EXCHANGEABLE BRAIDS

H. R. Morton

§1, Introduction

Representations of the unknot as a closed braid have been studied
variously by Stallings, Goldsmith and others, and can be used in describing
a number of constructions for fibred knots, [G], [MI1.

3
To represent a knot K c § as a closed braid a disjoint unknotted

. 3
curve L must be chosen as axis. The complement S -~ L is then a
o2 1 . . 3 1
product, D X 8. If we can choose a projection pL : 8 - L + 8

which gives a regular n-fold covering of S1 when restricted to K then

K is called a closed braid relative to axis L. It is common in this
A

case to view K as the 'closure', 8, of an p-string braid B, an element

of the braid group Bn' see Birman [B]. The essential geometric

information about the braid is contained in the link K y L, from which
the element B ¢ Bn can be recovered up to conjugacy in Bn' [M].

In this paper I shall study links X uy L for which K is a closed
braid relative to L, and in addition L is a closed braid relative to K.

I propose to call such a link exchangeably braided.. A braid g e Bn

A : .
for which Buyaxis (= X y L) 1is exchangeably braided, and hence isotopic to

axis u‘f Ffor.some other braid vy ¢ Bn, will be termed exchangeable.

Two features of an exchangeable braid B ¢« Bn are then apparent.

A
1. The closure B is unknotted, for it is required to form

N
the axis for the closed braid 7.
A
2, There is a disc D spanning B which meets the axis, L, in-

exactly n points.
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This follows by choosing D as any one of the level discs for

. . 3 _» 1 . . .
a projection 8 - B -+ 8 under which L is seen as a closed braid

relative to %. (The existence of such a projection can be interpreted
as straightening out E so that L appears to wind 'monotonically' about it.)
Here n = lk(g. L) is the minimum possible number of transverse
intersections of L with a disc spanning E, since the linking number is
equal to the algebraic number of these intersections, taken with their sign.
Property 2 can then be thought of as requiring the ‘geometric' linking number
of a and L to equal their algebraic linking number.
An exchangeable braid will satisfy rather more than Property 2, for
the level discs of the projection above provide a whole l-parameter family
of spanning discs, each meeting L in n points.

Stallings, [8)], describes for each n a finite set of braids on n

strings with unknotted closure, which I shall call Stallings braids. These

and their conjugates form a proper subset of the braids with unknotted
closure [K]. In this paper I shall show that exchangeable braids, up
to conjugacy, form a proper subset of the set of Stallings braids.

This follows from two main results.

Theorem 1 Let B € Bn‘ Then B is conjugate to a Stallings

A
praid if and only if it satisfies properties 1 and 2 above; 1i.e. g is

unknotted, and is spanned by a disc meeting the axis in exactly n points.

Corollary 1.1 Every exchangeable braid is conjugate to a Stallings
braid.
Corollary 1.2 There are only a finite number of exchangeably braided

1inks with linking number n, since each link can then be realised as the
closure of a Stallings n-braid, with its axis, and there are only finitel§

many such braids.




Theorem 2 There exist Stallings braids which are not
exchangeable.
A A
An exchangeable braid B determines a link B UL = X u vy, and,
up to conjugacy, another braid vy whose ciosure is L. It is not always

true that B and vy are conjugate, so the link K U L 1is not necesgsarily

interchangeable in the sense there is an isotopy interchanging the components.

Goldsmith's construction of fibred knots starts with an unknotted
A
closed braid f with axis L, and observes that in the k-fold cyclic cover
3 a o . 3 . :
of S branched over f, (which is again §"), the preimage of L will be
a fibred knot or link, the fibres being simply the preimages of the family
A

of discs which span L and meet B in n points.

If B is exchangeable this preimage is simply the closure of the

t .
k h power of the corresponding braid v. Now the braid y 1is itself

exchangeable, for the roles of £ and y can be exchanged.
Remark if B 1is exchangeable then Sk is fibred for each k.

Goldsmith extends her construction to the case where L is a
'generalised axis' for an unknotted curve K. The curve L is called
a 'generalised axis' for K if (a) the complement of L is fibred and

. X . R 3 1 <
(b) there is a fibre projection P S -L =+ 8§ under which K
1

covers S .

