few and far between. We then show how the anal-

ysis of k-resilience problems can be formulated as a model-

*This article is an extended version of [25]. All tool im-
plementation and related experiment materials are available at
https://github.com/yyergg/Resil. The work is partially
supported by NSC (Grant NSC 97-2221-E-002-129-MY3, Taiwan, ROC).
For more information, please email to farn@ntu.edu.tw.

checking problem of a mild extension to the alternating-time
p-calculus (AMC). The witness for k resilience, which can
be provided by the model checker, can be used for providing
control strategies that are optimal with respect to resilience.
We show that the computational complexity of constructing

such optimal control strategies is low and demonstrate the

feasibility of our approachh through an implementation and

experimental results.

1 Introduction

Today’s software systems can consist of tens of million
lines of code. Such a system may interact with hundreds
of distributed processes that are created and destroyed dy-
namically in an evolving environment. With such a scale of
complexity and unpredictability, users and developers have
learned to deal with the reality that software systems most
likely still contain defects after delivery. In fact, various
empirical studies show that the defect density of commer-
cial software systems varies from 1 to 20 defects in every

1000 lines of source code [41]. Programmers and software



designers have developed many engineering techniques to
contain the damage that could be caused by such defects.
For example, when observing that a critical service request
is not acknowledged, a software system may have several
measures to its disposal to avoid system failure, including
resending the request, resetting the server, clearing the com-
munication buffers, etc. But, in general, it is difficult to
estimate how to organize the measures for the maximal re-
silience of the system against realistic errors. At the mo-
ment, an automated support for the synthesis of control
mechanism to defend a system against software errors is
missing. Such an automated support, if available, can sug-
gest defense techniques against software defects to develop-
ment teams, and help these development teams to identify
the vulnerabilities of software systems. We use a game-
theoretic approach to study this aspect and have carried out
experiments to observe how our techniques can be used in
synthesizing the most resilient defense of software systems

against multiple errors.

Intuitively, the defensive strength of a software system
should be proportional to the number of errors that it can
endure. A subtle issue in designing the foundation is the re-
alistic assumption on how many errors a system can endure
before running into disasters. Apparently, no non-trivial
system can endure an unlimited flood of errors without de-
grading to inevitable system failure. Thus, if we do not em-
ploy a realistic error model, then no meaningful analysis of
the resilience level of these systems to software errors can
proceed, and no practical control mechanism can be devised
to defend them against errors. We are interested in fending
the system against a more restricted error model, but still

want to provide the error model with a quantifiable level of

power in order to be able to defend the system against many

eITor scenarios.

Considering that most software systems have a life-time
much longer than the duration needed for a reasonably de-
signed software system to recover from an error, a reason-
able foundation needs to take the difference between these
two time scales into account. In this work, we propose to
evaluate control mechanism of software systems on how
many errors the control can endure before recovery to safe
behavior. We then present an algorithm to synthesize a con-
trol strategy that can endure the maximal number of such

CITOIS.

Before proceeding further, let us standardize the basic
terms. In embedded systems, a design defect in software
or hardware is called a faultr. Different to a fault, an er-
ror (sometimes called component failure in the literature)
is the effect of a fault that results in a difference between
the expected and the actual behavior of a system, e.g., mea-
surement errors, read/write errors, etc. An error does not
necessarily lead to a system failure, but may instead be re-
paired by, e.g., a defense mechanism in the software. That
is, an error may be detected and corrected/neutralized be-
fore it creates any harm to the whole system or its users.
Only when the effect of an error creates faulty behaviors

that can be observed by the users, it becomes a failure.

Our specific goal is to develop a technique for synthe-
sizing a control mechanism of a software system against
the maximal number of dense errors without degrading to
failure. We took our inspiration from methods for resilient
avionic systems [39], where fault tolerance is designed to
recover from a bounded number of errors. The number of

errors a system needs to tolerate can be inferred from the



k 0 1 2 3 4 5 6
k errors 0.865 0.594 0.333 0.143 0.053 0.017 0.005
k dense errors || 0.865 | 2-10=% | 21072 | 2-10~1* | 2.10719 | 2.107%* | 2.10~%°

Table 1. Probabilities of £ dense errors

given maximal duration of a flight and the mean time be-
tween errors of the individual components. To demonstrate
the difference between the objective to tolerate up to £ er-
rors and sequences of separated blocks of up to k dense er-
rors in a short period, we exemplify the quality guarantees
one obtains for a system (e.g., an airplane) with an operat-
ing time of 20 hours and a mean time between exponentially
distributed errors of 10 hours, assuming a repair time of 3.6
seconds. The mean time between dense errors (consecu-
tive errors before system recovery) is calculated in Table 1.
The figures for k errors (component failures) are simply the
values for the Poisson distribution with coefficient 2. To
explain the figures for k dense errors, consider the density
of 2 dense errors occurring in close succession. If an error
occurs, the chance that the next error occurs within the re-
pair time (3.6 seconds) is approximately m. The goal to
tolerate an arbitrary number of up to k-dense errors is, of
course, much harder than the goal of tolerating up to k er-
rors, but, as the example shows, the number k& can be much
smaller. Tolerating an arbitrary number of errors (with a
distance of at least 3.6 seconds between them) creates the
same likelihood to result in a system failure as tolerating up
to 9 errors overall, and tolerating up to 15 errors still results
in a 70% higher likelihood of a system failure than toler-
ating blocks of up to 2 errors in this example. Only errors
for which this is the case could cause a system failure. The
mean time between blocks of two dense errors is therefore

not ten hours, but 100,000 hours. Likewise, it increases to

1,000,000,000 (one billion) hours for blocks of three dense
errors, and so forth. Maximizing the number of dense errors
that are permitted before full recovery is therefore a natu-
ral design goal. After full recovery, the system is allowed
again the same number of errors. Now, if the mean time
between errors (MTBE) is huge compared to the time the
system needs to fully recover, then the mean time between

system failures (MTBF) grows immensely.

We view the problem of designing a resilient control
mechanism towards dense errors as a two-player game,
called safety resilience game, between the system (protago-
nist!, ‘he’ for convenience) and a hostile agent (antagonistz,
‘she’ for convenience) that injects errors into the system un-
der execution. The protagonist wants to keep the system
from failure in the presence of errors, while the antagonist
wants to derail the system to failure. Specifically, system
designers may model their system, defense mechanism, and
error model as a finite game graph. The nodes in the graph
represent system states. These system states are partitioned
into three classes: the safe states, the failure states, and the
recovery states. Some transitions are labeled with errors
while others are considered normal transitions. The game
is played with respect to a resilience level k. If a play ever
enters a failure state, then the antagonist wins in the play.

Otherwise, the protagonist wins.

The protagonists plays by selecting a move, intuitively

'In game theory, a protagonist sometimes is also called player I.
’In game theory, an antagonist sometimes is also called player 2.



the ‘normal’ event that should happen next (unless an er-
ror is injected). The antagonist can then decide to trigger
an error transition (injecting an error) with the intention to
eventually deflect the system into a failure state. Our error
model, however, restricts the antagonist to inject at most k
errors before she allows for a long period of time that the
system may use to recover to the safe states. (If the an-
tagonist decides to use less than k errors, the protagonist
does not know about this. It proves that this information is
not required, as we will show that the protagonist can play
memoryless.) After full recovery by the protagonist to the
safe states, the antagonist is allowed again to inject the same

number of errors, and so forth.

If the system can win this game, then the system is called
k-resilient. For k-resilient systems, there exists a control
strategy—even one that does not use memory—to make the
system resilient in the presence of blocks of up to k dense
errors. We argue that, if the component MTBF is huge com-
pared to the time the system needs to fully recover, then the

expected time for system breakdown grows immensely.

Besides formally defining safety resilience games, we
also present algorithms for answering the following ques-

tions.

e Given an integer k, a set I of failure states, and a
set S of safe states (disjoint from F'), is there a re-
covery mechanism that can endure up to %k dense er-
rors, effectively avoid entering F', and quickly direct
the system back to S. Sometimes, the system design-
ers may have designated parts of the state space for the
recovery mechanism. The answer to this question thus
also implicitly tells whether the recovery mechanism

is fully functional in the recovery process.

e Given an integer k£ and the set of failure states, what

is the maximal set of safe states, for which the sys-
tem has a strategy to maintain k-resilience? In game
theory, this means that safety resilience games can be
used for synthesizing safety regions for a given bound
on consecutive errors before the system is fully recov-
ered.
The question can be extended to not only partition the
states into safety, recovery, and failure states, but also
for providing memoryless control on the safety and re-
covery states.

e Given a set of failure states, what is the maximal re-
silience level of the system that can be achieved with
proper control? We argue that this maximal resilience
level is a well-defined and plausible indicator of the
defense strength of a control mechanism against a re-

alistic error model.

With our technique, software engineers and system design-
ers can focus on maximizing the number of dense errors that
the system can tolerate infinitely often, providing that they
are grouped into blocks that are separated by a short period

of time, which is sufficient for recovery.

We investigate how to analyze the game with existing
techniques. We present an extension to alternating-time
p-calculus (AMC) and propose to use the AMC model-
checking algorithm on concurrent games to check resilience
levels of embedded systems. We present reduction from
safety resilience games to AMC formulas and concurrent
game structures. Then we present a PTIME algorithm for
answering whether the system can be controlled to tolerate
up to a given number of dense errors. The algorithm can

then be used to find the maximal resilience level that can



be achieved of the system. The evaluation is constructive: it
provides a control strategy for the protagonist, which can be
used to control a system to meet this predefined resilience
level.

The remainder of the article is organized as follows. Sec-
tion 2 reviews some standard terminology and results. Sec-
tion 3 outlines our work and motivates it on three examples.
Section 4 defines safety resilience game. Section 5 defines
a variation of the alternating-time u-calculus (AMC) for
specifying our k-resilience properties. Section 6 presents
our resilience level evaluation algorithm. We report on
our implementation and the experimental evaluation of our
techniques in Section 7. Section 8 reviews related work.

Finally, Section 9 summarizes the work.

