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he
king problem of a mild extension to the alternating-time�-
al
ulus (AMC). The witness for k resilien
e, whi
h 
anbe provided by the model 
he
ker, 
an be used for providing
ontrol strategies that are optimal with respe
t to resilien
e.We show that the 
omputational 
omplexity of 
onstru
tingsu
h optimal 
ontrol strategies is low and demonstrate thefeasibility of our approa
hh through an implementation andexperimental results.1 Introdu
tionToday's software systems 
an 
onsist of tens of millionlines of 
ode. Su
h a system may intera
t with hundredsof distributed pro
esses that are 
reated and destroyed dy-nami
ally in an evolving environment. With su
h a s
ale of
omplexity and unpredi
tability, users and developers havelearned to deal with the reality that software systems mostlikely still 
ontain defe
ts after delivery. In fa
t, variousempiri
al studies show that the defe
t density of 
ommer-
ial software systems varies from 1 to 20 defe
ts in every1000 lines of sour
e 
ode [41℄. Programmers and software1



designers have developed many engineering te
hniques to
ontain the damage that 
ould be 
aused by su
h defe
ts.For example, when observing that a 
riti
al servi
e requestis not a
knowledged, a software system may have severalmeasures to its disposal to avoid system failure, in
ludingresending the request, resetting the server, 
learing the 
om-muni
ation buffers, et
. But, in general, it is dif�
ult toestimate how to organize the measures for the maximal re-silien
e of the system against realisti
 errors. At the mo-ment, an automated support for the synthesis of 
ontrolme
hanism to defend a system against software errors ismissing. Su
h an automated support, if available, 
an sug-gest defense te
hniques against software defe
ts to develop-ment teams, and help these development teams to identifythe vulnerabilities of software systems. We use a game-theoreti
 approa
h to study this aspe
t and have 
arried outexperiments to observe how our te
hniques 
an be used insynthesizing the most resilient defense of software systemsagainst multiple errors.Intuitively, the defensive strength of a software systemshould be proportional to the number of errors that it 
anendure. A subtle issue in designing the foundation is the re-alisti
 assumption on how many errors a system 
an endurebefore running into disasters. Apparently, no non-trivialsystem 
an endure an unlimited �ood of errors without de-grading to inevitable system failure. Thus, if we do not em-ploy a realisti
 error model, then no meaningful analysis ofthe resilien
e level of these systems to software errors 
anpro
eed, and no pra
ti
al 
ontrol me
hanism 
an be devisedto defend them against errors. We are interested in fendingthe system against a more restri
ted error model, but stillwant to provide the error model with a quanti�able level of

power in order to be able to defend the system against manyerror s
enarios.Considering that most software systems have a life-timemu
h longer than the duration needed for a reasonably de-signed software system to re
over from an error, a reason-able foundation needs to take the differen
e between thesetwo time s
ales into a

ount. In this work, we propose toevaluate 
ontrol me
hanism of software systems on howmany errors the 
ontrol 
an endure before re
overy to safebehavior. We then present an algorithm to synthesize a 
on-trol strategy that 
an endure the maximal number of su
herrors.Before pro
eeding further, let us standardize the basi
terms. In embedded systems, a design defe
t in softwareor hardware is 
alled a fault. Different to a fault, an er-ror (sometimes 
alled 
omponent failure in the literature)is the effe
t of a fault that results in a differen
e betweenthe expe
ted and the a
tual behavior of a system, e.g., mea-surement errors, read/write errors, et
. An error does notne
essarily lead to a system failure, but may instead be re-paired by, e.g., a defense me
hanism in the software. Thatis, an error may be dete
ted and 
orre
ted/neutralized be-fore it 
reates any harm to the whole system or its users.Only when the effe
t of an error 
reates faulty behaviorsthat 
an be observed by the users, it be
omes a failure.Our spe
i�
 goal is to develop a te
hnique for synthe-sizing a 
ontrol me
hanism of a software system againstthe maximal number of dense errors without degrading tofailure. We took our inspiration from methods for resilientavioni
 systems [39℄, where fault toleran
e is designed tore
over from a bounded number of errors. The number oferrors a system needs to tolerate 
an be inferred from the2



k 0 1 2 3 4 5 6 : : :k errors 0:865 0:594 0:333 0:143 0:053 0:017 0:005 : : :k dense errors 0:865 2 � 10�4 2 � 10�9 2 � 10�14 2 � 10�19 2 � 10�24 2 � 10�29 : : :Table 1. Probabilities of k dense errorsgiven maximal duration of a �ight and the mean time be-tween errors of the individual 
omponents. To demonstratethe differen
e between the obje
tive to tolerate up to k er-rors and sequen
es of separated blo
ks of up to k dense er-rors in a short period, we exemplify the quality guaranteesone obtains for a system (e.g., an airplane) with an operat-ing time of 20 hours and a mean time between exponentiallydistributed errors of 10 hours, assuming a repair time of 3.6se
onds. The mean time between dense errors (
onse
u-tive errors before system re
overy) is 
al
ulated in Table 1.The �gures for k errors (
omponent failures) are simply thevalues for the Poisson distribution with 
oef�
ient 2. Toexplain the �gures for k dense errors, 
onsider the densityof 2 dense errors o

urring in 
lose su

ession. If an erroro

urs, the 
han
e that the next error o

urs within the re-pair time (3.6 se
onds) is approximately 110000 . The goal totolerate an arbitrary number of up to k-dense errors is, of
ourse, mu
h harder than the goal of tolerating up to k er-rors, but, as the example shows, the number k 
an be mu
hsmaller. Tolerating an arbitrary number of errors (with adistan
e of at least 3:6 se
onds between them) 
reates thesame likelihood to result in a system failure as tolerating upto 9 errors overall, and tolerating up to 15 errors still resultsin a 70% higher likelihood of a system failure than toler-ating blo
ks of up to 2 errors in this example. Only errorsfor whi
h this is the 
ase 
ould 
ause a system failure. Themean time between blo
ks of two dense errors is thereforenot ten hours, but 100,000 hours. Likewise, it in
reases to

1,000,000,000 (one billion) hours for blo
ks of three denseerrors, and so forth. Maximizing the number of dense errorsthat are permitted before full re
overy is therefore a natu-ral design goal. After full re
overy, the system is allowedagain the same number of errors. Now, if the mean timebetween errors (MTBE) is huge 
ompared to the time thesystem needs to fully re
over, then the mean time betweensystem failures (MTBF) grows immensely.We view the problem of designing a resilient 
ontrolme
hanism towards dense errors as a two-player game,
alled safety resilien
e game, between the system (protago-nist1, `he' for 
onvenien
e) and a hostile agent (antagonist2,`she' for 
onvenien
e) that inje
ts errors into the system un-der exe
ution. The protagonist wants to keep the systemfrom failure in the presen
e of errors, while the antagonistwants to derail the system to failure. Spe
i�
ally, systemdesigners may model their system, defense me
hanism, anderror model as a �nite game graph. The nodes in the graphrepresent system states. These system states are partitionedinto three 
lasses: the safe states, the failure states, and there
overy states. Some transitions are labeled with errorswhile others are 
onsidered normal transitions. The gameis played with respe
t to a resilien
e level k. If a play everenters a failure state, then the antagonist wins in the play.Otherwise, the protagonist wins.The protagonists plays by sele
ting a move, intuitively1In game theory, a protagonist sometimes is also 
alled player 1.2In game theory, an antagonist sometimes is also 
alled player 2.3



the `normal' event that should happen next (unless an er-ror is inje
ted). The antagonist 
an then de
ide to triggeran error transition (inje
ting an error) with the intention toeventually de�e
t the system into a failure state. Our errormodel, however, restri
ts the antagonist to inje
t at most kerrors before she allows for a long period of time that thesystem may use to re
over to the safe states. (If the an-tagonist de
ides to use less than k errors, the protagonistdoes not know about this. It proves that this information isnot required, as we will show that the protagonist 
an playmemoryless.) After full re
overy by the protagonist to thesafe states, the antagonist is allowed again to inje
t the samenumber of errors, and so forth.If the system 
an win this game, then the system is 
alledk-resilient. For k-resilient systems, there exists a 
ontrolstrategy�even one that does not use memory�to make thesystem resilient in the presen
e of blo
ks of up to k denseerrors. We argue that, if the 
omponentMTBF is huge 
om-pared to the time the system needs to fully re
over, then theexpe
ted time for system breakdown grows immensely.Besides formally de�ning safety resilien
e games, wealso present algorithms for answering the following ques-tions.� Given an integer k, a set F of failure states, and aset S of safe states (disjoint from F ), is there a re-
overy me
hanism that 
an endure up to k dense er-rors, effe
tively avoid entering F , and qui
kly dire
tthe system ba
k to S. Sometimes, the system design-ers may have designated parts of the state spa
e for there
overy me
hanism. The answer to this question thusalso impli
itly tells whether the re
overy me
hanismis fully fun
tional in the re
overy pro
ess.

� Given an integer k and the set of failure states, whatis the maximal set of safe states, for whi
h the sys-tem has a strategy to maintain k-resilien
e? In gametheory, this means that safety resilien
e games 
an beused for synthesizing safety regions for a given boundon 
onse
utive errors before the system is fully re
ov-ered.The question 
an be extended to not only partition thestates into safety, re
overy, and failure states, but alsofor providing memoryless 
ontrol on the safety and re-
overy states.� Given a set of failure states, what is the maximal re-silien
e level of the system that 
an be a
hieved withproper 
ontrol? We argue that this maximal resilien
elevel is a well-de�ned and plausible indi
ator of thedefense strength of a 
ontrol me
hanism against a re-alisti
 error model.With our te
hnique, software engineers and system design-ers 
an fo
us on maximizing the number of dense errors thatthe system 
an tolerate in�nitely often, providing that theyare grouped into blo
ks that are separated by a short periodof time, whi
h is suf�
ient for re
overy.We investigate how to analyze the game with existingte
hniques. We present an extension to alternating-time�-
al
ulus (AMC) and propose to use the AMC model-
he
king algorithm on 
on
urrent games to 
he
k resilien
elevels of embedded systems. We present redu
tion fromsafety resilien
e games to AMC formulas and 
on
urrentgame stru
tures. Then we present a PTIME algorithm foranswering whether the system 
an be 
ontrolled to tolerateup to a given number of dense errors. The algorithm 
anthen be used to �nd the maximal resilien
e level that 
an4



be a
hieved of the system. The evaluation is 
onstru
tive: itprovides a 
ontrol strategy for the protagonist, whi
h 
an beused to 
ontrol a system to meet this prede�ned resilien
elevel.The remainder of the arti
le is organized as follows. Se
-tion 2 reviews some standard terminology and results. Se
-tion 3 outlines our work and motivates it on three examples.Se
tion 4 de�nes safety resilien
e game. Se
tion 5 de�nesa variation of the alternating-time �-
al
ulus (AMC) forspe
ifying our k-resilien
e properties. Se
tion 6 presentsour resilien
e level evaluation algorithm. We report onour implementation and the experimental evaluation of ourte
hniques in Se
tion 7. Se
tion 8 reviews related work.Finally, Se
tion 9 summarizes the work.2 Two-player 
on
urrent game stru
turesTo fa
ilitate our explanation of resilien
e analysis in agame's perspe
tive, we start by reviewing the game 
on-
epts related to our work. A 
on
urrent game may involveseveral players, who make 
on
urrent move de
isions at thesame time during transitions. The destination of a transitionis jointly determined by the moves 
hosen by all players.Su
h a gamemodel is very expressive and handy in des
rib-ing intera
tions in a 
omplex system. In this work, we adaptthe �nite 
on
urrent games from [3℄ with event 
on
epts ontransitions. For the analysis of system resilien
e, we onlyhave to 
onsider two players in the game, the �rst is thesystem, and the se
ond is the error model.De�nition 1 (2-player 
on
urrent game stru
-ture): A 
on
urrent game stru
ture is a tupleK = hQ; r; P; �; E1; E2; Æi, where� Q is a �nite set of states.

