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Phospholamban (PLN) plays a central role in Ca2+ homeostasis in
cardiac myocytes through regulation of the SERCA2A Ca2+ pump.
An inherited mutation converting arginine residue 9 in PLN to
cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans
and transgenic mice, but the downstream signaling defects leading
to decompensation and heart failure are poorly understood. Here,
we used precision mass spectrometry to study the global phos-
phorylation dynamics of 1887 cardiac phosphoproteins in early
affected heart tissue in a transgenic R9C mouse model of DCM com-
pared to wild-type littermates. Dysregulated phosphorylation sites
were quantified after affinity capture and identification of 3908
phosphopeptides from fractionated whole heart homogenates.
Global statistical enrichment analysis of the differential phospho-
protein patterns revealed selective perturbation of signaling path-
ways regulating cardiovascular activity in early stages of DCM.
Strikingly, dysregulated signaling through the Notch-1 receptor,
recently linked to cardiomyogenesis and embryonic cardiac stem
cell development and differentiation but never directly implicated
in DCM before, was a prominently perturbed pathway. We verified
alterations in Notch-1 downstream components in early symp-
tomatic R9C transgenic mouse cardiomyocytes compared to wild-
type by immunoblot analysis and confocal immunofluorescence
microscopy. These data reveal unexpected connections between
stress-regulated cell signaling networks, specific protein kinases,
and downstream effectors essential for proper cardiac function.
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INTRODUCTION

Cardiovascular diseases (CVDs) leading to systolic/diastolic heart
failure (HF), such as hypertensive/diabetic heart disease, stroke
and vascular atherosclerosis, are leading causes of death in the
developed world (1). Many CVDs are associated with genetic
predispositions. For example, in humans, the R9C substitution
in phospholamban (PLN) has been shown to result in dilated
cardiomyopathy (DCM) presenting in adolescence, leading to
rapid deterioration of heart function and premature death (2).
However, the etiology and molecular mechanisms of progression
of DCM and other CVDs leading to HF are complex and still
poorly understood, further complicating clinical assessment and
management. From a biological and clinical perspective, the iden-
tification and characterization of clinically relevant, potentially
druggable, pathways driving the maladaptive response in affected
heart tissue is a key challenge to improved diagnostic and thera-
peutic tools for earlier detection and preventative treatment of
both inherited and chronic CVDs.

Cardiac muscle contraction is controlled by Ca2+ flux and
signaling relays, which are perturbed in HF. Internal stores of
Ca2+ required for the proper functioning of cardiomyocytes
(CMs) are normally maintained through the function of the
sarco(endo)plasmic (SR) reticulum Ca2+-ATPase 2 (SERCA2)
(3), which is responsible for the sequestration of Ca2+ result-
ing in muscle relaxation. SERCA2 activity is regulated through
a reversible inhibitory interaction with PLN, which can be re-

lieved by phosphorylation of PLN by protein kinase A (PKA) or
Ca2+/calmodulin-dependent protein kinase II (CaMKII) (3).

Proteomic analyses have revealed changes in the abundance
of other effector proteins in diverse biochemical pathways in
DCM. Notably, shotgun proteomic analysis of membrane protein
expression dynamics in heart microsomes isolated from mice
overexpressing a superinhibitory (I40A) mutant of PLN revealed
changes in G-protein coupled receptor mediated pathways lead-
ing to activation of protein kinase C (PKC) (4). We previously
reported quantitative changes in protein and cognate mRNA ex-
pression levels in cardiac ventricular tissue at different time points
in the development of DCM in R9C-PLN mice representing clear
clinical stages in the progression to HF (5). We showed that the
latter maladaptive response was driven by elevated activity of
MAPK signaling by the protein kinases p38 and JNK, in part
through down-regulation of pro-survival microRNAs (6). How-
ever, the underlying upstream and downstream signaling events
preceding HF were not fully explored.

