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Abstract

Background
Recent studies on the vaginal microbiota have employed molecular techniques such as

16S rRNA gene sequencing to describe the bacterial community as a whole. These tech-

niques require the lysis of bacterial cells to release DNA before purificationand PCR amplifi-

cation of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not

standardised and there is potential for introducing bias into the results if some bacterial spe-

cies are lysed less efficiently than others. This study aimed to compare the results of vaginal

microbiota profiling using four different pretreatmentmethods for the lysis of bacterial sam-

ples (30min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a

mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme fol-

lowed by bead beating) prior to chemical and enzyme-basedDNA extraction with a com-

mercial kit.

Results
After extraction, DNA yield did not significantly differ betweenmethods with the exception of

lysis with lysozyme combined with bead beating which produced significantly lower yields

when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. How-

ever, this did not result in a statistically significant difference in the observed alpha diversity

of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods

was statistically significantly different, but this difference was small compared to differences

between samples, and did not affect the grouping of samples with similar vaginal bacterial

community structure by hierarchical clustering.

Conclusions
An understanding of how laboratorymethods affect the results of microbiota studies is vital

in order to accurately interpret the results and make valid comparisons between studies.

Our results indicate that the choice of lysis method does not prevent the detection of effects
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relating to the type of vaginal bacterial community one of the main outcomemeasures of

epidemiological studies. However, we recommend that the samemethod is used on all

samples within a particular study.

Introduction
The microbes that inhabit various niches of the human body have the potential to significantly
affect the health of their host [1]. For instance, studies of the vaginal microbiome have shown
that certain types of microbiota are associated with a reduced risk of acquiring [2–4] and trans-
mitting [5–7] sexually transmitted infections. However, gaining a comprehensive picture of the
microbiota associated with different body sites has only become possible with the development
of molecularmethods which are able to detect those bacteria that cannot be cultured by stan-
dard techniques and would otherwise have gone undetected [1]. Molecular methods have
shown that the vaginal microbiota often contains bacteria that were missed in culture-based
studies, including Lactobacillus iners, which is the most common vaginal Lactobacillus species
in women of African descent [8], and bacterial vaginosis-associatedbacteria including BVAB1,
BVAB2 and Mageeibacillus indolicus (BVAB3) [9].

Currently, the most sophisticatedmolecular technique used to characterise the microbiota
at different body sites is based on sequencing of all or part of a universally present bacterial
gene, most commonly a region of the 16S rRNA gene [10]. The sequences obtained from these
studies can then be used to identify the bacterial taxa present in the original sample. In order to
produce a sample of bacterial DNA that can be analysed by the sequencer, the bacterial cells
must first be lysed to release genomic DNA which is then purified and used to produce ampli-
cons of the desired region of the 16S rRNA gene by PCR. The goal of this process is to produce
a pool of 16S rRNA amplicons in proportions that reflect those in the original sample. How-
ever, all of the steps involved in DNA extraction and amplification may potentially bias the
results of microbiota analysis [11,12].

Studies on the vaginal microbiota most commonly use a commercially available DNA
extraction kit [13–17] but these methods have been poorly validated for studies on the human
microbiota, and the choice of kit is often arbitrary. Commercial kits use a combination of dif-
ferent techniques to lyse cells, including mechanical (usually bead beating), chemical and enzy-
matic lysis and heating. Methods that include a bead beating step have the advantage that they
concurrently homogenise the sample, but this can shear the DNA into short fragments and
may increase the risk of contamination during processing [18,19]. Methods using chemical
and enzymatic lysis are less likely to damage DNA, but are thought to increase the potential for
extraction bias [18]. Although previous studies have compared different DNA extraction kits
for microbiota analysis [18–24], the compared techniques varied considerably. It is therefore
not readily evident which processes are important to ensure extractedDNA is representative of
the original community. Additionally, modifications recommended by the manufacturer for
pretreatment of samples containing Gram-positive bacteria are inconsistently used, making it
difficult to accurately evaluate particular commercial kits for microbiota analysis. Using cul-
tured mock communities of a mixture of eleven different human-associated bacterial species,
Yuan and colleagues found that different lysis and extractionmethods could alter the resulting
community profile from that expected. The difference was lower for methods involving a lysis
step employing either bead beating or enzymatic lysis with mutanolysin when compared to
methods using neither [20].