It would be interesting to study exchangeability in the wider context
of links K u L where each component forms a generalised axis for the other.

The closure of a homogeneous braid, with its axis, gives an example of such a

link.




62 . Characterisation of Stallings braids

Stallings defines the elementary braid oi 3 € Bn’ for 1 i <j <£n
?
. . .th .th . . . s .
by interchanging the i and j strings with a single positive crossing,
in front of any intermediate strings, and leaving all other strings alone,

see fig. 1.

A Stallings braid is defined to be a product of mn - 1 elementary

braids, or their inverses, whose closure has only one component,

Lemma 1 Every Stallings braid has unknotted closure, with a spanning

disc meeting the axis in n points.

Proof Construct a spanning surface for the closure of a product of
elementary braids as prescribed by Stallings. To do this, start with the
closure of the trivial braid spanned by n disjoint discs labelled

1, ..., n corresponding to the string labelling, and each meeting the axis
in one point. The complement of an open tubular neighbourhood of the

axis is a closed solid torus D2 X S1 which can be arranged to meet these

n discs in n annuli, each of the form arc x Sl. Imagine the discs
stacked vertically, and refer to the D2 factor in DZ hat S1 as horizontal.
Where the elementary braid ¢, . or its inverse occurs in the given product
connect the ith and jth discs by a ribboﬂ in D2 X Sl, avoiding the other

n - 2 dises and any previous ribbons. Choose the core of the ribbon to
lie at one horizontal level, and arrange the cores in order along the 8§
factor according to the order of the elementary braids in the product.

The ribbon itself is given a left or right-handed half-twist, so that no edge
meets the same horizontal level more than once, see fig. 2. Up to isotopy
the ribbons can be made to lie arbitrarily close to their core levels, so

that different ribbons lie in completely different levels. Each ribbon ’

is determined up to isotopy by i, j and the sign of the twist,




Together with the n discs they form an oriented surface spanning the closure

of the given braid and meeting the axis imn n points.

For a Stallings braid this surface will be connected and from its
Euler charactevyistic it must be a disc, meeting the axis as required. 1

shall refer to such a spanning surface as a Stallings disc.

Lemma 2 Any braid B € Bn whose closure is spanned by a disc meeting

the axis in n points is conjugate to a Stallings braid.

Prool It will be enough to exhibit a Stallings braid whose closure
A
is isotopic to £ 1in the complement of the axis L. Such a braid is
A
available if we can produce a disc spanning § made up from n discs each
meeting L in one point, joined by n - 1 ribbons each with a horizontal
core and a single half-twist. The n discs taken in order around L then
prescribe the labelling of strings in the braid, and the ribbons determine the
elementary braids in the product, with their order determined by the core levels,
A

Take a disc D spanning g which meets L in cl, ceey cn. Under

, . 3 1 A
some projection pL : 8 - L -+ 8 the curve B is a regular n-fold cover,
while small circles around each ci can be chosen which project homeomorphically.
We can assume that curves parallel to ﬁ in some collar also cover S1
regularly, so that two pieces of a level curve for pL never meet at a point

A
of £, or of L nD.
A

Isotop D, 1leaving a neighbourhood of D n L and B unchanged, so
that the number of non-degenerate crtiical points for pL on D-L is as
small as possible, and study the behaviour of pL on D - L.

The level curve through any saddle point locally forms a cross.

All four arms of this cross may continue to meet @ or DnL, forming an

essential saddle, or two of these arms may meet, forming an inessential saddle.




Where the number of critical points is minimal there can be no
inessential saddles. For the two arms which meet provide a closed
curve C in D. Now the intersections of L with D all have the
same sense, S0 we can calculate the degree of pL when restricted to any

closed curve in D - L. by counting the number of points of D n LI enclosed

by the curve. The map pL is constant, and hence of degree 0, on
the curve C. The subdisc of D bounded by C then contains no points
of L, D can now be isotoped in the complement of I across a ball

bounded by this subdisc and the disc bounded by C in the critical level
80 as to cancel the saddle with a local extremum, possibly after an inner-
most disc argument, as in [M2] or [Bo].