In the present study, we report the first systematic, large-scale
quantitative phosphoproteomic analysis of dysregulated protein
phosphorylation-dependent signaling occurring at the early symp-
tomatic stages of DCM progression in whole hearts from R9C
mutant mice compared to wild-type littermates.

RESULTS
Comparative phosphoproteome analysis. To achieve a compre-
hensive survey of cardiac signaling cascades impacted by DCM,
we performed global quantitative phosphopeptide profiling on

Significance

The present study demonstrates the utility of global phos-
phoproteomic profiling of diseased cardiac tissue to identify
signaling pathways and other biological processes disrupted
in cardiomyopathy. Perturbed Notch-1 signaling was identi-
fied by bioinformatics analyses of phosphoprotein patterns
present in affected cardiac tissue in a transgenic mouse model
system of dilated cardiomyopathy and by complementary
molecular biology and microscopy techniques. In addition,
dozens of other disturbed signaling pathways offer an op-
portunity for novel therapeutic and/or diagnostic clinically
applicable targets. Although this study was performed in mice,
only minor adjustments to the experimental approach would
be required for comparative analysis of analogous samples
from human cardiac patients, potentially leading to even more
clinically relevant data.
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Fig. 1. General phosphoproteomics workflow. Three pooled hearts from
R9C PLN transgenic and wild type littermates were analyzed by quantitative
precision LC-MS/MS.

Fig. 2. (A) Volcano plot indicating significantly altered proteins and phos-
phoproteins identified in the combined data sets. Log-transformed p-values
(t-test) associated with individual peptides and phosphopeptides plotted
against log-transformed fold change in abundance between the PLN R9C and
wild type hearts. (B) Venn diagram depicting the total number of proteins
identified in the corresponding proteomic and phosphoproteomic datasets.
(C) Venn diagram depicting phosphoprotein overlap with mouse tissue
phosphoproteomes from Huttlin et al. (63). (D) Venn diagram depicting
overlap of R9C and WT combined phosphoproteome and proteome with
ventricular cardiomyocyte proteome from Sharma et al. (12).

three independent biological replicates of whole heart tissue
isolated from 8-week old (early symptomatic) R9C mice and wild-

type littermates. A major experimental consideration was preser-
vation of phosphorylation site integrity, through use of phos-
phatase inhibitors, low temperature, and harsh denaturing sample
processing conditions. To achieve the deepest possible coverage,
we performed chromatographic sample pre-fractionation steps,
using hydrophilic interaction liquid chromatography (HILIC) to
separate peptides bearing negatively charged phosphate moi-
eties (7). Given the low relative abundance of phosphopeptides
and their tendency to be undetectable due to ion competi-
tion/suppression during MS analysis, we performed differential
affinity capture with immobilized metal oxide affinity chromatog-
raphy (TiO2) to enrich for phosphopeptides. To measure differ-
ences in relative abundance, we applied label-free quantification,
comparing the extracted parent ion current intensities recorded
in high-energy collision dissociation (HCD) spectra using a high
precision Orbitrap instrument. In parallel, we measured total
protein levels by shotgun sequencing.