Comparison of Vaginal Microbiota Lysis Methods

PLOSONE | DOI:10.1371/journal.pone.0163148 September 19, 2016 2 / 16

Competing Interests: The authors have declared
that no competing interests exist.



In this study we used natural vaginal bacterial communities sampled by cervicovaginal
lavage to determine whether different pretreatment lysis methods result in significant differ-
ences in DNA yield, observed taxa and community structure.We selected a variety of vaginal
bacterial communities based on previous microarray profiles, in order to represent the com-
plexity and richness of real vaginal communities. Using a commercial DNA extraction kit (Qia-
gen DNeasy Blood and Tissue kit) that has been used for DNA extraction from vaginal samples
both in our laboratory and in previously published studies [17], we determinedwhether the
addition of bead beating or additional lytic enzymes could alter the obtainedmicrobiota pro-
files. The aim was to determine whether different lysis techniques have an impact on the results
of studies on the vaginal microbiota that could alter the conclusions of individual studies or
make different studies difficult to compare.

Methods

Sample Characteristics
The 18 cervicovaginal lavage samples used here were a subset of anonymised samples that
had been collected in Rwanda as part of a study that aimed to determine whether there was
an association between the type of vaginal bacterial community and prevalent infection with
sexually transmitted viral diseases [25]. Ethical approval was obtained from the Rwanda
National Ethics Committee and the Columbia University Medical Centre ReviewBoard. The
purpose of the current study was to evaluate lysis procedures, and samples from this study
were chosen solely because the bacterial communities in these samples had previously been
well-characterised by microarray analysis. We did not have access to personal identifiers and
did not use any other data from the study. The 18 samples were chosen to be representative
of the community clusters identified previously, including both low diversity communities
dominated by either Lactobacillus crispatus or Lactobacillus iners and high diversity commu-
nities containing a mixture of strict and facultative anaerobes. Samples were stored at -80°C
until analysis.

Lysis methods
To test for differences in the results of microbiota analyses resulting from different pretreat-
ment lysis strategies, samples were thoroughly mixed by vortexing before dividing into 5 ali-
quots of 100 μl each and processed using one of four different lysis protocols (Fig 1). Vaginal
samples may contain viscousmucoid material and if this was the case, any such material was
discarded prior to vortex mixing. Two aliquots (designated "LN1" and "LN2") were subjected to
30 min of lysis at 37°C using enzymatic lysis buffer containing lysozyme from chicken egg
white (20mg/ml; Sigma-Aldrich,Dorset, UK). This corresponds to the recommended pretreat-
ment for Gram-positive bacteria as per the Qiagen DNeasy Blood and Tissue kit Handbook
(Qiagen,Manchester, UK). One aliquot (designated "LON") was subjected to 16 hours of
extended lysis at 37°C using enzymatic lysis buffer containing lysozyme (20 mg/ml). One ali-
quot (designated "EC") was subjected to 60 min of lysis at 37°C using enzymatic lysis buffer
containing lysozyme (20mg/ml), mutanolysin (250U/ml; Sigma-Aldrich) and lysostaphin (22
U/ml; Sigma-Aldrich). The last aliquot (designated "LTL") was subjected to 30 min of lysis at
37°C using enzymatic lysis buffer containing lysozyme (20 mg/ml), followed by 30 s mechani-
cal lysis at 25 Hz using 200 mg of 0.1-mm-diameter zirconia/silica beads in the Tissue Lyser II
(Qiagen,Manchester, UK).

