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Managing the uncertainty in multidisciplinary design of safety critical systems requires4

not only the availability of a single approach or methodology to deal with uncertainty5

but a set of different strategies and scalable computational tools (i.e. by making use of6

the computational power of a cluster and grid computing). The availability of multiple7

tools and approaches for dealing with uncertainties allows to cross-validate the results and8

increase the confidence in the performed analysis.9

This paper presents a unified theory and an integrated and open general purpose com-10

putational framework to deal with scarce data, aleatory and epistemic uncertainties. It11

allows to solve different tasks necessary to manage the uncertainty, such as: uncertainty12

characterization, sensitivity analysis, uncertainty quantification and robust design. The13

proposed computational framework is generally applicable to solve different problems in14

different fields and numerically efficient and scalable allowing for a significant reduction of15

the computational time required for uncertainty management and robust design.16

The applicability of the proposed approach is demonstrated by solving a multidisci-17

plinary design of a critical system proposed by NASA Langley in the multidisciplinary18

uncertainty quantification challenge problem.19
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I. Introduction20

In order to design safe components and systems, the explicit inclusion of uncertainties from different21

sources is an indispensable step. In fact, under realistic conditions, these products are affected by uncertain-22

ties, caused by the lack of sufficient knowledge and/or by natural unpredictable external events. Uncertainty23

analysis is essential for modellers to obtain a robust representation of model predictions consistent with the24

state-of-knowledge. If the effects of the uncertainties in the “optimized” products are ignored, these prod-25

ucts may perform unsatisfactorily in realistic conditions; for instance, they can show a very low reliability,26

high reparation and maintenance costs. On the other hand, in a robust design a product or system is less27

sensitive to the uncertainties and hence, it reaches low variability of the overall performances that can allow28

significant reductions in terms of e.g. the manufacturing and operating costs).29

The design of safety critical systems faces very complex problems due to the presence of varying levels of30

aleatory and epistemic uncertainty. Aleatory uncertainty is inherent in many natural systems, and therefore31

cannot be reduced, but can be described and its effect quantified. Epistemic uncertainty is not completely32

avoidable, since it is not possible to perfectly model or predict real world situations, although epistemic33

uncertainty can be reduced, better characterized and quantified by using available knowledge. Despite the34

different levels of uncertainty, decision makers still need to make clear choices based on the available infor-35

mation. They need to trust the methodology adopted to propagate uncertainties through multi-disciplinary36

analysis, in order to quantify the risk with the current level of information and avoid wrong decisions due37

to artificial restrictions introduced by the modelling.38

Multiple mathematical concepts can be used to characterize variability and uncertainty. Probability39

distributions can be used to represent the relative frequency of a given state of the system, or they can40

represent the degree of belief or confidence that a given state of the system exists.1 Often, very limited41

information is available, and collecting more data or samples might not be possible or too expensive. Given42

the limitations of amount of data, quantification methods often rely on subjective judgment and assumptions43

and it may not always seem reasonable to characterize the uncertainties in a classical probabilistic way. To44

avoid the inclusion of subjective and often unjustified hypothesis, the imprecision and vagueness of the data45

can be treated by using concepts of imprecise probabilities. Imprecise probability combines probabilistic and46

set theoretical components in a unified theory allowing the identification of bounds on probabilities for the47
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events of interest.248

Random set theory is specially suited to model under the same framework uncertainty represented as49

cumulative distribution functions (CDFs), intervals,3 probability boxes,4 possibility distributions5 (they are50

closely related to normalized fuzzy sets) and Dempster-Shafer6,7 structures without making any implicit or51

explicit assumptions. In other words, random set theory is a technique that permits to model naturally the52

aforementioned representations of uncertainty.53

In this work, novel and efficient strategies are proposed to deal with aleatory and epistemic uncertainty.54

Random set theory is used as a unifying theoretical framework, to model different representations of the55

uncertainty. Additionally, the developed procedures have been implemented in an integrated computational56

framework allowing to solve realistic problems using a number of different approaches and methodologies.57