In total, our stringent data analysis workflow (Fig S1) mapped
94,956 and 217,092 spectra to mouse reference protein sequences
for the phosphoproteomic and background proteomic data sets,
respectively. From this, we derived a set of high-confidence se-
quence matches (FDR ∼1% at both protein and peptide levels)
corresponding to over 1,800 cardiac phosphoproteins and 3,900
phosphopeptides in normal and DCM hearts, and 15,436 unique
peptides mapping to 3,580 unique proteins in the background
proteomic data set (Fig S1, Fig 2A/B). For the former, we con-
fidently (site localization probability >0.7 as described in Supp.
Methods) identified 7,589 unique putative phosphorylation sites
(i.e. sites on identified phosphopeptides with supporting MS/MS
data and localization probability greater than 0.7) of which 6,855
mapped to serine, 674 to threonine, and 60 to tyrosine residues
(consistent with the expected 90:9:1% cellular distribution ratios)
on 1,848 distinct cardiac proteins (Fig 2A/B; see Supp. Datasets
S1 and S2). Our coverage is comparable to a pioneering study of
the mouse cardiac phosphoproteome by Lundby et al. (8) and a
recent phosphoproteomic analysis of in vivo effects of CaMKII
inhibition in mouse hearts (9). Phosphoproteins identified in our
study also showed considerable overlap with heart and other tis-
sue profiles in the mouse phosphoproteomic atlas reported by the
Gygi group (10), but 333 were uniquely identified in our study; 96
of which contained phosphopeptides significantly altered and/or
solely identified in R9C hearts (Fig 2C). A high degree of overlap
with the mouse ventricular myocyte proteome by Sharma et al.
(11) was also observed (Fig 2D).

Quantification and Ranking. Based on reproducible mea-
surements of precursor ion intensity, we scored both the indi-
vidual phosphopeptides and their consolidated cognate phos-
phorylation sites for differential relative abundance between the
healthy and diseased samples. Based on a two-tailed student’s
t-test (p < 0.05), the abundance of 211 phosphopeptides was
differentially altered (elevated or reduced) between the R9C
and WT hearts (Fig 2A; see Supp. Dataset S1), with 86% of
these predominantly higher in the disease state. In comparison,
499 proteins showed differential expression, consistent with our
previous report (5).

Systematic evaluation of the corresponding biological annota-
tions revealed the aberrant phosphorylation patterns occurred on
proteins linked to disparate subcellular compartments, ranging
from membrane-associated receptors to nuclear-localized pro-
teins with established links to heart development, contractile
function and/or cardiomyopathy (Supp. Data 1). Consistent with
expectation, the predominant phosphoform of PLN detected
preferentially in R9C hearts was phosphorylated on serine 16,
a site critical for inhibition of SERCA2 activity (3). We also
detected alterations in the phosphorylation pattern of central
kinases involved in cardiac signaling like protein kinase A (PKA)
. Additionally, the S112 site on the PKA Type II regulatory beta
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Table 1.

motifs Kinase MOTIF
SCORE

matches fold increase

...RS.S...... CamKII, PKA, PKC, CK2 27.34 59 4.76

......SD.E... CK2 24.66 34 6.77

....SPT...... GSK3, ERK1/2, CDK5, CK2,
DNA-PKcs

23.7 27 7.75

.R..S.S...... CamK2, PKA, PKC, CK2 23.62 34 5.64

....SDS...... CK2, BARK 17.65 21 6.41

......SP.... GSK3, ERK1/2, CDK5 16 275 2.34

...S..S...... CK1, CK2 16 258 1.74

...R..S...... CamK2, PKA, PKC 12.45 123 2.01

......TP..... GSK3, ERK1/2, CDK5 9.46 63 2.35

..S...S...... GPCRK1, MAPKAPK2K, GSK3 8.1 120 1.7

Top 10 ranked identified consensus motifs on phosphopeptides significantly altered and/or
exclusively detected in R9C heart tissue with kinases predicted to target these sequences. Number of
matches in the query set and fold increase over the normal occurrence of consensus sequence is also
provided.

Table 2.

Pathway Identified components Cardiac Context

Notch-1 signaling hdac7(s178), tle3(s216), snw1(s224,s232), tmed2, ncor2*, tbl1xr1, tbl1x,
ncor1(s2351), ep300, adam10, crebbp, rbx1, numb, hdac5(s652), arrb1, rps27a,
mib1

dilated cardiomyopathy, left
ventricular non-compaction, cardiac
development (36, 40)

VIP signaling map3k1(s915), ppp3cb(s469), plcg1(s1263), nfatc2(s136), prkar2b(s112), prkacb,
prkar2a, prkar1a, nfkb1, ppp3ca

myocardial fibrosis, diabetic
cardiomyopathy, ischemia-reperfusion
(41)