It follows that there will he no local extrema either among the
minimal number of critical points, otherwise as the level of pL is
changed the expanding system of level circles surrounding the critical
point will eventually encounter an inessential saddle - they cannot reach
either g or D n L intact, since two pieces of a level curve never meet
at such points.

Every non-critical component of a level curve must then be an arc.
Furthermore, these arcs must each join a point of D n L to a point of g.
For if such an arc were to join two points of g then the direction
around g of increase of level at the two points would be in opposite
senses, while level increases monotonically on travelling in one sense
around é. Similarly two points p, q of D n L cannot be joined, for
we can choose small circles around p and q on which pL changes mono-
tonically, Since L crosses D 1in the same sense at p as at q, the
direction of increase of pL around each of these circles will be in the
same sense relative to their orientation in D. The two circles cannot then
be joined by a non-critical level curve of pL. )

The surface D - L has Euler characteristic 1 - n. Since the

function pL is suitably behaved on the boundary and round the missing

points it follows that pL has exactly n - 1 saddle points. These




saddles are all essential. One pair of opposite arms must join podints
of ﬁ while the other pair joins two (distinct) points of D n L, other-
wise some neighbouring level curve would join points of the wrong kind.

Look now at the graph 1 embedded in D whose vertices are the
points of D n L and whose edges are the n - 1 pairs of opposite arms
0of the saddles joining such points. The graph [ cannot separate D,
for there will be points in every component of D - ' which are joined to
Q by a non-critical arc, necessarily lying itself in D - T. Hence
by virtue of its Euler characteristic I must be a tree.

Construct a neighbourhood of I' in D consisting of a disc round
each vertex joined by narrow ribbons around each edge. These ribbons
can be chosen so that pL is monotone on their edges.

The boundary of this neighbourhood is then exhibited as the closure
of a Stallings braid with axis L, where the ribbon cores arise from the
critical curves joining points of D n L, and the sign of the half-twist
depends on the direction of the positive normal to D at the critical point.
Since g is isotopic through D - L to this curve Lemma 2 is established.

The characteristic of Stallings braids given in Theorem 1 is then

complete.




§3. Non-exchangeable braids

The simplest example of a non-exchangeable Stallings braid is the

-1 .
= o 0, 0.0 € B whose closure is

braid w = 030203 291 999 4’

a
2,4 92,3 91,3

shown in figure 2. Here o, i=1, ..., n -1 denote the standard
i

generators of the braid group Bn' where Ui is the elementary braid

F. i+].which interchanges the strings i and i +1. The elementary braid

i,
g, i can be written in terms of the standard generators as

1,

-1 -1 -1 -1 -1

.o 11 g o] s 0,0, ... T as

Oy Y4417 93293-1%4-2 ---0yr OF equally Oy 104 5 1%i+1000 %5
illustrated in figure 1. The non—-exchangeability of w follows from a

calculation of the two variable Alexander polynomial A(x, t) for the link
G U axis L, where t, x denote generators of Hl(S3 - (Q v L)) represented
by meridians of 3, . respectively.

This calculation can be made most readily by a slight extension of
Birman's observations on the Alexander polynomial of a closed braid, {B],

which is proved in the final section of this paper.

Theorem 3 Suppose that B ¢ Bn' with reduced Burau matrix

B{t) ¢ GL{n - 1, Z[t, t_lﬂ) . Then the Alexander polynomial, A(x, t),
A

of the braided link g u axis is given by A(x, t) = det(B(t) - xI),

the characteristic polynomial of B(t), where x, t are represented by

A
meridians of the axis and £ respectively.

Remark The reduced Burau matrix B(t) is the image of g under
the reduced Burau representation p : Bn -+ GL(n - 1, Z[t, t_l]), see [B].

