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Abstract—This paper presents a novel consensus clustering
(CC) approach for a document repository concerning power
substations (PSD) and contributes to the intangible asset manage-
ment of power systems. A domain ontology model, i.e., substation
ontology (SONT), is applied to modify the traditional vector space
model (VSM) for document representation, which is concerned
with the semantic relationship between terms. A new document
representation is generated using a term mutual information ma-
trix with the aid of SONT. In addition, compared with two other
novel CC algorithms, i.e., non-negative matrix factorisation-based
CC (NNMF-CC) and information theory-based CC (INT-CC),
weighted partition via kernel-based CC algorithm (WPK-CC)
is utilised to solve the CC issue for PSD. Meanwhile, genetic
algorithms (GA) were applied to WPK-CC for PSD, as there
are limitations in the original WPK-CC for document clustering.
Subsequently, selected mechanisms in each GA’s procedure are
compared and improved, resulting in comprehensive parameter
settings for the PSD CC. Four simulation studies have been
designed, in which the results are evaluated by purity validation
method and show that the SONT-based document representation
and improved WPK-CC, via modified GA, significantly improve
the performance of the PSD CC.

Index Terms—power system asset management, document
clustering, consensus clustering, ontology, kernel method, GA.

I. INTRODUCTION

ASSET management mainly consists of three types of
asset; physical assets, financial assets and intangible

assets [1]. As one of the most important intangible assets, digi-
tally stored text knowledge increases very rapidly in volume in
power system documentation. Accurate and efficient searching
for important technical reports and required academic papers
is crucial for power engineers to provide necessary condition
monitoring and propose novel strategies for the assessment
of equipment (e.g., power transformer) in power systems. A
typical document repository (i.e., PSD), which is concerned
with power substation related topics only, has been built
in our previous research [2]. The PSD contains more than
100,000 text files (all in English), including technical reports,
substation maintenance records, published academic papers
etc. An ontology-based document search engine was designed
and implemented in the PSD, in which the search engine
returns a ranked document set with descending relevance
scores according to the power engineer’s input query. The PSD

L. Yan, Q. H. Wu and J. S. Smith are with the Department of Electrical
Engineering and Electronics, The University of Liverpool, Liverpool, L69
3GJ, U.K. W. H. Tang and Q. H. Wu are with the School of Electric Power En-
gineering, South China University of Technology, Guangzhou, 510641, China.
Corresponding author: Professor. W. H. Tang, Email: wenhutang@scut.edu.cn.

restricts the searching process to be under the domain of power
substation’s and the search engine improves both the recall
and the precision of searching so that the retrieved documents
are highly relevant to the requirements of power engineers.
Subsequently, power engineers can provide relevant actions
to the power substation. However, a search engine typically
returns, to a user, thousands of results based on the query,
making it difficult to browse or to identify the relevance.

This paper focuses on document clustering, aiming to ex-
amine the existing document repository and divide the repos-
itory into several groups in terms of their underlying topics.
Briefly, documents with a similar topic have high similarities,
while documents within the same cluster are different from
documents in other clusters. As an unsupervised learning
strategy, clustering has the automated processing capacity for
documents without being concerned with the training process,
e.g., classification (supervised learning) and annotating the
documents manually in advance. In this case, the document
repository could be organised into a set of meaningful clusters
automatically, which provides an efficient way for power
engineers to browse and navigate. This study can be regarded
as a logical continuation of work reported in [2].

Document clustering normally contains three fundamental
procedures, i.e., document pre-processing, clustering algo-
rithm implementation and result validation [3]. Document
representation, which belongs to document pre-processing,
always utilises the vector space model (VSM) to represent
documents in many existing methods [3], [4]. Basically, VSM
is a mathematical model, representing a document as a vector
so that a document repository can be expressed by a document-
term matrix. The terms refer to the words selected in the
repository. This type of representation ignores relationships
among important terms that do not co-occur literally. In other
words, they only relate documents that use identical terminol-
ogy [5]. A similar problem also arises in document retrieval in
the research field of information retrieval as mentioned in [2].
For instance, documents concerning the topic of transformer
diagnosis mainly using the words of “condition assessment”
could be clustered into a different group from the documents
described by “fault isolation”.

To consider the conceptual similarity of terms, much re-
search focuses on adding concepts to the terms or transferring
a term vector to a concept vector [5]–[7]. Better results have
been achieved, when these approaches are compared with
the traditional VSM for selected document datasets. However,
these approaches either increase the dimensionality of the text
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data or decrease the amount of information of the raw dataset.
They are not practical for solving the large volume document
clustering problem.

The document data representation for clustering, in this
paper, is inspired by [8], in which a WordNet-based distance
measure is proposed. WordNet is utilised as the background
knowledge, aiming to generate a “term mutual information
matrix”. Subsequently, a new data model is obtained by
combining the consideration of correlation among terms and
the traditional VSM. In this study, a power substation ontology
model (SONT) is implemented. SONT is programmed accord-
ing to the context of power substations only, which is the
first ontology model specifically defined regarding the domain
of power substations, containing synonyms and hyponyms
of each concept. In addition, SONT solves the limitation of
WordNet where there is no synonym or hyponym mapped to
a power substation concept in some cases. Meanwhile, as an
ontology model, SONT is more flexible and expandable with
no ambiguity [9].

