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heking problem of a mild extension to the alternating-time�-alulus (AMC). The witness for k resiliene, whih anbe provided by the model heker, an be used for providingontrol strategies that are optimal with respet to resiliene.We show that the omputational omplexity of onstrutingsuh optimal ontrol strategies is low and demonstrate thefeasibility of our approahh through an implementation andexperimental results.1 IntrodutionToday's software systems an onsist of tens of millionlines of ode. Suh a system may interat with hundredsof distributed proesses that are reated and destroyed dy-namially in an evolving environment. With suh a sale ofomplexity and unpreditability, users and developers havelearned to deal with the reality that software systems mostlikely still ontain defets after delivery. In fat, variousempirial studies show that the defet density of ommer-ial software systems varies from 1 to 20 defets in every1000 lines of soure ode [41℄. Programmers and software1



designers have developed many engineering tehniques toontain the damage that ould be aused by suh defets.For example, when observing that a ritial servie requestis not aknowledged, a software system may have severalmeasures to its disposal to avoid system failure, inludingresending the request, resetting the server, learing the om-muniation buffers, et. But, in general, it is dif�ult toestimate how to organize the measures for the maximal re-siliene of the system against realisti errors. At the mo-ment, an automated support for the synthesis of ontrolmehanism to defend a system against software errors ismissing. Suh an automated support, if available, an sug-gest defense tehniques against software defets to develop-ment teams, and help these development teams to identifythe vulnerabilities of software systems. We use a game-theoreti approah to study this aspet and have arried outexperiments to observe how our tehniques an be used insynthesizing the most resilient defense of software systemsagainst multiple errors.Intuitively, the defensive strength of a software systemshould be proportional to the number of errors that it anendure. A subtle issue in designing the foundation is the re-alisti assumption on how many errors a system an endurebefore running into disasters. Apparently, no non-trivialsystem an endure an unlimited �ood of errors without de-grading to inevitable system failure. Thus, if we do not em-ploy a realisti error model, then no meaningful analysis ofthe resiliene level of these systems to software errors anproeed, and no pratial ontrol mehanism an be devisedto defend them against errors. We are interested in fendingthe system against a more restrited error model, but stillwant to provide the error model with a quanti�able level of

power in order to be able to defend the system against manyerror senarios.Considering that most software systems have a life-timemuh longer than the duration needed for a reasonably de-signed software system to reover from an error, a reason-able foundation needs to take the differene between thesetwo time sales into aount. In this work, we propose toevaluate ontrol mehanism of software systems on howmany errors the ontrol an endure before reovery to safebehavior. We then present an algorithm to synthesize a on-trol strategy that an endure the maximal number of suherrors.Before proeeding further, let us standardize the basiterms. In embedded systems, a design defet in softwareor hardware is alled a fault. Different to a fault, an er-ror (sometimes alled omponent failure in the literature)is the effet of a fault that results in a differene betweenthe expeted and the atual behavior of a system, e.g., mea-surement errors, read/write errors, et. An error does notneessarily lead to a system failure, but may instead be re-paired by, e.g., a defense mehanism in the software. Thatis, an error may be deteted and orreted/neutralized be-fore it reates any harm to the whole system or its users.Only when the effet of an error reates faulty behaviorsthat an be observed by the users, it beomes a failure.Our spei� goal is to develop a tehnique for synthe-sizing a ontrol mehanism of a software system againstthe maximal number of dense errors without degrading tofailure. We took our inspiration from methods for resilientavioni systems [39℄, where fault tolerane is designed toreover from a bounded number of errors. The number oferrors a system needs to tolerate an be inferred from the2



k 0 1 2 3 4 5 6 : : :k errors 0:865 0:594 0:333 0:143 0:053 0:017 0:005 : : :k dense errors 0:865 2 � 10�4 2 � 10�9 2 � 10�14 2 � 10�19 2 � 10�24 2 � 10�29 : : :Table 1. Probabilities of k dense errorsgiven maximal duration of a �ight and the mean time be-tween errors of the individual omponents. To demonstratethe differene between the objetive to tolerate up to k er-rors and sequenes of separated bloks of up to k dense er-rors in a short period, we exemplify the quality guaranteesone obtains for a system (e.g., an airplane) with an operat-ing time of 20 hours and a mean time between exponentiallydistributed errors of 10 hours, assuming a repair time of 3.6seonds. The mean time between dense errors (onseu-tive errors before system reovery) is alulated in Table 1.The �gures for k errors (omponent failures) are simply thevalues for the Poisson distribution with oef�ient 2. Toexplain the �gures for k dense errors, onsider the densityof 2 dense errors ourring in lose suession. If an errorours, the hane that the next error ours within the re-pair time (3.6 seonds) is approximately 110000 . The goal totolerate an arbitrary number of up to k-dense errors is, ofourse, muh harder than the goal of tolerating up to k er-rors, but, as the example shows, the number k an be muhsmaller. Tolerating an arbitrary number of errors (with adistane of at least 3:6 seonds between them) reates thesame likelihood to result in a system failure as tolerating upto 9 errors overall, and tolerating up to 15 errors still resultsin a 70% higher likelihood of a system failure than toler-ating bloks of up to 2 errors in this example. Only errorsfor whih this is the ase ould ause a system failure. Themean time between bloks of two dense errors is thereforenot ten hours, but 100,000 hours. Likewise, it inreases to

1,000,000,000 (one billion) hours for bloks of three denseerrors, and so forth. Maximizing the number of dense errorsthat are permitted before full reovery is therefore a natu-ral design goal. After full reovery, the system is allowedagain the same number of errors. Now, if the mean timebetween errors (MTBE) is huge ompared to the time thesystem needs to fully reover, then the mean time betweensystem failures (MTBF) grows immensely.We view the problem of designing a resilient ontrolmehanism towards dense errors as a two-player game,alled safety resiliene game, between the system (protago-nist1, `he' for onveniene) and a hostile agent (antagonist2,`she' for onveniene) that injets errors into the system un-der exeution. The protagonist wants to keep the systemfrom failure in the presene of errors, while the antagonistwants to derail the system to failure. Spei�ally, systemdesigners may model their system, defense mehanism, anderror model as a �nite game graph. The nodes in the graphrepresent system states. These system states are partitionedinto three lasses: the safe states, the failure states, and thereovery states. Some transitions are labeled with errorswhile others are onsidered normal transitions. The gameis played with respet to a resiliene level k. If a play everenters a failure state, then the antagonist wins in the play.Otherwise, the protagonist wins.The protagonists plays by seleting a move, intuitively1In game theory, a protagonist sometimes is also alled player 1.2In game theory, an antagonist sometimes is also alled player 2.3



the `normal' event that should happen next (unless an er-ror is injeted). The antagonist an then deide to triggeran error transition (injeting an error) with the intention toeventually de�et the system into a failure state. Our errormodel, however, restrits the antagonist to injet at most kerrors before she allows for a long period of time that thesystem may use to reover to the safe states. (If the an-tagonist deides to use less than k errors, the protagonistdoes not know about this. It proves that this information isnot required, as we will show that the protagonist an playmemoryless.) After full reovery by the protagonist to thesafe states, the antagonist is allowed again to injet the samenumber of errors, and so forth.If the system an win this game, then the system is alledk-resilient. For k-resilient systems, there exists a ontrolstrategy�even one that does not use memory�to make thesystem resilient in the presene of bloks of up to k denseerrors. We argue that, if the omponentMTBF is huge om-pared to the time the system needs to fully reover, then theexpeted time for system breakdown grows immensely.Besides formally de�ning safety resiliene games, wealso present algorithms for answering the following ques-tions.� Given an integer k, a set F of failure states, and aset S of safe states (disjoint from F ), is there a re-overy mehanism that an endure up to k dense er-rors, effetively avoid entering F , and quikly diretthe system bak to S. Sometimes, the system design-ers may have designated parts of the state spae for thereovery mehanism. The answer to this question thusalso impliitly tells whether the reovery mehanismis fully funtional in the reovery proess.

� Given an integer k and the set of failure states, whatis the maximal set of safe states, for whih the sys-tem has a strategy to maintain k-resiliene? In gametheory, this means that safety resiliene games an beused for synthesizing safety regions for a given boundon onseutive errors before the system is fully reov-ered.The question an be extended to not only partition thestates into safety, reovery, and failure states, but alsofor providing memoryless ontrol on the safety and re-overy states.� Given a set of failure states, what is the maximal re-siliene level of the system that an be ahieved withproper ontrol? We argue that this maximal resilienelevel is a well-de�ned and plausible indiator of thedefense strength of a ontrol mehanism against a re-alisti error model.With our tehnique, software engineers and system design-ers an fous on maximizing the number of dense errors thatthe system an tolerate in�nitely often, providing that theyare grouped into bloks that are separated by a short periodof time, whih is suf�ient for reovery.We investigate how to analyze the game with existingtehniques. We present an extension to alternating-time�-alulus (AMC) and propose to use the AMC model-heking algorithm on onurrent games to hek resilienelevels of embedded systems. We present redution fromsafety resiliene games to AMC formulas and onurrentgame strutures. Then we present a PTIME algorithm foranswering whether the system an be ontrolled to tolerateup to a given number of dense errors. The algorithm anthen be used to �nd the maximal resiliene level that an4



be ahieved of the system. The evaluation is onstrutive: itprovides a ontrol strategy for the protagonist, whih an beused to ontrol a system to meet this prede�ned resilienelevel.The remainder of the artile is organized as follows. Se-tion 2 reviews some standard terminology and results. Se-tion 3 outlines our work and motivates it on three examples.Setion 4 de�nes safety resiliene game. Setion 5 de�nesa variation of the alternating-time �-alulus (AMC) forspeifying our k-resiliene properties. Setion 6 presentsour resiliene level evaluation algorithm. We report onour implementation and the experimental evaluation of ourtehniques in Setion 7. Setion 8 reviews related work.Finally, Setion 9 summarizes the work.2 Two-player onurrent game struturesTo failitate our explanation of resiliene analysis in agame's perspetive, we start by reviewing the game on-epts related to our work. A onurrent game may involveseveral players, who make onurrent move deisions at thesame time during transitions. The destination of a transitionis jointly determined by the moves hosen by all players.Suh a gamemodel is very expressive and handy in desrib-ing interations in a omplex system. In this work, we adaptthe �nite onurrent games from [3℄ with event onepts ontransitions. For the analysis of system resiliene, we onlyhave to onsider two players in the game, the �rst is thesystem, and the seond is the error model.De�nition 1 (2-player onurrent game stru-ture): A onurrent game struture is a tupleK = hQ; r; P; �; E1; E2; Æi, where� Q is a �nite set of states.