In this representation

1 \
10 o
p(oi) = t -t 1 - ith row
o o 1
\ “1J

truncated appropriately where i =1 or i =n - 1,




The polynomial A(x, t) is defined up to multiplication by + x t°
Its extreme powers of x for the braided link in Theorem 3 are xn_l with
coefficient 1 and xU with coefficient (-1)" ldet B(t). Now
det p(g;) = -t, so det B(t) = (—t)!B|. where |g| = algebraic number
of crossings in g, counting +1 for each gj and -1 for each Gfl.
Even after multiplication by a unit ixrts, the coefficients of the extreme
powers of x will each remain a power of t,

If a braid B is to be exchangeable then g v axis, = K u L say,
must also be braided relative to K, and so its Alexander polynomial will
have a similar form with the roles of x and t reversed. Thus the

coefficients of the extreme powersof t must be powers of x, and further:

the 'degree’ in t, that is the difference in degree of the extreme powers

of t, must alsobe n-1 = 1k(K, L) - 1.
Cororollary 3.1 The Stallings braid w above is not exchangeable.
Proof Its reduced Burau matrix w(t) is

1 -t -t ¢1

2 3 4 - 2

w(t) = 2t - 3t + 2t -t -2+t -t 1 +3-3t+t s
4 5 2 2 3
t2 - 2t3 +t -t -t + t t -2t + ¢t
R . 3 2 3
having characteristic polynomial det (xI - w(t)) = x + pl(t)x + pz(t)x + t,
2

where pl(t) = =trw(t) = 1~-t + 2t - t3. This polynomial has

degree 3 in t, but the coefficients of the extreme powers of t are not

2
powers of x. For example, the coefficient of t3 is 1 + ax - x ,

A
where a 1is its coefficient in pz(t). Consequently the axis of w

A
is not braided relative to W.
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In trying to decide whether a Stallings braid £ is exchangeable
it can be helpful to look at a schematic diagram, in which the n strings

*
are drawn vertically, and Uilj is represented by a horizontal line with

'
a sign attached, joining string i to string j and lying in front of the
intervening strings. The braid w is represented in this way in figure 3.

This representation corresponds closely to the graph T constructed
at the end of §2 from a disc D meéting an unknotted curve L in n peoints,
when K = 23D is braided relative to L, and n = 1k(L, K). In such
a representation the vertical strings correspond to small circles, one
around each vertex of T in D, i.e. each intersection of L with D,
and the horizontals correspond to the edges of T outside these circles.

A Stallings dise D for B can be constructed by clothing the
horizontal lines with half-twisted ribbons to join discs spanning the
vertical strings. The axis L will meet D once in each vertical disc,
and is then separated into n arcs, L1, se e Ln' From the embedding

3 . A
of Dul in 8 we can decide whether L is braided relative to £, and

so whether £ is exchangeable, as follows.

Construction Split 83 open zlong D to give D x I, 1i.e.
3
choose an explicit map q : Dx I > 8 which identifies only D x {0}
and D X {1} with D, and 9D x I with 3D. Then D x I contains
-1
n arcs, Ai = q (Li)' formed from the pieces of the axis L.
Theorem 4 L is braided relative to 3D if and only if there

is anisotopy of these arcs in D X I, rel boundary, to n arcs running

monotonically from Db X {0} to D x {1}.

Proof Such an isotopy, followed by projectiom to I, will
3 1 . L
determine via q a projection from S - 3D to S, whose restriction

to L 1is a regular n-fold covering map.
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Conversely, if L is braided relative to 3D, and p : 83 - abh a—Sl
is a suitable projection then there is an isotopy of 83 carrying D0 u L
-1
to DV L, where D = p (). This isotopy is analogous to one bhetween

0

two minimal genus spanning surfaces for a fibred knot, and can be found by

examining the inverse images of DO' D and L in theuniversal cover of

3
5 - aD.

Remark We can deduce an algebraic criterion for exchangeability

(Th.to2)
from the fact, [HJ,Athat the inclusion (0 x {0}, n points) < (D x I, mn arcs)
induces an isomorphism of fundamental groups if and only if the arcs lie mono-
tonically up to isotopy rel boundary. On returning to D in 83,

this result combined with Theorem 4 gives the following test:

Corollary 4.1 Let L meet a disc D in n = 1lk(L, 3D) points.

Then L 1is braided relative to 3D if and only if the inclusion
+ 3 . .
D - L c 8 - (D UL) induces a fundamental group isomorphism, where D

denotes a translate of D through a small distance in the direction of the

positivenormal to D.