Comparison of Vaginal Microbiota Lysis Methods
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DNA Extraction
Proteinase K and Buffer AL from the Qiagen DNeasy Blood and Tissue kit (Qiagen) were
added to all aliquots before incubation at 56°C for 30 min which was followed by the remaining
steps in the kit's spin column protocol, in accordance with the manufacturer's instructions and
DNA was eluted in 75 μl of elution buffer. Lysis and DNA extractionwas completed for all ali-
quots within a period of 36 hours using a previously unopened extraction kit and all work was
carried out by the same person. The genomic DNA concentration of extracts was determined
using the Qubit Fluorometer with the dsDNA HS Assay kit (Invitrogen Life Technologies, Pais-
ley, UK).

DNA Sequencing and Bioinformatics
The V3–V4 region of the 16S rRNA gene was amplified in a 25 μl reaction containing 10 ng of
genomic DNA, 12.5 μl of NEBNext1 High-Fidelity 2x PCRMaster Mix (New England Biolabs,
Hitchin, UK) and 1.25 μl each of a 10 μM concentration of the conserved bacterial 16S rRNA
primers 319F 5'-ACTCCTACGGGAGGCAGCAG-3' and 806R 5'-GGACTACHVGGGTWTCT
AAT-3' [26] adapted with linker regions to allow barcoding of sequences using a dual-index-
ing approach [27]. For the first PCR (16S rRNA gene amplification) the samples were initially
denatured at 98°C for 30 s, followed by 10 cycles of 98°C for 15 s, 58°C for 15 s and 72°C for 15
s, with a final extension at 72°C for 60 s. The PCR products were then purified using SeraPure
magnetic beads [28], before undergoing a second PCR to attach sample specific barcodes and

Fig 1. Overview of experimental design.Schematic showing how samples were processed for 16S rRNA amplicon sequencing.

doi:10.1371/journal.pone.0163148.g001
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further amplify the region of interest. The second PCR consisted of a 25 μl reaction containing
10.5 μl of clean PCR product, 12.5 μl of 2x Ready PCRMix and 1 μl each of a 3 μM concentra-
tion of the Illumina specific barcoding primers with the standard Illumina Nextera 8-nt index
sequences. Samples were initially denatured at 95°C for 2 min, followed by 15 cycles of 98°C
for 20 s, 55°C for 15 s and 72°C for 40 s, with a final extension at 72°C for 60 s. PCR products
were purified, quantified using the Qubit Fluorometer with the dsDNA HS Assay kit, pooled
and sequenced on the IlluminaMiSeq platform (Illumina, San Diego, CA).

Sequencing reads were demultiplexed and trimmed for the presence of Illumina adapter
sequences and low quality bases (quality threshold Q = 20) using Cutadapt v. 1.2.1 [29] and
Sickle v. 1.200 (github.com/najoshi/sickle), respectively. The resulting reads were error cor-
rected using SPAdes v 3.1.0 [30] and paired-end alignment was performed using PANDAseq v.
2.4 [31]. The obtained sequences were then binned into operational taxonomic units (OTUs)
based on 97% sequence similarity using USEARCH v. 5.2.236 [32] through Quantitative
Insights Into Microbial Ecology (QIIME v. 1.7.0)[33]. Taxonomic assignment of representative
sequences (most abundant) was carried out for each OTU by comparison against the Green-
genes 12_10 database in QIIME and assignments were correctedmanually by NCBI BLAST
search [34] for all the most abundant OTUs (�1% in at least one extract).