2 Two-player concurrent game structures

To facilitate our explanation of resilience analysis in a
game’s perspective, we start by reviewing the game con-
cepts related to our work. A concurrent game may involve
several players, who make concurrent move decisions at the
same time during transitions. The destination of a transition
is jointly determined by the moves chosen by all players.
Such a game model is very expressive and handy in describ-
ing interactions in a complex system. In this work, we adapt
the finite concurrent games from [3] with event concepts on
transitions. For the analysis of system resilience, we only
have to consider two players in the game, the first is the

system, and the second is the error model.

Definition 1 (2-player  concurrent game  struc-

ture): A concurrent game structure is a tuple

’C = <Q7T7P7A7E17E2,5>, where

e () is a finite set of states.

|91

e 1 is the initial state in Q).

e P is a finite set of atomic propositions.

o )\ : Q— 2F is a proposition-labeling function of the
states.

o Fy and E5 are finite sets of move symbols that the
protagonist and the antagonist can respectively choose
in transitions. A pair in By, X E5 is called a move
vector.

e § is a function that maps from Q X E1 X Es to ). § is
called the transition function and conceptually spec-
ifies a successor state that results from a state and
moves of the players.

Given a state ¢ € ) and a vector [e1,e2] € FE; X FEs,
0(q, e1,ex) is the successor state from q when each player

a € {1,2} chooses her respective move e,. |

We prefer to represent the moves available to the play-
ers by symbols (rather than integers as in [3]), as move (or
event) symbols can be used to reflect some physical mean-
ing. For example, a move can correspond to the turning-off
of a switch, the detection of an airplane, or the execution of
an error handling routine. (Technically, representing moves
as either integers or symbols does, of course, make no dif-
ference.)

For convenience, we assume that we are in the con-
text of a given 2-player concurrent game structure £ =
(Q,7,P,\, E1,E5,6). In the following, we review some

standard concepts from game theory.

Definition 2 (Plays and play prefixes): A play prefix p of
length h is a sequence qq, a%, q, e_f, ...y Qn_1 that alter-
nates between states and move vectors (starting and end-
ing in a state), such that, for all i € [0,h), 6(q;, EZ) =

Qi+1 holds. Similarly, a play p is an infinite sequence



qo, a%, qi, e_f, q2, e_g, ... that alternates between states and
move vectors (starting and ending in a state), such that
8(gi, €) = git1 holds.

In both cases, we use p(i) = q; and p.(i) = e by abuse

of notation. |

The following notations are for the ease of presentation.
Given a play prefix p = qo, e_0>, q, er.. .qn_1, we denote
the length of p, h, by |p|. For plays, we write |p| = oo.
Given two integers j and h in [0, |p|) with j < h, we use
plJ, h] to denote the play prefix p(j), pe (), pe(j+1), p(j +
1),..., p(h). For play prefixes p, we use last(p) = p(|p| —
1) to denote the last state in p.

We may also use regular expressions to represent sets of
play prefixes. Specifically, given two sets A and B of play
prefixes, A B represents the set of concatenation of play pre-
fixes p1 p2 such that p; € A and p; € B. A* then represents
finite concatenation of play prefixes from A. For example,
a, abe, abcacbebebe are all elements of {a, be, ac}*.

Please recall that a play has infinite length. A play p
with p(0) = g is called a g-play. When choosing moves at
a state, a player may look up the play prefix that leads to
the current state, investigate what decisions the other play-
ers have made along the prefix, and select his or her next
move. Such decision-making by a player can be captured

by a strategy.

Definition 3 (Strategy) A strategy is a function from finite
play prefixes to a move symbol. Formally, a strategy o, for
a player a € {1,2} is a function from play prefixes to E,.
The next state after a play prefix p € (Q(E1 X Ez)) *Q is
determined as §(last(p), o1(p), o2(p)).

A strategy o is memoryless (positional) if the choice of ¢

only relies on the current state, that is, if, for every two play

prefixes p and p', last(p) = last(p") implies o(p) = o(p').

If o is not memoryless, it is called memoryful. ]

Given regular expressions [24] 71, ...,7n, with alpha-

bet ¢ and move symbols ey,...,e, € E, we may use
[m — e1,...,mn — ey] to (partially) specify a strat-
egy. For a strategy o, a rule like ; — e; means that,
for every play prefix p € n;, o(p) = e;. To disam-
biguate the interpretation of the strategy, a rule with in-
dex i supercedes all rules with indices > . Moreover,
to make a strategy complete, we may require 7, to be
(Q(E1 x F»))"Q, the set of strings of interleaving states
and move vectors that end in a state (which includes the set
of all play prefixes). For example, a memoryless strategy of
the protagonist can be specified with [(Q(E1 X Eg)) “qo —
e1, (Q(E1 x E2)) g3 = e2, (Q(E1 x E»))" = e3]. A
memoryful strategy of the protagonist can be specified with

[q0 = e1, (Q(E) x EQ))+(]O ez, (Q(Ey x E2))*l]3 —
€9, (Q(El X EQ))*Q — 63].

Note that, in Definition 3, we do not distinguish between
the strategies of the players. We call a play p o-conform for
a strategy o of player a if, for all ¢ € N, there are ey and e,

with p(i + 1) = 6(p(i), e1,e2) and e, = o (p).

In the remainder of the article, we denote the set of all
strategies by X and the set of all memoryless strategies by
%), Together with an initial state r, strategies 01,09 € ¥
of the m players respectively, define a unique play, which

conforms to o1, 02. We denote this play by play(r, o1, 02).
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Figure 1. Framework of resilience design

3 Motivation

3.1 Background

Resilience to errors in computer systems is usually
achieved through error recovery design as illustrated in Fig-
ure 1. The system states can be partitioned into three re-
gions: safe, recovery, and failure. The left part of the figure
represents the safety region. The states in this safe region
can be viewed as those for ‘normal’ operation. When an er-
ror occurs, the system goes through a recovery stage, where
it follows some recovery mechanism. This is shown as the
“recovering” area in Figure 1. In this region, the system
intuitively tries to repair the effects of an error and thus to
recover to the safety region.

During the recovery (or: in the recovery region), how-
ever, errors may still happen. In general, fault-tolerant sys-
tems are built under the assumption that error detection and
recovery is speedy and that there can only be a few errors
during the process of recovery. If the recovery mechanism
is not resilient enough, a few errors may drive the system
into failure.

We illustrate this on the following examples.

Example 1 (Fault-tolerant computer architectures): In

computer architectures, fault-tolerance is usually achieved

via hardware duplication. Consider an example of a multi-
processor system that includes n processor copies and m
memory copies. The n processors each can follow the in-
structions of the original system, or be engaged in memory
recovery. When a copy of the memory fails, a processor
can be assigned to recover it. Majority check can be used
to detect that a processor is faulty or that memory copy is
Sfaulty (often, both would happen at the same time). For re-
covery, we can set d free processor to recover some memory
copy, or make a processor follow the code of the majority of
processors.

The key to error resilience is to decide whether to make a
processor follow the execution of the majority, or to assign
it to recover faulty memory. If too many errors occur in a
short while before the errors can be recovered from, then
there may be no more processors left to carry out any more
recovery. When such a critical situation arises, the system
enters failure state when another error is induced.

The recovery mechanism described above is typical in
the design of fault-tolerant systems [36]. As explained, a
practical recovery mechanism usually does not rely on the
detailed structure of the system. Instead, error-detection
techniques such as parity checks, voting (for majority
checks), etc., are usually employed. In fact, the number of
duplicates is usually critical to the resilience of the system
to errors. As long as the majority of the duplicate modules
can be recovered in time (i.e., before the next wave of er-

rors), resilience of the system can be achieved. |

Example 2 (Exception handling): Ar the operating sys-
tem level, errors are usually signaled via interrupt lines and
handled with routines called handlers. The first thing that

needs to be done by a handler is to save the CPU state of



the interrupted process. In some operating systems, a static
memory space is used for this purpose for each handler. In
such a scheme, if the same error happens again while ex-
ecuting the error handler, then the system can run into the
risk that the CPU states of the interrupted handler can be
overwritten and destroyed.

Another scheme is to use a stack to save the CPU states
of the interrupted processes. Such a scheme seems resilient
to errors that happen during the execution of error han-
dlers. Still, too many errors that happen during the exe-
cution of error handlers can deny critical functions of the
system and incur failures, including missed timer updates
and priority inversions. Thus, a proper assumption on the
timely error recovery by the error handling routines is crit-

ical to the design of error resilience in such cases. ]

Example 3 (Security attacks): Security in the Internet
also relies on resilience to attacks of hackers, viruses, mal-
ware, etc. For example, one common technique of attacks
to communication modules is to overflow the communica-
tion buffers. In such attacks, the sizes of the buffers and the
ability of the security procedures to detect and recover from
such overflowing attacks is crucial to the resilience design.

These examples show that recovery is a crucial concept
for designing systems that are resilient to errors. When sys-
tem errors are detected in such a system, the system acti-
vates a recovery mechanism so as to remove the effect of the
errors. When designing such systems, the system designers
usually have in mind what errors and failures the systems
can expect, according to the specification. To avoid fail-
ures in the occurrence of dense errors, the system designers

usually incorporate many error recovery mechanism in the

system, e.g., exception handlers and hardware/software re-
dundancy. But, in general, it would be difficult for the de-
signers to evaluate how effective their recovery mechanism
is to dense errors. To overcome this difficulty, we believe
that it is important to support them with automated analyti-
cal tools with a solid foundation.

Resilience has also been used in [8, 19] with a similar
goal. When synthesising code, one relies on assumptions of
the behavior of the environment, and the formal specifica-
tion would only ask for the provision of guarantees under
the condition that the assumptions are satisfied. When as-
sessing the quality of an implementation, the behavior in
cases where the environment does not comply with the as-
sumption matters. In [8, 19], the resilience model we have
introduced in the conference version [25] of this paper has
been followed up upon, and proven to be well suited for
reactive synthesis.

In this work, we use these observations to design a theo-
retical framework for synthesizing a control mechanism that
provides the maximal resilience against software errors in a

realistic error model.

3.2 Resilience in a Nutshell

From Example 1 to 3 in Subsection 3.1, it is easy to see
the common paradigm of error recovery in software sys-

tems.

When errors are detected, a recovery mechanism
will be activated to avoid failures and try to get

back to normal execution.