This provides an excellent tool for cross-validating the results obtained at each stage of the analysis and58

hence to increase the confidence in the adopted methodology and in the results. The applicability of approach59

is demonstrated by solving the NASA Langley multidisciplinary uncertainty quantification (UQ) challenge60

problem.861

Motivation of the study62

The development of safety-critical systems that must be designed to operate in harsh environments with a63

wide array of operating conditions (e.g. new vehicles, aircraft, nuclear power plants etc.) is a challenging64

problem. Furthermore, the failure of such systems might have high consequences for which quantitative65

data is either very sparse or prohibitively expensive to collect. Hence, uncertainty management is necessary66

to provide support to the decision makers through a series of different and interconnected analyses. For67

instance, estimating the importance of collecting additional information allows to characterize and reduce68

uncertainty; by performing sensitivity analysis, it is possible to identify the parameters that contribute the69

most to the variability of the output; uncertainty propagation allows to study the effects of uncertainty on70

the performance of the system and to identify extreme-case scenarios; finally, optimizing the design explicitly71

taking into account the effect of uncertainties allows to design a robust system.72

Recent reports have clearly shown that the risk assumed by the decision maker is often wrongly estimated73

due to inadequate assessment of uncertainty.8 Modelling and simulation standards require estimates of74
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uncertainty (and descriptions of any processes used to obtain these estimates) in order to increase confidence75

and consistency in safety predictions and encourage the development of improved methods for quantifying76

and managing uncertainty. In this context, the NASA Langley multidisciplinary uncertainty quantification77

(UQ) challenge problem has been addressed in order to determine limitations and ranges of applicability of78

existing UQ methodology and to advance the state of the practice in UQ problem.979

The NASA challenge problem has represented a unique opportunity to test, validate and advance the80

capability of the computational framework, namely OpenCossan.10 This computational framework is able81

to deal with different representations of uncertainty and has been adopted to solve all the tasks proposed by82

the challengers.83

Since many of the employed methods are rooted on random set theory, a brief introduction of the theory84

for the representation of the joint existence of aleatory and epistemic uncertainty is presented in Section85

II. The developed approaches for uncertainty quantification and management are presented in Section III.86

Section IV presents the computational framework and some details on computational complexity. Section87

V summarizes the main aspects, goals and difficulties of the NASA Langley multidisciplinary UQ challenge88

problem as well as the results of the various tasks of the challenge problem. Finally, the potentiality and89

applicability of the developed computational framework and the proposed approaches are discussed.90

II. Theoretical background91

Random set theory is specially suited to model, under the same framework, uncertainty represented as92

cumulative distribution functions (CDFs), intervals, distribution-free probability boxes, possibility distribu-93

tions and Dempster-Shafer structures6,7 without making any implicit or explicit assumption at all.11,12 In94

other words, random set theory is a technique that permits to model the aforementioned representations of95

uncertainty. Random sets can be understood as random variables that sample, instead of points, sets (called96

focal elements) as realizations.97

In this context, many of the proposed solutions to the challenge problem make strong use of this kind of98

representation. In consequence, in the following, a brief review of the main concepts of random set theory99

that will be required in the subsequent discussion is provided. Also some new concepts developed in order100

to solve the challenge problem will be introduced.101
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A. A succinct review of random set theory102

Let us consider a universal set X 6= ∅ and its power set P(X ). Let (Ω′, σΩ′ , PΩ′) be a probability space and103

(F , σF ) be a measurable space where F ⊆ P(X ). A random set Γ is a (σΩ′ − σF )-measurable mapping104

Γ : Ω′ → F , α 7→ Γ(α). We will say that every γ := Γ(α) ∈ F is a focal element while F is a focal set.105

Analogously to the definition of a random variable, this mapping can be used to define a probability106

measure on (F , σF ) given by PΓ := PΩ′ ◦ Γ−1. That is, an event R ∈ σF has the probability107

PΓ(R) = PΩ′{α ∈ Ω′ : Γ(α) ∈ R}. (1)

The random set Γ will be also referred to as (F , PΓ). When all the focal elements of F are singletons, then108

Γ becomes a random variable X; hence, Γ(α) = X(α) and the probability of occurrence of the event F , is109

PX(F) := (PΩ′ ◦ X−1)(F) = PΩ′{α : X(α) ∈ F} for every F ∈ σX . In the case of random sets, it is not110

possible to compute exactly PX(F) but its upper and lower probability bounds. Dempster6 defined those111

upper and lower probabilities by,112

LP(F ,PΓ)(F) := PΩ′{α : Γ(α) ⊆ F ,Γ(α) 6= ∅} (2a)