Data analysis
Calculation of alpha and beta diversity measures, hierarchical clustering and statistical analyses
were performed in R version 3.2.2 [35] and using the vegan package version 2.3–1 [36].
ObservedOTUs and the Simpson Index (1-D) were calculated to assess differences in alpha
diversity. Hypothesis testing relating to DNA yield and alpha diversity was performed using
repeated measures analysis of variance (ANOVA), correcting for differences due to the sample
being extracted. Significant results were followed by pairwise comparisons using the paired t-
test (with p-values adjusted using standard Bonferroni correction). Bray-Curtis dissimilarity
and its complement, Bray-Curtis similarity, were used to report and assess differences in beta
diversity. Permutational multivariate ANOVA (PERMANOVA) [37] was used to assess differ-
ences in beta diversity between different lysis methods. Hierarchical clustering was performed
using the Unweighted Pair Group Method with ArithmeticMean (UPGMA) on the Bray-Cur-
tis dissimilarity matrix. The OTU heatmap and the principal coordinate plot were generated in
R version 3.2.2 using the phyloseq package version 1.14.0 [38].

Results
A total of 10,374,312 16S rRNA sequence reads were obtained from the 90 cervicovaginal
lavage sample extracts (18 samples x 5 extractions). After quality control, paired-end alignment
and assignment to OTUs, a total of 7,742,774 reads were retained, with a mean read count of
86,031 reads per sample ranging from 5,351 to 136,649 reads. The lowest read count (5,351
reads) was found to be sufficient to accurately describe sample diversity based on rarefaction
curves of commonly usedmeasures of community richness (chao1, Faith’s phylogenetic diver-
sity index and observedOTUs), and unless otherwise stated all further analyses were carried
out after samples were rarefied to 5,351 reads. A total of 549 OTUs were identified, of which 49
were present at 1% or more in at least one sample extract. Positive and negative controls were
included in the sequencing run. The main contaminant present in the profiles of all the nega-
tive DNA extraction controls was a Rhodanobacter sp. (9.4–63.5%). This OTU was absent from
the negative PCR control and has therefore most likely originated from the DNA extraction
kit. Abundance of this OTU was below 0.04% in all sample extracts, indicating that contami-
nants originating from the extraction and amplification process were negligible in this study.

Comparison of Vaginal Microbiota Lysis Methods
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Effect on DNA Yield
Four different methods for the pretreatment lysis of bacterial cells in 18 cervicovaginal lavage
samples from different women were used in this study (Fig 1). Following extraction of DNA
using a commercial kit, the total yield of genomic DNA was determined and compared
between different lysis methods. The mean DNA yield was highest for samples extracted using
the enzyme cocktail (method EC; containing lysozyme, mutanolysin and lysostaphin) and low-
est for samples extracted using enzymatic lysis with lysozyme only followed by mechanical
lysis (method LTL; Fig 2). Since the input volume of sample used was equal in every extraction,
the measured DNA concentration can be used to compare total genomic DNA yield obtained
by each method. Repeatedmeasures ANOVA showed that there was a significant difference in
the DNA concentration obtained using the four different lysis methods (P<0.0001). Pairwise

Fig 2. Box andwhisker plot showingDNA yield obtainedby each pretreatment lysismethod. Boxes extend from the lower
quartiles to the upper quartileswith median values indicated by the line within each box. Whiskers represent maximum andminimum
values, excluding any outliers (values indicated by circles which lie outside 1.5 times the interquartilerange). Significant differences
betweenmethods are starred (* P <0.05; ** P�0.01; *** P�0.001).

doi:10.1371/journal.pone.0163148.g002
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comparisons showed that enzymatic lysis with lysozyme combined with bead beating (LTL)
produced a significantly lower DNA yield than lysis with the enzyme cocktail (EC; P = 0.0001)
or 30 min lysis with lysozyme only (P = 0.014 and P = 0.00046, for replicate runs LN1 and
LN2, respectively). All other comparisons were not statistically significant at a significance
level of 0.05.

Vaginal Bacterial Community Composition
The samples extracted in this study had been selected to represent a variety of microbiota pro-
files based on previously obtainedmicroarray data [25]. As expected, bacterial community pro-
files obtained for each extract in this study were either low in bacterial diversity (dominated by
either Lactobacillus crispatus or Lactobacillus iners), or high in bacterial diversity (containing a
mixture of strict and facultative anaerobes including Gardnerella vaginalis, Atopobium vaginae,
Prevotella, Aerococcus, Anaerococcus, Streptococcus, Sneathia, Ureaplasma, Megasphaera,
Mycoplasma, Gemella and the bacterial vaginosis associated bacteria BVAB1, BVAB2, Mageei-
bacillus indolicus (BVAB3) and BVAB TM7) (Fig 3).