Moreover, such a recovery mechanism usually needs to

operate under the assumption that more errors may also hap-



pen during the recovery process. In practice, system de-
signers have already implemented many defensive modules,
e.g., exception handlers, which are certainly good candi-
dates for the recovery segments. Thus, the recovery scheme
we discuss is likely to have arisen in an ad-hoc fashion as a
natural concept when software architects and programmers

designed recovery mechanisms for critical software.

The vast state spaces of critical systems make an auto-
mated support for and a solid foundation of evaluating de-

sign alternatives particularly valuable.

In the following, we will use the examples from the pre-
vious subsection as a motivation for defining a new game,
called safety resilience game, between the recovery mech-
anism (the protagonist) and the error-injecting agent (the
antagonist). The game is specified with a set F' of failure
states, a set S of safe states (the safety region), the moves
by the antagonist to inject errors, and the resilience level
k that the designers want to achieve. The objective of the
protagonist is to identify a control strategy so that the whole
system can achieve the prescribed level (or the highest level)
k of resilience for safety region .S (a set of states) and failure

state set I,

The game is played round by round. When the antago-
nist issues an error move, the play may be deflected into a
recovery segment. If there are no more than k — 1 errors
in the recovery segment, then a k-resilient control mecha-
nism must direct the recovery segment to end at a safe state.
The above observation suggests that a safety region can be
abstracted as a fixed point to the recovery procedure that
transforms a safe state to another safe state via the recovery
segment with at most £ — 1 errors. Conceptually, a fixed

point to a procedure f(z) is a set S of elements in the do-

:error transition

:non-error transition

Figure 2. lllustration of the recovery operation

main of z such that S = {f(z) | x € S}. To calculate
the fixed point of the recovery procedure, we can use the
greatest fixed point algorithm. The idea is to start from a
superset of the recovery procedure fixed point. For conve-
nience, we call a superset of the fixed point a pseudo fixed
point (PFP). Then we iteratively check every state g in the
PFP and eliminate ¢ from the PFEP if, after at most & errors
from g, the recovery mechanism either cannot avoid failure
or cannot direct the system back to the PFP. As the iterative
checking and elimination goes on, the PFP will shrink and
eventually stabilize. Note that its size is always finite, since
the initial PFP must be no bigger than (). The final PFP is
then a greatest fixed point to the recovery mechansim for

k-resilience and is the legitimate safety region.

This recovery procedure can be illustrated as in Figure 2
for resilience to 2 errors. In this figure, the states in set
S' are computed as the precondition of states in S through
those transitions in the figure. Each path from S’ to S is a
recovery segment. .S and S’ may overlap. The blue circles
represent states in the recovery segments. If we calculate
S’ out of S, then, for each state ¢’ € S’, we can find a
path from ¢’ € S’ via a path in the recovery segment to
another state ¢ € S. The maximal number of errors in a

recovery segment is 2. Thus the protagonist has a strategy



to recover from errors in S’ to S even when 2 errors happen
in the corresponding recovery segment. When S’ = S, then
S is a fixed point to the precondition operator through the
recovery segments in the figure.

Now we formally define the concept that we explained

with Figure 2.

Definition 4 (k-safety): Given a k € N, a state q is called
k-safe with respect to a safety region S C ) \ F of non-
failure states, denoted q € sfrchy(S), if there is a strategy
for the protagonist to guarantee that we can reach back to
S from q, provided that the overall count of errors is at most

k. u

However, the definition can be subtle in its interpreta-
tion. Specifically, the ability to stand against one wave of
k errors is not the same as that against repeated recovery
from waves of k errors. If the recovery mechanism is not
designed properly, the system may gradually lose a bit of
control after each wave of k errors and eventually degrade

to system-level failure.

Example 4 (Fault-tolerant computer architectures):
Consider Example 1 with 2k 4+ 1 processor copies, with
the objective to maintain majority checks and to identify
the bad processors. Indeed, according to the first, naive
solution, any safe state with a recovery strategy to Q ~ F is
good. After k processor copies fail, the majority checks are
still capable to maintain the correctness of the combined
behavior to follow the design of the original system. There
seems to be nothing to do after k errors. Thus, naively,
we can choose those states as the safety region if, at those

states, majority checks still work.

However, there is no expectation that the system will be

10

Figure 3. An example for calculating sfrchy,

able to recover at any point in the future into a situation
where it can bear another wave of k errors. It will fail and
lose the function of majority checks just after one more er-
ror. In contrast, in this work, we aim to propose a dense er-
ror resilience criterion that given no more errors for enough
time to allow recovery, the system will eventually recover to

resilience to k dense errors again. ]

To look at this issue in more detail, please consider the
transition system with four states, including a single fail-
ure state (state 4, marked by a double line) shown in Fig-
ure 3. The controlled transitions are depicted as black solid
arrows, the error transitions are depicted as red dashed ar-
rows. For S = Q@ ~ F = {1,2,3}, all states in S are in
sfrchg(S). For all k& > 1, we have sfrchi(S) = {1,2}:
the protagonist can simply stay in {1, 2} during the safety
phase of the game, and once the antagonist plays an error
transition, the game progresses into the recovery segment,
where the protagonist’s objective is satisfied immediately.
This outlines the difference between k-sfrch-ty and the lin-
ear time property of being able to repeatedly tolerate waves
of up to k errors, which would only be satisfied by states 1
and 2 for k = 1, and only for state 1 for k = 2.

This difference raises the question if the rules of our
game are depriving the antagonist of some of the & errors
that she should intuitively be allowed to insert in a wave.
The answer is that this is not the case if we use any fixed
point of sfrchy as S. In this case, the protagonist would

regain the capability to endure a wave of k errors when



reaching a safe state after recovery. Instead of depriving
the antagonist, one could say that we reset the number of
errors in any recovery segment that the antagonist can in-
ject to k. Thus such a fixed point of sfrchy, should consist
of states, from which we can use a control mechanism to
fend off repetitive waves of k dense errors in the recovery
segments. For convenience, we call states in such a fixed
point of sfrchy, the k-resilient states.

For a state to be in sfrch(S), the system (protagonist)
has a strategy to recover to S, given that a long enough ex-
ecution commenced without another round of % errors hap-
pening. We say that two successive errors are in the same
group of dense errors if the sequence of states separating
them was not long enough for recovery to the safety re-
gion. Vice versa, if two successive errors are far enough
apart such that the protagonist can guarantee recovery in
this separation, then they do not belong to the same group.

To check whether recovering to .S by the protagonist (the
fault-tolerance mechanism) is always possible, provided
that at most k errors occurred during a recovery segment,
observe that nesting sfrchy, once, i.e., sfrchy, (sfrchg(+)), cor-
responds to tolerating up to two rounds of up to &k dense
errors, and so forth. Thus, for S to be a target of recov-
ery for k-resilience, S must be a fixed point of the operator
sfrchy, from Definition 4, or, equivalently, S = sfrchy(S)
must hold. Moreover, if S is the greatest fixed point to k-
resilience, then we we can apply sfrchy() any number of
times to S and still obtain S. Computationally, the greatest

fixed point of sfrchy can be constructed as by executing
sfrchy (sfrchy (sfreh (. . . sfrchg(S) ..)),

using a sufficiently deep nesting that a fixed point is

reached.
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Note that this fixed point = to & = sfrchy () is what we
are really interested in, while sfrchy (S) for a given S is an
intermediate result that does not guarantee survival of the
systems after waves of dense errors. If this greatest fixed
point

R=|J{X C S| X =sfrch,(X)}

is non-empty, the protagonist’s strategy for the fixed point
(guaranteeing eventual recovery to a state in the fixed point
within no more than k errors, i.e., k-resilience) can be used
to control the recovery mechanism, constraining its transi-
tions to follow its winning strategy.

As explained in the introduction, there can be several
natural control problems in our safety resilience game.
First, the system designers may want to know whether the
chosen safety region S can be supported by the recovery
mechanism for resilience level k. Second, they may want to
get design support for choosing the safety region for achiev-
ing resilience level k. Finally, they may want to know the
maximal resilience level that they can achieve.

With the explanation in the above, in the rest of the
manuscript, we will focus on the algorithm for construct-

ing sfrch () and evaluating k-resilient states.

4 Safety resilience games

A system is k-resilient if it can be controlled to toler-
ate infinitely many groups of up to k dense errors, provided
that the system is given enough time to recover between
these groups. As we have explained, in systems developed
with defensive mechanism against errors, when errors are
detected, recovery procedures should be activated. The ma-
jor challenge is to decide given a set of failure states and

a safety region, whether the recovery mechanism can sup-



port a resilience level required by the users. Our goal is
to develop techniques with a solid foundation to assist the
system designers in evaluating the resilience of their sys-
tems, to synthesize the controller strategy for the required
resilience level, and to achieve the maximal resilience level.

We now formally define the safety resilience game
played between a system (the protagonist) and an error-
injector (the antagonist). Initially, the two players are given
a 2-player concurrent game structure i, a pebble in r, a set
F C @ of failure states, and a safety region S C @ ~\ F.
Then the recovery region consists of states in @ ~. (F'U S).
The two players together make decisions and move the peb-
ble from state to state. The antagonist tries to deflect a
play into F' by injecting sufficiently many errors, while the
protagonist tries to avoid that the pebble reaches F'. To
achieve this, the protagonist can use the recovery region as
the safety buffer and try to get back to S as soon as the play
is deflected from S to the recovery region. If a system is
resilient to k errors, then it means that the protagonist can
handle up to k — 1 errors while in the recovery region. Thus
when checking whether a system is resilient to & errors, we
only need to check those recovery segments with no more
than £ — 1 errors.

In the following, we formalize the concept.

Definition 5 (Safety resilience game structure): Such a
structure is a pair (K, F) with the following restrictions.
structure

e K is

a 2-player concurrent game

(Q,r,P,\, E1, Es, 6). Conceptually, the first
player represents the system / the protagonist, while
the second player represents the error model / the
antagonist.

e F, is partitioned into error and and non-error moves
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Eoor and E, .y, respectively. We require that only the
2nd player can issue error moves. Moreover, Ey,yerr
must be non-empty.

o F'is the set of failure states in QQ withr € I

The antagonist can choose if she wants to respond on a
move of the protagonist with an error move. We allow for
different non-error moves to reflect ‘normal’ nondetermin-
istic behavior, e.g., caused by abstraction. We allow for dif-
ferent error moves to reflect different errors that can occur
in the same step.