UP(F ,PΓ)(F) := PΩ′{α : Γ(α) ∩ F 6= ∅} (2b)

where LP(F ,PΓ)(F) ≤ PX(F) ≤ UP(F ,PΓ)(F).113

Copulas A copula is a function C : [0, 1]d → [0, 1] that relates a joint cumulative density functions114

(CDFs) with its marginals, carrying in this way the dependence information in the joint CDF such that each115

of its marginal CDFs is uniform on the interval [0, 1]. According to Sklar’s theorem (see Refs. 13, 14) , a116

multivariate CDF FX1,X2,...,Xd
(x1, . . . , xd) = P [X1 ≤ x1, . . . , Xd ≤ xd] of a random vector (X1, X2, . . . , Xd)117

with marginals FXi(xi) = P [Xi ≤ xi] can be written as FX1,X2,...,Xd
(x1, . . . , xd) = C (FX1(x1), . . . , FXd

(xd)),118

where C is a copula. The copula C is itself a CDF and it contains all information on the dependence structure119

between the components of (X1, X2, . . . , Xd) whereas the marginal cumulative distribution functions FXi
120

contain all information on the marginal distributions.121

The reader is referred to Ref. 15 for an excellent introduction to copulas.122
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B. Random sets, CDFs, distribution-free probability boxes and intervals123

The original definition of random sets is very general; Alvarez11,12 showed that making the particularizations124

Ω′ := (0, 1]d, σΩ′ := (0, 1]d ∩ Bd, where B stands for the Borel σ-algebra on R, and PΓ ≡ µC for some125

copula C that contains the dependence information within the joint random set, and using intervals and126

d-dimensional boxes as elements of F , it is enough to model possibility distributions, distribution-free prob-127

ability boxes, intervals, CDFs and Dempster-Shafer structures or their joint combinations (for a definition of128

joint Dempster-Shafer structure and joint random set the reader is referred to Ref. 12). Here, PΓ ≡ µC de-129

notes the fact that PΓ is the probability measure generated by PΩ′ which is defined by the Lebesgue-Stieltjes130

measure corresponding to the copula C, i.e. µC . In other words, PΓ(Γ(G)) = µC(G) for G ∈ σΩ′ .131

In the rest of this subsection, (Ω′, σΩ′ , PΩ′) will stand for a probability space with Ω′ := (0, 1], σΩ′ :=132

(0, 1]∩B := ∪θ∈B {(0, 1] ∩ θ} and PΩ′ will be a probability measure corresponding to the CDF of a random133

variable α̃ uniformly distributed on (0, 1], i.e. Fα̃(α) := PΩ′ [α̃ ≤ α] = α for α ∈ (0, 1]; that is, PΩ′ is a134

Lebesgue measure on (0, 1].135

1. Cumulative distribution functions136

When a variable is expressed as a random variable on X ⊆ R, the probability law of the random variable137

can be expressed using a CDF FX (recall FX(x) = PΓ(X ≤ x) for x ∈ X). That CDF can be represented as138

the random set Γ : Ω′ → F , α 7→ Γ(α) where F is the system of focal elements Γ(α) := F−1
X (α) for α ∈ Ω′

139

(the inverse of the CDF FX is defined by F−1
X (α) := inf{x : FX(x) ≥ α, α ∈ (0, 1]}; take into account that140

this definition uses the infimum since CDFs are weakly monotonic and right-continuous). Note that the141

representation of the CDF as a random set only contains an aleatory component, which is given either by142

α, or by its corresponding sample x = F−1
X (α); there is not an epistemic component in this representation.143

2. Intervals144

An interval I = [l, u] can be represented as the random set Γ : Ω′ → F , α 7→ Γ(α) (i.e. (F , PΓ)) defined145

on R where the focal set contains the unique focal element [l, u], that is, F = I and α ∈ (0, 1] ≡ Ω′; in this146

case, PΓ is specified by Eq. (1). In other words, all the samplings of α ∈ Ω′ draw the interval [l, u]. Note147

that the representation of intervals as a random set does not contain an aleatory component, inasmuch as148
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it does not matter which value α takes, because all α-s map to the same focal element I. In this case, the149

epistemic component is given by the interval itself, I.150

3. Probability boxes151

A probability box or p-box (term coined by Ferson et al.4)
〈
F , F

〉
is a set of CDFs {F : F ≤ F ≤152

F , F is a CDF}, delimited by upper and lower CDF bounds F and F : R → [0, 1], which collectively153

represent the epistemic uncertainty about the CDF of a random variable. This class of functions may not154

have additional restrictions or may belong, as well, to a reduced class of CDFs; using that discrimination,155

probability boxes can be naturally grouped into two disjoint groups: free and distributional.156

