POLYNOMIALS FROM BRAIDS
HR.Morton

ABSTRACT. An account is given of the construction of the 2-variable
polynomial P for an oriented link K by means of the braid groups and their
representation in Hecke algebras.

Relations between P and the braid index of X are derived.
Reference is also made to other presentations of the algebra, leading to the
invariance of specialisations of P under certain alterations of XK.

1. INTRODUCTION AND TERMINOLOGY.

The 2-variable polynonﬁial P for an oriented link was developed in the later
part of 1984 by a number of authors, [FYHLMO], [PT], following Jones' discovery, [J1],
of the new polynomial invariant V through the route of von Neumann algebras and
braid groups. In thisarticle I shall give a development of P using a modified form
of the method due to Ocneanu and Jones. A wider discussion is given by Jones in his
survey (J2]. Thisarticle should be regarded as an improved version of [M1], which
were notesbasedon a seminar given in Liverpool in 1984, and whose original results
appeared with a completely different proof in [M2]. The approach adopted in [M1]
has subsequently proved useful in making explicit computer calculationsof P,
[MS1], [MS2], particularly because the two variables used can be kept separate fora
long time. In this respect it bears a close resemblance to Kauffman's construction
of P, starting from Conway's version of the Alexander polynomial.

In the course of the article I shall point out the relation to the variables used by
Jones and Ocneanu. The algebra used here can also be recovered naturally from the
linear skein approach of Lickorish and Millett, if the existence of P has been already
established, see for cxample [MT]. Itisvery useful, I believe, to have both
approaches in mind when looking at any of the recent family of knot polynomials, as
properties can sometimes be anticipated in one framework, but more readily handled

in the other.
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I shall construct P for an oriented link K in the form Py(v.z), aLlaurent
polynomial in Z[v*l,zﬂ] . It will satisfy the recurrence relation
v1 Pg+ - vPg- = zPgo , where K*, K~ and K© are a triple of links differing only
near one crossing asshown in figure 1. With the additional requirement that Py =1
when K isthe unknot this relation can serve as a complete definition of P, as in [LM].

Figure 1

N0

I note the relation here so as to indicate exactly how my choice of variables will
relate to this characteristic property of P. It is also worth noting how to change the

variables in order to get some useful specialisations and equivalent forms of P.

—1,z=t%_¢%,

Alexander polynomial Agp(t); v

Conway polynomial Vi(z): v=1,z=2.

Jones pulynomié,l VK(L); v=1,z-= th2_ %2
Lickorish-Millett polynomial Pgp(2,m) ; v=(i!, z=-im.

2. BRAIDS.

In constructing an invariant of a knot K we may look for something which
clearly depends fairly intrinsically on K, such as the group Gy = 11’1(83 - K), or we
may represent K in some way, associate something to the representation, an element
of some ring for example, and then show that the result is independent of the choice
of representation. There are, for example, invariants which can be described
initially in terms of a plane projection of K and then shown to be invariant under
the Reidemeister moves, which generate all other projectionsof K.

Here I shall give a construction of Py based on closed braid representations of
K. Abraidon n strings, (B,n),isan embedding of n oriented intervals (strings) in
D2x 1 joining n points q;x(0),i=1,...,n,in the bottom disc D2 x (0) to the points

q;x (1), possibly permuted, so that the last coordinate increases monotonically on
each string. Each intermediate disc D2 x (1) then meets the stringsin exactly n
points,

The closure of (B,n) isthelink p* formed by joining the top points to the
bottom as shown in figure 2, Itis given a natural orientation from the increasing

direction of the last coordinate within the braid,
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Figure 2

Composition of braids on n strings is defined by stacking two copies of D2x1I,as
in figure 3.
Figure 3

The equivalence classes of braids under ambient isotopy of the strings keeping their
ends fixed then formsa group under the induced composition, known as Artin's Braid

Group,B,,.
Closed braid representations are controlled by two main results:

THEOREM (Alexander)
Every oriented link K can be represented as the closure p" of some braid (B,n).
THEOREM (Markov)
Any two braids whose closures are the same oriented link, up to isotopy, are related
by a sequence of moves of two types: ‘
I (B.a) ~ («lpa,n)
I (g.n) ~ (Boy*ln+1),
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i

A recent account of these two results is given in [M3].