Corollary 4.2 With L, D as in 4.1, a necessary, but not sufficient,

condition for L to be braided relative to 9D 1is that any k of the arcs
Ai can be isotoped to lie monotonically inm D X I. Consequently

3
ﬂl(S - (D U k arcs of L)) must be free on k generators if L is braided.

We can use 4.2 in the simplest case k = 1 to construct Stallings
braids, based on a diagram such as figure 4, which are not exchangeable for

any choice of signs in the ribbons. This is in contrast to the braid w
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-1 -1 -1

in figure 2, where a change of signs on the ribbons to give v = ¢ g g
2,4 2,4 1,3
yields an exchangeable braid. (See figure 8 and the end of §4.)
Th 5 N f the braid el it sl e B
rem ar
eoQre one o e braids 02,403,504,601,503,6 € 8 e
exchangeable.
Proof The axis is broken into six arcs by a Stallings disc
3
D, and for one of these arcs L1 we have 1r1(S - (D u Ll)) 7‘% Z . The
arcs Li are shown in figure 5. In the calculation of ﬂl we can replace

b u L1 by the curve in figure 6, which forms a non-trivial knot.
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64, Compound braids

By way of giving some sufficient geometric conditions for
exchangeability, I shall describe two ways in which a Stallings braid may
decompose into simpler Stallings braids, and prove that the original braid

is exchangeable if and only if its constiituents are.

(a) Murasugi Sums

The first decomposition is a counterpart of the generalised plumbing,
or 'Murasugl sum' of two surfaces, originally described in [Mul. Here the
construction is extended to apply to pairs, (Stallings disc, axis), in a

similar vein to the description given in [Gal or [M3].

Given a Stallings braid g € Bn' with Stallings disc D and axis

L, I shall say that (D, L) is a Murasugi sum of (Dl, L1) and (Dz, L2)

if (1) D1 and D2 are subdiscs of D each lying in one half-space of

R’

and meeting only in a disc D0 = D1 n D2 in the common plane .mz,
(ii) the axis L meets the separating plane :mz in just two points,
d€ D and ¢ ¢ D, (iii) the disc D, forms a Stallings disc with

axis L where L1 consists of the part of L in one half-space,

1!
completed by an unknotted arc cd 1in the other hali-space, and similarly

for (D L.

2’ "2
This sort of decomposition can be seen when none of the horizontsal
t
bands in the disc for B pass over the k h string, say, i.e. 1no generators
0. ., with i< k< j occur in B. Then the vertical plane RZ
]
th

containing the k vertical disc will separate the Stallings disc D

o .
spanning B into two discs, D1 consisting of the first k vertical
discs with the ribbons joining them, and D2 consisting of the 1last n - k + 1
vertical discs and joining ribbons. These form Stallings discs, relative

to the curve L as axis, for braids Bl on the first k strings, and BZ

on the last n - k + 1 sgtrings, see for example figure 7.
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Theorem 6 The Stallings braid g is exchangeable if and only

if Bl and 32 are exchangeable.

Corollary 6.1 Every Stallings braid g ¢ B in which one string,
n

th
the k say, is joined to each of the others by a ribbon is exchangeable.

Proof If k# 1, n +then B 1is a Murasugi sum of two
braids with the same property, on fewer strings. The result then follows
by induction on n, using Theorem 6 and the fact that the two Stallings

braids on two strings are exchangeable.

Otherwise let k 1, (k = n 1is similar). The conjugate braild

1

. -1
B = vy "By, where Y given by moving the last string

%n-1 " %%
of R over the others to become the first, is again 2 Stallings braid of

the same form as B, with k = 2, and has thus already been shown to be

exchangeable.

Proof of Theorem 6 Let D be the Stallings disc for ﬁ. Write

cl, N cn for the points of D n L in order along L, so that the
separating plane :mz meets L in ck = d, and in a point ¢ between

cn and cl. Suppose first that Bl and 82 are exchangeable, We
must show that there is a fibration for 83 - 8D in which L 1lies momo- .
tonically. Now the construction in [M3] of a fibration for 83 - 9F

where F is a Murasugl sum of two fibre surfaces F1 and F2 will apply
here to give a fibration of 53 - 0D arising explicitly from the given

fipbrations of 83 - 3D1 and 53 - 3D2. It follows from this construction

that each arc c¢.c, , for 1 <1i <n, and alsc the arcs cc and ¢ ¢ lie
i i+l 1 n
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monotonically in this fibration, since their counterparts did in the
constituent fibrations. Hence L lies monotonically in the fibration,
and so J3 is exchangeable.