Distribution-free p-boxes Distribution-free p-boxes (also known as non-parametric p-boxes) appear157

when the CDF of a random variable cannot be specified precisely, given that the CDF family is unknown; in158

this case only the upper and lower CDF bounds F and F bounds of the probability box are specified. These159

bounds can either be defined in advance or can be estimated using for example the methods listed in Zhang160

et. al.16 and references therein. Note that distribution-free p-boxes do not make any assumption about the161

family or shape of the uncertain CDFs that belong to the p-box.162

There are two alternatives but equivalent methods to represent distribution-free p-boxes using random163

set theory.164

The first method was proposed in Refs. 11, 12. Using this method, a distribution-free probability box165

delimited by lower and upper CDF bounds F and F can be represented as the random set Γ : Ω′ →166

F , α 7→ Γ(α) (i.e. (F , PΓ)) defined on R where F is the class of focal elements Γ(α) := 〈F , F 〉−1(α) :=167 [
F
−1

(α), F−1(α)
]

for α ∈ (0, 1] ≡ Ω′ with F−1(α) and F
−1

(α) denoting the inverses of F and F and PΓ is168

specified by Eq. (1).169

The second alternative method, proposed here, considers a random variable which follows a CDF F with170

parameters θi that belong to the interval Ii for i = 1, 2, . . . ,m (i.e. F (·; θ1, θ2, . . . , θm)). This representation171

is in comparison to the first method, which models a p-box using only its lower and upper CDF bounds F and172

F . Using the random set representation, a focal element of the probability box
〈
F , F

〉
can be represented173

as the image through the function F−1 of the input intervals {Ii : i = 1, 2, . . . ,m} together with the sample174

of α which is a uniform random variable on (0, 1] ≡ Ω′. In consequence, it can be represented as the175
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random set Γ : Ω′ → F , α 7→ Γ(α) (i.e. (F , PΓ)) defined on R where F is the system of focal elements176

{F−1(α; I1, I2, · · · , Im) : α ∈ Ω′} and PΓ is specified by Eq. (1). Observe that each focal element has an177

aleatory component α and an epistemic component in the Cartesian product×m

i=1
Ii , I1 × I2 × · · · × Im.178

This representation of distribution-free p-boxes shows that for a single realization of the aleatory com-179

ponent α, a focal element contains the image through F−1 of all the possible combinations of values of180

the intervals for the parameters of the parental CDF F . It derives from the fact that a focal element181

is defined as:
〈
F , F

〉−1
(α) =

{
x : F (x) = α, F ∈

〈
F , F

〉}
, F
−1

(α) = infθ∈×m
i=1 Ii

F−1(α; θ1, . . . , θm) and182

F−1(α) = supθ∈×m
i=1 Ii

F−1(α; θ1, . . . , θm).183

Note that only distribution-free probability boxes can be represented using random set theory. However,184

in the analysis of the challenge problem a different approach has been used to represent distributional185

probability boxes as will be explained in the following lines.186

Distributional p-boxes and the double loop Monte Carlo strategy Distributional p-boxes187

(also known as parametric p-boxes) appear when there is uncertainty in the representation of the parameters188

of a given CDF (hereafter called the parental CDF.) These parameters are imprecisely specified as intervals.189

For instance, consider a quantity that is known to be Gaussian with mean within the interval [1, 2] and190

standard deviation somewhere in [3, 4]; Ferson et. al.4 describes how to obtain such probability boxes. All191