� r is the initial state in Q.� P is a �nite set of atomi propositions.� � : Q 7! 2P is a proposition-labeling funtion of thestates.� E1 and E2 are �nite sets of move symbols that theprotagonist and the antagonist an respetively hoosein transitions. A pair in E1 � E2 is alled a movevetor.� Æ is a funtion that maps fromQ�E1�E2 toQ. Æ isalled the transition funtion and oneptually spe-i�es a suessor state that results from a state andmoves of the players.Given a state q 2 Q and a vetor [e1; e2℄ 2 E1 � E2,Æ(q; e1; e2) is the suessor state from q when eah playera 2 f1; 2g hooses her respetive move ea. �We prefer to represent the moves available to the play-ers by symbols (rather than integers as in [3℄), as move (orevent) symbols an be used to re�et some physial mean-ing. For example, a move an orrespond to the turning-offof a swith, the detetion of an airplane, or the exeution ofan error handling routine. (Tehnially, representing movesas either integers or symbols does, of ourse, make no dif-ferene.)For onveniene, we assume that we are in the on-text of a given 2-player onurrent game struture K =hQ; r; P; �; E1; E2; Æi. In the following, we review somestandard onepts from game theory.De�nition 2 (Plays and play pre�xes): A play pre�x � oflength h is a sequene q0;�!e0 ; q1;�!e1 ; : : : ; qh�1 that alter-nates between states and move vetors (starting and end-ing in a state), suh that, for all i 2 [0; h), Æ(qi;�!ei ) =qi+1 holds. Similarly, a play � is an in�nite sequene5



q0;�!e0 ; q1;�!e1 ; q2;�!e2 ; : : : that alternates between states andmove vetors (starting and ending in a state), suh thatÆ(qi;�!ei ) = qi+1 holds.In both ases, we use �(i) = qi and �e(i) = �!ei by abuseof notation. �The following notations are for the ease of presentation.Given a play pre�x � = q0;�!e0 ; q1;�!e1 : : : qh�1, we denotethe length of �, h, by j�j. For plays, we write j�j = 1.Given two integers j and h in [0; j�j) with j � h, we use�[j; h℄ to denote the play pre�x �(j); �e(j); �e(j+1); �(j+1); : : : ; �(h). For play pre�xes �, we use last(�) def= �(j�j �1) to denote the last state in �.We may also use regular expressions to represent sets ofplay pre�xes. Spei�ally, given two sets A and B of playpre�xes,AB represents the set of onatenation of play pre-�xes �1�2 suh that �1 2 A and �2 2 B. A� then represents�nite onatenation of play pre�xes from A. For example,a; ab; ababbb are all elements of fa; b; ag�.Please reall that a play has in�nite length. A play �with �(0) = q is alled a q-play. When hoosing moves ata state, a player may look up the play pre�x that leads tothe urrent state, investigate what deisions the other play-ers have made along the pre�x, and selet his or her nextmove. Suh deision-making by a player an be apturedby a strategy.De�nition 3 (Strategy) A strategy is a funtion from �niteplay pre�xes to a move symbol. Formally, a strategy �a fora player a 2 f1; 2g is a funtion from play pre�xes to Ea.The next state after a play pre�x � 2 �Q(E1 � E2)��Q isdetermined as Æ(last(�); �1(�); �2(�)).A strategy � ismemoryless (positional) if the hoie of �only relies on the urrent state, that is, if, for every two play

pre�xes � and �0, last(�) = last(�0) implies �(�) = �(�0).If � is not memoryless, it is alled memoryful. �
Given regular expressions [24℄ �1; : : : ; �n with alpha-bet Q and move symbols e1; : : : ; en 2 E, we may use[�1 7! e1; : : : ; �n 7! en℄ to (partially) speify a strat-egy. For a strategy �, a rule like �i 7! ei means that,for every play pre�x � 2 �i, �(�) = ei. To disam-biguate the interpretation of the strategy, a rule with in-dex i superedes all rules with indies > i. Moreover,to make a strategy omplete, we may require �n to be�Q(E1 � E2)��Q, the set of strings of interleaving statesand move vetors that end in a state (whih inludes the setof all play pre�xes). For example, a memoryless strategy ofthe protagonist an be spei�ed with [�Q(E1�E2)��q0 7!e1; �Q(E1 � E2)��q3 7! e2; �Q(E1 � E2)�� 7! e3℄. Amemoryful strategy of the protagonist an be spei�ed with[q0 7! e1; �Q(E1 � E2)�+q0 7! e2; �Q(E1 � E2)��q3 7!e2; �Q(E1 �E2)��Q 7! e3℄.Note that, in De�nition 3, we do not distinguish betweenthe strategies of the players. We all a play � �-onform fora strategy � of player a if, for all i 2 N, there are e1 and e2with �(i+ 1) = Æ(�(i); e1; e2) and ea = �(�).In the remainder of the artile, we denote the set of allstrategies by � and the set of all memoryless strategies by�(0). Together with an initial state r, strategies �1; �2 2 �of the m players respetively, de�ne a unique play, whihonforms to �1; �2. We denote this play by play(r; �1; �2).6



Figure 1. Framework of resiliene design3 Motivation3.1 BakgroundResiliene to errors in omputer systems is usuallyahieved through error reovery design as illustrated in Fig-ure 1. The system states an be partitioned into three re-gions: safe, reovery, and failure. The left part of the �gurerepresents the safety region. The states in this safe regionan be viewed as those for `normal' operation. When an er-ror ours, the system goes through a reovery stage, whereit follows some reovery mehanism. This is shown as the�reovering� area in Figure 1. In this region, the systemintuitively tries to repair the effets of an error and thus toreover to the safety region.During the reovery (or: in the reovery region), how-ever, errors may still happen. In general, fault-tolerant sys-tems are built under the assumption that error detetion andreovery is speedy and that there an only be a few errorsduring the proess of reovery. If the reovery mehanismis not resilient enough, a few errors may drive the systeminto failure.We illustrate this on the following examples.Example 1 (Fault-tolerant omputer arhitetures): Inomputer arhitetures, fault-tolerane is usually ahieved

via hardware dupliation. Consider an example of a multi-proessor system that inludes n proessor opies and mmemory opies. The n proessors eah an follow the in-strutions of the original system, or be engaged in memoryreovery. When a opy of the memory fails, a proessoran be assigned to reover it. Majority hek an be usedto detet that a proessor is faulty or that memory opy isfaulty (often, both would happen at the same time). For re-overy, we an set a free proessor to reover some memoryopy, or make a proessor follow the ode of the majority ofproessors.The key to error resiliene is to deide whether to make aproessor follow the exeution of the majority, or to assignit to reover faulty memory. If too many errors our in ashort while before the errors an be reovered from, thenthere may be no more proessors left to arry out any morereovery. When suh a ritial situation arises, the systementers failure state when another error is indued.The reovery mehanism desribed above is typial inthe design of fault-tolerant systems [36℄. As explained, apratial reovery mehanism usually does not rely on thedetailed struture of the system. Instead, error-detetiontehniques suh as parity heks, voting (for majorityheks), et., are usually employed. In fat, the number ofdupliates is usually ritial to the resiliene of the systemto errors. As long as the majority of the dupliate modulesan be reovered in time (i.e., before the next wave of er-rors), resiliene of the system an be ahieved. �Example 2 (Exeption handling): At the operating sys-tem level, errors are usually signaled via interrupt lines andhandled with routines alled handlers. The �rst thing thatneeds to be done by a handler is to save the CPU state of7



the interrupted proess. In some operating systems, a statimemory spae is used for this purpose for eah handler. Insuh a sheme, if the same error happens again while ex-euting the error handler, then the system an run into therisk that the CPU states of the interrupted handler an beoverwritten and destroyed.Another sheme is to use a stak to save the CPU statesof the interrupted proesses. Suh a sheme seems resilientto errors that happen during the exeution of error han-dlers. Still, too many errors that happen during the exe-ution of error handlers an deny ritial funtions of thesystem and inur failures, inluding missed timer updatesand priority inversions. Thus, a proper assumption on thetimely error reovery by the error handling routines is rit-ial to the design of error resiliene in suh ases. �Example 3 (Seurity attaks): Seurity in the Internetalso relies on resiliene to attaks of hakers, viruses, mal-ware, et. For example, one ommon tehnique of attaksto ommuniation modules is to over�ow the ommunia-tion buffers. In suh attaks, the sizes of the buffers and theability of the seurity proedures to detet and reover fromsuh over�owing attaks is ruial to the resiliene design.�These examples show that reovery is a ruial oneptfor designing systems that are resilient to errors. When sys-tem errors are deteted in suh a system, the system ati-vates a reoverymehanism so as to remove the effet of theerrors. When designing suh systems, the system designersusually have in mind what errors and failures the systemsan expet, aording to the spei�ation. To avoid fail-ures in the ourrene of dense errors, the system designersusually inorporate many error reovery mehanism in the

system, e.g., exeption handlers and hardware/software re-dundany. But, in general, it would be dif�ult for the de-signers to evaluate how effetive their reovery mehanismis to dense errors. To overome this dif�ulty, we believethat it is important to support them with automated analyti-al tools with a solid foundation.Resiliene has also been used in [8, 19℄ with a similargoal. When synthesising ode, one relies on assumptions ofthe behavior of the environment, and the formal spei�a-tion would only ask for the provision of guarantees underthe ondition that the assumptions are satis�ed. When as-sessing the quality of an implementation, the behavior inases where the environment does not omply with the as-sumption matters. In [8, 19℄, the resiliene model we haveintrodued in the onferene version [25℄ of this paper hasbeen followed up upon, and proven to be well suited forreative synthesis.In this work, we use these observations to design a theo-retial framework for synthesizing a ontrol mehanism thatprovides the maximal resiliene against software errors in arealisti error model.3.2 Resiliene in a NutshellFrom Example 1 to 3 in Subsetion 3.1, it is easy to seethe ommon paradigm of error reovery in software sys-tems.When errors are deteted, a reovery mehanismwill be ativated to avoid failures and try to getbak to normal exeution.Moreover, suh a reovery mehanism usually needs tooperate under the assumption that more errors may also hap-8



pen during the reovery proess. In pratie, system de-signers have already implementedmany defensivemodules,e.g., exeption handlers, whih are ertainly good andi-dates for the reovery segments. Thus, the reovery shemewe disuss is likely to have arisen in an ad-ho fashion as anatural onept when software arhitets and programmersdesigned reovery mehanisms for ritial software.The vast state spaes of ritial systems make an auto-mated support for and a solid foundation of evaluating de-sign alternatives partiularly valuable.In the following, we will use the examples from the pre-vious subsetion as a motivation for de�ning a new game,alled safety resiliene game, between the reovery meh-anism (the protagonist) and the error-injeting agent (theantagonist). The game is spei�ed with a set F of failurestates, a set S of safe states (the safety region), the movesby the antagonist to injet errors, and the resiliene levelk that the designers want to ahieve. The objetive of theprotagonist is to identify a ontrol strategy so that the wholesystem an ahieve the presribed level (or the highest level)k of resiliene for safety regionS (a set of states) and failurestate set F .The game is played round by round. When the antago-nist issues an error move, the play may be de�eted into areovery segment. If there are no more than k � 1 errorsin the reovery segment, then a k-resilient ontrol meha-nism must diret the reovery segment to end at a safe state.The above observation suggests that a safety region an beabstrated as a �xed point to the reovery proedure thattransforms a safe state to another safe state via the reoverysegment with at most k � 1 errors. Coneptually, a �xedpoint to a proedure f(x) is a set S of elements in the do-