� r is the initial state in Q.� P is a �nite set of atomi
 propositions.� � : Q 7! 2P is a proposition-labeling fun
tion of thestates.� E1 and E2 are �nite sets of move symbols that theprotagonist and the antagonist 
an respe
tively 
hoosein transitions. A pair in E1 � E2 is 
alled a moveve
tor.� Æ is a fun
tion that maps fromQ�E1�E2 toQ. Æ is
alled the transition fun
tion and 
on
eptually spe
-i�es a su

essor state that results from a state andmoves of the players.Given a state q 2 Q and a ve
tor [e1; e2℄ 2 E1 � E2,Æ(q; e1; e2) is the su

essor state from q when ea
h playera 2 f1; 2g 
hooses her respe
tive move ea. �We prefer to represent the moves available to the play-ers by symbols (rather than integers as in [3℄), as move (orevent) symbols 
an be used to re�e
t some physi
al mean-ing. For example, a move 
an 
orrespond to the turning-offof a swit
h, the dete
tion of an airplane, or the exe
ution ofan error handling routine. (Te
hni
ally, representing movesas either integers or symbols does, of 
ourse, make no dif-feren
e.)For 
onvenien
e, we assume that we are in the 
on-text of a given 2-player 
on
urrent game stru
ture K =hQ; r; P; �; E1; E2; Æi. In the following, we review somestandard 
on
epts from game theory.De�nition 2 (Plays and play pre�xes): A play pre�x � oflength h is a sequen
e q0;�!e0 ; q1;�!e1 ; : : : ; qh�1 that alter-nates between states and move ve
tors (starting and end-ing in a state), su
h that, for all i 2 [0; h), Æ(qi;�!ei ) =qi+1 holds. Similarly, a play � is an in�nite sequen
e5



q0;�!e0 ; q1;�!e1 ; q2;�!e2 ; : : : that alternates between states andmove ve
tors (starting and ending in a state), su
h thatÆ(qi;�!ei ) = qi+1 holds.In both 
ases, we use �(i) = qi and �e(i) = �!ei by abuseof notation. �The following notations are for the ease of presentation.Given a play pre�x � = q0;�!e0 ; q1;�!e1 : : : qh�1, we denotethe length of �, h, by j�j. For plays, we write j�j = 1.Given two integers j and h in [0; j�j) with j � h, we use�[j; h℄ to denote the play pre�x �(j); �e(j); �e(j+1); �(j+1); : : : ; �(h). For play pre�xes �, we use last(�) def= �(j�j �1) to denote the last state in �.We may also use regular expressions to represent sets ofplay pre�xes. Spe
i�
ally, given two sets A and B of playpre�xes,AB represents the set of 
on
atenation of play pre-�xes �1�2 su
h that �1 2 A and �2 2 B. A� then represents�nite 
on
atenation of play pre�xes from A. For example,a; ab
; ab
a
b
b
b
 are all elements of fa; b
; a
g�.Please re
all that a play has in�nite length. A play �with �(0) = q is 
alled a q-play. When 
hoosing moves ata state, a player may look up the play pre�x that leads tothe 
urrent state, investigate what de
isions the other play-ers have made along the pre�x, and sele
t his or her nextmove. Su
h de
ision-making by a player 
an be 
apturedby a strategy.De�nition 3 (Strategy) A strategy is a fun
tion from �niteplay pre�xes to a move symbol. Formally, a strategy �a fora player a 2 f1; 2g is a fun
tion from play pre�xes to Ea.The next state after a play pre�x � 2 �Q(E1 � E2)��Q isdetermined as Æ(last(�); �1(�); �2(�)).A strategy � ismemoryless (positional) if the 
hoi
e of �only relies on the 
urrent state, that is, if, for every two play

pre�xes � and �0, last(�) = last(�0) implies �(�) = �(�0).If � is not memoryless, it is 
alled memoryful. �
Given regular expressions [24℄ �1; : : : ; �n with alpha-bet Q and move symbols e1; : : : ; en 2 E, we may use[�1 7! e1; : : : ; �n 7! en℄ to (partially) spe
ify a strat-egy. For a strategy �, a rule like �i 7! ei means that,for every play pre�x � 2 �i, �(�) = ei. To disam-biguate the interpretation of the strategy, a rule with in-dex i super
edes all rules with indi
es > i. Moreover,to make a strategy 
omplete, we may require �n to be�Q(E1 � E2)��Q, the set of strings of interleaving statesand move ve
tors that end in a state (whi
h in
ludes the setof all play pre�xes). For example, a memoryless strategy ofthe protagonist 
an be spe
i�ed with [�Q(E1�E2)��q0 7!e1; �Q(E1 � E2)��q3 7! e2; �Q(E1 � E2)�� 7! e3℄. Amemoryful strategy of the protagonist 
an be spe
i�ed with[q0 7! e1; �Q(E1 � E2)�+q0 7! e2; �Q(E1 � E2)��q3 7!e2; �Q(E1 �E2)��Q 7! e3℄.Note that, in De�nition 3, we do not distinguish betweenthe strategies of the players. We 
all a play � �-
onform fora strategy � of player a if, for all i 2 N, there are e1 and e2with �(i+ 1) = Æ(�(i); e1; e2) and ea = �(�).In the remainder of the arti
le, we denote the set of allstrategies by � and the set of all memoryless strategies by�(0). Together with an initial state r, strategies �1; �2 2 �of the m players respe
tively, de�ne a unique play, whi
h
onforms to �1; �2. We denote this play by play(r; �1; �2).6



Figure 1. Framework of resilien
e design3 Motivation3.1 Ba
kgroundResilien
e to errors in 
omputer systems is usuallya
hieved through error re
overy design as illustrated in Fig-ure 1. The system states 
an be partitioned into three re-gions: safe, re
overy, and failure. The left part of the �gurerepresents the safety region. The states in this safe region
an be viewed as those for `normal' operation. When an er-ror o

urs, the system goes through a re
overy stage, whereit follows some re
overy me
hanism. This is shown as the�re
overing� area in Figure 1. In this region, the systemintuitively tries to repair the effe
ts of an error and thus tore
over to the safety region.During the re
overy (or: in the re
overy region), how-ever, errors may still happen. In general, fault-tolerant sys-tems are built under the assumption that error dete
tion andre
overy is speedy and that there 
an only be a few errorsduring the pro
ess of re
overy. If the re
overy me
hanismis not resilient enough, a few errors may drive the systeminto failure.We illustrate this on the following examples.Example 1 (Fault-tolerant 
omputer ar
hite
tures): In
omputer ar
hite
tures, fault-toleran
e is usually a
hieved

via hardware dupli
ation. Consider an example of a multi-pro
essor system that in
ludes n pro
essor 
opies and mmemory 
opies. The n pro
essors ea
h 
an follow the in-stru
tions of the original system, or be engaged in memoryre
overy. When a 
opy of the memory fails, a pro
essor
an be assigned to re
over it. Majority 
he
k 
an be usedto dete
t that a pro
essor is faulty or that memory 
opy isfaulty (often, both would happen at the same time). For re-
overy, we 
an set a free pro
essor to re
over some memory
opy, or make a pro
essor follow the 
ode of the majority ofpro
essors.The key to error resilien
e is to de
ide whether to make apro
essor follow the exe
ution of the majority, or to assignit to re
over faulty memory. If too many errors o

ur in ashort while before the errors 
an be re
overed from, thenthere may be no more pro
essors left to 
arry out any morere
overy. When su
h a 
riti
al situation arises, the systementers failure state when another error is indu
ed.The re
overy me
hanism des
ribed above is typi
al inthe design of fault-tolerant systems [36℄. As explained, apra
ti
al re
overy me
hanism usually does not rely on thedetailed stru
ture of the system. Instead, error-dete
tionte
hniques su
h as parity 
he
ks, voting (for majority
he
ks), et
., are usually employed. In fa
t, the number ofdupli
ates is usually 
riti
al to the resilien
e of the systemto errors. As long as the majority of the dupli
ate modules
an be re
overed in time (i.e., before the next wave of er-rors), resilien
e of the system 
an be a
hieved. �Example 2 (Ex
eption handling): At the operating sys-tem level, errors are usually signaled via interrupt lines andhandled with routines 
alled handlers. The �rst thing thatneeds to be done by a handler is to save the CPU state of7



the interrupted pro
ess. In some operating systems, a stati
memory spa
e is used for this purpose for ea
h handler. Insu
h a s
heme, if the same error happens again while ex-e
uting the error handler, then the system 
an run into therisk that the CPU states of the interrupted handler 
an beoverwritten and destroyed.Another s
heme is to use a sta
k to save the CPU statesof the interrupted pro
esses. Su
h a s
heme seems resilientto errors that happen during the exe
ution of error han-dlers. Still, too many errors that happen during the exe-
ution of error handlers 
an deny 
riti
al fun
tions of thesystem and in
ur failures, in
luding missed timer updatesand priority inversions. Thus, a proper assumption on thetimely error re
overy by the error handling routines is 
rit-i
al to the design of error resilien
e in su
h 
ases. �Example 3 (Se
urity atta
ks): Se
urity in the Internetalso relies on resilien
e to atta
ks of ha
kers, viruses, mal-ware, et
. For example, one 
ommon te
hnique of atta
ksto 
ommuni
ation modules is to over�ow the 
ommuni
a-tion buffers. In su
h atta
ks, the sizes of the buffers and theability of the se
urity pro
edures to dete
t and re
over fromsu
h over�owing atta
ks is 
ru
ial to the resilien
e design.�These examples show that re
overy is a 
ru
ial 
on
eptfor designing systems that are resilient to errors. When sys-tem errors are dete
ted in su
h a system, the system a
ti-vates a re
overyme
hanism so as to remove the effe
t of theerrors. When designing su
h systems, the system designersusually have in mind what errors and failures the systems
an expe
t, a

ording to the spe
i�
ation. To avoid fail-ures in the o

urren
e of dense errors, the system designersusually in
orporate many error re
overy me
hanism in the

system, e.g., ex
eption handlers and hardware/software re-dundan
y. But, in general, it would be dif�
ult for the de-signers to evaluate how effe
tive their re
overy me
hanismis to dense errors. To over
ome this dif�
ulty, we believethat it is important to support them with automated analyti-
al tools with a solid foundation.Resilien
e has also been used in [8, 19℄ with a similargoal. When synthesising 
ode, one relies on assumptions ofthe behavior of the environment, and the formal spe
i�
a-tion would only ask for the provision of guarantees underthe 
ondition that the assumptions are satis�ed. When as-sessing the quality of an implementation, the behavior in
ases where the environment does not 
omply with the as-sumption matters. In [8, 19℄, the resilien
e model we haveintrodu
ed in the 
onferen
e version [25℄ of this paper hasbeen followed up upon, and proven to be well suited forrea
tive synthesis.In this work, we use these observations to design a theo-reti
al framework for synthesizing a 
ontrol me
hanism thatprovides the maximal resilien
e against software errors in arealisti
 error model.3.2 Resilien
e in a NutshellFrom Example 1 to 3 in Subse
tion 3.1, it is easy to seethe 
ommon paradigm of error re
overy in software sys-tems.When errors are dete
ted, a re
overy me
hanismwill be a
tivated to avoid failures and try to getba
k to normal exe
ution.Moreover, su
h a re
overy me
hanism usually needs tooperate under the assumption that more errors may also hap-8



pen during the re
overy pro
ess. In pra
ti
e, system de-signers have already implementedmany defensivemodules,e.g., ex
eption handlers, whi
h are 
ertainly good 
andi-dates for the re
overy segments. Thus, the re
overy s
hemewe dis
uss is likely to have arisen in an ad-ho
 fashion as anatural 
on
ept when software ar
hite
ts and programmersdesigned re
overy me
hanisms for 
riti
al software.The vast state spa
es of 
riti
al systems make an auto-mated support for and a solid foundation of evaluating de-sign alternatives parti
ularly valuable.In the following, we will use the examples from the pre-vious subse
tion as a motivation for de�ning a new game,
alled safety resilien
e game, between the re
overy me
h-anism (the protagonist) and the error-inje
ting agent (theantagonist). The game is spe
i�ed with a set F of failurestates, a set S of safe states (the safety region), the movesby the antagonist to inje
t errors, and the resilien
e levelk that the designers want to a
hieve. The obje
tive of theprotagonist is to identify a 
ontrol strategy so that the wholesystem 
an a
hieve the pres
ribed level (or the highest level)k of resilien
e for safety regionS (a set of states) and failurestate set F .The game is played round by round. When the antago-nist issues an error move, the play may be de�e
ted into are
overy segment. If there are no more than k � 1 errorsin the re
overy segment, then a k-resilient 
ontrol me
ha-nism must dire
t the re
overy segment to end at a safe state.The above observation suggests that a safety region 
an beabstra
ted as a �xed point to the re
overy pro
edure thattransforms a safe state to another safe state via the re
overysegment with at most k � 1 errors. Con
eptually, a �xedpoint to a pro
edure f(x) is a set S of elements in the do-