H3-K4 Histone
methylation

ogt, kmt2a, snw1(s224,s232), nipbl(s2652), bcor(s423), men1, kdm1a, mt2b,
dnmt1*, pml(s449), pygo2(t264), ctbp1, arrb1, ube2n, wbp2, lpin1

hypertrophic cardiomyopathy, fetal
gene program (42)

BCR signaling, beta cell
activation and
regulation

mif, irs2(s1165), thoc1(s560), sos1*, orai1, fas*, sash3*, ptprc(s801), lyn(s19),
syk, itpr1(s1573), cd81, stim1*, ptpn6, nfatc2(s136), inpp5d(t701,s709),
sh3kbp1(s193), aplf(s41), cbl, plcg1(s1263), tcf3(s517), bad(s112), itpr2, calm1,
pawr, itpr3, bmi1, nck1

heart failure, hypertrophy, myocardial
fibrosis, myocardial infraction,
ischemia-reperfusion (43, 44)

TGFb/smad signaling glg1, pdpk1(s117), jun(s63), lemd3, fbn2, men1, zeb1, aspn, eng, snx6, zfyve9,
cav3, sptbn1, bcl9l, strap, cav2*, ppm1a, htra1

dilated cardiomyopathy, heart failure,
fibrosis, myocardial infraction, cardiac
remodeling (24, 45)

PPARa signaling med19(s226), txnrd1, ankrd1, wwtr1*, abca1(s2234), yap1, med24*, tbl1xr1,
alas1, cdk19, tbl1x, apoa1, acox1, apoa2, smarcd3, agt, ncoa3*, ncoa2,
nfya(s187), fhl2, sp1, ncoa6, acadm, acsl1, cd36, crebbp, slc27a1, cpt2,
ncor1(s2351), plin2, me1, ep300

dilated cardiomyopathy, heart failure,
diabetic cardiomyopathy (24, 46)

TLR signaling hsp90b1(s306), lgmn, ikbkb, map2k1, app, nfkb2(t425), dhx9(s137), dnm2,
ppp2r5d*, unc93b1, dnm1(s774), itgb2, rps6ka3, eea1, dusp3, tlr3, ctsb, nfkb1,
ube2n, ppp2ca, cd36, mef2a, ppp2r1a

dilated cardiomyopathy, heart failure,
ischemia-reperfusion, hypertrophy,
viral myocarditis (24, 47)

Wnt signaling scyl2(s253), dab2ip(s854), ranbp3, cdh2, wwtr1*, rapgef1*, gsk3a, ppp2r3a,
mcc*, dab2, limd1, ctnnb1, dact3(s165), bicc1, gsk3b, stk3(s246), ctnnd1(s813),
g3bp1, cav1, ppp2r5a, pi4k2a(s462), cul3, mapk14*, dvl3*, hdac2(s394)

dilated cardiomyopathy, fibrosis, heart
failure, myocardia infraction,
arrhythmia (24, 48)

List of select cardiac-relevant signaling pathways (from the Cytoscape analysis), along with their relevant protein components, altered in R9C PLN hearts.
Phosphopeptides/proteins increased in R9C hearts are shown in bold, while components identified but showed a decrease in R9C are not bolded. The
identified phosphorylation site of a particular protein is indicated in brackets. Proteins annotated with * are ‘ambiguous’ as described in methods. For a full
list of protein/gene names associated with each pathway, refer to Supp. Data.
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Fig. 3. (A) Immunblots of components of the Notch-1 signaling pathway.
(B) Immunofluorescence images of Notch-1, ADAM9, and Notch-3 in ventric-
ular sections of WT and R9C PLN hearts. (C) Representative reconstructed
images showing nuclear localization of the Notch-1 intracellular domain
and bar graph showing quantification of relative distribution (spots iden-
tified/nuclear volume as determined by Hoechst staining) in WT and R9C PLN
hearts (p-value = 0.00282).