We sometimes refer to transitions with error moves by the
antagonist as error transitions and to transitions with noerr
moves by the antagonist as controlled transitions.

For a party A C {1,2}, we refer with A = {1,2} \ Ato
the players not in the party, and by E 4 to the moves made
by the players in A, that is, E(; 5y = Ey X sy, Eqy = By,
etc.

The antagonist can use both ervor and non-error moves
to influence the game. In a simple setting, the antagonist
may only have the choice to insert error-moves, while there
is only a single controlled transition. In this simple case, the
protagonist can choose the successor state alone unless the
antagonist plays an error transition. Specifically, a safety
resilience game structure is simple if Fs contains only one
error move. Considering simple safety resilience game
structures leads to lower complexities, as it changes reduc-
tions from reachability in games (PTIME-complete [26]) to

reachability in graphs (NL-complete [33]). ]

Note that, in the game structure, only one system player
and one error model player are allowed. This is purely for
the simplicity of algorithm presentation. With proper re-

duction techniques, we can easily convert a game structure



with more than one system player and more than one error
model player to the structure in Definition 5. The standard
technique would be using the transition rules of the prod-
uct automata of the system players for the protagonist while
using the transition rules of the product automata of the er-
ror model players for the antagonist. In fact, we indeed use
this reduction technique in our experiment for analyzing the
resilience levels of multi-agent systems.

From now on, we assume that we are in the context of a

given safety resilience game structure G = (I, F').

Definition 6 (Recovery segements): We need to rigor-
ously define recovery segments. A play prefix p is a recov-
ery segment to safety region S C @ ~\ F if it satisfies the
following constraints.
e p(0) e S.
o If|p| = oo, then all states in p[1,00) are in Q ~ (SU
F). In this case, p is called a failed recovery segment.
o If|p| # oo, then all states in p[1, |p| — 2] are in Q ~
(S U F) and last(p) = p(|p| — 1) is either in F or
S. If last(p) € F, p is also a failed recovery segment;
otherwise, it is a successful one.
We use level(p, S) to denote the number of error moves
between states in p with respect to the safety region S:

level(p, S) £ |{i € [0,]p] = 1) | pe(d) = Eermr}|~ u

As stated in the introduction, we propose a game-
theoretic foundation for resilience analysis of software sys-
tems. With this perspective, the protagonist acts as a maxi-
mizer, who wants to maximize the resilience levels along all
plays. For this, the protagonist fixes a strategy that describe
what he is going to do on each play prefix. The antagonist
acts as a minimizer, who wants to minimize the resilience

level. She can resolve nondeterminism and inject errors in
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order to achieve this, and (although this plays no major role
in this setting) she knows the strategy the protagonist has

fixed and can use this knowledge in principle.

The goal of the protagonist is therefore the same as the
goal of the system designer: to obtain a strategy that offers
a maximal level of resilience in a safety game. However,
in order to avoid degenerate behavior where the protagonist
benefits from being in the recovery phase and from the an-
tagonist therefore being allowed less errors in the current
wave of errors she may inject, we have to strengthen his
obligation to eventually recover to the safe states when the
environment chooses not to inject further errors. This way,
the protagonist has no incentive to cycle in the recovery re-
gion. Consequently, he can recover to the safe region within
|| moves after the antagonist has inserted the last error
of the current wave, irrespective of whether the antagonist
would be allowed to insert further errors in this wave. This
is the key reason why memoryless optimal control exists
for this error model, why it is reasonable to assume swift
recovery, and, consequently, why it is a posteriori justified
to leave the separation time between two waves implicit: the

time to traverse || states suffices.

Besides obtaining this from intuition, we can also con-
sider the tree of successful recoveries for any protagonist
strategy that can endure k error moves by the antagonist.
The tree of recoveries from up to k errors is finite accord-
ing to the definition of successful recovery segments. Then
for any subtree ¢ in this tree of recoveries with a node v in
t such that v is labeled with the same state as the root of ¢
with no error on the path, we can always replace ¢ with the
subtree rooted at v. After the replacement, we have a tree of

recoveries with no greater depth than the original one. Af-



ter repeating such replacements, this immediately provides
a translation from such a strategy with unrestricted memory
to one with memory of size k (the resilience level). The
restriction to memoryless strategies follows from the con-
struction we give in Section 6, which does not depend on
the memory and still yields a strategy, which is memory-
less. Thus, in this work, we should define the resilience
level of software systems based on memoryless protagonist
strategies.

Based on the argument above, the gain of the protagonist

in a play can be defined as follows.

Definition 7 (Gain): Given safety region S C Q \ F, the
gain of a play p to S, in symbols gain(p, S), denotes the
maximal integer k € N such that, for all recovery segments
pr to S in p, if level(p,,S) < k, then p, is a successful

recovery segment to S. ]

The resilience level of a safety resilience game is defined
as the maximum gain that the protagonist can guarantee in

all plays with a memoryless strategy.

Definition 8 (Safety resilience game): Such a game is
zero-sum and defined on a safety resilience game structure
G = (K, F) and a safety region S C Q) ~ F. The gain
of G to S, in symbols gain(G,S), is defined as the maxi-
mum gain that the protagonist can manage with memoryless

strategies. Rigorously,
gain(G, S) £ max, ¢y miny cx gain(play(r, o, 0'),S)

Please be recall that play(r, 0, 0') is the play from r accord-
ing to strategies o and o' respectively of the two players.
Moreover (9 is the set of memoryless strategies.

We say that the resilience level of G to S s

gain(G, S). A strategy w for the protagonist is
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to S

optimal i ming ey gain(play(r,w,o’),S) =

max,cyo Ming ey gain(play(r,o,0'),S).  When S is
not given, we say that G is k-resilient if there exists a

non-empty S C Q \ F with gain(G, S) > k. |

Remark. While the option of using memoryless strategies
plays a minor role in the technical argument, it plays a
paramount role in the usefulness of the resulting control
strategy: choosing memoryless strategies implies that all
recovery segments are short. In particular, all sub-paths (re-
covery segments) between two waves of dense errors in-
jected by the antagonist are shorter—and usually signifi-
cantly shorter—than the size of G. In consequence, any time
span long enough for traversing the recovery segment will
lead to a full recovery. It is therefore sufficient for a tempo-
ral distance we have to assume between two waves of dense

CITOIS.

S Alternating-time -calculus with events
(AMCE)

We propose to solve our resilience game problems with
an existing technology, i.e., model-checking of alternating-
time p-calculus (AMC) formulas. AMC is a propositional
temporal logic with fixed point operators. For example, the

following formula

pX.(safe v (1) O X) (A)

uses least fixed point operator p to declare a fixed point vari-
able X for a set of states. Subformula (1) () ¢ existentially
quantifies over the protagonist strategies that can direct the
plays to a successor state satisfying ¢. Together, the for-
mula specifies a set X of states that can inductively reach a

safe state with the control of the protagonist. Specifically,



the formula says that a state is in X if either it is safe or the
protagonist can direct to a successor state known to be in
X. For our game structures, we only need strategy quantifi-
cation of up to two players.

However, we need extend AMC with some simple syn-
tax sugar. There are two extensions. The first is for Boolean
combinations of path modalities in the scope of strategy

quantification. For example, the following AMCE formula

(1)((smoke = QalarmOn) V OwindowClosed)  (B)

says that the protagonist can enforce either of the following
two path properties with the same strategy.

e If there is smoke, then the alarm will be turned on in

the next state.

e The window will always be closed in the next state.
Such a formula is not in ATL and AMC [3].

The second extension is for restricting transitions that
may participate in the evaluation of path formulas. The re-
striction is via constraints on moves on transitions and can,
in our extension to AMC, be specified with a move sym-
bol set to the next-state modal operators. For example, the

following AMCE formula

(O™ alarmOn) A (O "™ —alarmOn))  (C)

says that the protagonist can

e turn on the alarm when an error occurs; and

o keep the alarm silent when no error occurs.
Before we formally present AMCE, we need define expres-
sions for constraints on moves of players in transitions. We
adapt an idea from [44]. Specifically, a move expression n

is of the following syntax.

17:Z:CL2€|171V772|—|771
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Here, a is a player index in {1, 2} and e is a move symbol
in E7 U E». V and — are standard disjunction and negation.
Typical shorthands of Boolean operations can also be de-
fined out of V and —. A total move vector can be expressed
as [eq, e2] where for all @ € {1,2}, e, € E, is the move
by player a specified in the vector. We say [e1, e2] satis-
fies 77, in symbols [e1, e2] = 7, if and only if the following
constraints are satisfied.

e [e1,e3] = a:eif, and only if, e, is e.
o [e1,e3] = m V e if, and only if, [e;,e2] = 1 or

[e1, e2] [= 72
o [e1,ez] |= —p if, and only if, [e1, ea] & 7.

5.1 Syntax

A formula ¢ in AMCE has the following syntax.

¢ =
(G

plX | @1V |-y | uX.g1 | (A)t)
| Y1V ihe | =1 | Q"1

Here, ¢ is a state formula, % is a path formula, p is an atomic
proposition symbol in P (atomic proposition set, as in Def-
inition 1), and X is a set variable for subsets of (). The
Boolean connectors are the common ones: V for disjunc-
tion and — for negation. Note that we allow for Boolean
combinations of the next operators () under strategy quan-
tification (A). This is one major difference of AMCE from
AMC.

Formula p X .¢; is the usual least fixed point operation
to ¢1. According to the tradition in [3], we require that
all free occurrences of X in ¢; must occur within an even
number of scopes of negations. This is because sentences
with a negative occurrence, like pX.—X, have no natural
semantics. A set variable X is bound in a formula ¢ if it

is inside a declaration scope of X. If it is not bound, then



it is free. An AMCE sentence is an AMCE state formula
without free set variables. In most cases, we are interested

in specifications given as AMCE sentences.

The A in (A) is a finite set of player indices in [1, 2].
Conceptually, (A)1) means that players in A can collabo-
rate to make ¢ true. For example, ({1,2}) OO p means that
players 1 and 2 can collaborate to make p true in the next
state. We follow the notations in [3] and omit the paren-
theses in formulas like (A). For example, ({2}) O p and
({1,2}) O p will be abbreviated as (2) O pand (1,2) O p

respectively.