In practice, different clustering algorithms or a single clus-
tering algorithm with different parameter settings may generate
various clustering results [10]. It is not appropriate to decide
which clustering result is correct or not, as they are all obtained
by equally plausible clustering algorithms [11]. In this case,
the method of consensus clustering (CC) is implemented in
this study. CC refers to the success of the combination of
various clustering solutions, which is a way to improve the
performance of any single clustering algorithm. It aims to
achieve a comprehensive result with better performance than
each single clustering algorithm and the solution should be as
similar to all the clustering results [11].

This paper compares three advanced CC algorithms. These
algorithms were all originally designed for sample datasets,
which have much smaller features than document datasets.
In addition, there is no existing comparison study among
these CC algorithms. A series of simulation studies were
undertaken on selected document datasets with the aim of
finding the most advantageous one to handle PSD CC. Results
showed that WPK-CC outperformed NNMF-CC and INT-CC
on each dataset. Also, GA-embedded WPK-CC was proven
to be comparable to the WPK-CC, in which the objective
function is solved by the simulated annealing algorithm (SA).
More comparisons have been undertaken on the mechanisms
of GA.

The proposed approach for PSD clustering consists of
PSD representation by the combination of SONT-based VSM
and the term mutual information matrix, followed by an
appropriate CC algorithm and solved by GA-implemented
WPK-CC with optimal schemes of mechanisms and parameter
settings. There are four simulation studies designed, in which
results show that the proposed approach significantly improves
the result for PSD clustering. Meanwhile, with the proposed
approach, clustering can be either implemented on the entire
PSD and other power system related document repositories
or to a retrieved document set so that users only need to
browse a small number of accurately retrieved results. As a
consequence, this approach improves the efficiency of knowl-
edge acquisition for power engineers or academic staff and

contributes to power system asset management.

II. BACKGROUND KNOWLEDGE

A. Document Data Pre-processing

Document data pre-processing normally consists of tokeni-
sation, linguistics and then representing it as a mathematical
model [12]. Tokenisation aims to transform the content of a
document into a sequence of terms, eliminates the punctuation
and performs common stop words removal (e.g., “a”, “an”,
“and”, “in” etc. are removed). There are a large number
of stop words in every document, which is not helpful for
searching. For the linguistics, all the terms are changed to
lowercase and the common morphological and inflectional
forms are eliminated by a suffix stripping algorithm [12],
including stemming (e.g., automated → automate) and lem-
matisation (e.g., criteria → criterion). Subsequently, assume
D = {d1, d2, ..., dn} denotes a set of “n” documents, where
v = 1, 2, ..., n and each dv ∈ D is a tuple of some m-
dimensional space. In traditional VSM, each document dv can
be represented by tvu = {tv1, tv2, ..., tvm} or {t1, t2, ...tm}
(as terms in the vocabulary extracted from the corresponding
document collection are fixed). The corresponding term weight
is denoted by ωvu = {ωv1, ωv2, ..., ωvm}. The weight can
either be the term frequency, i.e., tfv = {tfv1, tfv2, ..., tfvm}
or based on term frequency-inverse document frequency (tf -
idf ) [13].
B. Document Clustering Algorithms

1) Single Clustering Algorithm: K-means is one of the
best-known exclusive clustering algorithms, performing as a
foundation algorithm for researchers to design new clustering
algorithms [10]. It is an iterative procedure that is guaranteed
to converge, though not always to the best solution, and “k”
refers to the number of clusters. The obtained cluster set is
denoted by C = {C1, C2, ..., C3}. K-means revolves around
the placement and replacement of “k” centroids. The centroid
of a cluster is defined to be the average of the vectors in that
cluster, Each data point is put in the cluster associated with
the nearest centroid. The algorithm aims at minimising the
objective function as shown in (1).

J = argmin
C

k∑
i=1

∑
d∈Ci

‖x− µi‖2, (1)

where µi is the mean of points in Ci. The ‖ · ‖2 denotes the
chosen distance measurement (e.g., the Euclidean distance)
between a data point and the cluster centre.

2) Consensus Clustering: Given a set of documents, CC
consists of two steps; generation and consensus function. The
generation step aims to obtain a set of alternative clustering
results named partitions. The consensus function is applied to
combine these partitions. For instance, there is a document
repository containing nine documents, {d1, d2, ..., d9} with
the underlying classification “111222333” and k-means with
different initialisations generates ten different partitions, e.g.,
“111122233” (In this case, nine documents are grouped into
three clusters, and four documents belong to the cluster 1) ,
“112223233” and etc. If a consensus function is applied, it is
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expected to obtain a solution with the underlying classification,
i.e., “111222333”. Suppose that s partitions, i.e., PD =
{P1, P2, ..., Ps}, are obtained. Each partition Pl, l = 1, ..., s
consists of a set of clusters Cl = {Cl

1, C
l
2, ..., C

l
k} where k

is the number of clusters for partition Pl and X =
⋃k

c=1 C
l
c.

The consensus partition P ∗ is obtained by the solution of an
optimisation problem, as illustrated by (2) [14]:

P ∗ = arg max
P∈PD

s∑
j=1

k(P, Pj), (2)

where k is a similarity measure between two partitions. Alter-
natively, it can also be explained and denoted by minimising
the dissimilarities within PD.