Fig. 4. Proposed schematic model of Notch-1 signaling in normal and
DCM cardiomyocytes populated with differential proteins identified with
different lines of evidence in whole heart lysates or ventricular sections,
including: proteomic data, phosphoproteomic data, immunoblotting, and
immunofluorescence.

subunit (PRKAR2B), which results in the lowering of the activa-
tion threshold of PKA (12), increased in R9C. Additionally, we
detected abundance changes in cardiac stress markers (FHL1),
indicators of the fetal gene program (MYH7), markers of ECM
remodeling (POSTN, SPARC), and proteins involved in Ca2+

modulation (SLMAP, CASQ2) (Supp. Datasets S1 and S2).
Further examples of interest include the highest ranked phos-

phorylated peptide (S64 + T69) from eIF4E binding protein
1 (EIF4EBP), which negatively regulates translation initiation.
Hypophosphorylated EIF4EBP acts as a repressor of eIF4E,
whereas its phosphorylation releases eIF4E, thereby upregulating
protein translation in response to signaling by diverse cell surface
receptors, including insulin, EGF, PDGF and other ligands (13).
In heart, EIF4EBP has been implicated in ischemia-reperfusion
stress, cardiomyocyte survival, cardiac hypertrophy, and oxidative
and nutritional stress responses (13).

Also significantly more highly phosphorylated in R9C hearts
was a previously uncharacterized T187 site in EMMPRIN
(BSG/CD147), an extracellular metalloprotease inducing mem-

ber of the immunoglobulin superfamily, consistent with its role in
inflammatory processes in cardiac remodeling (14). In addition,
the S2 phosphosite on transcription factor MAX (Myc associ-
ated factor X) (15), a positive regulator of cardiac alpha-myosin
heavy-chain gene expression in cardiomyocytes, was significantly
altered in R9C mice. Phosphorylation of S2 inhibits DNA binding
by MAX homodimers and association with MYC, but is not
known to affect its interaction with another cofactor, transcrip-
tion enhancer factor 1 (TEF-1, TEAD1), or regulation of cardiac
alpha-myosin heavy chain (16). In contrast, when phosphorylated,
the S73 site of transcription factor JUN, likewise more highly
phosphorylated in the R9C mutant mice, is linked to increased
transcription of JUN target genes encoding components of a
myriad of signaling pathways (17).

Phosphosites on two intercalated disc-associated Xin repeat
proteins (XIRP1, XIRP2) with roles in cardiac development were
also increased significantly in R9C hearts. XIRPs interact with
catenins and ion channels in mature cardiac muscle and while the
significance of phosphorylation is unclear, gene knock out mice
display early onset cardiomyopathy (18).

Kinase Target Motif Analysis. We used the MotifX algorithm
(19) to identify consensus motifs overrepresented in the set of
phosphopeptides identified exclusively in R9C heart tissue and/or
those showing significant (p < 0.05) differential expression be-
tween R9C and wild-type mice (Table 1 and Supp. Dataset S1).
Candidate consensus sequences were processed using Phospho-
Motif Finder (20) to identify cognate kinases known or predicted
to phosphorylate these sequences.

We found central kinases involved in cardiac contractility
through transient Ca2+ regulation among the most overrepre-
sented compared to the whole mouse proteome. Two consensus
motifs identified were targeted by PKA and CaMKII (Table 1),
one enriched 4.76-fold (59 matches) over background and the
other 5.64-fold (34 matches). Phosphorylation of PLN by PKA
on S16, or by CaMKII on T17, reverses PLN-mediated inhibition
of SERCA2a activity up to 3-fold during β-adrenergic stimulation
(3). Upregulation of these kinases is expected as a compensatory
mechanism considering that R9C-PLN mutant molecules effec-
tively trap PKA, inhibiting phosphorylation of wild-type protein
and relieving SERCA2a inhibition (2).