Both Jones' original polynomial Vi (t) and also Pg(v.z} can be defined by
showing how to find PB(V,Z) for each braid (B,n) which isunchanged when B is
altered by Markov's moves, either of type I (conjugation in B, ) or of type II
(changing the number of strings). This was the route originally adopted by Jones
in his construction of Vi , and extended by Ocneanu to produce Py, [J2]. Touse it
most directly for these purposes I shall construct an algebra (but nota von Neumann

algebra) in which we can naturally represent B,,.

3. HECKE ALGEBRA CONSTRUCTION.

The relation of B, to the symmetric group S, isexploited here. We may
think of S, asa Coxeter group generated by the transpositions t; = (1,i+1),
l<i<n-1, with relations
(1) 1712 = e,

(2) TPt =TT,
(3) ":iri+1"7i = Tiﬁl‘ti ‘t’i+1.

bi-jl > 1,

The braid group B,, hasa corresponding presentation (as the Artin group for Sn), by
dropping the relations (1), and taking generators o;, 1 £ i £ n-1, to satisfy relations
(@) ojo; = ojo;, li-jl > 1,

(3") o’ia'i+10‘i = Gi+ldidi+1'

The pictorial representation of v; corresponds well with the representation of o; as

II><[I . an 0

I i i+l n I i i+l n

a2 geometric braid.

The homomorphism o — v; from B, to S, then carriesa geometric braid to the

permutation induced on the end points by the connecting strings.

The Hecke algebra H,(z) is constructed asan algebraover the ring Ziz]
having generators ¢;, 1< i< n-1, which satisfy relations (2) and (3) anda
modification of (1), These relations are explicitly
(1) Ciz =z¢ + 1,

(2") ¢ ¢ = ¢, li-jl > 1,

(3") CiCi+1 %1 = Ci+1 ©f Ci+1 -

In working with H,(z), notice that elements are simply linear combinations of
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monomialsin ¢{,....¢,_1 with coefficients in Z[z], where multiplication is
controlled by the relations (1)-(3"). If the coefficient ring is specialised by
putting z = 0 the relations just become those of S, , with ¢; in place of T, and H,
becomes the group algebra Z[Sn] . Many structural properties of thisalgebra are
retained by H,(z), which may be thoughtofasa perturbation of Z[S,]. This
approach is particularly fruitful in the more analytic context where the ring Z is

extended to C, and z isviewed asa complex parameter.

4. ALINEAR BASIS FOR H, (2).

The group algebra Z[S,] hasa Z-linear basis consisting of the permutations,
(), meS, . Itisnotdifficultto constructa corresponding basis (). e Sy, for
H,(z).
CONSTRUCTION. Write w ¢S, asamonomial n(ty,., T, 1) of minimal length, ()
say, in the generators T{,...,T,_ 1 of S,. Thislength 2(w) isknown asthe Bruhat
length of 7, and can be read from a diagrammatic view of w where points 1,...,n
are joined by lines to the points w(1),...,x(n) respectively so that each pair of lines
crosses at mostonce. Then R(w) isthe total number of crossings of the lines,
assuming that only simple crossingsoccur. The case where n = (1,3} is illustrated
in figure 4,

Figure 4
1 2 3

/ Transposition
(13)

Any two minimal length monomials for x are related by a sequence of applications

of the relations (2) and (3) only.

Now put by =% (cy,...c, 1) € Hy(2), using any of the minimal length
monomials for 7. Since the relations (2")and (3") in H,(2z) exactly correspond
with (2) and (3) in S, thisdefinition dependsonly on .

In particular we have ¢;=b(; i.1)

PROPOSITION 1. H,(z) islinearly generated by (by), WeS,.

PROOF. Since H, (z) is generatedasan algebra by cy,....c4_1 itisenough to show
that by c; isalinear combination of (b} forall w,i. Takep = 7T; and write

n = n{ rl,...,rn_l) asa minimal length word. Then either the monomial

70 ( 'tl....,‘cn_l) Tj isa minimal length monomial for p, when we have bp = by¢;.or

7 can itself be written as P(T{uTy-1) Tj. Where p(T{,.. Ty 1) isa minimal length
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monomial for p. In thissecond case we have b, = bp ¢;, S0

- 2 - - -
byci = bp c& = zbE,c1 bp = Zhy+ bp.