3) Consensus Functions:
• WPK-CC was proposed by Vega-Pons and Correa-

Morris [14]. This algorithm involves partition relevance
analysis. Typically, each partition is validated by some
property validity indexes (PVI) or internal validation
methods and assigned by a set of weight (ωl) based on
the entropy. The similarity measure between partitions
(k(Pi, Pj)), which is proven to be positive semidefinite,
is based on analysing each subset of D. In this case, k is
a kernel function and there exists a map from PD into a
Hilbert space H such that k (Pi, Pj) = 〈φ(Pi), φ(Pj)〉H,
where 〈·, ·〉H denotes the dot product in the Hilbert Space
H [15]. Subsequently, the objective function is transferred
to the equivalent equation in the Reproducing kernel
Hilbert space. The approximate solution P̂ is defined by
(3).

P̂ = arg min
P∈PD

∥∥∥φ̃(P )− φ̃(P ∗)∥∥∥2
H
, (3)

with∥∥∥φ̃ (P )− φ̃(P ∗)∥∥∥2
H

= k̃ (P, P )− 2

s∑
l=1

ω̃lk̃ (P, Pl)

+

s∑
i=1

s∑
j=1

ω̃iω̃j k̃ (Pi, Pj).

where φ̃(P ), ω̃ and k̃ are normalised φ(P ), ω and k,
respectively.

• NNMF-CC was proposed by Li and Ding, which is based
on non-negative matrix factorization (NNMF) referring
to the problem of factorising a given non-negative ma-
trix into two matrix factors [16]. This algorithm starts
from defining a connectivity matrix, which is used to
demonstrate the relationship between the element-wise
distance in two partitions. Thus, a primary objective
function is obtained. Afterwards, cluster indicators are
designed according to the connectivity matrix so that the
objective function is transferred into a symmetric NNMF
and solved by NNMF multiplicative update rules.

• INT-CC aimed to minimise an information theoretical
criterion function using GA, which was proposed by
Luo and Jing [17]. This method uses a metric between
partitions based on the entropy between partitions and the
objective function is solved by GA.

C. Validation Methods

Purity refers to an external validation method, which is the
percentage of the total number of objects that were correctly
clustered [4]. Thus, a clustering result with a higher purity
indicates it is an optimal result. The purity of a single cluster
Cj is defined as the fraction of objects in the cluster that
belong to the dominant class contained within that cluster:

P (C ′i, Cj) =
1

nj
max

i
{Nij}

where Nij denotes the size of the intersection
∣∣Ci
′ ∩ Cj

∣∣
between the class Ci

′ and cluster Cj ; nj is the number of
data in cluster Cj . The overall purity of a cluster is defined
as the sum of the individual cluster purities, weighted by the
size of each cluster, which is illustrated in (4).

P (C ′, C) =

k∑
j=1

nj
n
P (C ′, Cj) (4)

III. PROPOSED METHODS

A. PSD Modification with Ontology

1) A Domain Ontology SONT: SONT has been developed,
in our previous research [2], using the Protégé ontology
development software [18], with the aim of expanding the
original query for a document search. The relationship among
the related terms are described with web ontology language
(OWL) semantics. Considering the domain and scope of
SONT, “Power System” is defined as “Thing” at the top
ontology level, and a top-down development process is utilised
to define the corresponding classes and the class hierarchy in
the Protégé. The second level classes contain nearly all the
important aspects of power substations, such as “Action”, “At-
tributes”, “Device”, “Other assets”, “Status” and “Units”, etc.
For instance, “Action” consists of four subsequent subclasses;
“Monitoring”, “Restoration”, “Protection”, and “Vibration”.
The current version of SONT has 413 classes, 67 properties
and 31,579 instances. More details of SONT can be found
in [2].

2) PSD with SONT-based VSM and Term Mutual Informa-
tion: From the linguistics point of view, some researchers have
verified that there exist mutual relations between the terms in
a document-term vector [19]. Therefore, it is essential to take
these term relationships into consideration rather than simply
using the traditional VSM [20].

The first step of this method is to examine whether a
term tu1

is semantically correlated to the other term tu2
with

SONT. In other words, this step aims to check the synonym
and hyponym set of each term, and an indicator, i.e., δu1u2

,
is defined to present the semantic information between two
terms. If tu2 is a synonym or hyponym of tu1 , δu1u2 will be
set to a coefficient, otherwise, δu1u2 will be set to zero. Thus,
with the δu1u2

embedded, the term frequency can be modified
by (5).

ω̃vu1
= ωvu1

+

m∑
u2=1
u2 6=u1

δu1u2
ωvu2

. (5)
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(a) Traditional VSM

term d1 d2 d3
power 5 8 6

transformer 10 12 10
fault 5 2 0

diagnosis 10 0 0
detection 0 8 0

assessment 0 6 0
magnetic 0 0 5

circuit 0 0 5
optimisation 0 0 8

→

(b) SONT-based VSM

term d1 d2 d3
power 5 8 6

transformer 10 12 10
fault 5 2 0

diagnosis 10 11.2 0
detection 8 12.8 0

assessment 8 12.4 0
magnetic 0 0 5

circuit 0 0 5
optimisation 0 0 8

TABLE I
THE COMPARISON BETWEEN TRADITIONAL VSM AND SONT-BASED

VSM

An example has been illustrated as follows: there are three
documents, i.e., {d1, d2, d3}. d1 and d2 mainly introduce
the topic of transformer fault diagnosis, while d3 covers the
power transformer design. The term frequency, which is based
on the traditional VSM, is given by Table I (a). Diagnosis,
assessment and detection in the power substations discipline
are semantically related to each other. According to (5) with
δu1u2

= 0.8, the traditional VSM can be transformed into
the SONT-based VSM as illustrated in Table I (b). The
Euclidean distance, based on the traditional VSM between
two documents, is dis(d1, d2) =

√
(d1 − d2) (d1 − d2)T =√∑m

u=1 (ω1u − ω2u)
2. If the term frequency (tfvu) is chosen

to be the term weight, the distance between d1 and d2, d2 and
d3, d1 and d3 are 14.8997, 15.0333 and 15.4919, respectively.
In the SONT-based VSM, the above distances are updated to
8.1142, 23.8546 and 19.1833, respectively. The influence of
involving the semantic relations for VSM is remarkable, as
the distance between d1 and d2 decreases and the distance
between d1 and d3, d2 and d3 increases significantly. As a
consequence, d1 and d2 have more chances to be clustered
into the same group in the cluster analysis, and d3 will be
assigned to another cluster.