Two consensus sequences targeted by extracellular signal
regulated kinases (ERK1/2) were identified on 275 significantly
altered phosphopeptides (Table 1). ERK1/2 becomes activated
in cardiac myocytes in response to a variety of stimuli, including
progression of DCM (21). Likewise, we found consensus motifs
associated with phosphorylation by casein kinases and GSK3
kinases, previously linked to cardiac pathology (22).

Pathway Network Enrichment Analysis. For each phospho-
protein (and corresponding gene), the most differential peptide
or modification site was selected for a systematic pathway en-
richment analysis (see Methods). Phosphopeptides were initially
ranked based on the level of statistical significance (differential p-
value) rather than direction (up/down) of observed fold change.
The focus of this analysis was to identify pathway-level alterations
present in R9C mice compared to controls.

Three sets of enrichment analyses were performed to gain
the most complete coverage, based on: (i) ranking the phospho-
proteomic data set alone, (ii) the background proteomic data
set alone, and (iii) a merged combination of both (Fig 2A/B
and Supp. Fig S1), which included the significant differentially
abundant proteins derived from both the proteomic background
and differential phosphorylation events. This merged set of 4,345
unique proteins/genes (Fig 2B) was included since signaling per-
turbations do not necessarily consist only of changes in phos-
phorylation state or protein expression alone, but often rather
both in concert. The most differentially expressed peptides or
phosphorylation events (based on p-value) from each protein
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were used to represent individual protein/gene products. The
majority of enriched pathways found in the merged set (Supp.
Dataset S3) reflected the presence of many proteins exclusively
in the background proteome. Of the 2,039 gene sets enriched in
the merged set, many (1,427) were likewise enriched in the global
proteomic data alone (Supp. Fig S1).

We chose to focus on a subset of 612 pathways and pro-
cesses that reflected contributions from both datasets, rather
than merely differential protein levels. To simplify analysis by
minimizing redundancy in the annotation term labels (Supp.
Data S1), we combined the 182 enrichments from the phos-
phoproteomic data set (not in the background proteome) with
the 526 gene sets unique to the merged set (Supp. Fig S1 and
Dataset S3). By visualizing the resulting 708 enriched gene sets
as a single graphical Enrichment Map (23), we identified several
dysregulated pathways of notable relevance to cardiac pathol-
ogy (Table 2, Supp. Fig S2). For instance, reflecting a central
role in cardiac physiology and pathology, dysregulated pathways
associated with activation PKA and cAMP-dependent kinases
were prominently overrepresented in all gene set enrichment
analyses (Supp. Datasets S1 and S3). Considering the ubiquity
of many signaling pathways across different tissues and cell types,
when examined as a whole (rather than individual components),
it is not surprising that most pathways have associations with
other disorders or processes. This is also partly a bias of existing
annotations in curation databases.

To identify disease signatures specifically relevant to DCM,
we integrated and compared these pathways against a recent in
depth RNAseq-based gene expression study of the R9C PLN
model (Supp. Datasets S2 and S6) (24). Specifically, differen-
tial mRNA expression modules in the Seidman study corre-
sponding to cardiomyocyte and non-myocyte cardiac cell popula-
tions at different stages of disease (represented by six individual
nodes) were tested for overlap with our enrichment map using
a stringent Mann-Whitney test cutoff (p<0.01). Strikingly, we
observed highly significant overlap between most of the disrupted
biological processes and signaling pathways noted by the two
studies, including (but not limited) to: innate immunity, glucose
metabolism, TGF beta signaling, PPAR signaling, Wnt/β-catenin
signaling, and TLR signaling. Notably, the general pathways in-
volved in metabolic and pro-fibrotic processes determined by the
Seidman study to differentiate between DCM and hypertrophic
cardiomyopathy (HCM) were likewise detected as differentially
perturbed in R9C hearts in our merged data.