We allow event restrictions as superscripts in ()" ¢, with
a move expression 7. The operator is important in support-
ing the evaluation of safety resilience levels with traditional
model-checking technology. Note that since AMC [3] only
allows for the next-state temporal modality, only the choice
of moves to the next states of a strategy matters. Formula
()N ¢y is thus evaluated at states with respect to move vec-
tors satisfying constraint . The formula is true of a move
vector [eq, eo] if and only if [e1, e2] |= n implies the sat-
isfaction of ¢ at state d(q,e1,es). Also O'F1¢; can be
written as ()¢ in AMC [3] and the superscript to () can

be omitted.

We also adopt shorthands in the below. The g refers to

state or path formulas.

true = pV -p
false = —pAp
BiABs = ((=61) V (~52))
Bi=PB = (2B1)V B
vX.p = —pX.g
Ay = ~(A)—
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5.2 Semantics

In the following, we adapt the presentation style of [3] to
define the semantics of AMCE inductively over the struc-
ture of the subformulas. The value of a state formula at
a state is determined by the interpretation of the set vari-
ables. Such an interpretation / maps set variables to sub-
sets of (. In comparison, the value of a path formula at
a state is determined by both the interpretation of the set
variables and the move vector chosen by the players. For
convenience and conciseness of presentation, we extend the
definition of interpretation of [3] also to record the chosen
move vector by some players. Specifically, we use an auxil-
iary variable “move” for the present chosen move vector in
the evaluation of path formulas. Given an interpretation I,
I(move) records the chosen move vector of all players in I.
For example, I(move) = [setAlarm, L] means the cho-
sen move vector that player | sets on an alarm while player
2 does nothing under interpretation I.

We need the following concept for collaborative choices
of moves to the next states by some players. An enforced
move vector set by A C [1,2] is a maximal set of move
vectors that agree on the choices of moves by players with
indices in A. Specifically, given an enforced move vec-
tor set C by A, we require that, for every [e1,es] € C,
[el,e5] € C,and a € A, e, = €. For convenience, we let
I'4 denote the set of all enforced move sets by A.

Following the semantics style of [3], we can extend [
to be an interpretation of all state and path formulas. Intu-
itively, given a state or path formula 3, I(5) is the set of
states that satisfy 5 according to the assumption on values
of set variable values and auxiliary variable “move.” More

precisely, I(3) is a subset of () that satisfies the following



inductive rules.

e I(p)={alp€ g}

o« I(B1V B2) = I(B1) UI(Ba).

o I(-f1) =Q —I(B).

o [(uX.¢1)isthesmallestsetY C Q withY = I[X —
Y](¢1), where I|X — Y] is a new interpretation iden-
tical to I except that X is interpreted as Y.

o I((A)y) is the set of states such that there is an en-
forced move vector set C' by A such that, for all move
vectors € € C, I[move — €|(z)) holds:

I({(A)Y) = Ucera Neec Ilmove = €](¢)

e Given I(move) = [e1,er], if [e1,ea] = n, then
I(O"1) = {q € Q| d(g,e1,e2) € I(¢1)}; other-
wise [(O"¢1) = Q.

A concurrent game structure is a model of an AMCE sen-
tence ¢, if its initial state r is in the interpretation of ¢

(r € I(¢)) for any interpretation I.

Note that, strictly speaking, AMCE does not add much
to the expressiveness of AMC. In the literature, propositions
have often been used to record events. Intuitively, we would
need one atomic proposition for each event to mark that it
has just occurred. This event marker would be true exactly
at states right after the event happened. (One would possi-

bly have to create multiple copies of states to reflect this.)

As discussed in [43], such a modeling technique leads to
an unnecessary blow up of the state space, which could be
exponential in the number of players in general concurrent
games. By properly selecting the transitions with respect
to operators like ()7, such auxiliary propositions are not
necessary when encoding the state space. Thus, AMCE can
also be of interest to practitioners for the efficient analysis

and verification of general concurrent games.
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6 Resilience level checking algorithm

In Subsection 3.2, we have proposed the idea of the
sfrchy(-) operator and proposed to use its greatest fixed
point for the evaluation of k-resilience. In the following,
we first establish some properties of k-safety and then use
AMC model-checking technology to solve the safety re-

silience games.

6.1 High-level description of the algorithm

The following lemma shows the sufficiency of k-safety

as a building block for solving safety resilience games.

Lemma 5 For a safety resilience game G, sfrchy(-) has a

greatest fixed point.

Proof : The lemma follows from the facts that the func-
tion sfrchy is monotonic (S C S’ implies sfrchy(S) C
sfrchy, (S') because a winning strategy for the protagonist
for S is also a winning strategy for S’ for all states in
sfrchy(S)) and operates on a finite domain. [ |
1)
({1} = sfrcha({1,2,3})), the only state in S, state 1, is 2-

For the example in Figure 3, considering § =

resilient: it can recover with the recovery strategy to always
go to the left.

The set of k-resilient states of G, can be calculated as the
greatest solution to S = sfrch;(S) with S C @ ~ F'. Tech-
nically we can start the inductive calculation of the greatest
fixed point from base case So = @ ~ F, and successively
calculate S; 11 = sfrchy(S;), for each i > 0. The set of
k-resilient states is then the limit S,,. As soon as we have
Sit1 = S;, a fixed point is reached. We then have S; = S,

and can stop the inductive construction. Since Sy is finite



and S; 1 C 5; holds for all 7 > 0, we will eventually reach

ajwith Sj11 =55 = S«.

6.2 Realization with AMCE model-checking

We need formally define the interaction among strategies
of players. We borrow the notation of function composition.
Given two partial functions 5y and /35, we use 31 © 52 to
represent their composition. Specifically, we have the fol-

lowing definition.

Bi(a)
P2 (a)

For our purpose, a partial strategy vector is a mapping from

if B2(a) is undefined.
otherwise

B1 0 Ba(a) = {
{1, 2} to ¥ and can be undefined for some playersin {1, 2}.
It is for a party A C {1, 2} if it is defined only for players
in A and represents a collaborative strategy of the players
with a defined strategy in A. Tt is total if it is defined for all
players.

For convenience, we also define partial move vectors as
mappings from {1,2} to E. A partial move vector is for a
party A C {1,2} if it is defined only for players in A. It
is total if it is defined for all players in {1,2}. Given two
partial move vectors v; and 2, we define 1 0> to represent
the composition of the two vectors.

Given an S, we propose to construct sfrchy (S) in an in-
duction on k. We need the following preliminary concepts

for the presentation.

Definition 9 (Traps) For A C {1,2}, a trap for A is a sub-
set Q' C Q that party {1,2} ~ A has a strategy vector
B to keep all plays from leaving (). Formally, we require
that, for every q € Q' and partial move vector 7y for A,
there exists a partial move vector ¥' for {1,2} . A such

that 6(q,vo+'(1),...,v707' (m)) € Q". [
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6.2.1 Base case, sfrcho(S)

In the base case, sfrcho(S) characterizes those states, from
which the protagonist can direct the plays to S and stay
there via a protagonist strategy when there is no error in-
jected by the antagonist. Thus sfrchg (S) is the greatest trap
for the antagonist to .S when no error happens and the great-

est solution to the following equation.

-l

In AMCE, we can alternatively define sfrchg (.S) as follows.

geXnS,eckE,
Ve' € Ex(e’' # noerr = 6(g,e,e') € X)

SfrChO(S) “ ]/X(S A <1> OﬁQ:ermrX).

This is the usual safety kernel of S, which consists of those
states, from which any controlled transition is safe. It can

be computed by the usual greatest fixed point construction.

Lemma 6 sfrcho(S) can be constructed, together with a
suitable memoriless control strategy, in time linear to the

size of G.

Proof : A state ¢ € S can stay in sfrchg(.S) if there is a
choice e € E; such that for all f € Fs, §(q,e, f) €
sfrcho(S). Basically, we can use the typical approach of
iterative elimination to calculate sfrcho(.S). That is, we first
let Ko = @ — S. Then we a sequence of mutually disjoint
sets K1,K,,...,K;,...such that for all ¢ > 1, states in
K11 can be shown to be not in sfrcho(S) by evidences of
states in K; U ... U Ky. Linear time can be achieved with
careful book-keeping of the choices of moves at all states
in S. We need a counter ¢, for each ¢ € S initialized to
|E | for the initial number of candidate choices of moves.
Then for each [g, €] € S x Ey, we need a Boolean flag by,
initialized to true to represent that {[e, f] | f € E»} is still

a valid choice of moves at ¢ to satisfy sfrcho(S). For each



Table 2. Algorithm for sfrcho(S) by iterative
elimination

sfrcho(S)
1: for g € Sdo ¢, = |E,| end for
2: forg € S,e € Ey do by, ) = true end for
3: Leti =0and Ko =Q — S.
4: while K; # () do

5 Let Kipq = 0.

6: forge K;and[¢, e, f] € L, do

7: if by o] 1s true then

8: Letcy = ¢y — 1.

9: if ¢, is O then add ¢’ to K;41. end if
10: end if
11: Set byyr ¢ to false.
12 end for
13:  Increment ¢ by 1.

14: end while
15: return S — (Ko U...UKj;).

state ¢, we also need to maintain a list of transition source
states. That is, for each d(¢’, ¢, f) = ¢, we need record
[¢', e, f] in list L,. Then the iterative elimination proceeds
as the algorithm in table 2. The algorithm is linear time

since each transition §(g, e, f) is checked exactly once. W

6.2.2 Inductive cases, sfrchy(S)

Now we explain how to define the inductive cases of
sfrch;(S). The condition is for those states from which
plays can be directed to S via a recovery segment in )
(S U F) with k or less errors injected by the antagonist. An
intermediate step for the construction of k-sfrch states is the
construction of an attractor that controls, through controlled
moves, the play prefixes to stay in a subset L C ¢) . F of
non-failure states. As only controlled (non-error) moves are
allowed, this is merely a backward reachability cone.