Although PSD contains different topics and the documents
can be divided into several categories in terms of these
topics, they are all under the context of power substation.
According to the Harris distributional hypothesis, the words
or terms occurring in the same contexts tend to have simi-
lar meanings [21]. Thus, there exist some syntactic surface
dependencies between a pair of terms that simultaneously
occur in the repository. The syntactic surface dependencies
are defined as term mutual information (TMI) and computed
by the cosine similarity. The TMI between term t1 and term
t2 is illustrated in (6), in which the similarity of each pair
of terms, i.e., mutual information matrix (MIM ), in a given
repository can be computed by (7).

TMIt1t2 =

∑n
v=1 ω̃v1ω̃v2√∑n

v=1 ω̃
2
v1 ·

√∑n
v=1 ω̃

2
v2

. (6)

MIM =


σ11 . . . σ1u . . . σ1m

...
...

...
...

...
σv1 . . . σvi . . . σvm

...
...

...
...

...
σm1 . . . σmu . . . σmm

 , (7)

where σvu denotes the mutual similarity between term tv and
tu. It can be noted that the similarity of (tv, tu) is equivalent
to (tv, tu). Thus, MIM is symmetric. In addition, there is
no difference between the same term, i.e., (tu, tu). Therefore,
MIM can be modified, which is illustrated by (8).

M =



1 . . . σu1 . . . σv1 . . . σm1

...
. . .

...
...

...
...

...
σu1 . . . 1 . . . σvu . . . σmu

...
...

...
. . .

...
...

...
σv1 . . . σvu . . . 1 . . . σmv

...
...

...
...

...
. . .

...
σm1 . . . σmu . . . σmv . . . 1


(8)

The elements in M are all greater than or equal to zero so
that M is symmetric positive semidefinite [22]. The mutual
information matrix can be decomposed by an orthogonal
matrix A and a diagonal matrix D, as presented by (9).

M = ADAT = A
√
D
√
DAT = (A

√
D)(A

√
D)T = BBT ,

(9)
where B refers to the correlation factor matrix, and B =
A
√
D. According to the Euclidean distance based on the term

frequency between two documents, the distance with the term
mutual information matrix can be denoted by (10).

md(d1, d2) =

√
(d1 − d2)M(d1 − d2)T . (10)

This distance measure refers to the Mahalanobis distance,
where the matrix M is defined as the dimensions correlation
coefficient appearing in the Mahalanobis distance [23]. It is
noticed that (10) turns into a Euclidean distance, if M is an
identity matrix. According to (9), the distance md(d1, d2) can
be modified as follows:

md(d1, d2) =

√
(d1 − d2)M(d1 − d2)T

=

√
(d1 − d2)BBT (d1 − d2)T

=

√
(d̂1 − d̂2)(d̂1 − d̂2)

T

, (11)

where d̂1 = d1B and d̂2 = d2B. Thus, the Mahalanobis
distance between d1 and d2 is equivalent to the Euclidean
distance between d̂1 and d̂2.

B. WPK-CC with Genetic Algorithm

Each partition is an integer string with fixed length, of
which each component represents a cluster label for one
document. Simulated annealing (SA) has been applied to solve
the consensus function of WPK-CC. In each iteration, SA
creates a new solution by changing only one label to another.
In this case, SA in WPK-CC is similar to GA, when the
PopSize (PopSize) of GA is one and only mutation operates
without crossover. GA returns a set of solutions rather than
a single solution, permitting more chances to obtain a more
approximate solution. In addition, if the integer string is very
long (e.g., more than 100,000 bits), WPK-CC will converge
extremely slowly. Moreover, the parameters in SA, i.e., initial
temperature and the temperature decreasing rate, are more
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TABLE II
DOCUMENT REPOSITORIES

Dataset Description n m classes documents per class
bbcsports1 Sports news articles from BBC 737 4,613 5 101-124-265-147-100

bbc2 Articles from BBC 2,225 9,635 5 510-386-417-511-401
TDT2-63 Subset of TDT2 6,523 36,771 6 1844-1828-1222-811-411-407