Figure 2. Illustration of the reovery operation
main of x suh that S = ff(x) j x 2 Sg. To alulatethe �xed point of the reovery proedure, we an use thegreatest �xed point algorithm. The idea is to start from asuperset of the reovery proedure �xed point. For onve-niene, we all a superset of the �xed point a pseudo �xedpoint (PFP). Then we iteratively hek every state q in thePFP and eliminate q from the PFP if, after at most k errorsfrom q, the reovery mehanism either annot avoid failureor annot diret the system bak to the PFP. As the iterativeheking and elimination goes on, the PFP will shrink andeventually stabilize. Note that its size is always �nite, sinethe initial PFP must be no bigger than Q. The �nal PFP isthen a greatest �xed point to the reovery mehansim fork-resiliene and is the legitimate safety region.This reovery proedure an be illustrated as in Figure 2for resiliene to 2 errors. In this �gure, the states in setS0 are omputed as the preondition of states in S throughthose transitions in the �gure. Eah path from S0 to S is areovery segment. S and S0 may overlap. The blue irlesrepresent states in the reovery segments. If we alulateS0 out of S, then, for eah state q0 2 S0, we an �nd apath from q0 2 S0 via a path in the reovery segment toanother state q 2 S. The maximal number of errors in areovery segment is 2. Thus the protagonist has a strategy9



to reover from errors in S0 to S even when 2 errors happenin the orresponding reovery segment. When S0 = S, thenS is a �xed point to the preondition operator through thereovery segments in the �gure.Now we formally de�ne the onept that we explainedwith Figure 2.De�nition 4 (k-safety): Given a k 2 N, a state q is alledk-safe with respet to a safety region S � Q r F of non-failure states, denoted q 2 sfrhk(S), if there is a strategyfor the protagonist to guarantee that we an reah bak toS from q, provided that the overall ount of errors is at mostk. �However, the de�nition an be subtle in its interpreta-tion. Spei�ally, the ability to stand against one wave ofk errors is not the same as that against repeated reoveryfrom waves of k errors. If the reovery mehanism is notdesigned properly, the system may gradually lose a bit ofontrol after eah wave of k errors and eventually degradeto system-level failure.Example 4 (Fault-tolerant omputer arhitetures):Consider Example 1 with 2k + 1 proessor opies, withthe objetive to maintain majority heks and to identifythe bad proessors. Indeed, aording to the �rst, na�̈vesolution, any safe state with a reovery strategy toQrF isgood. After k proessor opies fail, the majority heks arestill apable to maintain the orretness of the ombinedbehavior to follow the design of the original system. Thereseems to be nothing to do after k errors. Thus, na�̈vely,we an hoose those states as the safety region if, at thosestates, majority heks still work.However, there is no expetation that the system will be

1 2 3 4Figure 3. An example for alulating sfrhkable to reover at any point in the future into a situationwhere it an bear another wave of k errors. It will fail andlose the funtion of majority heks just after one more er-ror. In ontrast, in this work, we aim to propose a dense er-ror resiliene riterion that given no more errors for enoughtime to allow reovery, the system will eventually reover toresiliene to k dense errors again. �To look at this issue in more detail, please onsider thetransition system with four states, inluding a single fail-ure state (state 4, marked by a double line) shown in Fig-ure 3. The ontrolled transitions are depited as blak solidarrows, the error transitions are depited as red dashed ar-rows. For S = Q r F = f1; 2; 3g, all states in S are insfrh0(S). For all k � 1, we have sfrhk(S) = f1; 2g:the protagonist an simply stay in f1; 2g during the safetyphase of the game, and one the antagonist plays an errortransition, the game progresses into the reovery segment,where the protagonist's objetive is satis�ed immediately.This outlines the differene between k-sfrh-ty and the lin-ear time property of being able to repeatedly tolerate wavesof up to k errors, whih would only be satis�ed by states 1and 2 for k = 1, and only for state 1 for k = 2.This differene raises the question if the rules of ourgame are depriving the antagonist of some of the k errorsthat she should intuitively be allowed to insert in a wave.The answer is that this is not the ase if we use any �xedpoint of sfrhk as S. In this ase, the protagonist wouldregain the apability to endure a wave of k errors when10



reahing a safe state after reovery. Instead of deprivingthe antagonist, one ould say that we reset the number oferrors in any reovery segment that the antagonist an in-jet to k. Thus suh a �xed point of sfrhk should onsistof states, from whih we an use a ontrol mehanism tofend off repetitive waves of k dense errors in the reoverysegments. For onveniene, we all states in suh a �xedpoint of sfrhk the k-resilient states.For a state to be in sfrhk(S), the system (protagonist)has a strategy to reover to S, given that a long enough ex-eution ommened without another round of k errors hap-pening. We say that two suessive errors are in the samegroup of dense errors if the sequene of states separatingthem was not long enough for reovery to the safety re-gion. Vie versa, if two suessive errors are far enoughapart suh that the protagonist an guarantee reovery inthis separation, then they do not belong to the same group.To hek whether reovering to S by the protagonist (thefault-tolerane mehanism) is always possible, providedthat at most k errors ourred during a reovery segment,observe that nesting sfrhk one, i.e., sfrhk(sfrhk(�)), or-responds to tolerating up to two rounds of up to k denseerrors, and so forth. Thus, for S to be a target of reov-ery for k-resiliene, S must be a �xed point of the operatorsfrhk from De�nition 4, or, equivalently, S = sfrhk(S)must hold. Moreover, if S is the greatest �xed point to k-resiliene, then we we an apply sfrhk() any number oftimes to S and still obtain S. Computationally, the greatest�xed point of sfrhk an be onstruted as by exeutingsfrhk(sfrhk(sfrhk(: : : sfrhk(S� : : :))),using a suf�iently deep nesting that a �xed point isreahed.

Note that this �xed point x to x = sfrhk(x) is what weare really interested in, while sfrhk(S) for a given S is anintermediate result that does not guarantee survival of thesystems after waves of dense errors. If this greatest �xedpoint R =[fX � S j X = sfrhk(X)gis non-empty, the protagonist's strategy for the �xed point(guaranteeing eventual reovery to a state in the �xed pointwithin no more than k errors, i.e., k-resiliene) an be usedto ontrol the reovery mehanism, onstraining its transi-tions to follow its winning strategy.As explained in the introdution, there an be severalnatural ontrol problems in our safety resiliene game.First, the system designers may want to know whether thehosen safety region S an be supported by the reoverymehanism for resiliene level k. Seond, they may want toget design support for hoosing the safety region for ahiev-ing resiliene level k. Finally, they may want to know themaximal resiliene level that they an ahieve.With the explanation in the above, in the rest of themanusript, we will fous on the algorithm for onstrut-ing sfrhk(�) and evaluating k-resilient states.4 Safety resiliene gamesA system is k-resilient if it an be ontrolled to toler-ate in�nitely many groups of up to k dense errors, providedthat the system is given enough time to reover betweenthese groups. As we have explained, in systems developedwith defensive mehanism against errors, when errors aredeteted, reovery proedures should be ativated. The ma-jor hallenge is to deide given a set of failure states anda safety region, whether the reovery mehanism an sup-11



port a resiliene level required by the users. Our goal isto develop tehniques with a solid foundation to assist thesystem designers in evaluating the resiliene of their sys-tems, to synthesize the ontroller strategy for the requiredresiliene level, and to ahieve the maximal resiliene level.We now formally de�ne the safety resiliene gameplayed between a system (the protagonist) and an error-injetor (the antagonist). Initially, the two players are givena 2-player onurrent game struture K, a pebble in r, a setF � Q of failure states, and a safety region S � Q r F .Then the reovery region onsists of states in Qr (F [ S).The two players together make deisions and move the peb-ble from state to state. The antagonist tries to de�et aplay into F by injeting suf�iently many errors, while theprotagonist tries to avoid that the pebble reahes F . Toahieve this, the protagonist an use the reovery region asthe safety buffer and try to get bak to S as soon as the playis de�eted from S to the reovery region. If a system isresilient to k errors, then it means that the protagonist anhandle up to k�1 errors while in the reovery region. Thuswhen heking whether a system is resilient to k errors, weonly need to hek those reovery segments with no morethan k � 1 errors.In the following, we formalize the onept.De�nition 5 (Safety resiliene game struture): Suh astruture is a pair hK; F i with the following restritions.� K is a 2-player onurrent game struturehQ; r; P; �; E1; E2; Æi. Coneptually, the �rstplayer represents the system / the protagonist, whilethe seond player represents the error model / theantagonist.� E2 is partitioned into error and and non-error moves