Effect on ObservedAlpha Diversity
The presence or absence of OTUs was consistent between extracts of the same sample, with
any discrepancies arising due to low abundance OTUs that made up no more than 0.3% of any
extract, and in 97% of those cases made up less than 0.1% of the sample. There was no statisti-
cally significant difference in the number of observedOTUs between different lysis methods
(repeated measures ANOVA; P = 0.47). Calculation of the Simpson Index (1-D) confirmed a
wide range of diversities (range = 0.11–0.88). Furthermore, the degree of variation between
extracts from the same sample was small (maximum difference between extracts = 0.12). There
was no statistically significant difference in the Simpson Index between the different methods
(repeated measures ANOVA; P = 0.082).

Effect on ObservedBeta Diversity
Between extract diversity was calculated using Bray-Curtis similarity and ranged from 79.3–
99.5% within samples and from 0.1–97.9% between samples. The mean difference between rep-
licate extractions LN1 and LN2 was 4.7% (range 0.7–11.2%). Differences between extracts from
the same sample were due to differences in proportions of observedOTUs, rather than differ-
ences in the presence/absence of OTUs. There was a negative correlation between the mini-
mum within-sample Bray-Curtis similarity and the mean number of observedOTUs for that
sample (Spearman’s rank correlation: r = -0.62; P = 0.007). In other words, samples with higher
OTU richness tended to have increased dissimilarity between extracts.

PERMANOVA analysis of Bray-Curtis dissimilarity showed that the differences between
extracts originating from different samples (R2 = 0.99, P = 0.001) were far greater than differ-
ences between different lysis methods (R2 = 0.00086, P = 0.029). Although the effect of lysis
method was significant in this analysis, the magnitude of this effect was negligible when com-
pared to the differences due to the sample of origin. This is reflected in the hierarchical cluster-
ing of the extracts based on Bray-Curtis dissimilarity scores (Fig 3) and the clustering of
extracts by principal coordinate analysis ordination of the Bray-Curtis dissimilarity matrix (Fig
4), which resulted in clustering of the extracts by sample rather than lysis method. Pairwise
comparisons revealed that the greatest differences were betweenmethods LON and LTL (PER-
MANOVA; R2 = 0.0016, unadjusted P value = 0.044) and LON and LN1 (PERMANOVA; R2 =
0.00091, unadjusted P value = 0.046), but these differences were not statistically significant
after adjustment for multiple testing (standard Bonferroni correction).

Comparison of Vaginal Microbiota Lysis Methods
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The largest cluster of extracts was composed of samples that were dominated by L. iners
(66–97%) with a variable proportion of G. vaginalis (0–31%). In this group, one set of extracts
(from sample S18) clustered more closely with extracts from other samples than with each
other, as a result of higher Bray-Curtis similarity with extracts of other samples. This is due to

Fig 3. Heatmap showingmost abundant operational taxonomicunits (OTUs) with sample extracts arranged by hierarchical
clustering.All OTUs that were present at 1% or higher in at least one sample are shown. Extracts are named according to the sample of
origin followed by the pretreatment lysis method used and are arranged by Unweighted Pair GroupMethodwith ArithmeticMean (UPGMA)
clusteringon the Bray-Curtis dissimilaritymatrix. The coloured bar indicateswhich extracts have clusteredmost closely with all other
extracts from the same sample (green) and those that have not (red). Reads have been assigned to OTUs based on 97% sequence
similarity of the V3–V4 region. Note that in some cases this has resulted in multiple OTUs with the same taxonomic species identifier, which
is most likely due to a high degree of intraspecies variability in this region of the gene, or incorrect base calling. Lactobacillus species that
could not be identified to species level at the 97% cut-off have been assigned to genus subgroups: L. gasserigroup (including L. gasseri
and L. johnsonii), L. acidophilusgroup (including L. acidophilus, L. helveticus, L. gallinarum,L. crispatus, L. jensenii and L. delbruekii),L.
vaginalis group (including L. vaginalis and L. reuteri) and L. coleohominis group (including L. coleohominis and L. pontis).