In either case b isa linear combination of the proposed generators, A
further analysis, as in the exercices in [Bo] p53, can be given to show thal the

elements by form a free basis for Hn(z).

5. REPRESENTATIONS OF B, .

The elements ¢; are clearly invertible, with ci‘l

= ¢;-z Wethen havea
representation pq:B, — H,(2) definedby p(a;) = c;.

If we extend the coefficient ring to Zizvtl] we may equally give a
represenatation py by py (o) =ve; e Hylzv) = Hn(z)GZ[z,vﬂ] . An element
B = w(o‘lﬂ,....o'n_lﬂ) e B,, isthen represented by

Pv(p) = ka(cltl,...,cn_lil) = Vk E, aﬂ(Z) bwl
MeSy,

where ay e Z[z] and k = ¢~(p), the exponent sum of the braid p. [shallabuse
notation by simply writing B in place of p(B).

6. TRACE FUNCTION.

The other main ingredient in this approach is a linear trace function on Hy.
Such a function played a very natural part in Jones original algebras from the point
of view of von Neumann algebras, In this purely algebraic context it proves
possible to use the knowledge of the linear structure of H, and the subalgebra
H,.1 <Hy generated by c¢q,....c,_> todefinea (unique) function

Tr: Hy(vz) — Zlz,vtl T] with the following properties.

(4) Tr islinear,

(53 Tr(ba) = Tr(ab),

(6) Te(1) =1,

(7) Tr(zxc,_y) = TTr(x) for xe Hn;l-

A detailed proof of the existence of Tr, for any choice of T, following Ocneanu’s
construction, is given by Jonesin [J2]. An immediate consequence of the
definition, since cn_l“1 =Cpn.1-2 is that

Tr(xcn_l"l) =Tr(xc,_q) -Tr(zx) = (T-2)Te(x) forany xeH, .

7. DEFINITION OF THE INVARIANT Py.

Let us now try to define an element PI3 for (B.n) e B, by Pﬂ =k, Tr(B),
choosing some normalising factor k, so that PB isunaltered when B ischanged by
Markov moves., If we can do this, then Pﬂ will depend only on K= p~.

There is no problem when.p isaltered by conjugacy in B, (Markov move D),
since Tr(ba) = Tr(ab). Toensureinvariance of P under Markov move Il we
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require k,Te(B) =k, .1 Tr(Boy,) = kn+1Tr(Bcrn"1) for BecHy.

Now Tr(Bo,) = vTr(pe,) = vTTr(p),

and Tr(ﬂo’n'l) = v'lTr(ﬁcn'l) - V'I(T-z)Tr(B).

We must thus arrange that v, T and z satisfy the equation vT = v 1(T-2).

Formally, we can pass to the quotient of the ring Z[z,v*I,T] by this relation,
or simply imagine that we have chosen T = 2/(1-v2). Ifwe arrange, in addition,
that k, = vTkg,,{, or equivalently that k,,| = §k,, where &= (v"l-v)/z, then Pp
will be invariant under all Markov moves. It isusualtotake ky=1,so that
k, =82°1

Then Pp -sn-1 Te (B) dependsonly on K=p", for any braid (B,n) whose
closure is K. Forexample the unlink with n components can be represented as the

closure of (1,n), the identity element of B,. Inthiscase P-= sn-1
- Z'(n'l)(v'l-v)n'l.

8. SKEIN RELATION.

It is easy to derive the skein relation v-1 Pg+ - vPg- = zPgo between the
invariants for three links K*, K~ and K° which differ only near one crossing as
shown in figure 1. This relation is the starting point for other approaches to the
definition of P, for example [LM], and a knowledge of P from such an approach can
even be used to develop a more geometrically-motivated version of the algebra H, in
the framework of linear skein theory. Itisalso possible to use Kauffman's
polynomial in this manner, to produce and study other algebras of a somewhat
similar nature to H,, [BW].