Eerror andEnoerr, respetively. We require that only the2nd player an issue error moves. Moreover, Enoerrmust be non-empty.� F is the set of failure states in Q with r 62 F .The antagonist an hoose if she wants to respond on amove of the protagonist with an error move. We allow fordifferent non-error moves to re�et `normal' nondetermin-isti behavior, e.g., aused by abstration. We allow for dif-ferent error moves to re�et different errors that an ourin the same step.We sometimes refer to transitions with error moves by theantagonist as error transitions and to transitions with noerrmoves by the antagonist as ontrolled transitions.For a party A � f1; 2g, we refer with A = f1; 2g nA tothe players not in the party, and by EA to the moves madeby the players in A, that is, Ef1;2g = E1�E2, Ef1g = E1,et.The antagonist an use both error and non-error movesto in�uene the game. In a simple setting, the antagonistmay only have the hoie to insert error-moves, while thereis only a single ontrolled transition. In this simple ase, theprotagonist an hoose the suessor state alone unless theantagonist plays an error transition. Spei�ally, a safetyresiliene game struture is simple if E2 ontains only oneerror move. Considering simple safety resiliene gamestrutures leads to lower omplexities, as it hanges redu-tions from reahability in games (PTIME-omplete [26℄) toreahability in graphs (NL-omplete [33℄). �Note that, in the game struture, only one system playerand one error model player are allowed. This is purely forthe simpliity of algorithm presentation. With proper re-dution tehniques, we an easily onvert a game struture12



with more than one system player and more than one errormodel player to the struture in De�nition 5. The standardtehnique would be using the transition rules of the prod-ut automata of the system players for the protagonist whileusing the transition rules of the produt automata of the er-ror model players for the antagonist. In fat, we indeed usethis redution tehnique in our experiment for analyzing theresiliene levels of multi-agent systems.From now on, we assume that we are in the ontext of agiven safety resiliene game struture G = hK; F i.De�nition 6 (Reovery segements): We need to rigor-ously de�ne reovery segments. A play pre�x � is a reov-ery segment to safety region S � Q r F if it satis�es thefollowing onstraints.� �(0) 2 S.� If j�j =1, then all states in �[1;1) are inQr (S [F ). In this ase, � is alled a failed reovery segment.� If j�j 6= 1, then all states in �[1; j�j � 2℄ are in Qr(S [ F ) and last(�) = �(j�j � 1) is either in F orS. If last(�) 2 F , � is also a failed reovery segment;otherwise, it is a suessful one.We use level(�; S) to denote the number of error movesbetween states in � with respet to the safety region S:level(�; S) def= ��fi 2 [0; j�j � 1) j �e(i) j= Eerrorg��. �As stated in the introdution, we propose a game-theoreti foundation for resiliene analysis of software sys-tems. With this perspetive, the protagonist ats as a maxi-mizer, who wants to maximize the resiliene levels along allplays. For this, the protagonist �xes a strategy that desribewhat he is going to do on eah play pre�x. The antagonistats as a minimizer, who wants to minimize the resilienelevel. She an resolve nondeterminism and injet errors in

order to ahieve this, and (although this plays no major rolein this setting) she knows the strategy the protagonist has�xed and an use this knowledge in priniple.The goal of the protagonist is therefore the same as thegoal of the system designer: to obtain a strategy that offersa maximal level of resiliene in a safety game. However,in order to avoid degenerate behavior where the protagonistbene�ts from being in the reovery phase and from the an-tagonist therefore being allowed less errors in the urrentwave of errors she may injet, we have to strengthen hisobligation to eventually reover to the safe states when theenvironment hooses not to injet further errors. This way,the protagonist has no inentive to yle in the reovery re-gion. Consequently, he an reover to the safe region withinjQj moves after the antagonist has inserted the last errorof the urrent wave, irrespetive of whether the antagonistwould be allowed to insert further errors in this wave. Thisis the key reason why memoryless optimal ontrol existsfor this error model, why it is reasonable to assume swiftreovery, and, onsequently, why it is a posteriori justi�edto leave the separation time between two waves impliit: thetime to traverse jQj states suf�es.Besides obtaining this from intuition, we an also on-sider the tree of suessful reoveries for any protagoniststrategy that an endure k error moves by the antagonist.The tree of reoveries from up to k errors is �nite aord-ing to the de�nition of suessful reovery segments. Thenfor any subtree t in this tree of reoveries with a node v int suh that v is labeled with the same state as the root of twith no error on the path, we an always replae t with thesubtree rooted at v. After the replaement, we have a tree ofreoveries with no greater depth than the original one. Af-13



ter repeating suh replaements, this immediately providesa translation from suh a strategy with unrestrited memoryto one with memory of size k (the resiliene level). Therestrition to memoryless strategies follows from the on-strution we give in Setion 6, whih does not depend onthe memory and still yields a strategy, whih is memory-less. Thus, in this work, we should de�ne the resilienelevel of software systems based on memoryless protagoniststrategies.Based on the argument above, the gain of the protagonistin a play an be de�ned as follows.De�nition 7 (Gain): Given safety region S � Qr F , thegain of a play � to S, in symbols gain(�; S), denotes themaximal integer k 2 N suh that, for all reovery segments�r to S in �, if level(�r; S) � k, then �r is a suessfulreovery segment to S. �The resiliene level of a safety resiliene game is de�nedas the maximum gain that the protagonist an guarantee inall plays with a memoryless strategy.De�nition 8 (Safety resiliene game): Suh a game iszero-sum and de�ned on a safety resiliene game strutureG = hK; F i and a safety region S � Q r F . The gainof G to S, in symbols gain(G; S), is de�ned as the maxi-mum gain that the protagonist an manage with memorylessstrategies. Rigorously,gain(G; S) def= max�2�(0) min�02� gain(play(r; �; �0); S)Please be reall that play(r; �; �0) is the play from r aord-ing to strategies � and �0 respetively of the two players.Moreover �(0) is the set of memoryless strategies.We say that the resiliene level of G to S isgain(G; S). A strategy ! for the protagonist is

optimal to S if min�02� gain(play(r; !; �0); S) =max�2�(0) min�02� gain(play(r; �; �0); S). When S isnot given, we say that G is k-resilient if there exists anon-empty S � Q n F with gain(G; S) � k. �Remark. While the option of using memoryless strategiesplays a minor role in the tehnial argument, it plays aparamount role in the usefulness of the resulting ontrolstrategy: hoosing memoryless strategies implies that allreovery segments are short. In partiular, all sub-paths (re-overy segments) between two waves of dense errors in-jeted by the antagonist are shorter�and usually signi�-antly shorter�than the size of G. In onsequene, any timespan long enough for traversing the reovery segment willlead to a full reovery. It is therefore suf�ient for a tempo-ral distane we have to assume between two waves of denseerrors.5 Alternating-time �-alulus with events(AMCE)We propose to solve our resiliene game problems withan existing tehnology, i.e., model-heking of alternating-time �-alulus (AMC) formulas. AMC is a propositionaltemporal logi with �xed point operators. For example, thefollowing formula�X:(safe _ h1i X) (A)uses least �xed point operator� to delare a �xed point vari-ableX for a set of states. Subformula h1i � existentiallyquanti�es over the protagonist strategies that an diret theplays to a suessor state satisfying �. Together, the for-mula spei�es a set X of states that an indutively reah asafe state with the ontrol of the protagonist. Spei�ally,14



the formula says that a state is inX if either it is safe or theprotagonist an diret to a suessor state known to be inX . For our game strutures, we only need strategy quanti�-ation of up to two players.However, we need extend AMC with some simple syn-tax sugar. There are two extensions. The �rst is for Booleanombinations of path modalities in the sope of strategyquanti�ation. For example, the following AMCE formulah1i((smoke )alarmOn) _windowClosed) (B)says that the protagonist an enfore either of the followingtwo path properties with the same strategy.� If there is smoke, then the alarm will be turned on inthe next state.� The window will always be losed in the next state.Suh a formula is not in ATL and AMC [3℄.The seond extension is for restriting transitions thatmay partiipate in the evaluation of path formulas. The re-strition is via onstraints on moves on transitions and an,in our extension to AMC, be spei�ed with a move sym-bol set to the next-state modal operators. For example, thefollowing AMCE formulah1i((2:erroralarmOn) ^ (:2:error:alarmOn)) (C)says that the protagonist an� turn on the alarm when an error ours; and� keep the alarm silent when no error ours.Before we formally present AMCE, we need de�ne expres-sions for onstraints on moves of players in transitions. Weadapt an idea from [44℄. Spei�ally, a move expression �is of the following syntax.� ::= a : e j �1 _ �2 j :�1

Here, a is a player index in f1; 2g and e is a move symbolin E1 [E2. _ and : are standard disjuntion and negation.Typial shorthands of Boolean operations an also be de-�ned out of _ and :. A total move vetor an be expressedas [e1; e2℄ where for all a 2 f1; 2g, ea 2 Ea is the moveby player a spei�ed in the vetor. We say [e1; e2℄ satis-�es �, in symbols [e1; e2℄ j= �, if and only if the followingonstraints are satis�ed.� [e1; e2℄ j= a : e if, and only if, ea is e.� [e1; e2℄ j= �1 _ �2 if, and only if, [e1; e2℄ j= �1 or[e1; e2℄ j= �2.� [e1; e2℄ j= :�1 if, and only if, [e1; e2℄ 6j= �1.5.1 SyntaxA formula � in AMCE has the following syntax.� ::= p j X j �1 _ �2 j :�1 j �X:�1 j hAi  ::= j  1 _  2 j : 1 j ��1Here, � is a state formula, is a path formula, p is an atomiproposition symbol in P (atomi proposition set, as in Def-inition 1), and X is a set variable for subsets of Q. TheBoolean onnetors are the ommon ones: _ for disjun-tion and : for negation. Note that we allow for Booleanombinations of the next operators under strategy quan-ti�ation hAi. This is one major differene of AMCE fromAMC.Formula �X:�1 is the usual least �xed point operationto �1. Aording to the tradition in [3℄, we require thatall free ourrenes of X in �1 must our within an evennumber of sopes of negations. This is beause senteneswith a negative ourrene, like �X::X , have no naturalsemantis. A set variable X is bound in a formula � if itis inside a delaration sope of X . If it is not bound, then15



it is free. An AMCE sentene is an AMCE state formulawithout free set variables. In most ases, we are interestedin spei�ations given as AMCE sentenes.The A in hAi is a �nite set of player indies in [1; 2℄.Coneptually, hAi means that players in A an ollabo-rate to make  true. For example, hf1; 2gi p means thatplayers 1 and 2 an ollaborate to make p true in the nextstate. We follow the notations in [3℄ and omit the paren-theses in formulas like hAi . For example, hf2gi  p andhf1; 2gi p will be abbreviated as h2i  p and h1; 2i prespetively.We allow event restritions as supersripts in��1 witha move expression �. The operator is important in support-ing the evaluation of safety resiliene levels with traditionalmodel-heking tehnology. Note that sine AMC [3℄ onlyallows for the next-state temporal modality, only the hoieof moves to the next states of a strategy matters. Formula��1 is thus evaluated at states with respet to move ve-tors satisfying onstraint �. The formula is true of a movevetor [e1; e2℄ if and only if [e1; e2℄ j= � implies the sat-isfation of � at state Æ(q; e1; e2). Also 1:E1�1 an bewritten as �1 in AMC [3℄ and the supersript to  anbe omitted.We also adopt shorthands in the below. The � refers tostate or path formulas.true def= p _ :pfalse def= :p ^ p�1 ^ �2 def= :((:�1) _ (:�2))�1 ) �2 def= (:�1) _ �2�X:� def= :�X::�[A℄ def= :hAi: 