doi:10.1371/journal.pone.0163148.g003
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small differences in observedproportions of OTUs and has occurredbecause of the high degree
of similarity between the seven samples in this cluster. The Bray-Curtis similarity score ranged
from 65.3–97.9% between extracts from different samples in this group. Since the composition
of these samples was similar, we repeated the PERMANOVA analysis on this subset alone to
minimise any effect of differences in alpha diversity on the magnitude of beta diversity scores.
In this analysis, the differences due to sample remained highly statistically significant (R2 =
0.96, P = 0.001), but differences between different lysis methods did not (R2 = 0.0059,
P = 0.38).

Effect on Individual OTUs
Certain bacterial species have previously been reported to be resistant to lysozyme, including
Neisseria gonorrhoeae [39] and staphylococci [40]. Furthermore, the results of a recent study
indicate that streptococcimay be underestimated in microbiota analyses [11]. In order to
investigate whether different lysis methods influenced the proportions of these bacteria, OTUs

Fig 4. Principal coordinate analysis ordinationof a Bray-Curtis dissimilaritymatrix.Extracts are coloured by sample of origin.
Extracts cluster closely with other extracts originating from the same sample and there is no observable effect of pretreatment lysis
method. Extracts from samples that are dominated by Lactobacillus inerswith variable proportionsofGardnerella have clustered on the
left, extracts from samples that are dominated by L. acidophilusgroup have clustered on the bottom right and extracts from high diversity
samples that contained a mixture of strict and facultative anaerobes cluster towards the top.

doi:10.1371/journal.pone.0163148.g004
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assigned to these taxa were identified and compared between different methods. Since these
taxa were present at very low levels, calculations were performed on proportions calculated
from raw read counts (i.e. prior to rarefaction). One OTU identified in this study was assigned
to the genus Neisseria. This could not be identified to species level due to 100% sequence simi-
larity of related species in this region of the 16S rRNA gene, but is most likely to represent N.
gonorrhoeae in this niche. This OTU was present at a low level (�0.18% and no more than 185
reads per extract) in extracts from 5 different samples. All of the extracts from these samples
contained reads mapping to this OTU, with the exception of the sample with the lowest abun-
dance of this OTU (�0.003%), where there were no reads in the extract that had been lysed
with lysozyme overnight. There was no statistically significant difference between the percent-
age of this OTU between different lysis methods (repeated measures ANOVA; P = 0.54). A fur-
ther OTU identified as a Staphylococcus sp. was present at a very low level (�0.06% and no
more than 55 reads per extract), and was consistently present in extracts from the 4 samples
for which the proportion was>0.01%. 11 OTUs mapped to Streptococcus spp, of which only 2
totalled>1000 reads. These were consistently present in one sample (ranging from 1.4–2.1%
and 2.3–3.7%with a maximum of 2424 and 4063 reads in a single extract), with all remaining
extracts containing less than<0.05% of either OTU. There was no statistically significant dif-
ference between the percentage of this OTU between different lysis methods for either genus
(repeated measures ANOVA; P� 0.3).