Conversely, suppose that g 1is exchangeable. Choose an arc g

in D2 joining ck to cn. This arc o followed by the arc on L

from cn to c1 gives an arc from ck to c1 which can be altered

slightly by pushing gradually off D2 so as to give an arc from ck to

cy which lies monotonically in the fibration of 83 - aD. The closed

curve C made up of this arc, with the arcs c¢_c_,

1597 ck—lck of L is

then braided relative to 3D.

M

I claim that 3D u € 1is isotopic to Blu axis, showing that Bl

is exchangeable.

It is clear that Dy C is isotopic to D1 u C, since C does

not meet D - Dl. It remains to show that C 1is isotopic, rel D_,

A
to the axis for 51 = aDl. Up to isotopy rel Dl' the curve C

can be taken as o together with the part of L from cn through ¢

to ck. It will then be enough to show that the arc o u cnc is
unknotted in the half-space which contained DZ’ for this piece can then
be moved to form the remaining part of the axis. Complete this arec
to a curve C' by adjoining the arc ce, from L and an arc y in D,

joining c1 to ck. This curve C' then consists of one arc cnc1
on the axis of D with ends joined by an arc lying in D, and hence
unknotted, by the exchangeability of B, since its complement will have
free fundamental group (Corollary 4.2). Hence o U cnc is unknotted

in its half-space, since it forms a connected summand of the unknotted

curve C'. This completes the proof of Theorem 6.
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h) Satellites

The other possible decomposition of a Stallings braid which I would

like to describe is related to the construction of satellite knots and links.

Generally, to construct a satellite of a link L = L1 u,.. u Lr we start
with another link, C = C1 vyo... U Ck’ in which one unknotted component,
Ck say, 1is selected. Choose one component, L1 say, of the original

link, and replace a solid torus neighbourhood V of L1 by the complementary
solid torus W to a neighbourhood of Ck. This replacement is by means of
a faithful homeomorphism h : W>V, i,e., one which carries a longitude

of W to a longitude of V, The satellite link then consists of

h(Cl) v ... v h(ck—l) UL U ...UL, and contains a 'splitting torus',

2 T
T = 3V = h@Ww.

I shall

only be concerned here with the case r = k = 2 in which C1 u C2 and

L1 u L2 each consist of a closed braid, together with its axis. It is
not difficult to see that the resulting satellite h(Cl) U L2 is a closed
braid with axis L2 on mn strings, when the constituent braids have m and
n strings respectively. In fact a converse of this can be proved, either
as a special case of results about fixed satellite links, or by bare-

hands isotopy of a splitting torus for the satellite. The result can be
stated as follows.

Theorem 7 A satellite link K, v K, = h(C,) v L, erising from
links C1 u 02 and L1 u L2 consists of a closed braid Kl with axis Kz

if and only if C1 is a closed braid with axis C and L1 is a closed

2

braid with axis Lz. -
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As a consequence we have the following result about exchangeable braids.

Theorem 8 Let the satellite link Kl u K2 consist of a closed
braid g with its axis. Then R is exchangeable if and only if Bl

d are h ble her C C = i L L = i
an Bz exchangea , Where 1 U 2 311J axis, 1 U 9 32 v axis,
as in Theorem 7.
Proof If B 1is exchangeable then Kl U K2 forms a closed braid
Kz with axis Kl. The splitting torus must be unknotted, so the link K

can also be viewed as a satellite constructed from the links C and L with

the roles of C2 and L1 interchanged and also the roles of C1 and L2.