5.2 SemantisIn the following, we adapt the presentation style of [3℄ tode�ne the semantis of AMCE indutively over the stru-ture of the subformulas. The value of a state formula ata state is determined by the interpretation of the set vari-ables. Suh an interpretation I maps set variables to sub-sets of Q. In omparison, the value of a path formula ata state is determined by both the interpretation of the setvariables and the move vetor hosen by the players. Foronveniene and oniseness of presentation, we extend thede�nition of interpretation of [3℄ also to reord the hosenmove vetor by some players. Spei�ally, we use an auxil-iary variable �move� for the present hosen move vetor inthe evaluation of path formulas. Given an interpretation I ,I(move) reords the hosen move vetor of all players in I .For example, I(move) = [setAlarm;?℄ means the ho-sen move vetor that player 1 sets on an alarm while player2 does nothing under interpretation I .We need the following onept for ollaborative hoiesof moves to the next states by some players. An enforedmove vetor set by A � [1; 2℄ is a maximal set of movevetors that agree on the hoies of moves by players withindies in A. Spei�ally, given an enfored move ve-tor set C by A, we require that, for every [e1; e2℄ 2 C,[e01; e02℄ 2 C, and a 2 A, ea = e0a. For onveniene, we let�A denote the set of all enfored move sets by A.Following the semantis style of [3℄, we an extend Ito be an interpretation of all state and path formulas. Intu-itively, given a state or path formula �, I(�) is the set ofstates that satisfy � aording to the assumption on valuesof set variable values and auxiliary variable �move.� Morepreisely, I(�) is a subset of Q that satis�es the following16



indutive rules.� I(p) = fq j p 2 �(q)g.� I(�1 _ �2) = I(�1) [ I(�2).� I(:�1) = Q� I(�1).� I(�X:�1) is the smallest set Y � Q with Y = I [X 7!Y ℄(�1), where I [X 7! Y ℄ is a new interpretation iden-tial to I exept thatX is interpreted as Y .� I(hAi ) is the set of states suh that there is an en-fored move vetor set C by A suh that, for all movevetors � 2 C, I [move 7! �℄( ) holds:I(hAi ) = SC2�A T�2C I [move 7! �℄( )� Given I(move) = [e1; e2℄, if [e1; e2℄ j= �, thenI(��1) = fq 2 Q j Æ(q; e1; e2) 2 I(�1)g; other-wise I(��1) = Q.A onurrent game struture is a model of an AMCE sen-tene �, if its initial state r is in the interpretation of �(r 2 I(�)) for any interpretation I .Note that, stritly speaking, AMCE does not add muhto the expressiveness of AMC. In the literature, propositionshave often been used to reord events. Intuitively, we wouldneed one atomi proposition for eah event to mark that ithas just ourred. This event marker would be true exatlyat states right after the event happened. (One would possi-bly have to reate multiple opies of states to re�et this.)As disussed in [43℄, suh a modeling tehnique leads toan unneessary blow up of the state spae, whih ould beexponential in the number of players in general onurrentgames. By properly seleting the transitions with respetto operators like �, suh auxiliary propositions are notneessary when enoding the state spae. Thus, AMCE analso be of interest to pratitioners for the ef�ient analysisand veri�ation of general onurrent games.

6 Resiliene level heking algorithmIn Subsetion 3.2, we have proposed the idea of thesfrhk(�) operator and proposed to use its greatest �xedpoint for the evaluation of k-resiliene. In the following,we �rst establish some properties of k-safety and then useAMC model-heking tehnology to solve the safety re-siliene games.6.1 Highlevel desription of the algorithmThe following lemma shows the suf�ieny of k-safetyas a building blok for solving safety resiliene games.Lemma 5 For a safety resiliene game G, sfrhk(�) has agreatest �xed point.Proof : The lemma follows from the fats that the fun-tion sfrhk is monotoni (S � S0 implies sfrhk(S) �sfrhk(S0) beause a winning strategy for the protagonistfor S is also a winning strategy for S0 for all states insfrhk(S)) and operates on a �nite domain. �For the example in Figure 3, onsidering S = f1g(f1g = sfrh2(f1; 2; 3g)), the only state in S, state 1, is 2-resilient: it an reover with the reovery strategy to alwaysgo to the left.The set of k-resilient states of G, an be alulated as thegreatest solution to S = sfrhk(S) with S � Qr F . Teh-nially we an start the indutive alulation of the greatest�xed point from base ase S0 = Q r F , and suessivelyalulate Si+1 = sfrhk(Si), for eah i � 0. The set ofk-resilient states is then the limit S1. As soon as we haveSi+1 = Si, a �xed point is reahed. We then have Si = S1and an stop the indutive onstrution. Sine S0 is �nite17



and Si+1 � Si holds for all i � 0, we will eventually reaha j with Sj+1 = Sj = S1.6.2 Realization with AMCE modelhekingWe need formally de�ne the interation among strategiesof players. We borrow the notation of funtion omposition.Given two partial funtions �1 and �2, we use �1 Æ �2 torepresent their omposition. Spei�ally, we have the fol-lowing de�nition.�1 Æ �2(a) = � �1(a) if �2(a) is unde�ned:�2(a) otherwiseFor our purpose, a partial strategy vetor is a mapping fromf1; 2g to � and an be unde�ned for some players in f1; 2g.It is for a party A � f1; 2g if it is de�ned only for playersin A and represents a ollaborative strategy of the playerswith a de�ned strategy in A. It is total if it is de�ned for allplayers.For onveniene, we also de�ne partial move vetors asmappings from f1; 2g to E. A partial move vetor is for aparty A � f1; 2g if it is de�ned only for players in A. Itis total if it is de�ned for all players in f1; 2g. Given twopartial move vetors 1 and 2, we de�ne 1Æ2 to representthe omposition of the two vetors.Given an S, we propose to onstrut sfrhk(S) in an in-dution on k. We need the following preliminary oneptsfor the presentation.De�nition 9 (Traps) For A � f1; 2g, a trap for A is a sub-set Q0 � Q that party f1; 2g r A has a strategy vetor� to keep all plays from leaving Q0. Formally, we requirethat, for every q 2 Q0 and partial move vetor  for A,there exists a partial move vetor 0 for f1; 2g r A suhthat Æ(q;  Æ 0(1); : : : ;  Æ 0(m)) 2 Q0. �

6.2.1 Base ase, sfrh0(S)In the base ase, sfrh0(S) haraterizes those states, fromwhih the protagonist an diret the plays to S and staythere via a protagonist strategy when there is no error in-jeted by the antagonist. Thus sfrh0(S) is the greatest trapfor the antagonist to S when no error happens and the great-est solution to the following equation.X = �q ���� q 2 X \ S; e 2 E1;8e0 2 E2(e0 6= noerr) Æ(q; e; e0) 2 X) �.In AMCE, we an alternatively de�ne sfrh0(S) as follows.sfrh0(S) def= �X:(S ^ h1i :2:error X).This is the usual safety kernel of S, whih onsists of thosestates, from whih any ontrolled transition is safe. It anbe omputed by the usual greatest �xed point onstrution.Lemma 6 sfrh0(S) an be onstruted, together with asuitable memoriless ontrol strategy, in time linear to thesize of G.Proof : A state q 2 S an stay in sfrh0(S) if there is ahoie e 2 E1 suh that for all f 2 E2, Æ(q; e; f) 2sfrh0(S). Basially, we an use the typial approah ofiterative elimination to alulate sfrh0(S). That is, we �rstlet K0 = Q� S. Then we a sequene of mutually disjointsets K1;K2; : : : ;Ki; : : : suh that for all i � 1, states inKi+1 an be shown to be not in sfrh0(S) by evidenes ofstates in Ki [ : : : [ K0. Linear time an be ahieved withareful book-keeping of the hoies of moves at all statesin S. We need a ounter q for eah q 2 S initialized tojE1j for the initial number of andidate hoies of moves.Then for eah [q; e℄ 2 S�E1, we need a Boolean �ag b[q;e℄initialized to true to represent that f[e; f ℄ j f 2 E2g is stilla valid hoie of moves at q to satisfy sfrh0(S). For eah18



Table 2. Algorithm for sfrh0(S) by iterativeeliminationsfrh0(S)1: for q 2 S do q = jE1j end for2: for q 2 S; e 2 E1 do b[q;e℄ = true end for3: Let i = 0 andK0 = Q� S.4: whileKi 6= ; do5: LetKi+1 = ;.6: for q 2 Ki and [q0; e; f ℄ 2 Lq do7: if b[q0;e℄ is true then8: Let q0 = q0 � 1.9: if q0 is 0 then add q0 toKi+1. end if10: end if11: Set b[q0;e℄ to false.12: end for13: Inrement i by 1.14: end while15: return S � (K0 [ : : : [Ki).state q, we also need to maintain a list of transition sourestates. That is, for eah Æ(q0; e; f) = q, we need reord[q0; e; f ℄ in list Lq. Then the iterative elimination proeedsas the algorithm in table 2. The algorithm is linear timesine eah transition Æ(q; e; f) is heked exatly one. �6.2.2 Indutive ases, sfrhk(S)Now we explain how to de�ne the indutive ases ofsfrhk(S). The ondition is for those states from whihplays an be direted to S via a reovery segment in Q r(S [ F ) with k or less errors injeted by the antagonist. Anintermediate step for the onstrution of k-sfrh states is theonstrution of an attrator that ontrols, through ontrolledmoves, the play pre�xes to stay in a subset L � Q r F ofnon-failure states. As only ontrolled (non-error)moves areallowed, this is merely a bakward reahability one.The ontrolled limited attrator set of a set X for a lim-ited regionL � Q, denoted oneL(X) is the set fromwhihthere is a protagonist strategy to move to X without leav-