Discussion
Previous studies have usedmock communities to be able to assess different lysis methods
[19,20]. Mock community studies have the advantage that the community profile of the sam-
ples is known, allowing assessment of the accuracy of the results [20]. In this study, we chose to
use naturally occurring bacterial communities for which there is no gold standard measure of
community composition [41]. The true composition of the samples in this study is therefore
not known and as a result the accuracy of each lysis method cannot be determined.However,
using biological samples that cover a range of different community types has the advantage of
allowing comparison of lysis methods on a wider range of bacteria commonly encountered in
the vaginal niche, including those that have not or have rarely been cultured. This includes the
bacterial vaginosis-associatedbacteria, which can make up a substantial proportion of the bac-
terial population in some individuals [42]. Additionally, using vaginal samples allowed us to
compare the magnitude of the effect of method with that resulting from biological differences
between samples from different individuals. It should also be noted that vaginal samples can
vary in consistency [43] and may contain viscous mucoid material that is difficult to homoge-
nise. In this study, we have chosen to remove any such material where present prior to process-
ing to minimise any potential variation between extracts resulting from inadequate
homogenisation. It is possible that the composition of the microbiota associated with the
removed material differed from the remaining material and could therefore have changed the
overall profile of the samples.

The results of this study clearly show that sample has a far greater effect on the microbiota
profile than the pretreatment lysis method. This is consistent with the results of studies that
have compared different extraction kits or protocols for faecal samples [18,21,23] and saliva
[22]. Additionally, epidemiological studies investigating the effect of vaginal bacterial commu-
nities on health commonly group samples by clustering based on overall community structure,
assigning each sample to a “community type” [25,44–47] and accurate clustering of extracts
was not affected by pretreatment lysis method in this study. However, biological differences
resulting from subtle variation in proportions of taxa may be difficult to separate from
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experimental variation as evidenced by up to 11.2% dissimilarity between replicate extracts
LN1 and LN2, and should therefore be interpreted with caution. A larger sample size and
greater number of experimental replicates would be required to investigate this variation fur-
ther, particularly to determine whether the other lysis methods used in this study would pro-
duce a similar degree of dissimilarity.

In this study, we used the recommended protocol for the pretreatment of Gram-positive
bacteria with lysozyme as standard since it is thought to improve species representation [19].
As a result, we cannot make any conclusions about the necessity of this enzyme for bacterial
lysis from the data in this study. Lysozyme breaks down the bacterial cell wall by cleaving pepti-
doglycan and may be particularly important for the breakdown of the thick peptidoglycan
layer of the Gram-positive cell wall [48]. However, modifications to peptidoglycan structure
can render bacteria resistant to lysozyme digestion. This has been reported in N. gonorrhoeae
[39] and staphylococci [40], both of which could be present in vaginal samples [49,50]. The use
of the enzymes mutanolysin and lysostaphin in addition to lysozyme has been recommended
for the lysis of vaginal samples in order to lyse bacterial species that are resistant to lysozyme
digestion [20]. Lysostaphin specifically lyses some Staphylococcus spp. [40] and mutanolysin is
active against the cell wall of some streptococci [51]. In this study, we failed to identify any dif-
ferences between lysis methods for the aforementioned bacterial taxa. However, the number of
16S rRNA reads mapping to these genera was small, resulting in low statistical power to detect
relatively small differences. Additionally, the bacterial species/strains sequenced in this study
may not have been resistant to lysozyme lysis. For example, differences in susceptibility to lyso-
zyme digestion between different strains of N. gonorrhoeae have been reported [39]. It is possi-
ble that differences in lysis efficiencymay have been evident if different species or strains had
been present in the samples used. However, the addition of mutanolysin and/or lysostaphin to
samples in this study, which contained the majority of major vaginal bacterial taxa, was not
found to significantly alter the presence/absence of OTUs or their relative abundance. It is
therefore unlikely that the addition of these enzymes would alter the conclusions of studies
designed to investigate the impact of vaginal community type on human health.

A further additional treatment that can be used to improve lysis of cells is mechanical dis-
ruption, usually by bead-beating.Bead beating has been reported to increase the observed rich-
ness in previous microbiota studies [18,52]. This was not the case in this study in which we
found no significant difference in alpha diversity. It should be noted that bead-beatingmay
have a greater influence on fresh samples compared with those that have been stored in the
freezer, possibly due to disruption of the Gram-positive cell wall by freeze-thawing [23]. The
samples used in this study were stored at -80°C, as is common for vaginal microbiota studies
[13,44,47,53–61] and it is possible that an effect of bead beating would have been evident if
fresh samples had been used, by resulting in reduced richness in those extracts that were not
subjected to bead beating.