PSD Power substation document corpus 136,735 700,083 6 41223-21482-32115–10101-22583-9231

likely to be determined empirically. It is difficult to find a
balanced temperature decreasing rate in SA, which concerns
both accuracy and efficiency. GA contains various mechanisms
and parameters in each step (e.g., selection, crossover and
mutation), which allows a more thorough optimisation for
a CC application. Meanwhile, utilising GA to deal with the
clustering problem is more straightforward compared to other
algorithms, as it is not necessary to involve encoding and
decoding for the chromosomes. It can be concluded that GA is
a more advantageous method to solve the consensus function
than SA or other optimisation methods. Also, it is noticed that
a selected mutation point can mutate to any cluster number.
In this paper, if a mutation point is chosen, all alleles in the
population will be analysed. In general, if a cluster number
occurs more frequently than others, it will have a higher
probability that other cluster numbers could be mutated to. For
instance, if mutation occurs at the second gene, i.e., “1”, of a
chromosome “111222233344” (the length denotes the number
of documents is 12) and a vector of its alleles is “111223” (the
length denotes PopSize= 6), the potential mutated gene can be
“2”, “3” or “4”. Without considering the original gene “1, the
probabilities to mutate to “2”, “3” and “4” are 2/3, 1/3, and
0, respectively. In order to consider every possible number,
Baker’s linear ranking (LR) [24] is used. The probabilities
are changed to 1/2, 1/3, 1/6, respectively. This mutation is
designed especially for document clustering, and the authors
define it as DC-mutation.

IV. SIMULATION STUDIES

In this paper, four case studies are applied to PSD. Briefly,
case 1 aims to compare the three CC algorithms as well
as k-means on different text datasets so that the most ad-
vantageous CC algorithm for document clustering can be
selected. Case 2 discusses PSD clustering with background
knowledge embedded. Case 3 compares the original WPK-
CC with SA (or WPKSA) and GA-embedded WPK-CC (or
WPKGA). Case 4 analyses the impact of GA’s mechanism
to PSD CC. Typically, five values of PopSize (i.e., 10, 20,
50, 100 and 200), four selection schemes (i.e., roulette wheel
(RW), LR, elitism with roulette wheel (ERW) and elitism
with LR (ELR)), four crossover schemes (i.e., one-point, two-
points, uniform and binominal crossover) and three mutation
schemes (bit-flap, adaptive mutation and DC-mutation) are
compared. In addition, the crossover rate and mutation rate
are also selected by comparison results. Each simulation study
starts from generating 20 partitions by k-means with random
initialisations. The initial settings follow the original paper-
s [14] [16] [17] and four PVIs have been selected; variance,
connectivity, silhouette width and Dunn index [25] [26]. Purity
is the validation method considered in these case studies and it
is the average value of 10 independent algorithm runs. Fig. 1

illustrates the overall flowchart for each simulation study and
the numbers by each arrow denote the relevant cases.

bbcsports, bbc, TDT2-6bbcsports, bbc, TDT2-6 

Traditional VSM

Weighted 

document- term matrix

k-means

20 partitions

NNMF-CCWPK-CC INT-CC

PVIs via internal 

validation methods

Weighted partitions

Output: P* 

PSDPSD

SONT-based VSM

Relevant 

processes[17]

Relevant 

processes[18]SA

Purity

GA

PopSize=10, 20, 50, 100, 200

RW, LR, ERW, ELR selection

One (two)-point, uniform, 

binominal crossover

Bit-flap, adaptive mutation, 

DC-mutation

2
~

argmin ( )
D

P P

Pf y
Î

-

Mutual information 

matrix M

Correlation factor 

matrix B

Fig. 1. The flowchart of simulation studies. 1©, 2©, 3© and 4© represent case
study 1, 2, 3 and 4, respectively

A. Case study 1:

This case study examines the impact of three CC algo-
rithms, which were tested on four selected text datasets.
The information of each dataset is shown in Table II. The
results are shown in Table III. It can be concluded that all
the CC algorithms have significant improvements compared
with the single clustering algorithm. Among them, WPK-CC
outperforms NNMF-CC and INT-CC in all purity levels. These
can be explained because the WPK-CC involves property

1Available from http://mlg.ucd.ie/datasets/bbc.html
2Available from http://mlg.ucd.ie/datasets/bbc.html
3Available from http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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validity indexes to each partition. As some of the partitions
from the generation step might be wrongly generated, which
can be regarded as noise partitions. The partition relevance
analysis is a method to assign a small weight to these noise
partitions. It avoids a simple average of the set of partitions
producing a worse clustering result. The results demonstrate
that NNMF-CC and INT-CC are competitive in text datasets.

TABLE III
PURITY (%) OF DIFFERENT CLUSTERING ALGORITHMS ON DIFFERENT

DOCUMENT DATASETS

k-means NNMF-CC WPK-CC INT-CC
bbcsports 43.31 45.33 51.20 45.61

bbc 27.88 38.98 41.51 40.29
TDT2-6 42.13 51.24 53.39 49.23

PSD 31.72 35.29 38.43 33.19

B. Case study 2:

This case study focuses on the influence of involving the
background knowledge to the document dataset, i.e., PSD with
SONT-based VSM, which is named as modified PSD and
denoted by MPSD. The Euclidean distance measure between
two documents are transformed to a Mahalanobis distance,
which takes the correlation between each pair of terms into
account. It is more reasonable to involve the term mutual
information than to ignore the inter-relations between terms.
According to (1) and (11), the distance between a document
and its cluster centroid is denoted by (12).

md(dj , Cl) =

√
(djB − ClB)(djB − ClB)

T

=

√
(d̂j − Ĉl)(d̂j − Ĉl)

T
,

(12)

where d̂j is the transferred document vector and Ĉl is the
lthcluster’s centroid. Thus, the Euclidean distance between a
document and its cluster centroid is defined by (13).

d(d̂j , Ĉl) =

√
(d̂j − Ĉl)(d̂j − Ĉl)

T
. (13)