ing L and errors injeted by the antagonist. Tehnially,oneL(X) is the least solution to equation:Y = X [ �q ���� q 2 L; e 2 E1;8e0 2 E2 r ferrorg(Æ(q; e; e0) 2 Y ) �.The ontrolled limited attrator set oneL(X) an be on-struted using simple bakward reahability for X of on-trolled transitions through states of L. In AMCE, this anbe onstruted as follows.oneL(X) def= �Y:(X _ (L ^ h1i :2:error Y ))Note that the protagonist must use the same move irrespe-tive of the move of the antagonist to both stay in L andapproahX , provided that the antagonist does not injet anerror.The ontrolled limited attrator set oneL(X) is used inthe onstrution of sfrhk(S). We further onstrut a de-sending hain V0 � V1 � : : : � Vk�1 of limited attratorsVi. From Vi we have an attrator strategy towards S for theprotagonist, whih an tolerate up to i further errors. Therespetive Vi are attrators that avoid failure states. More-over, from a state in Vi with i > 1, any error transition leadsto Vi�1.A state q 2 Q is fragile for a set B � Q if, for all movesof the protagonist, at least one of its suessors is outsideof B. (The intuition is that this is an error move, and forsimple safety resiliene game strutures, we an restrit thede�nition to failure states.) The set of fragile states for B isfrag(B) def= fq j 8e 2 E19e0 2 E2(Æ(q; e; e0) =2 B)g.In AMCE, we have the following formulation of frag(B).frag(B) def= [1℄:B.Tehnially, it is, however, easier to onstrut its dual19



Qr frag(B) = h1i  B.This dual an be onstruted using a ontrolled bakwardreahability to B with any strategy of the protagonist.The limited regions Li of states allowed when approah-ing S also form a desending hain L0 � L1 � : : : � Lk.Using these building bloks, we an ompute the k-sfrhstates as follows. The states in Li+1 are the non-failurestates from whih all error transitions lead to a state in Vi.The sets Vi ontain the states from whih there is a on-trolled path to S that progresses through Li; all error tran-sitions originating from any state of this path lead to Vi�1.V0 is therefore just the set of states from whih there is aontrolled path to S.From all states in Vk�1, the protagonist therefore has anoptimal strategy in the reovery segment of the game de-sribed earlier: if the antagonist an play at most k � 1errors, then the protagonist an make sure that S is reahed.Starting with L0 def= Q r F that haraterizes ones onthe way to S without any errors, we de�ne the Vk's andLk'sindutively byLk def= L0 r frag(Qr oneLk�1(S)),In AMCE, this an be de�ned indutively as follows.L0 def= :FLk def= L0 ^ h1i  oneLk�1(S):Finally, we hoose sfrhk(S) def= sfrh0(S \ Lk). InAMCE, this an be expressed as follows.sfrhk(S) def= sfrh0(S ^ Lk).6.2.3 Algorithm for the set of k-resilient statesFinding a ontrol strategy for k-sfrh ontrol withinsfrhk(S) is simple: as long as we remain in sfrhk(S) =

sfrh0(S \ Lk), we an hoose any ontrol move that doesnot leave sfrhk(S). One sfrhk(S) is left through an er-ror transition to Vk�1; Vk�2; :::, we determine the maximali for whih it holds that we are in Vi and follow the attratorstrategy of oneLi(S) towards S.In summary, we present our algorithms for the set of k-resilient states in Table 3. In fat, we have presented twoalgorithms. The �rst onstruts sfrhk(S), whih an beused for heking whether the safety region S provided bythe users is indeed a good one. The way to do it is to simplyhek whether S is a solution to sfrhk(x) = x.Then our seond algorithm alulates resk(G) as thegreatest �xed point S of sfrhk(:) as the reommendationfor the safety region:resk(G) =[fS � Q j S = sfrhk(S) and S [ F = ;g:In this way, the users do not have to alulate and providethe safety region, whih would be error prone. Aording tothe argument and lemmas from above, we get the followingtheorem.Theorem 7 G is k-resilient if, and only if, r 2 resk(G). �6.3 ComplexityA rough omplexity of our resiliene level heking al-gorithm straightforwardly follows the omplexity of AMCmodel-heking. Spei�ally, the following lemma ex-plains the maximal resiliene level that we need onsider.For onveniene, let kmax be the maximal resiliene levelof G.Lemma 8 kmax is either in�nite or no greater than jQrF j.20



L0 def= :FLk def= :F ^ h1i  �y:S _ (Lk�1 ^ h1i error y ^Lk�1)sfrh0(S) def= �x:(S ^ h1i error x)sfrhk(S) def= sfrh0(S ^ Lk)resk(G) def= �S:((Qr F ) ^ sfrhk(S)) : the set of k-resilient statesTable 3. Algorithm for kresilient statesProof : We assume that kmax is greater than jQ r F j butnot in�nite. This means that there exists a failed reov-ery segment � with k + 1 errors injeted by the antagonist.Sine the protagonist an only use memoryless strategies,there must be two position indies i < j < j�j � 1 with�(i) = �(j) in the reovery segment suh that at �(i) and�(j), the protagonist makes the same move while the antag-onist makes different moves. This implies the existene ofa shorter failed reovery segment �[0; i℄�[j+1; j�j�1℄. Byrepeating the above argument, we an eventually identify afailed reovery segment of length � jQ r F j that ontra-dits the assumption and establishes the lemma. �With Lemma 8, we an use the omplexity of AMCmodel-heking problem [3℄ to straightforwardly establishtheO(kmaxjEj)2 = O(jQrF j�jEj)2 omplexity of resk(G)when k is kmax. In the following, we present a moredetailed analysis of the omplexity of our resiliene levelheking algorithm. All individual steps in the onstrution(intersetion, differene, predeessor, and attrator) are lin-ear in the size of the safety resiliene game, and there areO(k) of these operations in the onstrution. This providesa bi-linear (linear in k and jGj) algorithm for the onstru-tion of sfrhk and a strategy for the protagonist.Lemma 9 A memoryless ontrol strategy for the states insfrhk(S) an be onstruted in time linear in both k andthe size jGj of the safety resiliene game G. �

The onstrution of resk(G) uses the repeated exeutionof (Q r F ) ^ sfrhk(�). The exeution of sfrhk(�) needsto be repeated at most jQ r F j times until a �xed point isreahed, and eah exeution requires at mostO(k �jGj) stepsby Lemma 9.For the ontrol strategy of the protagonist, we an sim-ply use the ontrol strategy from sfrhk(S1) from the�xed point S1. This ontrol strategy is memoryless (f.Lemma 9).Lemma 10 resk(G) and a memoryless k-resilient ontrolstrategy for resk(G) an be onstruted inO(k�jQrF j�jGj)time. �Finding the resiliene level kmax for the initial state r re-quires at most O(log kmax) many onstrutions of resi(G).We start with i = 1, double the parameter until kmax isexeeded, and then use logarithmi searh to �nd kmax.Corollary 11 For the initial state r, we an determine theresiliene level kmax = maxfi 2 N j r 2 resi(Q r F )gof r, reskmax(Q r F ), and a memoryless kmax-resilientontrol strategy for reskmax(Q r F ) in O(jQ r F j � jGj �kmax log kmax) time. �Simple safety resiliene game strutures. For simplesafety resiliene game strutures, heing if a state is insfrh0(S) is NL-omplete.21



Lemma 12 Testing if a state is in sfrh0(S) is NL-omplete.Proof: NL ompleteness an be shown by redutionto and from the repeated ST-reahability [33℄ (the questionwhether there is a path from a state S to a state T and fromT to itself in a direted graph).Likewise, the ontrolled limited attrator set oneL(S)an be onstruted using simple bakwards reahabilityfor G of ontrolled transition through states of L. ForA = oneL(S), determining whether a state is in A is NL-omplete (see [33℄).The omplexity of determining whether or not a state qis in sfrhk(S) thus depends on whether or not we onsiderk to be a �xed parameter. Considering k to be bounded (or�xed) is natural in our ontext, beause k is bounded by theredundany.Lemma 13 For a �xed parameter k, testing if a state s ofa simple safety resiliene game strutures is in sfrhk(S) isNL-omplete.Proof: Testing if a state is in L0 is in NL. By an indu-tive argument, we an show that� provided that testing if a state is in Li is in NL, we antest if a state is in Ai = oneLi(S) by using the non-deterministi power to guess a path towards S, whileverifying that we are inLi in every state we pass beforeS is reahed; and� if we an hek if a state is in Ai in NL, then we anhek if it is in Q r Ai [27℄, in frag(Q r Ai) (withone nondeterministi transition), and in Li+1 = L0 rfrag(S rAi) [27℄ in NL.

Testing that a state is in S \ Lk is therefore in NL andtesting if it is in sfrh0(S\Lk) redues to guessing a state tin sfrhk(G) and an ST path (a path from s to t followed bya loop from t to t), verifying for all states on the path thatthey are in S \ Lk.For hardness, note that the last step of the onstrutionalone is NL-omplete (Lemma 6).If k is onsidered an input, then reahability in AND-ORgraphs an easily be enoded in LOGSPACE: It suf�es touse the nodes of an AND-OR graph as the states, the out-going edges of OR nodes as the result of the hoie of theprotagonist only (while the move of the antagonist has noin�uene on the outome, no matter whether or not she in-dues an error), and to model the AND nodes as a state,where the no-error move of the antagonist will lead in y-ling in the state, while the antagonist an hoose the su-essor from the graph when induing an error. Choosing kto be the number of nodes of the AND-OR graph and F tobe the target nodes of the AND-OR graph, the target nodesof the AND-OR graph are not reahable from a state s iffs 2 sfrhk(Qr F ).Given that reahability in AND-OR graphs is PTIME-omplete [26℄, this provides:Lemma 14 If k is onsidered an input parameter, then test-ing if a state s of a simple safety resiliene game struturesis in sfrhk(S) is PTIME-omplete. �The omplexity of resk(S) is (almost) independent of theparameter k:Theorem 15 The problem of heking whether or not astate s is k-resilient for a set S is PTIME-omplete for allk > 0 and NL-omplete for k = 0.22



Proof: We have shown inlusion in PTIME inLemma 10. For hardness in the k > 0 ase, we an usethe same redution from the reahability problem in AND-OR graphs as for sfrhk(S).For k = 0, sfrh0(G) = sfrh0�sfrh0(G)� impliesres0(G) = sfrh0(G). The problem of heking if a state isin res0(G) is therefore NL-omplete by Lemma 12.
Hardness for general safety resiliene game strutures.For general resiliene game strutures, we an again use aLOGSPACE redution from the reahability in AND-ORgraphs: We again use the nodes of an AND-OR graph asthe states, and the outgoing edges of OR nodes are se-leted based on the hoie of protagonist only. For the ANDnodes, we leave the hoie to the antagonist only, whithoutthe need to invoke an error. (That is, errors play no role inthis redution. The antagonist may be allowed to insert one,but she an always obtain the same transition without doingso.)Marking F as the target nodes, we get resk(Q r F ) =sfrhl(Q r F ) for all non-negative integers k; l, and s 2sfrh0(Q r F ) iff the target nodes of the AND-OR graphare not reahable from s. With Lemmas 9 and 10, we getthe following theorem.Theorem 16 For all k � 0, the problems of hekingwhether or not a state s is in resk(QrF ) and resk(QrF ),respetively, are PTIME-omplete for general safety re-siliene game strutures.