In contrast to the effect on diversity, we found that the addition of a bead-beating step sig-
nificantly reduced the DNA concentration of the extract, which is consistent with previous
results using mock bacterial communities [19,20], and is most likely due to some material
being lost with the beads when they are removed from the sample. DNA yield is commonly
used to assess the efficiencyof different lysis and extraction protocols. Other studies have
reported that the inclusion of a bead-beating step led to an increase in DNA yield from acti-
vated sludge [52] and faecal samples [24]. However, these samples may be more heterogeneous
and particulate in nature, which could explain this difference and emphasises the importance
of validating methods for microbiota analysis on the sample type of interest. It should be noted
that DNA extraction in this study was carried out with the same commercial kit (Qiagen
DNeasy Blood and Tissue) for all samples. Proprietary extraction kits employ a variety of
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different techniques to lyse cells and purify DNA. Hence the importance of pre-treatment with
additional lysis methodsmay vary between kits.

In the current study, we aimed to assess the impact of lysis method on the observedmicro-
biota profile, since this is the main outcome measure in many recent studies of the human
microbiota, including the vagina [25,44–47]. It is therefore interesting to note that although we
observed a significantly lower DNA yield whenmechanical lysis was added to the protocol, this
could not be associated with any differences in the observed richness or evenness of OTUs.
However, recent work has highlighted that, in studies using next-generation sequencing tech-
nology to characterise the bacterialmicrobiota, low amounts of template DNA are associated
with a proportional increase in contaminant taxa originating from laboratory reagents [62–64].
These contaminants can lead to erroneous conclusions [62]. In this study, 10 ng of template
DNA was used in each 25 μl PCR reaction. This amount of DNA has been found to result in
significantly lower variability in microbiota community structure in studies profiling the faecal
microbiota [63]. Furthermore, in our laboratory, this concentration of DNA in cervicovaginal
samples resulted in negligible levels of reagent contamination (unpublished data), which is sup-
ported by the low levels of the contaminant Rhodanobacter OTU in this study. Rhodanobacter
spp. have been isolated from environmental soil and water samples [65,66]. Interestingly, this
genus has also been reported as a member of the human microbiota [67], highlighting the need
to adequately control for contamination occurringduring laboratory processing of samples for
16S rRNA microbiota profiling [62]. Since all of the methods used in this study produced suffi-
cient DNA to avoid significant contamination arising during processing, and higher DNA
yield has not been shown to be associated with improved accuracy of microbiota profiles in
mock community studies [19,20], the reduced DNA yield with method LTL is not of particular
concern. However, increased contamination caused by inclusion of a bead-beating step has
been reported [19] and may be best avoided in the absence of a clear advantage.

Conclusions
It is widely acknowledged that bias exists in 16S rRNA studies describingmicrobiota profiles
and that no currently available method is able to perfectly describe the community being ana-
lysed [10]. However, an understanding of how the choice of laboratorymethods affects the
results of such studies is important in order to accurately interpret the results and make valid
comparisons between different studies. Although we were able to identify significant differ-
ences in DNA yield and diversity between the different methods used in this study, the effects
of this were much smaller than those due to the sample and did not alter the grouping of
extracts by hierarchical clustering and principal coordinate analysis. However, since there was
an observable effect of lysis method on microbiota composition, we recommend that the same
method is used within a study to reduce the risk of introducing a differential bias. Furthermore,
comparisons between studies using different lysis methods should be made with care, but will
likely be of much smaller magnitude than differences caused by the choice of extraction kit and
16S rRNA primers [12]. Additionally, studies with a focus on the abundance of a particular
bacterial species should include additional techniques such as qPCR to confidently identify any
differences between groups.
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