The standard k-means can be applied to the MPSD. Results
are shown in Table IV. WPK-CC outperforms the other clus-
tering algorithms. With SONT embedded PSD, each algorithm
reaches an improved purity. It should also be noted that the
purities of the MPSD with CC algorithms have more signifi-
cant improvement than that with average k-means. This may be
due to that the noise partition or a wrongly generated partition
cannot be completely avoided during the generation step. In
this case, compared with PSD, the growth rate of using MPSD
may not be significant, when using the standard k-means.
However, PSD contains 136,735 documents, which means
that even an improvement of 0.33% for MPSD with k-means
assigns more than 400 documents correctly into the underlying
clusters compared with the normal PSD without considering
the relationship between terms. From this point, each CC
algorithm has improved performance, as the improvement of
the best performing WPK-CC with MPSD is 1.72%. Thus,
more than 2300 documents are correctly clustered compared
with WPK-CC with the single PSD.

Also, the clustering results have been improved by involving
the term mutual information. SONT is implemented to add
background information to the original dataset, i.e., PSD.

As a consequence, there are more relevant documents being
assigned into the same cluster so that the accuracy of the
cluster result is improved significantly.

TABLE IV
PURITY (%) OF DIFFERENT CLUSTERING ALGORITHMS ON PSD AND

MPSD

k-means NNMF-CC WPK-CC INT-CC
PSD 31.72 35.29 38.43 33.19

MPSD 32.05 37.28 40.15 34.66
Increment (%) 0.33 1.99 1.72 1.47

C. Case study 3:

This case study aims to compare WPKSA and WPKGA.
MPSD is the dataset representation in the rest of the case
studies. It is also noted that WPKSA aims to find the minima
of the objective function as shown in (3). It is noted that
the first and third term of (3) are fixed numbers, as k̃(P, P )
denotes the similarity measure between an intermediate solu-

tion partition and itself, and
s∑

i=1

s∑
j=1

ω̃iω̃j k̃ (Pi, Pj) denotes the

sum of weighted similarity measures among 20 partitions. The
objective function or fitness function of WPKGA aims to find

the maxima of the second term of (3), i.e., 2
s∑

i=1

ω̃ik̃ (P, Pi).

In any case, both WPKSA and WPKGA are applied to seek
the optima of the objective function and the clustering results
are evaluated by purity.

In addition, in the previous cases, each CC algorithm is
terminated by a fixed number of iteration steps. As stochastic
algorithms, SA and GA involve iterative processes before
obtaining the results and the termination condition is not
guaranteed to be known. In this case, the termination statuses
for WPKSA and WPKGA were modified in order to consider
the nature of the iterations and are presented in Table V. The
iteration of WPKSA terminates when it reaches the pre-defined
maximum generations (i.e., IMax) or the objective function
P̂ = 0 becomes zero. WPKGA terminates when either the
iteration reaches IMax or the difference between the best
objective value Fbest and the corresponding average fitness or
purity in the population, i.e., Favg, is not significant.

TABLE V
TERMINATION STATUS OF WPKSA AND WPKGA

Termination status
WPKSA

IMax = 10000
P̂ = 0

WPKGA |Favg−Fbest|
|Favg| ≤ ε

Fig. 2 illustrates the generations against purity of WPKSA
and WPKGA on MPSD. Both the average and maximum
purity for each iteration of WPKGA are presented. WPKSA
starts the iteration from a higher purity (more than 25.88%)
and WPKGAs start from an apparently lower purity (less than
15%). The states in WPKSA are partitions, and the idea is
to start from an initial partition, which is the partition with
best performance, through an iterative process, and to obtain
a very close partition to the consensus one. On the other
hand, the initial population of WPKGA is randomly generated.
Therefore, the difference between WPKSA and WPKGA in
Fig. 2 at the starting point of the iteration is predicted. In
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addition, WPKGA converges at less than 8000 generations,
and WPKSA is terminated by IMax. As previously men-
tioned, the similarity measure between partitions in WPKSA
is based on the intersection of objects. If the size of a dataset is
too large, each iteration will generate very little improvement,
resulting in an extremely slow convergence speed. In contrast,
WPKGA operates with a population of chromosomes, and the
selection, crossover and mutation mechanisms of GA provide
more chances to achieve a faster convergence speed.

Generations
0 2000 4000 6000 8000 10000
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40

Average purity of WPKGA
Maximum purity of WPKGA
WPKSA

Fig. 2. The comparison among the average purity of WPKGA of the entire
population, maximum purity of WPKGA in the population and the purity of
WPKSA

Table VI illustrates the result of WPKSA and WPKGA
implemented on MPSD. The “max” and “average” denote the
maximum and average purity of 50 resultant chromosomes
in each generation of WPKGA, respectively. Both of the final
maximum purity (39.63%) and average purity (39.60%) of the
resultant GA population perform better than that using NNMF-
CC (37.28%) and INT-CC (34.66%), and the maximum pu-
rity (39.63%) is slightly smaller than the result of WPKSA
(40.15%). It indicates that the result of WPKGA on MPSD is
more comparable to WPKSA, when compared with NNMF-
CC and INT-CC. Also, the convergence speed of WPKGA
is significantly slower than WPKSA. In practice, the best
performing chromosome from the last population is always
selected as the solution of the optimisation. Therefore, in case
study 4, only the best chromosome in the final population is
taken as the optima.