The controlled limited attractor set of a set X for a lim-

ited region L C @, denoted coney, (X) is the set from which

there is a protagonist strategy to move to X without leav-
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ing L and errors injected by the antagonist. Technically,

coney, (X) is the least solution to equation:

qc L,e € El,
Ve' € Ey N {error}(8(q,e,e') € Y)

Y=XU {q ‘
The controlled limited attractor set coney, (X) can be con-
structed using simple backward reachability for X of con-

trolled transitions through states of L. In AMCE, this can

be constructed as follows.
ConeL(X) o ,uY(X \V (L A <1> Oﬂ2:error Y))

Note that the protagonist must use the same move irrespec-
tive of the move of the antagonist to both stay in L and
approach X, provided that the antagonist does not inject an
error.

The controlled limited attractor set coney, (X)) is used in
the construction of sfrchg(S). We further construct a de-
scending chain Vi D V4 D ... D Vi of limited attractors
V;. From V; we have an attractor strategy towards S for the
protagonist, which can tolerate up to ¢ further errors. The
respective V; are attractors that avoid failure states. More-
over, from a state in V; with¢ > 1, any error transition leads
to Vi_1.

A state g € Q) is fragile for aset B C @ if, for all moves
of the protagonist, at least one of its successors is outside
of B. (The intuition is that this is an error move, and for
simple safety resilience game structures, we can restrict the

definition to failure states.) The set of fragile states for B is
frag(B) = {q | Ve € E13e' € Ey(6(q,e,¢') ¢ B)}.
In AMCE, we have the following formulation of frag(B).
frag(B)

1] 0O -B.

Technically, it is, however, easier to construct its dual



Q ~frag(B) = (1) O B.

This dual can be constructed using a controlled backward
reachability to B with any strategy of the protagonist.

The limited regions L; of states allowed when approach-
ing S also form a descending chain Lg O Ly O ... D L.
Using these building blocks, we can compute the k-sfrch
states as follows. The states in L;; are the non-failure
states from which all error transitions lead to a state in V.
The sets V; contain the states from which there is a con-
trolled path to S that progresses through L;; all error tran-
sitions originating from any state of this path lead to V;_;.
Vb is therefore just the set of states from which there is a
controlled path to S.

From all states in Vj_1, the protagonist therefore has an
optimal strategy in the recovery segment of the game de-
scribed earlier: if the antagonist can play at most & — 1
errors, then the protagonist can make sure that S is reached.

Starting with Ly = @Q ~. F that characterizes cones on
the way to S without any errors, we define the V;,’s and Lj,’s

inductively by
Ly = Lo  frag(Q ~ coner, _, (5)),

In AMCE, this can be defined inductively as follows.

Lg
del
Ly =

-F
Lo A (1) O coney, _, (S).

def

Finally, we choose sfrchg(S) sfrcho(S N Lg). In

AMCE, this can be expressed as follows.
sfrchy,(S) £ sfrchg (S A Ly,).
6.2.3 Algorithm for the set of k-resilient states

Finding a control strategy for k-sfrch control within

sfrchy, (S) is simple: as long as we remain in sfrchy(S)
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sfrcho(S N L), we can choose any control move that does
not leave sfrchy (S). Once sfrchy(S) is left through an er-
ror transition to Vi _1, Vi_o, ..., we determine the maximal
1 for which it holds that we are in V;; and follow the attractor
strategy of coner,, (S) towards S.

In summary, we present our algorithms for the set of k-
resilient states in Table 3. In fact, we have presented two
algorithms. The first constructs sfrch(S), which can be
used for checking whether the safety region S provided by
the users is indeed a good one. The way to do it is to simply
check whether S is a solution to sfrchy(z) = .

Then our second algorithm calculates res;(G) as the
greatest fixed point S of sfrchi(.) as the recommendation

for the safety region:
res (G) = [ J{S € Q| S = sfrchy(S) and SU F = 0}

In this way, the users do not have to calculate and provide
the safety region, which would be error prone. According to
the argument and lemmas from above, we get the following

theorem.

Theorem 7 G is k-resilient if, and only if, v € resg(G). W

6.3 Complexity

A rough complexity of our resilience level checking al-
gorithm straightforwardly follows the complexity of AMC
model-checking. Specifically, the following lemma ex-
plains the maximal resilience level that we need consider.

For convenience, let kmax be the maximal resilience level

of G.

Lemma 8 k. Is either infinite or no greater than |\ F|.



def

Ly £ -F
Lk =
sfrchg(S) = va.(S A (1) Q" )
sfrchy(S) = sfrchg(S A Ly)
resi(G) =

= SFAM O py-SV (Le1 A1) O™ y AOLk1)

vS.((Q ~\ F) Asfrchi(S)) : the set of k-resilient states

Table 3. Algorithm for k-resilient states

Proof : We assume that knax is greater than | ~ F'| but
not infinite. This means that there exists a failed recov-
ery segment p with k 4 1 errors injected by the antagonist.
Since the protagonist can only use memoryless strategies,
there must be two position indices i < j < |p| — 1 with
p(1) = p(j) in the recovery segment such that at p(i) and
p(7), the protagonist makes the same move while the antag-
onist makes different moves. This implies the existence of
a shorter failed recovery segment p[0,i]p[j + 1, |p| — 1]. By
repeating the above argument, we can eventually identify a
failed recovery segment of length < |@Q ~ F| that contra-
dicts the assumption and establishes the lemma. |

With Lemma 8, we can use the complexity of AMC
model-checking problem [3] to straightforwardly establish
the O (kmax| E|)? = O(|Q\F|-|E|)? complexity of res, (G)
when k is kpmax. In the following, we present a more
detailed analysis of the complexity of our resilience level
checking algorithm. All individual steps in the construction
(intersection, difference, predecessor, and attractor) are lin-
ear in the size of the safety resilience game, and there are
O(k) of these operations in the construction. This provides
a bi-linear (linear in & and |G|} algorithm for the construc-

tion of sfrchy, and a strategy for the protagonist.

Lemma 9 A memoryless control strategy for the states in
sfrchy, (S) can be constructed in time linear in both k and

the size |G| of the safety resilience game G. [ |
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The construction of resg (G) uses the repeated execution
of (@ ~ F) A sfrchi(-). The execution of sfrchy(-) needs
to be repeated at most | ~ F| times until a fixed point is
reached, and each execution requires at most O(k-|G|) steps
by Lemma 9.

For the control strategy of the protagonist, we can sim-
ply use the control strategy from sfrchy(Ss,) from the
fixed point S.

This control strategy is memoryless (cf.

Lemma 9).

Lemma 10 res;(G) and a memoryless k-resilient control
strategy for resy(G) can be constructed in O(k-|Q~F|-|G|)

time. |

Finding the resilience level k.« for the initial state r re-
quires at most O(log kmax) many constructions of res;(G).
We start with ¢ = 1, double the parameter until kpx is

exceeded, and then use logarithmic search to find £y ax.

Corollary 11 For the initial state r, we can determine the
resilience level kmax = max{i € N | r € res;(Q ~ F)}
of r, resg, . (Q N F), and a memoryless kuax-resilient
control strategy for res;_. (Q ~ F) in O(|Q ~ F| - |G| -

kmax 108 kmax) time. [ |

Simple safety resilience game structures. For simple
safety resilience game structures, checing if a state is in

sfrcho(S) is NL-complete.



Lemma 12 Testing if a state is in sfrcho(S) is NL-

complete.

Proof: NL completeness can be shown by reduction
to and from the repeated ST-reachability [33] (the question
whether there is a path from a state S to a state T and from

T to itself in a directed graph). il

Likewise, the controlled limited attractor set coner,(.S)
can be constructed using simple backwards reachability
for G of controlled transition through states of L. For
A = coner,(S), determining whether a state is in A is NL-
complete (see [33]).

The complexity of determining whether or not a state ¢
is in sfrchy (S) thus depends on whether or not we consider
k to be a fixed parameter. Considering k to be bounded (or
fixed) is natural in our context, because & is bounded by the

redundancy.

Lemma 13 For a fixed parameter k, testing if a state s of
a simple safety resilience game structures is in sfrchg (S) is

NL-complete.

Proof: Testing if a state is in Lg is in NL. By an induc-

tive argument, we can show that

e provided that testing if a state is in L; is in NL, we can
test if a state is in 4; = coner,(S) by using the non-
deterministic power to guess a path towards S, while
verifying that we are in L; in every state we pass before

S is reached; and

e if we can check if a state is in A; in NL, then we can
check if it is in ) ~ A; [27], in frag(Q ~ A;) (with
one nondeterministic transition), and in L;1; = Lo \

frag(S ~ A;) [27] in NL.
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Testing that a state is in S N Ly, is therefore in NL and
testing if it is in sfrcho (S N Ly, ) reduces to guessing a state ¢
in sfrchy (G) and an ST path (a path from s to ¢ followed by
a loop from ¢ to t), verifying for all states on the path that
they are in S'N Ly,

For hardness, note that the last step of the construction

alone is NL-complete (Lemma 6). il

If k is considered an input, then reachability in AND-OR
graphs can easily be encoded in LOGSPACE: It suffices to
use the nodes of an AND-OR graph as the states, the out-
going edges of OR nodes as the result of the choice of the
protagonist only (while the move of the antagonist has no
influence on the outcome, no matter whether or not she in-
duces an error), and to model the AND nodes as a state,
where the no-error move of the antagonist will lead in cy-
cling in the state, while the antagonist can choose the suc-
cessor from the graph when inducing an error. Choosing k
to be the number of nodes of the AND-OR graph and F' to
be the target nodes of the AND-OR graph, the target nodes
of the AND-OR graph are not reachable from a state s iff
s € sfrchi(Q \ F).

Given that reachability in AND-OR graphs is PTIME-

complete [26], this provides:

Lemma 14 [fk is considered an input parameter, then test-
ing if a state s of a simple safety resilience game structures

is in sfrch, (S) is PTIME-complete. [ |

The complexity of res (.5) is (almost) independent of the

parameter k:

Theorem 15 The problem of checking whether or not a
state s is k-resilient for a set S is PTIME-complete for all

k > 0 and NL-complete for k = 0.



Proof: We have shown inclusion in PTIME in
Lemma 10. For hardness in the £ > 0 case, we can use
the same reduction from the reachability problem in AND-

OR graphs as for sfrch(S).