Figure 2. Illustration of the re
overy operation
main of x su
h that S = ff(x) j x 2 Sg. To 
al
ulatethe �xed point of the re
overy pro
edure, we 
an use thegreatest �xed point algorithm. The idea is to start from asuperset of the re
overy pro
edure �xed point. For 
onve-nien
e, we 
all a superset of the �xed point a pseudo �xedpoint (PFP). Then we iteratively 
he
k every state q in thePFP and eliminate q from the PFP if, after at most k errorsfrom q, the re
overy me
hanism either 
annot avoid failureor 
annot dire
t the system ba
k to the PFP. As the iterative
he
king and elimination goes on, the PFP will shrink andeventually stabilize. Note that its size is always �nite, sin
ethe initial PFP must be no bigger than Q. The �nal PFP isthen a greatest �xed point to the re
overy me
hansim fork-resilien
e and is the legitimate safety region.This re
overy pro
edure 
an be illustrated as in Figure 2for resilien
e to 2 errors. In this �gure, the states in setS0 are 
omputed as the pre
ondition of states in S throughthose transitions in the �gure. Ea
h path from S0 to S is are
overy segment. S and S0 may overlap. The blue 
ir
lesrepresent states in the re
overy segments. If we 
al
ulateS0 out of S, then, for ea
h state q0 2 S0, we 
an �nd apath from q0 2 S0 via a path in the re
overy segment toanother state q 2 S. The maximal number of errors in are
overy segment is 2. Thus the protagonist has a strategy9



to re
over from errors in S0 to S even when 2 errors happenin the 
orresponding re
overy segment. When S0 = S, thenS is a �xed point to the pre
ondition operator through there
overy segments in the �gure.Now we formally de�ne the 
on
ept that we explainedwith Figure 2.De�nition 4 (k-safety): Given a k 2 N, a state q is 
alledk-safe with respe
t to a safety region S � Q r F of non-failure states, denoted q 2 sfr
hk(S), if there is a strategyfor the protagonist to guarantee that we 
an rea
h ba
k toS from q, provided that the overall 
ount of errors is at mostk. �However, the de�nition 
an be subtle in its interpreta-tion. Spe
i�
ally, the ability to stand against one wave ofk errors is not the same as that against repeated re
overyfrom waves of k errors. If the re
overy me
hanism is notdesigned properly, the system may gradually lose a bit of
ontrol after ea
h wave of k errors and eventually degradeto system-level failure.Example 4 (Fault-tolerant 
omputer ar
hite
tures):Consider Example 1 with 2k + 1 pro
essor 
opies, withthe obje
tive to maintain majority 
he
ks and to identifythe bad pro
essors. Indeed, a

ording to the �rst, na�̈vesolution, any safe state with a re
overy strategy toQrF isgood. After k pro
essor 
opies fail, the majority 
he
ks arestill 
apable to maintain the 
orre
tness of the 
ombinedbehavior to follow the design of the original system. Thereseems to be nothing to do after k errors. Thus, na�̈vely,we 
an 
hoose those states as the safety region if, at thosestates, majority 
he
ks still work.However, there is no expe
tation that the system will be

1 2 3 4Figure 3. An example for 
al
ulating sfr
hkable to re
over at any point in the future into a situationwhere it 
an bear another wave of k errors. It will fail andlose the fun
tion of majority 
he
ks just after one more er-ror. In 
ontrast, in this work, we aim to propose a dense er-ror resilien
e 
riterion that given no more errors for enoughtime to allow re
overy, the system will eventually re
over toresilien
e to k dense errors again. �To look at this issue in more detail, please 
onsider thetransition system with four states, in
luding a single fail-ure state (state 4, marked by a double line) shown in Fig-ure 3. The 
ontrolled transitions are depi
ted as bla
k solidarrows, the error transitions are depi
ted as red dashed ar-rows. For S = Q r F = f1; 2; 3g, all states in S are insfr
h0(S). For all k � 1, we have sfr
hk(S) = f1; 2g:the protagonist 
an simply stay in f1; 2g during the safetyphase of the game, and on
e the antagonist plays an errortransition, the game progresses into the re
overy segment,where the protagonist's obje
tive is satis�ed immediately.This outlines the differen
e between k-sfr
h-ty and the lin-ear time property of being able to repeatedly tolerate wavesof up to k errors, whi
h would only be satis�ed by states 1and 2 for k = 1, and only for state 1 for k = 2.This differen
e raises the question if the rules of ourgame are depriving the antagonist of some of the k errorsthat she should intuitively be allowed to insert in a wave.The answer is that this is not the 
ase if we use any �xedpoint of sfr
hk as S. In this 
ase, the protagonist wouldregain the 
apability to endure a wave of k errors when10



rea
hing a safe state after re
overy. Instead of deprivingthe antagonist, one 
ould say that we reset the number oferrors in any re
overy segment that the antagonist 
an in-je
t to k. Thus su
h a �xed point of sfr
hk should 
onsistof states, from whi
h we 
an use a 
ontrol me
hanism tofend off repetitive waves of k dense errors in the re
overysegments. For 
onvenien
e, we 
all states in su
h a �xedpoint of sfr
hk the k-resilient states.For a state to be in sfr
hk(S), the system (protagonist)has a strategy to re
over to S, given that a long enough ex-e
ution 
ommen
ed without another round of k errors hap-pening. We say that two su

essive errors are in the samegroup of dense errors if the sequen
e of states separatingthem was not long enough for re
overy to the safety re-gion. Vi
e versa, if two su

essive errors are far enoughapart su
h that the protagonist 
an guarantee re
overy inthis separation, then they do not belong to the same group.To 
he
k whether re
overing to S by the protagonist (thefault-toleran
e me
hanism) is always possible, providedthat at most k errors o

urred during a re
overy segment,observe that nesting sfr
hk on
e, i.e., sfr
hk(sfr
hk(�)), 
or-responds to tolerating up to two rounds of up to k denseerrors, and so forth. Thus, for S to be a target of re
ov-ery for k-resilien
e, S must be a �xed point of the operatorsfr
hk from De�nition 4, or, equivalently, S = sfr
hk(S)must hold. Moreover, if S is the greatest �xed point to k-resilien
e, then we we 
an apply sfr
hk() any number oftimes to S and still obtain S. Computationally, the greatest�xed point of sfr
hk 
an be 
onstru
ted as by exe
utingsfr
hk(sfr
hk(sfr
hk(: : : sfr
hk(S� : : :))),using a suf�
iently deep nesting that a �xed point isrea
hed.

Note that this �xed point x to x = sfr
hk(x) is what weare really interested in, while sfr
hk(S) for a given S is anintermediate result that does not guarantee survival of thesystems after waves of dense errors. If this greatest �xedpoint R =[fX � S j X = sfr
hk(X)gis non-empty, the protagonist's strategy for the �xed point(guaranteeing eventual re
overy to a state in the �xed pointwithin no more than k errors, i.e., k-resilien
e) 
an be usedto 
ontrol the re
overy me
hanism, 
onstraining its transi-tions to follow its winning strategy.As explained in the introdu
tion, there 
an be severalnatural 
ontrol problems in our safety resilien
e game.First, the system designers may want to know whether the
hosen safety region S 
an be supported by the re
overyme
hanism for resilien
e level k. Se
ond, they may want toget design support for 
hoosing the safety region for a
hiev-ing resilien
e level k. Finally, they may want to know themaximal resilien
e level that they 
an a
hieve.With the explanation in the above, in the rest of themanus
ript, we will fo
us on the algorithm for 
onstru
t-ing sfr
hk(�) and evaluating k-resilient states.4 Safety resilien
e gamesA system is k-resilient if it 
an be 
ontrolled to toler-ate in�nitely many groups of up to k dense errors, providedthat the system is given enough time to re
over betweenthese groups. As we have explained, in systems developedwith defensive me
hanism against errors, when errors aredete
ted, re
overy pro
edures should be a
tivated. The ma-jor 
hallenge is to de
ide given a set of failure states anda safety region, whether the re
overy me
hanism 
an sup-11



port a resilien
e level required by the users. Our goal isto develop te
hniques with a solid foundation to assist thesystem designers in evaluating the resilien
e of their sys-tems, to synthesize the 
ontroller strategy for the requiredresilien
e level, and to a
hieve the maximal resilien
e level.We now formally de�ne the safety resilien
e gameplayed between a system (the protagonist) and an error-inje
tor (the antagonist). Initially, the two players are givena 2-player 
on
urrent game stru
ture K, a pebble in r, a setF � Q of failure states, and a safety region S � Q r F .Then the re
overy region 
onsists of states in Qr (F [ S).The two players together make de
isions and move the peb-ble from state to state. The antagonist tries to de�e
t aplay into F by inje
ting suf�
iently many errors, while theprotagonist tries to avoid that the pebble rea
hes F . Toa
hieve this, the protagonist 
an use the re
overy region asthe safety buffer and try to get ba
k to S as soon as the playis de�e
ted from S to the re
overy region. If a system isresilient to k errors, then it means that the protagonist 
anhandle up to k�1 errors while in the re
overy region. Thuswhen 
he
king whether a system is resilient to k errors, weonly need to 
he
k those re
overy segments with no morethan k � 1 errors.In the following, we formalize the 
on
ept.De�nition 5 (Safety resilien
e game stru
ture): Su
h astru
ture is a pair hK; F i with the following restri
tions.� K is a 2-player 
on
urrent game stru
turehQ; r; P; �; E1; E2; Æi. Con
eptually, the �rstplayer represents the system / the protagonist, whilethe se
ond player represents the error model / theantagonist.� E2 is partitioned into error and and non-error moves