Notch-1 Signaling. Distinct from the Seidman study, how-
ever, we identified evidence for significant disruption in home-
ostatic Notch-1 signaling in R9C hearts, with most phosphosites
never reported before in the context of DCM. For instance,
uncharacterized sites on SNW1 and CREBBP, members of the
Notch-1 transcription co-activator complex (25), were hyperphos-
phorylated in the R9C mice. Similarly, we detected previously
unreported phosphorylation sites on both MAX and NCOR1
and NCOR2, components of a downstream transcriptional co-
repressor complex known to inhibit transcription of Notch target
genes (26).

To directly determine the differential state of Notch re-
ceptor signaling, we performed immunoblots (Fig 3A) using a
panel of antibodies targeting different Notch receptor isoforms
(Notch1/3), activating and inhibiting ligands (DLL1/4, JAGG1/2,
NUMB), processing enzymes (ADAM9/17), and key downstream
effector transcription factors (HEY2, HES3, SOX9). Strikingly, a
very substantive and specific decrease in total Notch-1 receptor
levels was seen in the R9C hearts, while levels of Notch-3 receptor
were unchanged (Notch-2 was undetectable, as was the cleaved
Notch-1 intracellular domain).

Of the activating Notch ligands, DLL1 was downregulated in
R9C, while JAGG1 showed no change (DLL4 and JAGG2 were

not detected). Conversely, DLL3 and NUMB, which can suppress
Notch signaling, were upregulated in R9C hearts. Two metallo-
proteinases (ADAM9 and TACE/ADAM17) required for extra-
cellular processing and/or degradation of the Notch-1 receptor
were similarly upregulated in R9C. Conversely, the downstream
Notch-1 regulated transcription factors HES1 and HEY2 were
downregulated in R9C.

Immunofluorescence visualization of components of the
Notch signaling pathway in ventricular wall of R9C and wild-type
hearts (Fig 3B) established downregulation of Notch-1 receptor
expression in R9C cardiomyocytes along with upregulation of the
ADAM9 metalloproteinase (Notch-3 was unchanged). Imaris-
based quantification (Fig 3C) of signal intensity and localization
of the Notch-1 intracellular domain (N1CID) in cardiomyocyte
nuclei, indicative of Notch-1 activation, revealed a significant de-
crease (p < 0.003) in overall nuclear localization of N1CID in cells
in the ventricular sections of R9C hearts compared to controls
(due to gross changes in tissue morphology in R9C hearts, a large
proportion of nuclei showed no N1CID colocalization). These
results verify Notch-1 receptor signaling inhibition in affected
heart tissue during early-stage disease (Fig 4).

DISCUSSION

During pathological cardiac remodeling, including DCM, dis-
ruptions in various signaling cascades have been reported, in-
cluding AKT, ERKs, GSK-3, JAKs, MAPKs, PI3K, PKA, PKC,
and TGFβ. Activation or inhibition of signaling pathways can
ultimately result in changes to cardiomyocyte cell growth, differ-
entiation, proliferation and/or survival (27). Yet despite advances
in understanding the molecular basis of cardiac disease, a clear
global picture of system wide signaling network perturbations
does not exist for most conditions, including DCM. To address
this gap, we applied quantitative precision mass spectrometry to
glean the complex interplay of signaling events associated early
during disease progression with a genetic cause of cardiac HF.

One third of all cardiac proteins are known or predicted to
be phosphorylated. Here, we mapped 7,589 phosphopeptides on
1,848 cardiac proteins, of which 211 were differentially abundant
in the R9C model, providing unprecedented insights into the
global dysregulation of signaling cascades in early-stage DCM.
Many sites we identified are novel and of unknown biologi-
cal significance. While annotated repositories of experimental
phosphoproteomic datasets have been established (e.g. Phos-
phoSitePlus) (28), establishing relevance to heart biology and
CVD is not straight-forward. Our present study aimed to first
identify significantly altered individual phosphosites and then use
the corresponding associated protein/gene annotations in con-
junction with information gained from global proteomic analysis.
This design was motivated by computational tools for signaling
network analysis and visualization, which historically focused on
gene expression datasets rather than individual phosphosites.