TABLE VI
PURITY OF OPTIMUM SOLUTION FOR WPKSA AND WPKGA ON MPSD

WPKSA WPKGA
max average

Purity (%) 40.15 39.63 39.60
Termination condition IMax 7847 7847

D. Case study 4:

This case study aims to evaluate the performance of GA in
WPKGA with different mechanisms and parameter settings,
and implemented to solve MPSD CC. Each comparison is
carried out based on the optimal settings in the previous GA’s
procedure. Fig. 3 illustrates the generation of WPKGA with
different PopSize and the results are presented in Table VII.
For PopSize of 10, 20, 50 and 100, the results show that the
increase of the PopSize significantly improves the purity of
the clustering result, while the convergence speed decreases.
In the previous case studies, PopSize was 50, which produces
a much better result (39.63%) compared with PopSize of 10
(32.23%) and 20 (36.56%). When PopSize increases to 100,

Generations
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Fig. 3. WPKGA for MPSD clustering with different PopSize

it achieves a significant higher purity (41.72%) and slower
convergence speed (8712). When PopSize is 200, WPKGA is
terminated by IMax and the purity (40.24%) is worse than
PopSize of 100. In addition, when PopSize changes from 10
to 50, significant improvements of the purity are obtained.
In contrast, when PopSize increases from 50 to 200, the
improvement of the purity is less significant. It is concluded
that if PopSize is too small, population diversity become very
low. In this case, each new generated population has little
chance to perform crossover or mutation operations, resulting
in premature termination of the algorithm. On the contrary, if
PopSize is too large, the fitness level doesn’t always increase
and may actually reduce. Thus, PopSize = 100 was selected to
be an optimal setting for the first step of WPKGA on MPSD.

TABLE VII
PURITY AND CONVERGENCE OF WPKGA WITH DIFFERENT PopSize ON

MPSD

10 20 50 100 200
Purity (%) 32.23 36.56 39.63 41.72 40.24

Termination Condition 5096 6819 7847 8712 IMax

In order to improve the readability, make it easier for
analysis and to indicate the statistical significance, error bars
are used to present the results for the remaining tests. The aim
of using error bars in presenting the CC results is to show the
average purity and generations of each GA mechanism and
parameter setting in 10 WPKGA runs on MPSD in a clear way.
In addition, the standard deviation (SD) of each 10 purities
is also shown in the same figure so that the stabilisation of
each mechanism can be evaluated at the same time. Fig. 4
shows the generation of WPKGA for MPSD CC with four
selection mechanisms; ERW, ELR, RW and LR, when PopSize
was 100. Each blue bar stands for one mechanism or one GA
parameter setting. The “Y” axis represents the purity and the
“X” axis shows the generations. The top ends of the blue bars
denote the average purities of 10 WPKGA runs, locating on
the convergence iterations, and the red line segments represent
the SD of each 10 WPKGA runs. U and L denote the upper SD
and lower SD, respectively. The SD quantifies by how much
the values vary from one another. A long red line segment
shows that the concentration of the values that the average was
calculated on is low, and thus the average value is uncertain.
Conversely, a short line segment means that the concentration
of values is high and that the average value is more certain.
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Results show that WPKGA with ERW (7187) terminates faster
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Fig. 4. WPKGA for MPSD clustering with different selection mechanisms
and PopSize = 100, where “X” represents the generation at convergence for
each mechanism; “Y” shows the average purity; “L” & “U” denote the lower
and upper standard deviations

than other selection mechanisms and the LR has the slowest
convergence speed, which is terminated by IMax. As ERW
keeps and directly copies the best 2% chromosomes to the
next generation without crossover and mutation operations,
it avoids the disruption of the best chromosomes. The LR
has the highest purity (42.31%), which is comparable to ELR
(42.25%). Both of these two mechanisms perform better than
RW (41.72%) and ERW (41.23%) has the smallest purity
among the four selection types. The SD of ERW (2.21%) is
larger than the others, which means the result of WPKGA
with ERW is less stable than the others. LR overcomes the
limitation of RW, which is if the best chromosome has a much
better fitness, other chromosomes will have fewer chances to
be selected. Although LR sacrifices the convergence speed, it
keeps the diversity of population and avoids a local minimum.
ELR combines the advantages of LR and ERW, producing
a good CC result with an acceptable termination status.
Therefore, ELR was identified as the optimal mechanism for
the simulations.
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Fig. 5. WPKGA for MPSD clustering with different crossover rates when 1.
PopSize = 100; 2. selection type is ELR

Fig. 5 illustrates the impact of different crossover rates (Pc),
i.e., 0.6, 0.7, 0.8 and 0.9. Generally, the crossover rate should
be high (e.g., 0.9) so that most individuals can be involved
in the genetic process. Results show that at Pc = 0.7, the
purity obtained is the best (42.75%), and it converges faster
than other crossover rates with the smallest SD. The purity
and SD of Pc = 0.6 and Pc = 0.9 are similar, i.e., (42.49%)
and (1.01%); (42.53%) and (1.13%), respectively. However,
Pc = 0.6 has a slower convergence speed (7727) than Pc = 0.9

(7626). Although Pc = 0.8 produces a worse purity than the
other crossover rates, the stability (SD= 0.98%) is better than
Pc = 0.6 and Pc = 0.9. It can be concluded that a high
crossover rate is not always the best, as it also depends on
the specific problem or other parameter settings. Thus, for the
remaining results, the crossover rate was set to be Pc = 0.7.
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Fig. 6. WPKGA for MPSD clustering with different crossover types when
1. PopSize = 100; 2. ELR selection; 3. Pc is 0.7, numeric values on the “X”
axis represent the probability of binominal crossover