To establish the relation above arrange a presentation for K* asthe closure
of an n-string braid peo;, in which the distinguished crossing appearsas ¢;. This
can be done with no great difficulty, Thelinks K~ and K° can then be
represented as the closures of ﬂa’i'l and g respectively. Now ¢; - ci'l =z in H,,
S0 v‘la'i - vo‘i'l =z and hence v'lﬂo‘i - vpo'i'l =zB in Hy.

Then v'lsn'lTr(ﬁcri) - vsn'lTr(ﬁcri'l) =z80-1Tr(p)

giving the skein relation vl Pg+ - vPg- = zPgo immediately.

9. Pg AS APOLYNOMIAL.
As described so far, the invariant Py does notappear to be a polynomial in
Z{vﬂ,z*l] , but rather a rational function involving denominators of 1-v2,

Although this is true of Tr(g}, a closer look will show that the factor k, = so-1 s
always enough to clear these denominators, so that Py can be regarded asan
element of Z[v*l,z"‘l] . Indeed, with alittle more delicacy during the definition it is
possible to place Py sensibly in the ring A which is the quotient of Zlvl 28] by
the relation v1-v = 28

To establish something of the nature of P, let us first note a result about the
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image of Tr in ZIvilzT].

PROPOSITION 2. Tr(x) = X ai(z)Ti,apolynomial of degrec < n-1 in T, with
coefficients a;(z) e Z[z], for x e H,(z).
PROOF. Itisenough to show thisfor the generators b, 7w eS,. Either
b‘rr € Hn-l' or it can be writien as br=Xj¢cu.1X2 for some xy,%5 ¢ H,, | The
result follows by induction on n, directly in the first case, or using the fact that
Tr(xqc,_ 1Xg) = Tr(xpxqc,_y) = TTr(zpxy).

Asa consequence, when B = w(o’lil....,o’n_lﬂ) we may write

B = vkw(clﬂ,...,cn_lil),Where k = ¢c~(B) isthe exponentsum of B. Then

n- .
Tr(p) =vk ¥ a;(z)T!
i=0 4.1 . n-1 . .
andso Po= vk & a.i(z)Tlan'1 - vky ai(z)v'18n‘1'1.
B 1=0 1=0

using the relation TS = vl The assignment § = (v-lv)/z may now be made, to

arrive unambiguously at a Laurent polynomial in v and z.

10. BRAID INDEX,

From the form of the Laurent polynomial Py we can demonstrate a lower
bound on the braid index of X, the smallest n for which K isthe closure of an
n-braid.

Forif K=p", with (8,n) ¢ B, then Pg = Pﬁ asabove. The Laurentdegree of
Pg in v, A,(Pg), (the difference between the highest and lowest exponentsof v) is

the same as that of
a-1 ) . n-1 . .
T az)vist-i-l o F a.(z)vi(yl-y)/z)0-i-l,
i=0 1 1=0 !
Clearly the possible extreme exponents here are +(a-1), so Ay;(Py) < 2(n-1).
This gives %22, (Pg) + 1 = n, for any representing braid B, so that %2 Ap(PR)+ 1
provides a lower bound for the braid index of K. This bound was noted in [FW]
and [My].
By way of illustration the case of the knot 94 may be studied, following [MS{].
Here the Laurent degrec of P givesa lower bound of 3 for the braid index,
although there is no obvious presentation for 94 asaclosed 3-braid. The question
of braid index can be resolved here by considering a 2-cable about 945 . If 94, has
a 3-braid presentation then any 2-cable will have a 6-braid
presentation. Direct calculation of P however for one explicit 2-cable yieldsa
lower bound of 7 for its braid index, forcing 94, to have index at least 4 . Soeven
when the bound is not attained for a knot K it can be possible to derive exact

information by application to a related knot.
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11. IDEMPOTENTS IN H,.