For k = 0, sfrcho(@) = sfrcho(sfrcho(G)) implies
reso(G) = sfrcho(G). The problem of checking if a state is

in reso(Q) is therefore NL-complete by Lemma 12. il

Hardness for general safety resilience game structures.
For general resilience game structures, we can again use a
LOGSPACE reduction from the reachability in AND-OR
graphs: We again use the nodes of an AND-OR graph as
the states, and the outgoing edges of OR nodes are se-
lected based on the choice of protagonist only. For the AND
nodes, we leave the choice to the antagonist only, whithout
the need to invoke an error. (That is, errors play no role in
this reduction. The antagonist may be allowed to insert one,
but she can always obtain the same transition without doing

S0.)

Marking F as the target nodes, we get res (Q ~ F) =
sfrch; (@ ~ F)) for all non-negative integers k,l, and s €
sfrcho(Q ~ F) iff the target nodes of the AND-OR graph
are not reachable from s. With Lemmas 9 and 10, we get

the following theorem.

Theorem 16 For all k > 0, the problems of checking
whether or not a state s is in resg (Q ~ F) and resp (Q N F),
respectively, are PTIME-complete for general safety re-

silience game structures.
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7 Tool implementation and experimental re-
sults

In the following, we report our implementation and ex-
periment with our constructions. Our implementation is
based on symbolic on-the-fly model-checking techniques
and built on the simulation/model-checking library of
REDLIB in https://github.com/yyergg/Resil
for fast implementation. Our implementation and bench-
marks can also be found in the same page.

We adopt CEFSM (communicating extended finite-state
machine) [7] as a convenient language for the description
of abstract models of our concurrent game structures. A
CEFSM consists of several finite-state machines extended
with shared variables for the modeling of shared memory
and with synchronizations for the modeling of message-
passing in distributed systems. This is justifiable since the
fault-tolerant algorithms may themselves be subject to re-
strictions in concurrent or distributed computation. Indeed,
we found CEFSM very expressive in modeling the bench-

marks from the literature [12, 38].

The translation from our CEFSMs to state transition sys-
tems, such as finite Kripke structures, is standard in the lit-
erature. All state spaces, conditions, preconditions, post-
conditions, fixed points, etc., are represented as logic for-
mulas. The logic formulas are then implemented with
multi-value decision diagrams (MDD) [32].

We then took advantage of the support of REDLIB for
writing down template automatas for constructing complex
models. We specified a template automata with REDLIB to
describe the moves of the players. Conceptually, the player

automatas are constructed as an instance of the template au-

tomata. Then the whole game structure is constructed as the



product of all player automatas. Finally, we use the API of
REDLIB to do on-th-fly construction of the game structure
which can be advantageous since unreachable states will

never be generated.

7.1 Benchmarks

We use the following five parameterized benchmarks to
check the performance of our techniques. Each benchmark
has parameters for the number of participating modules in
the model. Such parameterized models come in handy for
the evaluation of the scalability of our techniques with re-

spect to concurrency and model sizes.

1. We use the example of a fault-tolerant computer archi-
tecture (Example 1) as our first benchmark. An im-
portant feature of this benchmark is that there is an as-
sumed mechanism for detecting errors of the modules.
Once an error is detected, a processor can be assigned
to recover the module, albeit to the cost of a reduced

redundancy in the executions.

2. Voting is a common technique for fault tolerance
through replication when there is no mechanism to de-
tect errors of the modules [36]. In its simplest form, a
system can guarantee correctness, provided less than
half of its modules are faulty. This benchmark im-
plements this simple voting mechanism. Every time
a voting is requested, the modules submit their ballots
individually. Then we check how many module fail-

ures the system can endure and recover.

3. This is a simplified version of the previous voting
benchmark, where we assume that there is a black-

board for the client to check the voting result.
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4. Practical Byzantine fault-tolerance (PBFT) algorithm:
We use an abstract model of the famous algorithm by
Castro and Liskov [12]. It does not assume the avail-
ability of an error-detection mechanism but uses vot-
ing techniques to guarantee the correctness of compu-
tations when less than one third of the voters are faulty.
This algorithm has impact on the design of many pro-
tocols [2, 14, 15,23,29] and is used in Bitcoin [1], a

peer-to-peer digital currency system.

5. Fault-tolerant clock synchronization algorithm: Clock
synchronization is a central issue in distributed com-
puting. In [38], Ramanathan, Shin, and Butler pre-
sented several fault-tolerance clock synchronization
algorithms in the presence of Byzantine faults with
high probability. We use a nondeterministic abstract
model of the convergence averaging algorithm from
their paper. The algorithm is proven correct when no
more than one third of the local clocks can drift to eight

time units from the median of all clock readings.

7.2  Modeling of the fault-tolerant systems

Appropriate modeling of the benchmarks is always im-
portant for the efficient verification of real-world target sys-
tems. Many unnecessary details can burden the verification
algorithm and blow up the computation, while sketchy mod-
els can then give too many false alarms and miss correct
benchmarks. We have found that there is an interesting as-
pect in the modeling of the above benchmarks. Replication
and voting are commonly adopted techniques for achiev-
ing fault-tolerance and resilience. Such fault-tolerant al-

gorithms usually consist of several identical modules that



use the same behavior templates. This observation implies
that the identity of individual modules can be unimportant
for some benchmarks. For such benchmarks, we can use
counter abstraction [20, 31] in their models. Specifically,
with counter abstraction, we can model all system players
with one player that keeps a counter ¢(l) for each control
location [ in the template automatas. Then at a state of the
whole game graph, ¢(l) records the number of system play-
ers at location /. With this technique, a system with m — 1
system player and one error model player is then reduced to
two players: one counter-abstraction player for all the sys-
tem players and one remaining error model player. If a sys-
tem player enters a location [ in a global transition, then in
the model, ¢(1) is incremented by one in the abstract global
transition. If a system player leaves / in the global transi-
tion, then ¢(l) is decremented by one in the abstract global
transition. But the succession of location movements of a

particular player is omitted from the abstraction.

We found that we can use counter abstraction to prove
the correctness of benchmarks 1, 2, and 3. In contrast, the
PBFT and the clock synchronization algorithms use coun-
ters for each module to model the responses received from
its peer modules. As a result, we decided not to use counter

abstraction to model these two algorithms in this work.

In the following, we explain how to apply our techniques
to analyze the resilience levels of the avionic systems in Ex-
ample 1. The application is achieved in three steps. We first
model the system under analysis either as a plain CEFSM
or with counter abstraction (if our analysis tool cannot han-
dle the complexity of the plain CEFSM). We then build the
product automaton of the CEFSM as the resilience game

structure except for the move vectors. Finally, we convert

the labels on the transitions of the product automaton to
move vectors of the two players. Note that the moves may

not correspond to the transition labels of the CEFSM.

Step 1: the construction of the CEFSM

We first present the CEFSM model template of Exam-
ple 1 in Figure 4. The CEFSM model has n processors
and m memory modules. Figures 4(a) and (b) are for the
abstraction of processors and memory copies, respectively.
The ovals represent local states of a processor or a memory
module, while the arrows represent transitions. The transi-
tions of a CEFSM are labeled with ‘error’, ‘C’ (for Con-
trol), or ‘R’ (for recovery).

We also use synchronizers to bind process transitions.
For example, when a memory module moves into a faulty
state, an idle processor may issue an f£d (error-detected)
event and try to repair the module by copying memory con-
tents from normal memory modules. Such error-detection
is usually achieved with standard hardware. Note that the
benchmarks are models that reflect the recovery mecha-
nism, abstracting away the details of the original systems.
A central issue in the design of this recovery mechanism
is then the resilience level of the controlled systems. We
need three synchronizers: fd for error detection by a pro-
cessor, rs for recovery success, and rf for recovery failure.
The three synchronizers are used to bind a transition from
a processor and another from a memory module into a syn-
chronized transition. For example, a processor at state pidle
and a memory module at state mfaulty may simultaneously
enter their pcopy and mcopy states respectively through syn-
chronizers !fd (for sending the synchronizer) and 7fd (for

receiving). We also conveniently use a variable ¢ in this



N
il

Figure 4. CEFSM templates of n processors and . memory copies

synchronized transition to capture the identifier of the mem-
ory module receiving the synchronizer. A transition without
synchronization labels is considered a trivial synchronized
transition. The transition system of the CEFSM operates
with interleaving semantics at the abstraction level of the

synchronized transitions.

For counter abstraction, we need four global variables
crp, cfp, crm, and cfin respectively to keep track of the num-
bers of running processors, faulty processors, running mem-
ory modules, and faulty memory modules. We also need a
local variable idm for each processor to record the faulty
memory module identifier that the processor is responsible
for recovery. We label the controllable, error, and recovery
transitions respectively with ‘C’, ‘error’, and ‘R’. We also
label each transition with synchronizers and actions. At any
moment, the processors and the memory modules may en-
ter their running states, execute a task, and generate the out-
come. A processor starts its execution from state prun while

a memory module starts from state mrun.
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Step 2: building the product automata

The product automata is a Kripke structure whose states

are of isa vector [p1, .« -, Pny @1y -+ -5 by 15+« - 5 Sm) Of 204
m elements. For all k, p;, and i, respectively represent the
current location and the current idm value of processor k
while s represents the current location of memory mod-
ule k. Then interleaving semantics that each time only a
global transition (a single local process transition without
synchronizers or two local process transition bound by a
synchronizer)is executed is adopted to determine the transi-
tion relation from one state to another. Such techniques are
standard in model construction. REDLIB can help in this
regard by constructing the Kripke structure in an on-the-fly

style to avoid the construction of those states not reachable

from the initial state.

Step 3: the labeling of the move vectors

After the second step, we have the game structure ready
except for the move vectors on the transitions. We use

E, = {C, R, nop}, where nop represents “no operation,”



and E> = {noerr,error}. Then we use the following three
rules to label move vectors.
¢ Every global transition with one component local pro-
cess transition labeled with error is labed with move
vector [nop, error}.
e Every global transition with a component local process
transition labeled with R is labeled with move vector
[R, noerr].
o All other global transitions are labeled with move vec-

tor [C, noerr].