7 Tool implementation and experimental re-sultsIn the following, we report our implementation and ex-periment with our onstrutions. Our implementation isbased on symboli on-the-�y model-heking tehniquesand built on the simulation/model-heking library ofREDLIB in https://github.om/yyergg/Resilfor fast implementation. Our implementation and benh-marks an also be found in the same page.We adopt CEFSM (ommuniating extended �nite-statemahine) [7℄ as a onvenient language for the desriptionof abstrat models of our onurrent game strutures. ACEFSM onsists of several �nite-state mahines extendedwith shared variables for the modeling of shared memoryand with synhronizations for the modeling of message-passing in distributed systems. This is justi�able sine thefault-tolerant algorithms may themselves be subjet to re-stritions in onurrent or distributed omputation. Indeed,we found CEFSM very expressive in modeling the benh-marks from the literature [12, 38℄.The translation from our CEFSMs to state transition sys-tems, suh as �nite Kripke strutures, is standard in the lit-erature. All state spaes, onditions, preonditions, post-onditions, �xed points, et., are represented as logi for-mulas. The logi formulas are then implemented withmulti-value deision diagrams (MDD) [32℄.We then took advantage of the support of REDLIB forwriting down template automatas for onstruting omplexmodels. We spei�ed a template automata with REDLIB todesribe the moves of the players. Coneptually, the playerautomatas are onstruted as an instane of the template au-tomata. Then the whole game struture is onstruted as the23



produt of all player automatas. Finally, we use the API ofREDLIB to do on-th-�y onstrution of the game struturewhih an be advantageous sine unreahable states willnever be generated.7.1 BenhmarksWe use the following �ve parameterized benhmarks tohek the performane of our tehniques. Eah benhmarkhas parameters for the number of partiipating modules inthe model. Suh parameterized models ome in handy forthe evaluation of the salability of our tehniques with re-spet to onurreny and model sizes.1. We use the example of a fault-tolerant omputer arhi-teture (Example 1) as our �rst benhmark. An im-portant feature of this benhmark is that there is an as-sumed mehanism for deteting errors of the modules.One an error is deteted, a proessor an be assignedto reover the module, albeit to the ost of a reduedredundany in the exeutions.2. Voting is a ommon tehnique for fault toleranethrough repliation when there is no mehanism to de-tet errors of the modules [36℄. In its simplest form, asystem an guarantee orretness, provided less thanhalf of its modules are faulty. This benhmark im-plements this simple voting mehanism. Every timea voting is requested, the modules submit their ballotsindividually. Then we hek how many module fail-ures the system an endure and reover.3. This is a simpli�ed version of the previous votingbenhmark, where we assume that there is a blak-board for the lient to hek the voting result.

4. Pratial Byzantine fault-tolerane (PBFT) algorithm:We use an abstrat model of the famous algorithm byCastro and Liskov [12℄. It does not assume the avail-ability of an error-detetion mehanism but uses vot-ing tehniques to guarantee the orretness of ompu-tations when less than one third of the voters are faulty.This algorithm has impat on the design of many pro-tools [2, 14, 15, 23, 29℄ and is used in Bitoin [1℄, apeer-to-peer digital urreny system.5. Fault-tolerant lok synhronization algorithm: Cloksynhronization is a entral issue in distributed om-puting. In [38℄, Ramanathan, Shin, and Butler pre-sented several fault-tolerane lok synhronizationalgorithms in the presene of Byzantine faults withhigh probability. We use a nondeterministi abstratmodel of the onvergene averaging algorithm fromtheir paper. The algorithm is proven orret when nomore than one third of the loal loks an drift to eighttime units from the median of all lok readings.7.2 Modeling of the faulttolerant systemsAppropriate modeling of the benhmarks is always im-portant for the ef�ient veri�ation of real-world target sys-tems. Many unneessary details an burden the veri�ationalgorithm and blow up the omputation, while skethymod-els an then give too many false alarms and miss orretbenhmarks. We have found that there is an interesting as-pet in the modeling of the above benhmarks. Repliationand voting are ommonly adopted tehniques for ahiev-ing fault-tolerane and resiliene. Suh fault-tolerant al-gorithms usually onsist of several idential modules that24



use the same behavior templates. This observation impliesthat the identity of individual modules an be unimportantfor some benhmarks. For suh benhmarks, we an useounter abstration [20, 31℄ in their models. Spei�ally,with ounter abstration, we an model all system playerswith one player that keeps a ounter (l) for eah ontrolloation l in the template automatas. Then at a state of thewhole game graph, (l) reords the number of system play-ers at loation l. With this tehnique, a system with m � 1system player and one error model player is then redued totwo players: one ounter-abstration player for all the sys-tem players and one remaining error model player. If a sys-tem player enters a loation l in a global transition, then inthe model, (l) is inremented by one in the abstrat globaltransition. If a system player leaves l in the global transi-tion, then (l) is deremented by one in the abstrat globaltransition. But the suession of loation movements of apartiular player is omitted from the abstration.We found that we an use ounter abstration to provethe orretness of benhmarks 1, 2, and 3. In ontrast, thePBFT and the lok synhronization algorithms use oun-ters for eah module to model the responses reeived fromits peer modules. As a result, we deided not to use ounterabstration to model these two algorithms in this work.In the following, we explain how to apply our tehniquesto analyze the resiliene levels of the avioni systems in Ex-ample 1. The appliation is ahieved in three steps. We �rstmodel the system under analysis either as a plain CEFSMor with ounter abstration (if our analysis tool annot han-dle the omplexity of the plain CEFSM). We then build theprodut automaton of the CEFSM as the resiliene gamestruture exept for the move vetors. Finally, we onvert

the labels on the transitions of the produt automaton tomove vetors of the two players. Note that the moves maynot orrespond to the transition labels of the CEFSM.Step 1: the onstrution of the CEFSMWe �rst present the CEFSM model template of Exam-ple 1 in Figure 4. The CEFSM model has n proessorsand m memory modules. Figures 4(a) and (b) are for theabstration of proessors and memory opies, respetively.The ovals represent loal states of a proessor or a memorymodule, while the arrows represent transitions. The transi-tions of a CEFSM are labeled with `error', `C' (for Con-trol), or `R' (for reovery).We also use synhronizers to bind proess transitions.For example, when a memory module moves into a faultystate, an idle proessor may issue an fd (error-deteted)event and try to repair the module by opying memory on-tents from normal memory modules. Suh error-detetionis usually ahieved with standard hardware. Note that thebenhmarks are models that re�et the reovery meha-nism, abstrating away the details of the original systems.A entral issue in the design of this reovery mehanismis then the resiliene level of the ontrolled systems. Weneed three synhronizers: fd for error detetion by a pro-essor, rs for reovery suess, and rf for reovery failure.The three synhronizers are used to bind a transition froma proessor and another from a memory module into a syn-hronized transition. For example, a proessor at state pidleand a memory module at state mfaulty may simultaneouslyenter their popy andmopy states respetively through syn-hronizers !fd (for sending the synhronizer) and ?fd (forreeiving). We also onveniently use a variable q in this25



Figure 4. CEFSM templates of n proessors and m memory opiessynhronized transition to apture the identi�er of the mem-ory module reeiving the synhronizer. A transition withoutsynhronization labels is onsidered a trivial synhronizedtransition. The transition system of the CEFSM operateswith interleaving semantis at the abstration level of thesynhronized transitions.
For ounter abstration, we need four global variablesrp, fp, rm, and fm respetively to keep trak of the num-bers of running proessors, faulty proessors, runningmem-ory modules, and faulty memory modules. We also need aloal variable idm for eah proessor to reord the faultymemory module identi�er that the proessor is responsiblefor reovery. We label the ontrollable, error, and reoverytransitions respetively with `C', `error', and `R'. We alsolabel eah transition with synhronizers and ations. At anymoment, the proessors and the memory modules may en-ter their running states, exeute a task, and generate the out-ome. A proessor starts its exeution from state prunwhilea memory module starts from state mrun.