Eerror andEnoerr, respe
tively. We require that only the2nd player 
an issue error moves. Moreover, Enoerrmust be non-empty.� F is the set of failure states in Q with r 62 F .The antagonist 
an 
hoose if she wants to respond on amove of the protagonist with an error move. We allow fordifferent non-error moves to re�e
t `normal' nondetermin-isti
 behavior, e.g., 
aused by abstra
tion. We allow for dif-ferent error moves to re�e
t different errors that 
an o

urin the same step.We sometimes refer to transitions with error moves by theantagonist as error transitions and to transitions with noerrmoves by the antagonist as 
ontrolled transitions.For a party A � f1; 2g, we refer with A = f1; 2g nA tothe players not in the party, and by EA to the moves madeby the players in A, that is, Ef1;2g = E1�E2, Ef1g = E1,et
.The antagonist 
an use both error and non-error movesto in�uen
e the game. In a simple setting, the antagonistmay only have the 
hoi
e to insert error-moves, while thereis only a single 
ontrolled transition. In this simple 
ase, theprotagonist 
an 
hoose the su

essor state alone unless theantagonist plays an error transition. Spe
i�
ally, a safetyresilien
e game stru
ture is simple if E2 
ontains only oneerror move. Considering simple safety resilien
e gamestru
tures leads to lower 
omplexities, as it 
hanges redu
-tions from rea
hability in games (PTIME-
omplete [26℄) torea
hability in graphs (NL-
omplete [33℄). �Note that, in the game stru
ture, only one system playerand one error model player are allowed. This is purely forthe simpli
ity of algorithm presentation. With proper re-du
tion te
hniques, we 
an easily 
onvert a game stru
ture12



with more than one system player and more than one errormodel player to the stru
ture in De�nition 5. The standardte
hnique would be using the transition rules of the prod-u
t automata of the system players for the protagonist whileusing the transition rules of the produ
t automata of the er-ror model players for the antagonist. In fa
t, we indeed usethis redu
tion te
hnique in our experiment for analyzing theresilien
e levels of multi-agent systems.From now on, we assume that we are in the 
ontext of agiven safety resilien
e game stru
ture G = hK; F i.De�nition 6 (Re
overy segements): We need to rigor-ously de�ne re
overy segments. A play pre�x � is a re
ov-ery segment to safety region S � Q r F if it satis�es thefollowing 
onstraints.� �(0) 2 S.� If j�j =1, then all states in �[1;1) are inQr (S [F ). In this 
ase, � is 
alled a failed re
overy segment.� If j�j 6= 1, then all states in �[1; j�j � 2℄ are in Qr(S [ F ) and last(�) = �(j�j � 1) is either in F orS. If last(�) 2 F , � is also a failed re
overy segment;otherwise, it is a su

essful one.We use level(�; S) to denote the number of error movesbetween states in � with respe
t to the safety region S:level(�; S) def= ��fi 2 [0; j�j � 1) j �e(i) j= Eerrorg��. �As stated in the introdu
tion, we propose a game-theoreti
 foundation for resilien
e analysis of software sys-tems. With this perspe
tive, the protagonist a
ts as a maxi-mizer, who wants to maximize the resilien
e levels along allplays. For this, the protagonist �xes a strategy that des
ribewhat he is going to do on ea
h play pre�x. The antagonista
ts as a minimizer, who wants to minimize the resilien
elevel. She 
an resolve nondeterminism and inje
t errors in

order to a
hieve this, and (although this plays no major rolein this setting) she knows the strategy the protagonist has�xed and 
an use this knowledge in prin
iple.The goal of the protagonist is therefore the same as thegoal of the system designer: to obtain a strategy that offersa maximal level of resilien
e in a safety game. However,in order to avoid degenerate behavior where the protagonistbene�ts from being in the re
overy phase and from the an-tagonist therefore being allowed less errors in the 
urrentwave of errors she may inje
t, we have to strengthen hisobligation to eventually re
over to the safe states when theenvironment 
hooses not to inje
t further errors. This way,the protagonist has no in
entive to 
y
le in the re
overy re-gion. Consequently, he 
an re
over to the safe region withinjQj moves after the antagonist has inserted the last errorof the 
urrent wave, irrespe
tive of whether the antagonistwould be allowed to insert further errors in this wave. Thisis the key reason why memoryless optimal 
ontrol existsfor this error model, why it is reasonable to assume swiftre
overy, and, 
onsequently, why it is a posteriori justi�edto leave the separation time between two waves impli
it: thetime to traverse jQj states suf�
es.Besides obtaining this from intuition, we 
an also 
on-sider the tree of su

essful re
overies for any protagoniststrategy that 
an endure k error moves by the antagonist.The tree of re
overies from up to k errors is �nite a

ord-ing to the de�nition of su

essful re
overy segments. Thenfor any subtree t in this tree of re
overies with a node v int su
h that v is labeled with the same state as the root of twith no error on the path, we 
an always repla
e t with thesubtree rooted at v. After the repla
ement, we have a tree ofre
overies with no greater depth than the original one. Af-13



ter repeating su
h repla
ements, this immediately providesa translation from su
h a strategy with unrestri
ted memoryto one with memory of size k (the resilien
e level). Therestri
tion to memoryless strategies follows from the 
on-stru
tion we give in Se
tion 6, whi
h does not depend onthe memory and still yields a strategy, whi
h is memory-less. Thus, in this work, we should de�ne the resilien
elevel of software systems based on memoryless protagoniststrategies.Based on the argument above, the gain of the protagonistin a play 
an be de�ned as follows.De�nition 7 (Gain): Given safety region S � Qr F , thegain of a play � to S, in symbols gain(�; S), denotes themaximal integer k 2 N su
h that, for all re
overy segments�r to S in �, if level(�r; S) � k, then �r is a su

essfulre
overy segment to S. �The resilien
e level of a safety resilien
e game is de�nedas the maximum gain that the protagonist 
an guarantee inall plays with a memoryless strategy.De�nition 8 (Safety resilien
e game): Su
h a game iszero-sum and de�ned on a safety resilien
e game stru
tureG = hK; F i and a safety region S � Q r F . The gainof G to S, in symbols gain(G; S), is de�ned as the maxi-mum gain that the protagonist 
an manage with memorylessstrategies. Rigorously,gain(G; S) def= max�2�(0) min�02� gain(play(r; �; �0); S)Please be re
all that play(r; �; �0) is the play from r a

ord-ing to strategies � and �0 respe
tively of the two players.Moreover �(0) is the set of memoryless strategies.We say that the resilien
e level of G to S isgain(G; S). A strategy ! for the protagonist is

optimal to S if min�02� gain(play(r; !; �0); S) =max�2�(0) min�02� gain(play(r; �; �0); S). When S isnot given, we say that G is k-resilient if there exists anon-empty S � Q n F with gain(G; S) � k. �Remark. While the option of using memoryless strategiesplays a minor role in the te
hni
al argument, it plays aparamount role in the usefulness of the resulting 
ontrolstrategy: 
hoosing memoryless strategies implies that allre
overy segments are short. In parti
ular, all sub-paths (re-
overy segments) between two waves of dense errors in-je
ted by the antagonist are shorter�and usually signi�-
antly shorter�than the size of G. In 
onsequen
e, any timespan long enough for traversing the re
overy segment willlead to a full re
overy. It is therefore suf�
ient for a tempo-ral distan
e we have to assume between two waves of denseerrors.5 Alternating-time �-
al
ulus with events(AMCE)We propose to solve our resilien
e game problems withan existing te
hnology, i.e., model-
he
king of alternating-time �-
al
ulus (AMC) formulas. AMC is a propositionaltemporal logi
 with �xed point operators. For example, thefollowing formula�X:(safe _ h1i 
X) (A)uses least �xed point operator� to de
lare a �xed point vari-ableX for a set of states. Subformula h1i
 � existentiallyquanti�es over the protagonist strategies that 
an dire
t theplays to a su

essor state satisfying �. Together, the for-mula spe
i�es a set X of states that 
an indu
tively rea
h asafe state with the 
ontrol of the protagonist. Spe
i�
ally,14



the formula says that a state is inX if either it is safe or theprotagonist 
an dire
t to a su

essor state known to be inX . For our game stru
tures, we only need strategy quanti�-
ation of up to two players.However, we need extend AMC with some simple syn-tax sugar. There are two extensions. The �rst is for Boolean
ombinations of path modalities in the s
ope of strategyquanti�
ation. For example, the following AMCE formulah1i((smoke )
alarmOn) _
windowClosed) (B)says that the protagonist 
an enfor
e either of the followingtwo path properties with the same strategy.� If there is smoke, then the alarm will be turned on inthe next state.� The window will always be 
losed in the next state.Su
h a formula is not in ATL and AMC [3℄.The se
ond extension is for restri
ting transitions thatmay parti
ipate in the evaluation of path formulas. The re-stri
tion is via 
onstraints on moves on transitions and 
an,in our extension to AMC, be spe
i�ed with a move sym-bol set to the next-state modal operators. For example, thefollowing AMCE formulah1i((
2:erroralarmOn) ^ (
:2:error:alarmOn)) (C)says that the protagonist 
an� turn on the alarm when an error o

urs; and� keep the alarm silent when no error o

urs.Before we formally present AMCE, we need de�ne expres-sions for 
onstraints on moves of players in transitions. Weadapt an idea from [44℄. Spe
i�
ally, a move expression �is of the following syntax.� ::= a : e j �1 _ �2 j :�1

Here, a is a player index in f1; 2g and e is a move symbolin E1 [E2. _ and : are standard disjun
tion and negation.Typi
al shorthands of Boolean operations 
an also be de-�ned out of _ and :. A total move ve
tor 
an be expressedas [e1; e2℄ where for all a 2 f1; 2g, ea 2 Ea is the moveby player a spe
i�ed in the ve
tor. We say [e1; e2℄ satis-�es �, in symbols [e1; e2℄ j= �, if and only if the following
onstraints are satis�ed.� [e1; e2℄ j= a : e if, and only if, ea is e.� [e1; e2℄ j= �1 _ �2 if, and only if, [e1; e2℄ j= �1 or[e1; e2℄ j= �2.� [e1; e2℄ j= :�1 if, and only if, [e1; e2℄ 6j= �1.5.1 SyntaxA formula � in AMCE has the following syntax.� ::= p j X j �1 _ �2 j :�1 j �X:�1 j hAi  ::= j  1 _  2 j : 1 j 
��1Here, � is a state formula, is a path formula, p is an atomi
proposition symbol in P (atomi
 proposition set, as in Def-inition 1), and X is a set variable for subsets of Q. TheBoolean 
onne
tors are the 
ommon ones: _ for disjun
-tion and : for negation. Note that we allow for Boolean
ombinations of the next operators
 under strategy quan-ti�
ation hAi. This is one major differen
e of AMCE fromAMC.Formula �X:�1 is the usual least �xed point operationto �1. A

ording to the tradition in [3℄, we require thatall free o

urren
es of X in �1 must o

ur within an evennumber of s
opes of negations. This is be
ause senten
eswith a negative o

urren
e, like �X::X , have no naturalsemanti
s. A set variable X is bound in a formula � if itis inside a de
laration s
ope of X . If it is not bound, then15



it is free. An AMCE senten
e is an AMCE state formulawithout free set variables. In most 
ases, we are interestedin spe
i�
ations given as AMCE senten
es.The A in hAi is a �nite set of player indi
es in [1; 2℄.Con
eptually, hAi means that players in A 
an 
ollabo-rate to make  true. For example, hf1; 2gi
 p means thatplayers 1 and 2 
an 
ollaborate to make p true in the nextstate. We follow the notations in [3℄ and omit the paren-theses in formulas like hAi . For example, hf2gi 
 p andhf1; 2gi
 p will be abbreviated as h2i 
 p and h1; 2i
 prespe
tively.We allow event restri
tions as supers
ripts in
��1 witha move expression �. The operator is important in support-ing the evaluation of safety resilien
e levels with traditionalmodel-
he
king te
hnology. Note that sin
e AMC [3℄ onlyallows for the next-state temporal modality, only the 
hoi
eof moves to the next states of a strategy matters. Formula
��1 is thus evaluated at states with respe
t to move ve
-tors satisfying 
onstraint �. The formula is true of a moveve
tor [e1; e2℄ if and only if [e1; e2℄ j= � implies the sat-isfa
tion of � at state Æ(q; e1; e2). Also 
1:E1�1 
an bewritten as 
�1 in AMC [3℄ and the supers
ript to 
 
anbe omitted.We also adopt shorthands in the below. The � refers tostate or path formulas.true def= p _ :pfalse def= :p ^ p�1 ^ �2 def= :((:�1) _ (:�2))�1 ) �2 def= (:�1) _ �2�X:� def= :�X::�[A℄ def= :hAi: 