Counter abstraction of the example

We also use the CEFSM in figure 4 to explain counter
abstraction. We need eight counter variables: pr, pi, pc, pf,
mr, mi, mc, and mf to respectively record the number of pro-
cesses in location prun, pidle, pcopy, pfaulty, mrun, midle,
mcopy, and mfaulty in a state. Then the counter abstraction
of the CEFSM is in Figure 5. The initial state are specified
with constraint: pr =nApi =0Apc=0Apf=0Amr =
mAmi = 0Amc = 0Amf = 0 on the counters. The state in
the product automata must satisfy the following constraints:
pr+pi+pc+pf=nAmr+mi+mc+mf=m. As can be
seen, we do not care which processor is in the idle mode, in
the running mode, etc., in this abstraction. Similarly, we do
not care which memory module is in the idle mode, in the
running mode, and etc. The local state transition only keeps
tracks of the number of processors in each mode and the
number of memory modules in each mode. We also do not
care which processor is in charge of the recovery of which
memory module. Such an abstraction can be done automat-
ically.

The labeling of the move vectors on the transitions in
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the Kripke structure (product automaton) follows the same
rules for the product automaton from the CEFSM in Fig-

ure 4.

Analysis of the game structure

The majority outcome of the processors and memory
copies is used as the outcome of the system. A processor
may enter the faulty state. A memory module may also en-
ter the faulty state. Processors may control to recover them-
selves or a faulty memory module by copying the contents
of a functioning memory module to the faulty one. At any
moment, we want to make sure that we can always recover

to a global condition with the following two restrictions.

e There are at least two more processors in the running

mode than the processors in the faulty mode.

e There are at least two more memory copies in the run-

ning mode than memory copies in the faulty mode.

Together, the failure condition is crp—cfp < 2Vcerm—cfin <
2. That is, all states in the transition system satisfying crp —
cfp <2Vcerm—cfin < 2areinset F.

Tool implementation and the benchmarks used in the
experiment can all be found in our Sourceforge REDLIB

projectat https://github.com/yyergg/Resil.

7.3 Performance data

We report the performance data in Table 4 for the re-
silience algorithms described in Section 7.1 against the pa-
rameterized benchmarks in the above with various parame-
ters. The second column shows the concurrency sizes. The
third column shows the values of % for the rows. The fourth

and fifth columns show the sizes of the concurrent game
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Figure 5. Counter abstraction of the CEFSM templates of » processors and »» memory copies

structures. The sixth and seventh columns show the time
and spaces used to calculate sfrchy (). Similarly, the eighth
and ninth columns show the time and spaces for calculating

the resy ().

The benchmark in Figure 4 does not have nodes in
sfrchy(G) and res; (G). So we changed the benchmark to
see how we check our implementation with & > 1. The
change is that the recovery transition from state pcopy to pi-
dle of processors are relabeled as controllable. This change
significantly limits the ability of the system errors to derail
the system. For the avionics system, the resilience level & is
set to one less than half the number of processors. For the
voting and simple voting benchmarks, the value of k is set
to one less than half the number of replicas (voters). For the
PBFT and clock synchronization algorithm, we choose & to

be one less than one third of the number of replicas.

The performance data has been collected with a Virtual
Machine (VM) running opensuse 1 1.4 x86 on Intel 17 2600k
3.8GHz CPU with 4 cores and 8G memory. The VM only

uses one core and 4G memory.

The time and space used to calculate resilience is a lit-
tle bit more than that to check for sfrch. The reason is that

sfrchy, is a pre-requisite for calculating res. In our exper-
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iment, sfrchy is usually very close to resy and does not re-
quire much extra time in calculating resy out of sfrchy.

The experiments show that our techniques scale to real-
istic levels of redundancy. For fault-tolerant hardware, usu-
ally the numbers of replicas are small, for example, less than
10 replicas. Thus our techniques seem very promising for
the verification and synthesis of hardware fault-tolerance.

On the other hand, nowadays, software fault-tolerance
through networked computers can create huge numbers of
replicas. Our experiment shows that counter abstraction can
be a useful techniques for the modeling and verification of
software resilience. Specifically, for the avionics bench-
mark, we can verify models of much higher concurrency

and complexity with counter abstraction than without.

8 Related work

We have applied game-based technqiues [13, 34, 37] for
synthesizing a control mechanism with maximal resilience
to software errors. The synthesis of control strategies is es-
sential in solving games with temporal and w-regular ob-
jectives. For these more complex objective, synthesis goes
back to Church’s solvability problem [13] and inspired Ra-

bin’s work on finite automata over infinite structures [37]



Table 4. Performance data for resilience calculation

s: seconds; M: megabytes

benchmarks concurrency k game sizes sfrchy, resg

#nodes | #edges time | memory || time | memory

avionics 2 processors & 2 memory modules | 2 118 750 0.62s 114M 0.85s 116M

2 processors & 3 memory modules | 2 414 3252 0.94s 139M 1.10s 153M

3 processors & 3 memory modules 3 1540 15090 4.67s 225M 8.38s | 267TM

3 processors & 4 memory mdules 3 5601 63889 42.86s 815M 155s 846M

avionics 6 processors & 6 memory modules | 2 1372 6594 2.89s 129M 3.54s | 516M

(counter 7 processors & 7 memory modules | 3 2304 11396 10.7s 216M 23.4s | 808M
abstraction) | 8 processors & 8 memory modules 3 3645 18432 43.8s 1009M 135s | 2430M

voting 1 client & 20 replicas 9 9922 23551 7.01s 260M 36.7s | 297TM

1 client & 26 replicas 12 | 20776 49882 19.9s 474M 79.6s | 611M

simple I client & 150 replicas 74 458 1056 0.71s 159M 31.7s | 219M

voting 1 client & 200 replicas 99 608 1406 1.06s 161M 162s 337M

1 client & 250 replicas 124 758 1756 1.36s 163M 307s 499M

PBFT 1 client & 6 replicas 2 577 897 0.34s 72M 1.05s 193M
1 client & 9 replicas 4 2817 4609 13.3s 564M 58.5s | 1657TM

clock 1 client & 15 servers 7 16384 | 229376 45.1s | 3075M || 62.4s | 3264M
sync I client & 17 severs 8 65536 | 1070421 870s | 14725M || 915s | 15433M

and Biichi and Landweber’s works on finite games of infi- primitives.

nite duration [10, 11]. A righ body of literature on synthesis
has since been developed [6, 18,22,30, 35, 39,40].

Traditionally, fault tolerance refers to various basic fault
models [6], such as a limited number of errors [28]. These
traditional fault models are subsumed by more general syn-
thesis or control objectives [5, 6,42]; as simple objectives
with practical relevance, they have triggered the develop-
ment of specialized tools [18,22].

Dijkstra’s self-stabilization criterion [4, 16] suggests to
build systems that eventually recover to a ‘good state’, from
where the program commences normally. Instead of con-
structing a system to satisfy such a goal, one might want to
apply control theory to restrict the execution of an existing
system to achieve an additional goal. Our control objective
is a recovery mechanism for up to k errors. After recov-
ery, the system has to tolerate up to k errors again, and so
forth. In this work, we suggest a mechanism to synthesize

a recovery mechanism for a given fault model and recovery

In [17], an interesting notion of robustness based on
Hamming and Lewenstein distance related to the number
of past states is defined. It establishes a connection between
these distances with a notion of synchronization that char-
acterizes the ability of the system to reset for combinatorial
systems. In [9], ‘ratio games’ are discussed, where the ob-
jective is to minimize the ratio between failures induced by

the environment and system errors caused by them.

Besides using our simple game model that neither refer
directly to time, nor to probabilities, one can also consider
models that make these aspects explicit. Their analysis is
far more complex (with [21] offering the best complexity
bounds), and so are the resulting strategies. If we, for ex-
ample, return to the example of airplanes with an opera-
tion time of 20 hours referred to in Table 1, then an optimal
timed model would take the remaining operation time into
account. When the remaining time is two minutes, the bal-

ance between being resilient against waves of two errors

29



and being resilient against 5 errors looks very different, and
the optimal control would change over time rather than be-
ing static. Another implication of more complex models
would be that the error model would have to be more de-
tailed. Even if one assumes that a simple concept like safe
states persists, it depends on the fineties of such a model if
a two step path back to it where an error after step one leads
to system failure is preferable over a much longer path, say
through 10,000 intermediate states, where one error can be
tolerated during recovery.

We believe that the independence from such details is an
advantage of our technique, partly because it is simpler and
cheaper, and partly because the further advantages one can
obtain from more detailed error models rely heavily on very
knowledge of (or, realistically, on very detailde assumptions
on) how errors are distributed.

In [8, 19] the resilience model we have introduced [25]
has been applied for synthesising robust control in an
assume-guaranee setting to produce robustness against oc-
casional noncompliance of the environment with the as-

sumptions of its behavior.

9 Conclusion

We have introduced an approach for the development of
a control of safety critical systems that maximizes the num-
ber of dense errors the system can tolerate. Our techniques
are inspired by the problem of controlling systems with re-
dundancy: in order to deflect the effect of individual er-
rors, safety critical systems are often equipped with multi-
ple copies of various components. If one or more compo-
nents fail, such systems can still work properly as long as

the correct behavior can be identified.
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This has inspired the two-phase formulation of the safety
resilience problems in this article. In the first phase, we
identify a k-resilient region, while we develop a control
strategy for recovery in the second phase. After an error,
the controller can recover to the k-resilient region without
encountering a system failure, unless the error is part of a
group of more than k errors that happen in close succession.
Such a recovering strategy is memoryless. Being memo-
ryless on a small abstraction in particular implies that the

recovery is fast.

The system can, once recovered, tolerate and recover
from k further dense errors, and so forth. Consequently,
our control strategy allows for recovery from an arbitrary
number of errors, provided that the number of dense errors
is restricted. This is the best guarantee we can hope for: our
technique guarantees to find the optimal parameter k. This
parameter is bound to be small (smaller than the number of
redundant components). Optimizing it is computationally
inexpensive, but provides strong guarantees: the likelihood
of having more than % errors appear in short succession af-
ter an error occurred are, for independent errors, exponen-
tial in k. As errors are few and far between, each level of
resilience gained reduces the likelihood of system-level fail-

ures significantly.
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