One especially intriguing finding was identification of Notch-
1 signaling as prominently altered in DCM. The Notch pathway
is a widely studied system crucial to “cell fate” determination
(29). Mammals express four Notch receptors (Notch 1-4) and five
ligands (DLL-1, -3, -4, JAGG-1, -2) (30). Notch-1 is expressed
across a broad variety of cell types, including cardiomyocytes.
All members of the Notch family are translated as single chains,
but are subsequently processed in the Golgi system to produce
extracellular and transmembrane subunits that remain bound
together at the plasma membrane by non-covalent bonds. Gen-
erally, ligand binding triggers the selective cleavage and removal
of the extracellular subunit by members of the ADAM protease
family, followed by cleavage of the membrane-bound intracellular
subunit by γ-secretase to release N1ICD, which translocates to
the nucleus to modulate transcription (Fig 4). However, this
oversimplification does not reflect cell context as different ligands
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can act as Notch inhibitors, while processing enzymes can oppose
Notch activation (29).

Changes in phosphorylation of Notch signaling components
included an uncharacterized phosphorylation site on the polyu-
biquitin protein UBB required for homeostatic recycling of
Notch-1, which is upregulated in R9C mice (31), as well as mem-
bers of the histone deacetylase family (HDAC-4, -7, -9) and others
(32). However, due to incomplete functional annotation, our cau-
tious conclusion was that Notch-1 pathway was disrupted but not
the precise nature of the perturbation (i.e. activation/inhibition).

We verified changes in Notch-1 signaling by immunoblots
and immunofluorescence. We demonstrated downregulation of
Notch-1 and DLL1 in R9C. DLL3, a Notch-1 ligand previously
shown as a cis-acting inhibitor (33), was upregulated along with
NUMB, whose association with Notch-1 leads to proteasomal
degradation (34). ADAM9 and TACE/ADAM17, normally nec-
essary for activation of Notch-1, were also upregulated in R9C.
However, excessive expression of these proteases has also been
shown to inhibit Notch signaling, while deficiency of a major
associated inhibitor, TIMP3, leads to dilated cardiomyopathy in
mice (35). Furthermore, expression and nuclear localization of
the N1ICD domain of Notch-1 were significantly greater in wild-
type cardiomyocytes compared with R9C. Together, these results
show that Notch-1 signaling is downregulated in myocardium in
early-stage DCM.

Our findings are consistent with previous reports of devel-
opment of DCM in vitro and in newborn mice treated with
an inhibitor of Notch-1 dependent signaling (36), or more pro-
nounced cardiac dysfunction, fibrosis and apoptosis in adult

hearts from an agonist-induced hypertrophy model or Notch-1
cardiac-specific null mice (37). Similarly, transgenic mice overex-
pressing Notch ligand, JAGGED1, were protected from pressure
overload-induced cardiac hypertrophy (38).

Considering this unprecedented phosphoproteomics data, it
is clear that a more complete understanding of Notch-1 signaling
and other potentially relevant pathways in adult heart following
injury, including human patients, is warranted (39). Indeed, un-
coupling of Notch-1 signaling in R9C (Fig 4) suggests that Notch-
1 activating compounds (i.e. activating antibodies, polypeptides,
small molecules) may be clinically beneficial under DCM condi-
tions, similar to that observed in hypertrophy (38) and potentially
other pathological contexts.

MATERIALS AND METHODS
Transgenic mice carrying the R9C mutation in the PLN gene were previously
described (2). Workflows for heart sample preparation, processing and
(phospho)proteomic profiling, including chromatographic fractionation, MS
data generation, phosphosite localization and scoring, statistical enrichment
analyses, motif prediction, Western blotting, and immunofluorescence, are
detailed in the Supp. Methods available online.
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