It is interesting to recast H, in termsof idempotent generators, as it originally
appeared in the descriptions of Ocneanu and Jones. In thissetting the choice of
variables used by Jones shows up in a fairly direct way some results noted recently by
Przytycki, [P]. '

Write the generator ¢; of H (z) as ¢; = ae;+bf;, where ¢; and f; =1-¢;
arec orthogonal idempotents, that is eiz =e, fiz =f; and ¢;f; =0. Todo thiswe
simply choose a and b asthe roots of the equation x2-=zx+1. Then abh=-1 and
a+b =z Ifwewrite a=t%2 wehave b=-t""2 and z = t2- %2, with
¢ = e e;- t'szi. The variable t then agrees with Jones' variable t, sometimes
written as q, particularly in the context of statistical mechanics operators and the
q-state Potts model, where it appears naturally as a fixed integer.

The relation ¢; = ( V2, Ve ) e; - t=%2 can be used to recover a presentation of
H,(z) with generators e {r€pn-1- Thedefining relations become eiz =e;,
ejej=cjej.li-jl>1,and eje; qe;-Te; = ej,eje; 1 -Tey, | Where = t/(1+1)2,
Then z can be defined intermsof T and vice versa.

As a second variable we may set n = Tr (ei). and use the fact that
Tr(c;) = 2/(1-v2) to specify v intermsof t and n. We have
(t2-v2)/(1-v2) = (1+t)m so that v2 = (t- (1+tIn)/(1-(1+0)0) = (v1-n)/(t5-M),
where v and T, are the rootsof the polynomial x2-x+7v, The parameters T, n
are those used by Ocneanu in the context of subfactors and their index.

The algebra originally used by Jones is the quotient of H, in this form by the
additional relations ¢;e;,1¢; = ve;. Thisimmediately forces Tr(e;) = v, and
hence n =T, requiring vZ - t*2 In his representation of B, ., Jones
used g; = t¥2 cj =te;-f; = (t+1)e;-1 to represent ¢;. In conjunction with the
choice of v =t thisaccounts for the extra normalising factor t‘/zc'-(ﬁ) which he
needs when calculating V from Tr(p) in this representation, for in the
representation described earlier we take o; = vc; =tc; tofind V, as compared
with g; = t%2 ¢

The presentation of H, with idempotent generators give a good viewpoint for
Przytycki's results about the way in which Py can change when the diagram of K is

altered by replacing k positive half-twists 2\\J with k necgative half-twists

o,

THEOREM (Przytycki). Write KX and XK for two links with diagrams related by
changing the sense of k half-twists as described above. Let

L Zlvtl z81] —, Clv®l] be the homomorphism determined by setting t¥ =1,
where z =t2-t"%2 je. put %2 _ eMi/K g4 that z = 2i sinw/k. Then

¢k(PKk) = V2k¢k(PK_k).
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PROCF. We have c;X =aKe +bKf; and ¢;¥ - ake;+pKf; . Then
cik— ci'k = (ak- a.'k)ei+ (bk-p-k) f;. Now if we specialise the coefficient ring in
H, to Clvil] by applying ¢ we find that a2k_p2k_{ since tk=1. Thus

E-c;"K - 0 (modulogy) so that

¢k(Tr(v‘chrik)) = ¢k(Tr(vkﬂcri'k)) forany peB,. Since K*K canbe
represented by Bdi*k for some B the theorem follows at once.

ko k_ k.-
Y O‘i-VO‘ik=C

Besides the choices of basisof H, in termsof generators c; as given above,
or the idempotents e; other choices have been studied in relation Lo different aspects
of H,. Ocneanu, for example, in one of his presentations of P, [0], uses a basis
consisting of braids (e}, W € S, , which all close to an unlink, and are conjugate in
B, when the corresponding permutationsare conjugatein S,. The trace of cach
oy isthen easy to write down, while the description of a product « o in termsof
the basis becomes more complicated,

The basis of Kazhdan and Lusztig, [KL], allows the construction of very clean
representin g matrices corresponding to irreducible representationsof S, and B, .
Its basis elements, like the idempotents e;, are 'neutral’ in the sense that they are
unaltered under the change from c¢; to ci‘l while the basis (b,n.} is biased towatds
positive braids. It would be interesting to explore further the possible use of this
basis, although it does not appear to be particularly easy to calculate explicitly a
single element of B, in terms of the basis clements, nor to give the trace of the basis

elements.
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