By Theorem 7 it follows that C and L also consist of closed braids Cz,

L2 with axes C1 and L1 respectively; thus 31 and 32 are exchangeable,

Conversely, if 31 and 52 are exchangeable the homeomorphism h : W V
used in constructing the satellite, which carries the exterior of C2 to
the neighbourhood of L1 can be extended to a homeomorphism & : 83 > S3,
with h_1 carrying the exterior of Ll to a neighbourhood of Cz. The

satellite of € constructed using h_l, which zonslists of h_l(Lz) U Cl,

also forms a closed braid with axis Cl’ since C2 and L2 are braided

relative to Cl’ L1 respectively. This satellite, however, is equivalent
under h to the link L2 ] h(Cl), which forms the original link K2 u Kl.

Thus K1 is braided relative to K2, and B 1is exchangeable.

One of the simplest non-trivial examples of this construction is illus-

A
trated by the braid v € 34 shown in figure 8, where the link v y axis

results from the satellite construction with 311 = B, = 0 € By

+
Examples of this sort with 81 7 B;l can be used to show that exchangeable
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braids do not always yield symmetric links, i.e. there need not be a isotopy

Al
interchanging the two components of the link p y axis for an exchangeable

braid g.
Conclusion It would be nice to have an effective geometric test to
decide which Stallings braids are exchangeable. Although I have developed

some necessary and some sufficient conditions for exchangeability there is
still a considerable gap between the two.

As a final section I include a brief review of the properties of the
Alexander polynomial for a link, and its calculation, leading to the relation

with the Burau matrices as described in Theorem 3.

§3 Alexander polynomials of closed braids

In Fox's theory of Alexander polynomials, [F1, F2], a presentation
of a group G, with n generators and r relations, yields an T X n
matrix A with entries in the group ring Z[H], where H is the abelian
group G/LG, G], written multiplicatively. The ideals Ek(A) in Z[H]
generated by the (n - k) x {n - k) minors of A are invariants of the
group G. In the case when G 1is the group of a link with p components

the group H is free abelian of rank yu.

Fox shows that the ideal El(G) D b= 1

D.I pu=>1,

where 1 1is the augmentation ideal, and D is a principal ideal, with
generator A4 . The element A e Z{ H], determined up to unit multiple,
can be viewed as an integer polynomial in | variables, and is defined to be
the Alexander polynomial of the link, Fox shows, in [F2, (6.4)! , that

if the column of A corresponding to a generator g € G 1s deleted tol

give a matrix B, then EO(B) is a principal ideal, with generator
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A.(<g>» - 1), for p > 1,
<g> - 1
or A. —E—————, for y = 1, where
t -1

<g»> ¢ H is the image of g, and t 1is a generator of H 1in the case p =1

One immediate consequence is that if r =n - 1, we can find A

readily as det B . ———l—*—-, when y > 1 and B is given as above by
<g> - 1
deleting a column of A,

Proof of Theorem 3

A closed braid E on n strings with axis L forms a 1link with
1
group G generated by t1’ N tn and x and relations B(ti) = x tix
for each i, where g is an automorphism of the free group F (see [B]).
n

2 2
The group Fn appears here as “l(D - n pts.), where D is

~
a spanning disc for L, meeting £ in n points.

Fal
For a knot R the abelianisation H = G/[G, G] 1is free abelian on two
~
generators t = <ti>, i=1, ..., n, corresponding to meridians of £, and
X = <x¥, corresponding to meridians of L,
[BB(t.) ~
Birman shows that the matrix _Tﬁ;l-] = B(t) of free derivatives
j 'H
evaluated in Z[H ] is just the full (n x n) Burau matrix of the braid
Be B .
n
Applying Fox's free calculus to the presentation of G given above
t -1
yields the n x (n + 1) matrix A = [B(t) - xI ] , Wwhere the last
t -1
column corresponds to the generator x ¢ G. The Alexander polynomial

”
Atx, t) of B U L is then given by deleting this last column, so that

Mx, ©) = det(B(t) - xI )/x - 1, Now B(t) is conjugate in
( .
- B : -
GL(n, Z[t, t 1]) to lo-(t%)“T] where B(t) € GL{n - 1, Z[t, t 1]) is
the reduced Burau matrix of A, [B]. Hence det(B(t) - xIn_l) = A(x, t)

as claimed in Theorem 3.
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A Murasugi sum of two Stallings braids
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The Stallings braid v =