5.2 Semanti
sIn the following, we adapt the presentation style of [3℄ tode�ne the semanti
s of AMCE indu
tively over the stru
-ture of the subformulas. The value of a state formula ata state is determined by the interpretation of the set vari-ables. Su
h an interpretation I maps set variables to sub-sets of Q. In 
omparison, the value of a path formula ata state is determined by both the interpretation of the setvariables and the move ve
tor 
hosen by the players. For
onvenien
e and 
on
iseness of presentation, we extend thede�nition of interpretation of [3℄ also to re
ord the 
hosenmove ve
tor by some players. Spe
i�
ally, we use an auxil-iary variable �move� for the present 
hosen move ve
tor inthe evaluation of path formulas. Given an interpretation I ,I(move) re
ords the 
hosen move ve
tor of all players in I .For example, I(move) = [setAlarm;?℄ means the 
ho-sen move ve
tor that player 1 sets on an alarm while player2 does nothing under interpretation I .We need the following 
on
ept for 
ollaborative 
hoi
esof moves to the next states by some players. An enfor
edmove ve
tor set by A � [1; 2℄ is a maximal set of moveve
tors that agree on the 
hoi
es of moves by players withindi
es in A. Spe
i�
ally, given an enfor
ed move ve
-tor set C by A, we require that, for every [e1; e2℄ 2 C,[e01; e02℄ 2 C, and a 2 A, ea = e0a. For 
onvenien
e, we let�A denote the set of all enfor
ed move sets by A.Following the semanti
s style of [3℄, we 
an extend Ito be an interpretation of all state and path formulas. Intu-itively, given a state or path formula �, I(�) is the set ofstates that satisfy � a

ording to the assumption on valuesof set variable values and auxiliary variable �move.� Morepre
isely, I(�) is a subset of Q that satis�es the following16



indu
tive rules.� I(p) = fq j p 2 �(q)g.� I(�1 _ �2) = I(�1) [ I(�2).� I(:�1) = Q� I(�1).� I(�X:�1) is the smallest set Y � Q with Y = I [X 7!Y ℄(�1), where I [X 7! Y ℄ is a new interpretation iden-ti
al to I ex
ept thatX is interpreted as Y .� I(hAi ) is the set of states su
h that there is an en-for
ed move ve
tor set C by A su
h that, for all moveve
tors � 2 C, I [move 7! �℄( ) holds:I(hAi ) = SC2�A T�2C I [move 7! �℄( )� Given I(move) = [e1; e2℄, if [e1; e2℄ j= �, thenI(
��1) = fq 2 Q j Æ(q; e1; e2) 2 I(�1)g; other-wise I(
��1) = Q.A 
on
urrent game stru
ture is a model of an AMCE sen-ten
e �, if its initial state r is in the interpretation of �(r 2 I(�)) for any interpretation I .Note that, stri
tly speaking, AMCE does not add mu
hto the expressiveness of AMC. In the literature, propositionshave often been used to re
ord events. Intuitively, we wouldneed one atomi
 proposition for ea
h event to mark that ithas just o

urred. This event marker would be true exa
tlyat states right after the event happened. (One would possi-bly have to 
reate multiple 
opies of states to re�e
t this.)As dis
ussed in [43℄, su
h a modeling te
hnique leads toan unne
essary blow up of the state spa
e, whi
h 
ould beexponential in the number of players in general 
on
urrentgames. By properly sele
ting the transitions with respe
tto operators like 
�, su
h auxiliary propositions are notne
essary when en
oding the state spa
e. Thus, AMCE 
analso be of interest to pra
titioners for the ef�
ient analysisand veri�
ation of general 
on
urrent games.

6 Resilien
e level 
he
king algorithmIn Subse
tion 3.2, we have proposed the idea of thesfr
hk(�) operator and proposed to use its greatest �xedpoint for the evaluation of k-resilien
e. In the following,we �rst establish some properties of k-safety and then useAMC model-
he
king te
hnology to solve the safety re-silien
e games.6.1 High­level des
ription of the algorithmThe following lemma shows the suf�
ien
y of k-safetyas a building blo
k for solving safety resilien
e games.Lemma 5 For a safety resilien
e game G, sfr
hk(�) has agreatest �xed point.Proof : The lemma follows from the fa
ts that the fun
-tion sfr
hk is monotoni
 (S � S0 implies sfr
hk(S) �sfr
hk(S0) be
ause a winning strategy for the protagonistfor S is also a winning strategy for S0 for all states insfr
hk(S)) and operates on a �nite domain. �For the example in Figure 3, 
onsidering S = f1g(f1g = sfr
h2(f1; 2; 3g)), the only state in S, state 1, is 2-resilient: it 
an re
over with the re
overy strategy to alwaysgo to the left.The set of k-resilient states of G, 
an be 
al
ulated as thegreatest solution to S = sfr
hk(S) with S � Qr F . Te
h-ni
ally we 
an start the indu
tive 
al
ulation of the greatest�xed point from base 
ase S0 = Q r F , and su

essively
al
ulate Si+1 = sfr
hk(Si), for ea
h i � 0. The set ofk-resilient states is then the limit S1. As soon as we haveSi+1 = Si, a �xed point is rea
hed. We then have Si = S1and 
an stop the indu
tive 
onstru
tion. Sin
e S0 is �nite17



and Si+1 � Si holds for all i � 0, we will eventually rea
ha j with Sj+1 = Sj = S1.6.2 Realization with AMCE model­
he
kingWe need formally de�ne the intera
tion among strategiesof players. We borrow the notation of fun
tion 
omposition.Given two partial fun
tions �1 and �2, we use �1 Æ �2 torepresent their 
omposition. Spe
i�
ally, we have the fol-lowing de�nition.�1 Æ �2(a) = � �1(a) if �2(a) is unde�ned:�2(a) otherwiseFor our purpose, a partial strategy ve
tor is a mapping fromf1; 2g to � and 
an be unde�ned for some players in f1; 2g.It is for a party A � f1; 2g if it is de�ned only for playersin A and represents a 
ollaborative strategy of the playerswith a de�ned strategy in A. It is total if it is de�ned for allplayers.For 
onvenien
e, we also de�ne partial move ve
tors asmappings from f1; 2g to E. A partial move ve
tor is for aparty A � f1; 2g if it is de�ned only for players in A. Itis total if it is de�ned for all players in f1; 2g. Given twopartial move ve
tors 
1 and 
2, we de�ne 
1Æ
2 to representthe 
omposition of the two ve
tors.Given an S, we propose to 
onstru
t sfr
hk(S) in an in-du
tion on k. We need the following preliminary 
on
eptsfor the presentation.De�nition 9 (Traps) For A � f1; 2g, a trap for A is a sub-set Q0 � Q that party f1; 2g r A has a strategy ve
tor� to keep all plays from leaving Q0. Formally, we requirethat, for every q 2 Q0 and partial move ve
tor 
 for A,there exists a partial move ve
tor 
0 for f1; 2g r A su
hthat Æ(q; 
 Æ 
0(1); : : : ; 
 Æ 
0(m)) 2 Q0. �

6.2.1 Base 
ase, sfr
h0(S)In the base 
ase, sfr
h0(S) 
hara
terizes those states, fromwhi
h the protagonist 
an dire
t the plays to S and staythere via a protagonist strategy when there is no error in-je
ted by the antagonist. Thus sfr
h0(S) is the greatest trapfor the antagonist to S when no error happens and the great-est solution to the following equation.X = �q ���� q 2 X \ S; e 2 E1;8e0 2 E2(e0 6= noerr) Æ(q; e; e0) 2 X) �.In AMCE, we 
an alternatively de�ne sfr
h0(S) as follows.sfr
h0(S) def= �X:(S ^ h1i 
:2:error X).This is the usual safety kernel of S, whi
h 
onsists of thosestates, from whi
h any 
ontrolled transition is safe. It 
anbe 
omputed by the usual greatest �xed point 
onstru
tion.Lemma 6 sfr
h0(S) 
an be 
onstru
ted, together with asuitable memoriless 
ontrol strategy, in time linear to thesize of G.Proof : A state q 2 S 
an stay in sfr
h0(S) if there is a
hoi
e e 2 E1 su
h that for all f 2 E2, Æ(q; e; f) 2sfr
h0(S). Basi
ally, we 
an use the typi
al approa
h ofiterative elimination to 
al
ulate sfr
h0(S). That is, we �rstlet K0 = Q� S. Then we a sequen
e of mutually disjointsets K1;K2; : : : ;Ki; : : : su
h that for all i � 1, states inKi+1 
an be shown to be not in sfr
h0(S) by eviden
es ofstates in Ki [ : : : [ K0. Linear time 
an be a
hieved with
areful book-keeping of the 
hoi
es of moves at all statesin S. We need a 
ounter 
q for ea
h q 2 S initialized tojE1j for the initial number of 
andidate 
hoi
es of moves.Then for ea
h [q; e℄ 2 S�E1, we need a Boolean �ag b[q;e℄initialized to true to represent that f[e; f ℄ j f 2 E2g is stilla valid 
hoi
e of moves at q to satisfy sfr
h0(S). For ea
h18



Table 2. Algorithm for sfr
h0(S) by iterativeeliminationsfr
h0(S)1: for q 2 S do 
q = jE1j end for2: for q 2 S; e 2 E1 do b[q;e℄ = true end for3: Let i = 0 andK0 = Q� S.4: whileKi 6= ; do5: LetKi+1 = ;.6: for q 2 Ki and [q0; e; f ℄ 2 Lq do7: if b[q0;e℄ is true then8: Let 
q0 = 
q0 � 1.9: if 
q0 is 0 then add q0 toKi+1. end if10: end if11: Set b[q0;e℄ to false.12: end for13: In
rement i by 1.14: end while15: return S � (K0 [ : : : [Ki).state q, we also need to maintain a list of transition sour
estates. That is, for ea
h Æ(q0; e; f) = q, we need re
ord[q0; e; f ℄ in list Lq. Then the iterative elimination pro
eedsas the algorithm in table 2. The algorithm is linear timesin
e ea
h transition Æ(q; e; f) is 
he
ked exa
tly on
e. �6.2.2 Indu
tive 
ases, sfr
hk(S)Now we explain how to de�ne the indu
tive 
ases ofsfr
hk(S). The 
ondition is for those states from whi
hplays 
an be dire
ted to S via a re
overy segment in Q r(S [ F ) with k or less errors inje
ted by the antagonist. Anintermediate step for the 
onstru
tion of k-sfr
h states is the
onstru
tion of an attra
tor that 
ontrols, through 
ontrolledmoves, the play pre�xes to stay in a subset L � Q r F ofnon-failure states. As only 
ontrolled (non-error)moves areallowed, this is merely a ba
kward rea
hability 
one.The 
ontrolled limited attra
tor set of a set X for a lim-ited regionL � Q, denoted 
oneL(X) is the set fromwhi
hthere is a protagonist strategy to move to X without leav-

ing L and errors inje
ted by the antagonist. Te
hni
ally,
oneL(X) is the least solution to equation:Y = X [ �q ���� q 2 L; e 2 E1;8e0 2 E2 r ferrorg(Æ(q; e; e0) 2 Y ) �.The 
ontrolled limited attra
tor set 
oneL(X) 
an be 
on-stru
ted using simple ba
kward rea
hability for X of 
on-trolled transitions through states of L. In AMCE, this 
anbe 
onstru
ted as follows.
oneL(X) def= �Y:(X _ (L ^ h1i 
:2:error Y ))Note that the protagonist must use the same move irrespe
-tive of the move of the antagonist to both stay in L andapproa
hX , provided that the antagonist does not inje
t anerror.The 
ontrolled limited attra
tor set 
oneL(X) is used inthe 
onstru
tion of sfr
hk(S). We further 
onstru
t a de-s
ending 
hain V0 � V1 � : : : � Vk�1 of limited attra
torsVi. From Vi we have an attra
tor strategy towards S for theprotagonist, whi
h 
an tolerate up to i further errors. Therespe
tive Vi are attra
tors that avoid failure states. More-over, from a state in Vi with i > 1, any error transition leadsto Vi�1.A state q 2 Q is fragile for a set B � Q if, for all movesof the protagonist, at least one of its su

essors is outsideof B. (The intuition is that this is an error move, and forsimple safety resilien
e game stru
tures, we 
an restri
t thede�nition to failure states.) The set of fragile states for B isfrag(B) def= fq j 8e 2 E19e0 2 E2(Æ(q; e; e0) =2 B)g.In AMCE, we have the following formulation of frag(B).frag(B) def= [1℄
:B.Te
hni
ally, it is, however, easier to 
onstru
t its dual19