Fig. 6 presents different crossover types, i.e., one-point
crossover, two-point crossover, binominal crossover with prob-
ability (P ) of 0.1, 0.2, 0.3, 0.4 and 0.5. When P equals to 0.5
in binominal crossover, it also refers to the uniform crossover.
Here, it is not necessary to consider the cases, where P > 0.5,
due to the symmetry of binominal crossover. The results
illustrate that one-point crossover has the worst performance
on purity (42.75%), convergence speed (7514) and SD (0.94%)
and two-point crossover performs only slightly better than
one-point, i.e., purity (42.67%), convergence speed (7401) and
SD (0.93%). Binominal crossovers with all probabilities have
competitive purities. Among them, the uniform crossover has
the smallest purity (42.92%) with an average SD (0.85%)
and binominal crossover with P = 0.1 converges slower
(7143) than the other binominal crossover probabilities. The
purity of P = 0.2 (43.25%) is the best performing binominal
crossover with the smallest SD (0.82%) and the convergence
speed (6952) is only slower than P = 0.3 (6811) and
P = 0.4 (6860). Binominal crossovers allow the offspring
chromosomes to search all possibilities of recombining those
different genes in their parents. Considering all the aspects
discussed above, binominal crossover with probability of 0.2
was selected as the optimal crossover mechanism.

Fig. 7 shows WPKGA for MPSD clustering with different
mutation rates (Pm), i.e., 0.05, 0.1, 0.15 and 0.2. Among all
the mutation rates, Pm = 0.15 outperforms the other rates on
purity (43.96%) with a middle level of SD (0.93%). Although
Pm = 0.05 converges faster than other values of Pm, it has a
distinct large SD (1.31%) and a low purity (41.38%), which
is only slightly larger than PopSize= 50 in Fig. 3 without any
advanced settings. Pm = 0.2 reaches the convergence status
slower than the others (7321). Results show that mutation rate
cannot be either too high or too low. If Pm is set too high,
the search will turn into a primitive random search. If Pm is
too low, the diversity of population cannot be ensured. As it is
difficult to ensure the correct value for Pm, adaptive mutation
was implemented. In each iteration, the mutation rate is reset
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Fig. 7. WPKGA for MPSD clustering with different mutation rates when 1.
the PopSize = 100; 2. ELR selection; 3. Pc is 0.7 with a binominal crossover
probability of 0.2

automatically depending on the property of the population.
Only the maximum and minimum mutation rates need to pre-
defined.

Fig. 8 compares different mutation types. Pm = 0.15
was set to bit-flip mutation. For adaptive mutation, the Pm
range was set to be [0.05, 0.2] and followed by the strategy
in [27]. DC-mutation represents the mutation mechanism for
document clustering based on adaptive mutation. Results show
that DC-mutation outperforms adaptive mutation and bit-flip
mutation on each aspect, i.e., purity (45.74%), convergence
speed (6598) and SD (0.81%). Among them, bit-flip mutation
performs the worst with purity (43.96%), convergence speed
(6774) and SD (0.93%).
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Fig. 8. WPKGA for MPSD clustering with different mutation types when 1.
PopSize = 100; 2. ELR selection; 3. crossover rate is 0.7 with a binominal
crossover probability of 0.2; 4. Pm is 0.15; 5. the range of adaptive mutation
rate is [0.05, 0.2]

DC-mutation is specially designed for document clustering.
Since the chromosomes for document clustering are not based
on binary coding, the selected point is able to mutate to
any other integers based on the cluster number. The GA is
classed as converged, when the difference between the average
performance and the maximum performed chromosome is not
significant. In other words, most chromosomes tend to be
the same as possible (the Hamming distances [28] amongst
the chromosomes decrease) with generations. Therefore, the
alleles of each chromosome are analysed to produce a vector
with the same length of the population. The cluster number
with the most occurrences may not be the underlying cluster
label, which can be mutated to. However, it is reasonable
to assign it with a higher probability. In order to guarantee

that the selected gene can mutate to any cluster label, LR
is implemented. It avoids the cluster label with the most
occurrences which has much more opportunity to be mutated
to and assigns a small probability to the absent cluster label
in the allele set as illustrated in the example mentioned in
Section III-B.

V. CONCLUSION

This paper proposes an improved PSD clustering method
concerning three aspects, i.e., background knowledge involved
PSD pre-processing, an advantageous CC algorithm according
to the relevant comparison and significant improvements to
the original WPK-CC with GA. Firstly, three CC algorithms
and k-means have been applied to selected document datasets
and the results show that WPK-CC outperforms NNMF-
CC and INT-CC. An ontology model has been applied to
add background knowledge to PSD, concerning the semantic
correlation among terms. Subsequently, the original PSD was
modified by the term mutual information and the correlation
factor matrix was obtained. Thus, the modified PSD enhances
the performances of each clustering algorithm.

Meanwhile, WPKGA has been compared with the original
WPKSA. GA was proven to be more suitable to handle docu-
ment clustering issues. As GA contains different mechanisms
and parameters in each step, comparisons of these mechanisms
have been evaluated and discussed. It is concluded that PSD
clustering has been significantly improved, providing power
engineers a more accurate and convenient way for important
text files mining. In this case, clustered PSD improves the
efficiency of relevant document browsing and navigation,
benefiting the power system asset management.
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