Step 2: building the produt automataThe produt automata is a Kripke struture whose statesare of is a vetor [p1; : : : ; pn; i1; : : : ; in; s1; : : : ; sm℄ of 2n+m elements. For all k, pk and ik respetively represent theurrent loation and the urrent idm value of proessor kwhile sk represents the urrent loation of memory mod-ule k. Then interleaving semantis that eah time only aglobal transition (a single loal proess transition withoutsynhronizers or two loal proess transition bound by asynhronizer) is exeuted is adopted to determine the transi-tion relation from one state to another. Suh tehniques arestandard in model onstrution. REDLIB an help in thisregard by onstruting the Kripke struture in an on-the-�ystyle to avoid the onstrution of those states not reahablefrom the initial state.Step 3: the labeling of the move vetorsAfter the seond step, we have the game struture readyexept for the move vetors on the transitions. We useE1 = fC;R; nopg, where nop represents �no operation,�26



and E2 = fnoerr; errorg. Then we use the following threerules to label move vetors.� Every global transition with one omponent loal pro-ess transition labeled with error is labed with movevetor [nop; errorg.� Every global transition with a omponent loal proesstransition labeled with R is labeled with move vetor[R; noerr℄.� All other global transitions are labeled with move ve-tor [C; noerr℄.Counter abstration of the exampleWe also use the CEFSM in �gure 4 to explain ounterabstration. We need eight ounter variables: pr, pi, p, pf,mr, mi, m, andmf to respetively reord the number of pro-esses in loation prun, pidle, popy, pfaulty, mrun, midle,mopy, and mfaulty in a state. Then the ounter abstrationof the CEFSM is in Figure 5. The initial state are spei�edwith onstraint: pr = n^ pi = 0^ p = 0^ pf = 0^mr =m^mi = 0^m = 0^mf = 0 on the ounters. The state inthe produt automata must satisfy the following onstraints:pr+ pi+ p+ pf = n^mr+mi+m+mf = m. As an beseen, we do not are whih proessor is in the idle mode, inthe running mode, et., in this abstration. Similarly, we donot are whih memory module is in the idle mode, in therunning mode, and et. The loal state transition only keepstraks of the number of proessors in eah mode and thenumber of memory modules in eah mode. We also do notare whih proessor is in harge of the reovery of whihmemory module. Suh an abstration an be done automat-ially.The labeling of the move vetors on the transitions in

the Kripke struture (produt automaton) follows the samerules for the produt automaton from the CEFSM in Fig-ure 4.Analysis of the game strutureThe majority outome of the proessors and memoryopies is used as the outome of the system. A proessormay enter the faulty state. A memory module may also en-ter the faulty state. Proessors may ontrol to reover them-selves or a faulty memory module by opying the ontentsof a funtioning memory module to the faulty one. At anymoment, we want to make sure that we an always reoverto a global ondition with the following two restritions.� There are at least two more proessors in the runningmode than the proessors in the faulty mode.� There are at least two more memory opies in the run-ning mode than memory opies in the faulty mode.Together, the failure ondition is rp�fp < 2_rm�fm <2. That is, all states in the transition system satisfying rp�fp < 2 _ rm� fm < 2 are in set F .Tool implementation and the benhmarks used in theexperiment an all be found in our Soureforge REDLIBprojet at https://github.om/yyergg/Resil.7.3 Performane dataWe report the performane data in Table 4 for the re-siliene algorithms desribed in Setion 7.1 against the pa-rameterized benhmarks in the above with various parame-ters. The seond olumn shows the onurreny sizes. Thethird olumn shows the values of k for the rows. The fourthand �fth olumns show the sizes of the onurrent game27



Figure 5. Counter abstration of the CEFSM templates of n proessors and m memory opiesstrutures. The sixth and seventh olumns show the timeand spaes used to alulate sfrhk(). Similarly, the eighthand ninth olumns show the time and spaes for alulatingthe resk().The benhmark in Figure 4 does not have nodes insfrh2(G) and res2(G). So we hanged the benhmark tosee how we hek our implementation with k > 1. Thehange is that the reovery transition from state popy to pi-dle of proessors are relabeled as ontrollable. This hangesigni�antly limits the ability of the system errors to derailthe system. For the avionis system, the resiliene level k isset to one less than half the number of proessors. For thevoting and simple voting benhmarks, the value of k is setto one less than half the number of replias (voters). For thePBFT and lok synhronization algorithm, we hoose k tobe one less than one third of the number of replias.The performane data has been olleted with a VirtualMahine (VM) running opensuse 11.4 x86 on Intel i7 2600k3.8GHz CPU with 4 ores and 8G memory. The VM onlyuses one ore and 4G memory.The time and spae used to alulate resiliene is a lit-tle bit more than that to hek for sfrh. The reason is thatsfrhk is a pre-requisite for alulating resk. In our exper-

iment, sfrhk is usually very lose to resk and does not re-quire muh extra time in alulating resk out of sfrhk.The experiments show that our tehniques sale to real-isti levels of redundany. For fault-tolerant hardware, usu-ally the numbers of replias are small, for example, less than10 replias. Thus our tehniques seem very promising forthe veri�ation and synthesis of hardware fault-tolerane.On the other hand, nowadays, software fault-toleranethrough networked omputers an reate huge numbers ofreplias. Our experiment shows that ounter abstration anbe a useful tehniques for the modeling and veri�ation ofsoftware resiliene. Spei�ally, for the avionis benh-mark, we an verify models of muh higher onurrenyand omplexity with ounter abstration than without.8 Related workWe have applied game-based tehnqiues [13, 34, 37℄ forsynthesizing a ontrol mehanism with maximal resilieneto software errors. The synthesis of ontrol strategies is es-sential in solving games with temporal and !-regular ob-jetives. For these more omplex objetive, synthesis goesbak to Churh's solvability problem [13℄ and inspired Ra-bin's work on �nite automata over in�nite strutures [37℄28



Table 4. Performane data for resiliene alulation s: seonds; M: megabytesbenhmarks onurreny k game sizes sfrhk resk#nodes #edges time memory time memoryavionis 2 proessors & 2 memory modules 2 118 750 0.62s 114M 0.85s 116M2 proessors & 3 memory modules 2 414 3252 0.94s 139M 1.10s 153M3 proessors & 3 memory modules 3 1540 15090 4.67s 225M 8.38s 267M3 proessors & 4 memory mdules 3 5601 63889 42.86s 815M 155s 846Mavionis 6 proessors & 6 memory modules 2 1372 6594 2.89s 129M 3.54s 516M(ounter 7 proessors & 7 memory modules 3 2304 11396 10.7s 216M 23.4s 808Mabstration) 8 proessors & 8 memory modules 3 3645 18432 43.8s 1009M 135s 2430Mvoting 1 lient & 20 replias 9 9922 23551 7.01s 260M 36.7s 297M1 lient & 26 replias 12 20776 49882 19.9s 474M 79.6s 611Msimple 1 lient & 150 replias 74 458 1056 0.71s 159M 31.7s 219Mvoting 1 lient & 200 replias 99 608 1406 1.06s 161M 162s 337M1 lient & 250 replias 124 758 1756 1.36s 163M 307s 499MPBFT 1 lient & 6 replias 2 577 897 0.34s 72M 1.05s 193M1 lient & 9 replias 4 2817 4609 13.3s 564M 58.5s 1657Mlok 1 lient & 15 servers 7 16384 229376 45.1s 3075M 62.4s 3264Msyn 1 lient & 17 severs 8 65536 1070421 870s 14725M 915s 15433Mand Bühi and Landweber's works on �nite games of in�-nite duration [10,11℄. A righ body of literature on synthesishas sine been developed [6, 18, 22, 30, 35, 39,40℄.Traditionally, fault tolerane refers to various basi faultmodels [6℄, suh as a limited number of errors [28℄. Thesetraditional fault models are subsumed by more general syn-thesis or ontrol objetives [5, 6, 42℄; as simple objetiveswith pratial relevane, they have triggered the develop-ment of speialized tools [18, 22℄.Dijkstra's self-stabilization riterion [4, 16℄ suggests tobuild systems that eventually reover to a `good state', fromwhere the program ommenes normally. Instead of on-struting a system to satisfy suh a goal, one might want toapply ontrol theory to restrit the exeution of an existingsystem to ahieve an additional goal. Our ontrol objetiveis a reovery mehanism for up to k errors. After reov-ery, the system has to tolerate up to k errors again, and soforth. In this work, we suggest a mehanism to synthesizea reovery mehanism for a given fault model and reovery

primitives.In [17℄, an interesting notion of robustness based onHamming and Lewenstein distane related to the numberof past states is de�ned. It establishes a onnetion betweenthese distanes with a notion of synhronization that har-aterizes the ability of the system to reset for ombinatorialsystems. In [9℄, `ratio games' are disussed, where the ob-jetive is to minimize the ratio between failures indued bythe environment and system errors aused by them.Besides using our simple game model that neither referdiretly to time, nor to probabilities, one an also onsidermodels that make these aspets expliit. Their analysis isfar more omplex (with [21℄ offering the best omplexitybounds), and so are the resulting strategies. If we, for ex-ample, return to the example of airplanes with an opera-tion time of 20 hours referred to in Table 1, then an optimaltimed model would take the remaining operation time intoaount. When the remaining time is two minutes, the bal-ane between being resilient against waves of two errors29



and being resilient against 5 errors looks very different, andthe optimal ontrol would hange over time rather than be-ing stati. Another impliation of more omplex modelswould be that the error model would have to be more de-tailed. Even if one assumes that a simple onept like safestates persists, it depends on the �neties of suh a model ifa two step path bak to it where an error after step one leadsto system failure is preferable over a muh longer path, saythrough 10,000 intermediate states, where one error an betolerated during reovery.We believe that the independene from suh details is anadvantage of our tehnique, partly beause it is simpler andheaper, and partly beause the further advantages one anobtain frommore detailed error models rely heavily on veryknowledge of (or, realistially, on very detailde assumptionson) how errors are distributed.In [8, 19℄ the resiliene model we have introdued [25℄has been applied for synthesising robust ontrol in anassume-guaranee setting to produe robustness against o-asional nonompliane of the environment with the as-sumptions of its behavior.9 ConlusionWe have introdued an approah for the development ofa ontrol of safety ritial systems that maximizes the num-ber of dense errors the system an tolerate. Our tehniquesare inspired by the problem of ontrolling systems with re-dundany: in order to de�et the effet of individual er-rors, safety ritial systems are often equipped with multi-ple opies of various omponents. If one or more ompo-nents fail, suh systems an still work properly as long asthe orret behavior an be identi�ed.

This has inspired the two-phase formulation of the safetyresiliene problems in this artile. In the �rst phase, weidentify a k-resilient region, while we develop a ontrolstrategy for reovery in the seond phase. After an error,the ontroller an reover to the k-resilient region withoutenountering a system failure, unless the error is part of agroup of more than k errors that happen in lose suession.Suh a reovering strategy is memoryless. Being memo-ryless on a small abstration in partiular implies that thereovery is fast.The system an, one reovered, tolerate and reoverfrom k further dense errors, and so forth. Consequently,our ontrol strategy allows for reovery from an arbitrarynumber of errors, provided that the number of dense errorsis restrited. This is the best guarantee we an hope for: ourtehnique guarantees to �nd the optimal parameter k. Thisparameter is bound to be small (smaller than the number ofredundant omponents). Optimizing it is omputationallyinexpensive, but provides strong guarantees: the likelihoodof having more than k errors appear in short suession af-ter an error ourred are, for independent errors, exponen-tial in k. As errors are few and far between, eah level ofresiliene gained redues the likelihood of system-level fail-ures signi�antly.Referenes[1℄ Bitoin website. �http://bitoin.org/�.[2℄ M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter,and J. Wylie. Fault-salable byzantine fault-tolerantservies. In ACM Symposium on Operating SystemsPriniples, 2005.30
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