Qr frag(B) = h1i 
 B.This dual 
an be 
onstru
ted using a 
ontrolled ba
kwardrea
hability to B with any strategy of the protagonist.The limited regions Li of states allowed when approa
h-ing S also form a des
ending 
hain L0 � L1 � : : : � Lk.Using these building blo
ks, we 
an 
ompute the k-sfr
hstates as follows. The states in Li+1 are the non-failurestates from whi
h all error transitions lead to a state in Vi.The sets Vi 
ontain the states from whi
h there is a 
on-trolled path to S that progresses through Li; all error tran-sitions originating from any state of this path lead to Vi�1.V0 is therefore just the set of states from whi
h there is a
ontrolled path to S.From all states in Vk�1, the protagonist therefore has anoptimal strategy in the re
overy segment of the game de-s
ribed earlier: if the antagonist 
an play at most k � 1errors, then the protagonist 
an make sure that S is rea
hed.Starting with L0 def= Q r F that 
hara
terizes 
ones onthe way to S without any errors, we de�ne the Vk's andLk'sindu
tively byLk def= L0 r frag(Qr 
oneLk�1(S)),In AMCE, this 
an be de�ned indu
tively as follows.L0 def= :FLk def= L0 ^ h1i 
 
oneLk�1(S):Finally, we 
hoose sfr
hk(S) def= sfr
h0(S \ Lk). InAMCE, this 
an be expressed as follows.sfr
hk(S) def= sfr
h0(S ^ Lk).6.2.3 Algorithm for the set of k-resilient statesFinding a 
ontrol strategy for k-sfr
h 
ontrol withinsfr
hk(S) is simple: as long as we remain in sfr
hk(S) =

sfr
h0(S \ Lk), we 
an 
hoose any 
ontrol move that doesnot leave sfr
hk(S). On
e sfr
hk(S) is left through an er-ror transition to Vk�1; Vk�2; :::, we determine the maximali for whi
h it holds that we are in Vi and follow the attra
torstrategy of 
oneLi(S) towards S.In summary, we present our algorithms for the set of k-resilient states in Table 3. In fa
t, we have presented twoalgorithms. The �rst 
onstru
ts sfr
hk(S), whi
h 
an beused for 
he
king whether the safety region S provided bythe users is indeed a good one. The way to do it is to simply
he
k whether S is a solution to sfr
hk(x) = x.Then our se
ond algorithm 
al
ulates resk(G) as thegreatest �xed point S of sfr
hk(:) as the re
ommendationfor the safety region:resk(G) =[fS � Q j S = sfr
hk(S) and S [ F = ;g:In this way, the users do not have to 
al
ulate and providethe safety region, whi
h would be error prone. A

ording tothe argument and lemmas from above, we get the followingtheorem.Theorem 7 G is k-resilient if, and only if, r 2 resk(G). �6.3 ComplexityA rough 
omplexity of our resilien
e level 
he
king al-gorithm straightforwardly follows the 
omplexity of AMCmodel-
he
king. Spe
i�
ally, the following lemma ex-plains the maximal resilien
e level that we need 
onsider.For 
onvenien
e, let kmax be the maximal resilien
e levelof G.Lemma 8 kmax is either in�nite or no greater than jQrF j.20



L0 def= :FLk def= :F ^ h1i 
 �y:S _ (Lk�1 ^ h1i 
error y ^
Lk�1)sfr
h0(S) def= �x:(S ^ h1i 
error x)sfr
hk(S) def= sfr
h0(S ^ Lk)resk(G) def= �S:((Qr F ) ^ sfr
hk(S)) : the set of k-resilient statesTable 3. Algorithm for k­resilient statesProof : We assume that kmax is greater than jQ r F j butnot in�nite. This means that there exists a failed re
ov-ery segment � with k + 1 errors inje
ted by the antagonist.Sin
e the protagonist 
an only use memoryless strategies,there must be two position indi
es i < j < j�j � 1 with�(i) = �(j) in the re
overy segment su
h that at �(i) and�(j), the protagonist makes the same move while the antag-onist makes different moves. This implies the existen
e ofa shorter failed re
overy segment �[0; i℄�[j+1; j�j�1℄. Byrepeating the above argument, we 
an eventually identify afailed re
overy segment of length � jQ r F j that 
ontra-di
ts the assumption and establishes the lemma. �With Lemma 8, we 
an use the 
omplexity of AMCmodel-
he
king problem [3℄ to straightforwardly establishtheO(kmaxjEj)2 = O(jQrF j�jEj)2 
omplexity of resk(G)when k is kmax. In the following, we present a moredetailed analysis of the 
omplexity of our resilien
e level
he
king algorithm. All individual steps in the 
onstru
tion(interse
tion, differen
e, prede
essor, and attra
tor) are lin-ear in the size of the safety resilien
e game, and there areO(k) of these operations in the 
onstru
tion. This providesa bi-linear (linear in k and jGj) algorithm for the 
onstru
-tion of sfr
hk and a strategy for the protagonist.Lemma 9 A memoryless 
ontrol strategy for the states insfr
hk(S) 
an be 
onstru
ted in time linear in both k andthe size jGj of the safety resilien
e game G. �

The 
onstru
tion of resk(G) uses the repeated exe
utionof (Q r F ) ^ sfr
hk(�). The exe
ution of sfr
hk(�) needsto be repeated at most jQ r F j times until a �xed point isrea
hed, and ea
h exe
ution requires at mostO(k �jGj) stepsby Lemma 9.For the 
ontrol strategy of the protagonist, we 
an sim-ply use the 
ontrol strategy from sfr
hk(S1) from the�xed point S1. This 
ontrol strategy is memoryless (
f.Lemma 9).Lemma 10 resk(G) and a memoryless k-resilient 
ontrolstrategy for resk(G) 
an be 
onstru
ted inO(k�jQrF j�jGj)time. �Finding the resilien
e level kmax for the initial state r re-quires at most O(log kmax) many 
onstru
tions of resi(G).We start with i = 1, double the parameter until kmax isex
eeded, and then use logarithmi
 sear
h to �nd kmax.Corollary 11 For the initial state r, we 
an determine theresilien
e level kmax = maxfi 2 N j r 2 resi(Q r F )gof r, reskmax(Q r F ), and a memoryless kmax-resilient
ontrol strategy for reskmax(Q r F ) in O(jQ r F j � jGj �kmax log kmax) time. �Simple safety resilien
e game stru
tures. For simplesafety resilien
e game stru
tures, 
he
ing if a state is insfr
h0(S) is NL-
omplete.21



Lemma 12 Testing if a state is in sfr
h0(S) is NL-
omplete.Proof: NL 
ompleteness 
an be shown by redu
tionto and from the repeated ST-rea
hability [33℄ (the questionwhether there is a path from a state S to a state T and fromT to itself in a dire
ted graph).Likewise, the 
ontrolled limited attra
tor set 
oneL(S)
an be 
onstru
ted using simple ba
kwards rea
habilityfor G of 
ontrolled transition through states of L. ForA = 
oneL(S), determining whether a state is in A is NL-
omplete (see [33℄).The 
omplexity of determining whether or not a state qis in sfr
hk(S) thus depends on whether or not we 
onsiderk to be a �xed parameter. Considering k to be bounded (or�xed) is natural in our 
ontext, be
ause k is bounded by theredundan
y.Lemma 13 For a �xed parameter k, testing if a state s ofa simple safety resilien
e game stru
tures is in sfr
hk(S) isNL-
omplete.Proof: Testing if a state is in L0 is in NL. By an indu
-tive argument, we 
an show that� provided that testing if a state is in Li is in NL, we 
antest if a state is in Ai = 
oneLi(S) by using the non-deterministi
 power to guess a path towards S, whileverifying that we are inLi in every state we pass beforeS is rea
hed; and� if we 
an 
he
k if a state is in Ai in NL, then we 
an
he
k if it is in Q r Ai [27℄, in frag(Q r Ai) (withone nondeterministi
 transition), and in Li+1 = L0 rfrag(S rAi) [27℄ in NL.

Testing that a state is in S \ Lk is therefore in NL andtesting if it is in sfr
h0(S\Lk) redu
es to guessing a state tin sfr
hk(G) and an ST path (a path from s to t followed bya loop from t to t), verifying for all states on the path thatthey are in S \ Lk.For hardness, note that the last step of the 
onstru
tionalone is NL-
omplete (Lemma 6).If k is 
onsidered an input, then rea
hability in AND-ORgraphs 
an easily be en
oded in LOGSPACE: It suf�
es touse the nodes of an AND-OR graph as the states, the out-going edges of OR nodes as the result of the 
hoi
e of theprotagonist only (while the move of the antagonist has noin�uen
e on the out
ome, no matter whether or not she in-du
es an error), and to model the AND nodes as a state,where the no-error move of the antagonist will lead in 
y-
ling in the state, while the antagonist 
an 
hoose the su
-
essor from the graph when indu
ing an error. Choosing kto be the number of nodes of the AND-OR graph and F tobe the target nodes of the AND-OR graph, the target nodesof the AND-OR graph are not rea
hable from a state s iffs 2 sfr
hk(Qr F ).Given that rea
hability in AND-OR graphs is PTIME-
omplete [26℄, this provides:Lemma 14 If k is 
onsidered an input parameter, then test-ing if a state s of a simple safety resilien
e game stru
turesis in sfr
hk(S) is PTIME-
omplete. �The 
omplexity of resk(S) is (almost) independent of theparameter k:Theorem 15 The problem of 
he
king whether or not astate s is k-resilient for a set S is PTIME-
omplete for allk > 0 and NL-
omplete for k = 0.22



Proof: We have shown in
lusion in PTIME inLemma 10. For hardness in the k > 0 
ase, we 
an usethe same redu
tion from the rea
hability problem in AND-OR graphs as for sfr
hk(S).For k = 0, sfr
h0(G) = sfr
h0�sfr
h0(G)� impliesres0(G) = sfr
h0(G). The problem of 
he
king if a state isin res0(G) is therefore NL-
omplete by Lemma 12.
Hardness for general safety resilien
e game stru
tures.For general resilien
e game stru
tures, we 
an again use aLOGSPACE redu
tion from the rea
hability in AND-ORgraphs: We again use the nodes of an AND-OR graph asthe states, and the outgoing edges of OR nodes are se-le
ted based on the 
hoi
e of protagonist only. For the ANDnodes, we leave the 
hoi
e to the antagonist only, whithoutthe need to invoke an error. (That is, errors play no role inthis redu
tion. The antagonist may be allowed to insert one,but she 
an always obtain the same transition without doingso.)Marking F as the target nodes, we get resk(Q r F ) =sfr
hl(Q r F ) for all non-negative integers k; l, and s 2sfr
h0(Q r F ) iff the target nodes of the AND-OR graphare not rea
hable from s. With Lemmas 9 and 10, we getthe following theorem.Theorem 16 For all k � 0, the problems of 
he
kingwhether or not a state s is in resk(QrF ) and resk(QrF ),respe
tively, are PTIME-
omplete for general safety re-silien
e game stru
tures.

7 Tool implementation and experimental re-sultsIn the following, we report our implementation and ex-periment with our 
onstru
tions. Our implementation isbased on symboli
 on-the-�y model-
he
king te
hniquesand built on the simulation/model-
he
king library ofREDLIB in https://github.
om/yyergg/Resilfor fast implementation. Our implementation and ben
h-marks 
an also be found in the same page.We adopt CEFSM (
ommuni
ating extended �nite-statema
hine) [7℄ as a 
onvenient language for the des
riptionof abstra
t models of our 
on
urrent game stru
tures. ACEFSM 
onsists of several �nite-state ma
hines extendedwith shared variables for the modeling of shared memoryand with syn
hronizations for the modeling of message-passing in distributed systems. This is justi�able sin
e thefault-tolerant algorithms may themselves be subje
t to re-stri
tions in 
on
urrent or distributed 
omputation. Indeed,we found CEFSM very expressive in modeling the ben
h-marks from the literature [12, 38℄.The translation from our CEFSMs to state transition sys-tems, su
h as �nite Kripke stru
tures, is standard in the lit-erature. All state spa
es, 
onditions, pre
onditions, post-
onditions, �xed points, et
., are represented as logi
 for-mulas. The logi
 formulas are then implemented withmulti-value de
ision diagrams (MDD) [32℄.We then took advantage of the support of REDLIB forwriting down template automatas for 
onstru
ting 
omplexmodels. We spe
i�ed a template automata with REDLIB todes
ribe the moves of the players. Con
eptually, the playerautomatas are 
onstru
ted as an instan
e of the template au-tomata. Then the whole game stru
ture is 
onstru
ted as the23



produ
t of all player automatas. Finally, we use the API ofREDLIB to do on-th-�y 
onstru
tion of the game stru
turewhi
h 
an be advantageous sin
e unrea
hable states willnever be generated.7.1 Ben
hmarksWe use the following �ve parameterized ben
hmarks to
he
k the performan
e of our te
hniques. Ea
h ben
hmarkhas parameters for the number of parti
ipating modules inthe model. Su
h parameterized models 
ome in handy forthe evaluation of the s
alability of our te
hniques with re-spe
t to 
on
urren
y and model sizes.1. We use the example of a fault-tolerant 
omputer ar
hi-te
ture (Example 1) as our �rst ben
hmark. An im-portant feature of this ben
hmark is that there is an as-sumed me
hanism for dete
ting errors of the modules.On
e an error is dete
ted, a pro
essor 
an be assignedto re
over the module, albeit to the 
ost of a redu
edredundan
y in the exe
utions.2. Voting is a 
ommon te
hnique for fault toleran
ethrough repli
ation when there is no me
hanism to de-te
t errors of the modules [36℄. In its simplest form, asystem 
an guarantee 
orre
tness, provided less thanhalf of its modules are faulty. This ben
hmark im-plements this simple voting me
hanism. Every timea voting is requested, the modules submit their ballotsindividually. Then we 
he
k how many module fail-ures the system 
an endure and re
over.3. This is a simpli�ed version of the previous votingben
hmark, where we assume that there is a bla
k-board for the 
lient to 
he
k the voting result.

4. Pra
ti
al Byzantine fault-toleran
e (PBFT) algorithm:We use an abstra
t model of the famous algorithm byCastro and Liskov [12℄. It does not assume the avail-ability of an error-dete
tion me
hanism but uses vot-ing te
hniques to guarantee the 
orre
tness of 
ompu-tations when less than one third of the voters are faulty.This algorithm has impa
t on the design of many pro-to
ols [2, 14, 15, 23, 29℄ and is used in Bit
oin [1℄, apeer-to-peer digital 
urren
y system.5. Fault-tolerant 
lo
k syn
hronization algorithm: Clo
ksyn
hronization is a 
entral issue in distributed 
om-puting. In [38℄, Ramanathan, Shin, and Butler pre-sented several fault-toleran
e 
lo
k syn
hronizationalgorithms in the presen
e of Byzantine faults withhigh probability. We use a nondeterministi
 abstra
tmodel of the 
onvergen
e averaging algorithm fromtheir paper. The algorithm is proven 
orre
t when nomore than one third of the lo
al 
lo
ks 
an drift to eighttime units from the median of all 
lo
k readings.7.2 Modeling of the fault­tolerant systemsAppropriate modeling of the ben
hmarks is always im-portant for the ef�
ient veri�
ation of real-world target sys-tems. Many unne
essary details 
an burden the veri�
ationalgorithm and blow up the 
omputation, while sket
hymod-els 
an then give too many false alarms and miss 
orre
tben
hmarks. We have found that there is an interesting as-pe
t in the modeling of the above ben
hmarks. Repli
ationand voting are 
ommonly adopted te
hniques for a
hiev-ing fault-toleran
e and resilien
e. Su
h fault-tolerant al-gorithms usually 
onsist of several identi
al modules that24



use the same behavior templates. This observation impliesthat the identity of individual modules 
an be unimportantfor some ben
hmarks. For su
h ben
hmarks, we 
an use
ounter abstra
tion [20, 31℄ in their models. Spe
i�
ally,with 
ounter abstra
tion, we 
an model all system playerswith one player that keeps a 
ounter 
(l) for ea
h 
ontrollo
ation l in the template automatas. Then at a state of thewhole game graph, 
(l) re
ords the number of system play-ers at lo
ation l. With this te
hnique, a system with m � 1system player and one error model player is then redu
ed totwo players: one 
ounter-abstra
tion player for all the sys-tem players and one remaining error model player. If a sys-tem player enters a lo
ation l in a global transition, then inthe model, 
(l) is in
remented by one in the abstra
t globaltransition. If a system player leaves l in the global transi-tion, then 
(l) is de
remented by one in the abstra
t globaltransition. But the su

ession of lo
ation movements of aparti
ular player is omitted from the abstra
tion.We found that we 
an use 
ounter abstra
tion to provethe 
orre
tness of ben
hmarks 1, 2, and 3. In 
ontrast, thePBFT and the 
lo
k syn
hronization algorithms use 
oun-ters for ea
h module to model the responses re
eived fromits peer modules. As a result, we de
ided not to use 
ounterabstra
tion to model these two algorithms in this work.In the following, we explain how to apply our te
hniquesto analyze the resilien
e levels of the avioni
 systems in Ex-ample 1. The appli
ation is a
hieved in three steps. We �rstmodel the system under analysis either as a plain CEFSMor with 
ounter abstra
tion (if our analysis tool 
annot han-dle the 
omplexity of the plain CEFSM). We then build theprodu
t automaton of the CEFSM as the resilien
e gamestru
ture ex
ept for the move ve
tors. Finally, we 
onvert

the labels on the transitions of the produ
t automaton tomove ve
tors of the two players. Note that the moves maynot 
orrespond to the transition labels of the CEFSM.Step 1: the 
onstru
tion of the CEFSMWe �rst present the CEFSM model template of Exam-ple 1 in Figure 4. The CEFSM model has n pro
essorsand m memory modules. Figures 4(a) and (b) are for theabstra
tion of pro
essors and memory 
opies, respe
tively.The ovals represent lo
al states of a pro
essor or a memorymodule, while the arrows represent transitions. The transi-tions of a CEFSM are labeled with `error', `C' (for Con-trol), or `R' (for re
overy).We also use syn
hronizers to bind pro
ess transitions.For example, when a memory module moves into a faultystate, an idle pro
essor may issue an fd (error-dete
ted)event and try to repair the module by 
opying memory 
on-tents from normal memory modules. Su
h error-dete
tionis usually a
hieved with standard hardware. Note that theben
hmarks are models that re�e
t the re
overy me
ha-nism, abstra
ting away the details of the original systems.A 
entral issue in the design of this re
overy me
hanismis then the resilien
e level of the 
ontrolled systems. Weneed three syn
hronizers: fd for error dete
tion by a pro-
essor, rs for re
overy su

ess, and rf for re
overy failure.The three syn
hronizers are used to bind a transition froma pro
essor and another from a memory module into a syn-
hronized transition. For example, a pro
essor at state pidleand a memory module at state mfaulty may simultaneouslyenter their p
opy andm
opy states respe
tively through syn-
hronizers !fd (for sending the syn
hronizer) and ?fd (forre
eiving). We also 
onveniently use a variable q in this25



Figure 4. CEFSM templates of n pro
essors and m memory 
opiessyn
hronized transition to 
apture the identi�er of the mem-ory module re
eiving the syn
hronizer. A transition withoutsyn
hronization labels is 
onsidered a trivial syn
hronizedtransition. The transition system of the CEFSM operateswith interleaving semanti
s at the abstra
tion level of thesyn
hronized transitions.
For 
ounter abstra
tion, we need four global variables
rp, 
fp, 
rm, and 
fm respe
tively to keep tra
k of the num-bers of running pro
essors, faulty pro
essors, runningmem-ory modules, and faulty memory modules. We also need alo
al variable idm for ea
h pro
essor to re
ord the faultymemory module identi�er that the pro
essor is responsiblefor re
overy. We label the 
ontrollable, error, and re
overytransitions respe
tively with `C', `error', and `R'. We alsolabel ea
h transition with syn
hronizers and a
tions. At anymoment, the pro
essors and the memory modules may en-ter their running states, exe
ute a task, and generate the out-
ome. A pro
essor starts its exe
ution from state prunwhilea memory module starts from state mrun.

Step 2: building the produ
t automataThe produ
t automata is a Kripke stru
ture whose statesare of is a ve
tor [p1; : : : ; pn; i1; : : : ; in; s1; : : : ; sm℄ of 2n+m elements. For all k, pk and ik respe
tively represent the
urrent lo
ation and the 
urrent idm value of pro
essor kwhile sk represents the 
urrent lo
ation of memory mod-ule k. Then interleaving semanti
s that ea
h time only aglobal transition (a single lo
al pro
ess transition withoutsyn
hronizers or two lo
al pro
ess transition bound by asyn
hronizer) is exe
uted is adopted to determine the transi-tion relation from one state to another. Su
h te
hniques arestandard in model 
onstru
tion. REDLIB 
an help in thisregard by 
onstru
ting the Kripke stru
ture in an on-the-�ystyle to avoid the 
onstru
tion of those states not rea
hablefrom the initial state.Step 3: the labeling of the move ve
torsAfter the se
ond step, we have the game stru
ture readyex
ept for the move ve
tors on the transitions. We useE1 = fC;R; nopg, where nop represents �no operation,�26



and E2 = fnoerr; errorg. Then we use the following threerules to label move ve
tors.� Every global transition with one 
omponent lo
al pro-
ess transition labeled with error is labed with moveve
tor [nop; errorg.� Every global transition with a 
omponent lo
al pro
esstransition labeled with R is labeled with move ve
tor[R; noerr℄.� All other global transitions are labeled with move ve
-tor [C; noerr℄.Counter abstra
tion of the exampleWe also use the CEFSM in �gure 4 to explain 
ounterabstra
tion. We need eight 
ounter variables: pr, pi, p
, pf,mr, mi, m
, andmf to respe
tively re
ord the number of pro-
esses in lo
ation prun, pidle, p
opy, pfaulty, mrun, midle,m
opy, and mfaulty in a state. Then the 
ounter abstra
tionof the CEFSM is in Figure 5. The initial state are spe
i�edwith 
onstraint: pr = n^ pi = 0^ p
 = 0^ pf = 0^mr =m^mi = 0^m
 = 0^mf = 0 on the 
ounters. The state inthe produ
t automata must satisfy the following 
onstraints:pr+ pi+ p
+ pf = n^mr+mi+m
+mf = m. As 
an beseen, we do not 
are whi
h pro
essor is in the idle mode, inthe running mode, et
., in this abstra
tion. Similarly, we donot 
are whi
h memory module is in the idle mode, in therunning mode, and et
. The lo
al state transition only keepstra
ks of the number of pro
essors in ea
h mode and thenumber of memory modules in ea
h mode. We also do not
are whi
h pro
essor is in 
harge of the re
overy of whi
hmemory module. Su
h an abstra
tion 
an be done automat-i
ally.The labeling of the move ve
tors on the transitions in

the Kripke stru
ture (produ
t automaton) follows the samerules for the produ
t automaton from the CEFSM in Fig-ure 4.Analysis of the game stru
tureThe majority out
ome of the pro
essors and memory
opies is used as the out
ome of the system. A pro
essormay enter the faulty state. A memory module may also en-ter the faulty state. Pro
essors may 
ontrol to re
over them-selves or a faulty memory module by 
opying the 
ontentsof a fun
tioning memory module to the faulty one. At anymoment, we want to make sure that we 
an always re
overto a global 
ondition with the following two restri
tions.� There are at least two more pro
essors in the runningmode than the pro
essors in the faulty mode.� There are at least two more memory 
opies in the run-ning mode than memory 
opies in the faulty mode.Together, the failure 
ondition is 
rp�
fp < 2_
rm�
fm <2. That is, all states in the transition system satisfying 
rp�
fp < 2 _ 
rm� 
fm < 2 are in set F .Tool implementation and the ben
hmarks used in theexperiment 
an all be found in our Sour
eforge REDLIBproje
t at https://github.
om/yyergg/Resil.7.3 Performan
e dataWe report the performan
e data in Table 4 for the re-silien
e algorithms des
ribed in Se
tion 7.1 against the pa-rameterized ben
hmarks in the above with various parame-ters. The se
ond 
olumn shows the 
on
urren
y sizes. Thethird 
olumn shows the values of k for the rows. The fourthand �fth 
olumns show the sizes of the 
on
urrent game27



Figure 5. Counter abstra
tion of the CEFSM templates of n pro
essors and m memory 
opiesstru
tures. The sixth and seventh 
olumns show the timeand spa
es used to 
al
ulate sfr
hk(). Similarly, the eighthand ninth 
olumns show the time and spa
es for 
al
ulatingthe resk().The ben
hmark in Figure 4 does not have nodes insfr
h2(G) and res2(G). So we 
hanged the ben
hmark tosee how we 
he
k our implementation with k > 1. The
hange is that the re
overy transition from state p
opy to pi-dle of pro
essors are relabeled as 
ontrollable. This 
hangesigni�
antly limits the ability of the system errors to derailthe system. For the avioni
s system, the resilien
e level k isset to one less than half the number of pro
essors. For thevoting and simple voting ben
hmarks, the value of k is setto one less than half the number of repli
as (voters). For thePBFT and 
lo
k syn
hronization algorithm, we 
hoose k tobe one less than one third of the number of repli
as.The performan
e data has been 
olle
ted with a VirtualMa
hine (VM) running opensuse 11.4 x86 on Intel i7 2600k3.8GHz CPU with 4 
ores and 8G memory. The VM onlyuses one 
ore and 4G memory.The time and spa
e used to 
al
ulate resilien
e is a lit-tle bit more than that to 
he
k for sfr
h. The reason is thatsfr
hk is a pre-requisite for 
al
ulating resk. In our exper-

iment, sfr
hk is usually very 
lose to resk and does not re-quire mu
h extra time in 
al
ulating resk out of sfr
hk.The experiments show that our te
hniques s
ale to real-isti
 levels of redundan
y. For fault-tolerant hardware, usu-ally the numbers of repli
as are small, for example, less than10 repli
as. Thus our te
hniques seem very promising forthe veri�
ation and synthesis of hardware fault-toleran
e.On the other hand, nowadays, software fault-toleran
ethrough networked 
omputers 
an 
reate huge numbers ofrepli
as. Our experiment shows that 
ounter abstra
tion 
anbe a useful te
hniques for the modeling and veri�
ation ofsoftware resilien
e. Spe
i�
ally, for the avioni
s ben
h-mark, we 
an verify models of mu
h higher 
on
urren
yand 
omplexity with 
ounter abstra
tion than without.8 Related workWe have applied game-based te
hnqiues [13, 34, 37℄ forsynthesizing a 
ontrol me
hanism with maximal resilien
eto software errors. The synthesis of 
ontrol strategies is es-sential in solving games with temporal and !-regular ob-je
tives. For these more 
omplex obje
tive, synthesis goesba
k to Chur
h's solvability problem [13℄ and inspired Ra-bin's work on �nite automata over in�nite stru
tures [37℄28



Table 4. Performan
e data for resilien
e 
al
ulation s: se
onds; M: megabytesben
hmarks 
on
urren
y k game sizes sfr
hk resk#nodes #edges time memory time memoryavioni
s 2 pro
essors & 2 memory modules 2 118 750 0.62s 114M 0.85s 116M2 pro
essors & 3 memory modules 2 414 3252 0.94s 139M 1.10s 153M3 pro
essors & 3 memory modules 3 1540 15090 4.67s 225M 8.38s 267M3 pro
essors & 4 memory mdules 3 5601 63889 42.86s 815M 155s 846Mavioni
s 6 pro
essors & 6 memory modules 2 1372 6594 2.89s 129M 3.54s 516M(
ounter 7 pro
essors & 7 memory modules 3 2304 11396 10.7s 216M 23.4s 808Mabstra
tion) 8 pro
essors & 8 memory modules 3 3645 18432 43.8s 1009M 135s 2430Mvoting 1 
lient & 20 repli
as 9 9922 23551 7.01s 260M 36.7s 297M1 
lient & 26 repli
as 12 20776 49882 19.9s 474M 79.6s 611Msimple 1 
lient & 150 repli
as 74 458 1056 0.71s 159M 31.7s 219Mvoting 1 
lient & 200 repli
as 99 608 1406 1.06s 161M 162s 337M1 
lient & 250 repli
as 124 758 1756 1.36s 163M 307s 499MPBFT 1 
lient & 6 repli
as 2 577 897 0.34s 72M 1.05s 193M1 
lient & 9 repli
as 4 2817 4609 13.3s 564M 58.5s 1657M
lo
k 1 
lient & 15 servers 7 16384 229376 45.1s 3075M 62.4s 3264Msyn
 1 
lient & 17 severs 8 65536 1070421 870s 14725M 915s 15433Mand Bü
hi and Landweber's works on �nite games of in�-nite duration [10,11℄. A righ body of literature on synthesishas sin
e been developed [6, 18, 22, 30, 35, 39,40℄.Traditionally, fault toleran
e refers to various basi
 faultmodels [6℄, su
h as a limited number of errors [28℄. Thesetraditional fault models are subsumed by more general syn-thesis or 
ontrol obje
tives [5, 6, 42℄; as simple obje
tiveswith pra
ti
al relevan
e, they have triggered the develop-ment of spe
ialized tools [18, 22℄.Dijkstra's self-stabilization 
riterion [4, 16℄ suggests tobuild systems that eventually re
over to a `good state', fromwhere the program 
ommen
es normally. Instead of 
on-stru
ting a system to satisfy su
h a goal, one might want toapply 
ontrol theory to restri
t the exe
ution of an existingsystem to a
hieve an additional goal. Our 
ontrol obje
tiveis a re
overy me
hanism for up to k errors. After re
ov-ery, the system has to tolerate up to k errors again, and soforth. In this work, we suggest a me
hanism to synthesizea re
overy me
hanism for a given fault model and re
overy

primitives.In [17℄, an interesting notion of robustness based onHamming and Lewenstein distan
e related to the numberof past states is de�ned. It establishes a 
onne
tion betweenthese distan
es with a notion of syn
hronization that 
har-a
terizes the ability of the system to reset for 
ombinatorialsystems. In [9℄, `ratio games' are dis
ussed, where the ob-je
tive is to minimize the ratio between failures indu
ed bythe environment and system errors 
aused by them.Besides using our simple game model that neither referdire
tly to time, nor to probabilities, one 
an also 
onsidermodels that make these aspe
ts expli
it. Their analysis isfar more 
omplex (with [21℄ offering the best 
omplexitybounds), and so are the resulting strategies. If we, for ex-ample, return to the example of airplanes with an opera-tion time of 20 hours referred to in Table 1, then an optimaltimed model would take the remaining operation time intoa

ount. When the remaining time is two minutes, the bal-an
e between being resilient against waves of two errors29



and being resilient against 5 errors looks very different, andthe optimal 
ontrol would 
hange over time rather than be-ing stati
. Another impli
ation of more 
omplex modelswould be that the error model would have to be more de-tailed. Even if one assumes that a simple 
on
ept like safestates persists, it depends on the �neties of su
h a model ifa two step path ba
k to it where an error after step one leadsto system failure is preferable over a mu
h longer path, saythrough 10,000 intermediate states, where one error 
an betolerated during re
overy.We believe that the independen
e from su
h details is anadvantage of our te
hnique, partly be
ause it is simpler and
heaper, and partly be
ause the further advantages one 
anobtain frommore detailed error models rely heavily on veryknowledge of (or, realisti
ally, on very detailde assumptionson) how errors are distributed.In [8, 19℄ the resilien
e model we have introdu
ed [25℄has been applied for synthesising robust 
ontrol in anassume-guaranee setting to produ
e robustness against o
-
asional non
omplian
e of the environment with the as-sumptions of its behavior.9 Con
lusionWe have introdu
ed an approa
h for the development ofa 
ontrol of safety 
riti
al systems that maximizes the num-ber of dense errors the system 
an tolerate. Our te
hniquesare inspired by the problem of 
ontrolling systems with re-dundan
y: in order to de�e
t the effe
t of individual er-rors, safety 
riti
al systems are often equipped with multi-ple 
opies of various 
omponents. If one or more 
ompo-nents fail, su
h systems 
an still work properly as long asthe 
orre
t behavior 
an be identi�ed.

This has inspired the two-phase formulation of the safetyresilien
e problems in this arti
le. In the �rst phase, weidentify a k-resilient region, while we develop a 
ontrolstrategy for re
overy in the se
ond phase. After an error,the 
ontroller 
an re
over to the k-resilient region withouten
ountering a system failure, unless the error is part of agroup of more than k errors that happen in 
lose su

ession.Su
h a re
overing strategy is memoryless. Being memo-ryless on a small abstra
tion in parti
ular implies that there
overy is fast.The system 
an, on
e re
overed, tolerate and re
overfrom k further dense errors, and so forth. Consequently,our 
ontrol strategy allows for re
overy from an arbitrarynumber of errors, provided that the number of dense errorsis restri
ted. This is the best guarantee we 
an hope for: ourte
hnique guarantees to �nd the optimal parameter k. Thisparameter is bound to be small (smaller than the number ofredundant 
omponents). Optimizing it is 
omputationallyinexpensive, but provides strong guarantees: the likelihoodof having more than k errors appear in short su

ession af-ter an error o

urred are, for independent errors, exponen-tial in k. As errors are few and far between, ea
h level ofresilien
e gained redu
es the likelihood of system-level fail-ures signi�
antly.Referen
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