CDFs that are normal and have means and standard deviations inside these respective intervals will belong192

to this probability box. The upper and lower CDF bounds F and F of the p-box enclose many non-normal193

distributions, but these would be excluded from the p-box by specifying the normal CDF as the parental194

distribution family.195

According to the second representation of distribution-free p-boxes, the focal element corresponding to196

a realization α of the aleatory component contains the image through F−1 of all possible θ ∈×m

i=1
Ii. As197

consequence, a set of focal elements of the probability box would be a family of intervals each of them being198

a mapping of×m

i=1
Ii through F−1. Hence, for a fixed value of θ it is not possible to identify in that set of199

intervals the points that would belong to some CDF. For this reason, random set theory can not be used to200

model distributional p-boxes.201

Distributional p-boxes can be dealt with using a double loop Monte Carlo strategy, in which the outer202

loop draws θ-s from×m

i=1
Ii and the inner loop samples α-s from a uniform distribution in (0, 1]. In this case,203
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using the principle of maximum entropy, we will assume a uniform distribution in×m

i=1
Ii. This approach204

has been used to solve some of the tasks of the challenge problem. Please note that the outer loop can be205

used to drive an optimization/search process in×m

i=1
Ii to identify the lower and upper bounds. In this case,206

it is not necessary to assume a uniform distribution in×m

i=1
Ii.207

C. Sampling from a random set208

A sample from a random set is simply obtained by generating an α from a uniform distribution on (0, 1] and209

then, retrieving the corresponding focal element Γ(α); for example, for sampling from a distributional-210

free probability box an α uniformly distributed in (0, 1] is drawn and then its corresponding “α-cut”211 [
F
−1

(α), F−1(α)
]

is obtained. In the case of multivariate random sets, a sample α ∈ Ω′ is drawn from212

the copula C that models the dependence between the input variables . Then, the corresponding marginal213

focal elements are obtained and combined as explained in the next subsection. Take into account that n214

samples of a random set form the Dempster-Shafer structure (Fn,m); here Fn denotes the set of all sampled215

focal elements; the basic mass assignment m associated to each focal element is equal to 1/n; note that a216

Dempster-Shafer structure is itself a finite random set.11,12
217

Samples from distributional p-boxes can be obtained resorting to a double Monte Carlo loop as explained218

in the previous Section.219

D. Combination of focal elements220

After sampling each input variable, a combination of the sampled focal elements is carried out. Usually,221

the joint focal elements are given by the Cartesian product×d

i=1
γi ⊆ X where d is the number of input222

variables, γi := Γi (αi) are the sampled focal elements from every input variable (that is, γi represents a223

sampled marginal focal element). Some of these γi are intervals, some other, points. Inasmuch as every224

sample of a input variable can be represented by γi or by the corresponding αi, the joint focal element can225

be represented either by the d-dimensional box γ :=×d

i=1
γi ⊆X or by the point α := [α1, α2, . . . , αd] ∈ Ω′

226

(see Figure 1).227
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a) X -space b) Ω′-space

FUP

FLP

xi

xj

αi

αj

F

S 0

0

1

1

g(x) = 0

g(α) = 0

g(α) = 0

Figure 1: Focal elements in the X (Panel a) and in the Ω′-space (Panel b), respectively. The focal elements

are the realizations of input variables which are depicted either as the points α in the Ω′-space or as (multi-

dimensional) boxes, corresponding to the focal element Γ(α), in the X space. The figure (a) shows also the

failure surface, g(x) = 0, that defines the safe S and failure F domains. In the Ω′-space (b) are defined the

regions FLP and FUP together with the failure surfaces g(α) = 0 and g(α) = 0, where g(α) := minx∈Γ(α) g (x)

and g(α) := maxx∈Γ(α) g (x). Those boxes in X which contain at least one point of the failure region F

have a corresponding α point in the region FUP; while those boxes in X which are completely contained in

the region F have a corresponding α point in the region FLP.

E. The epistemic and the aleatory spaces228

Along this paper, two spaces are defined for modelling the aleatory and the epistemic uncertainties and229

which are called the aleatory space Ω and the epistemic space Θ, respectively (see Figure 2).230

The aleatory space A sample from a random set is obtained by drawing an α ∈ Ω′ from the copula C.231

Since a sample from an interval does not contain an aleatory component, if we strip from space Ω′ all those232

components which belong to intervals, then a subspace Ω of Ω′ is obtained. The subspace Ω contains only233

probabilistic information without spurious random variables. This set is called from now on the aleatory234

space Ω. Without loss of generality all copulas in our discussion will be defined on Ω, and all subsequent235

discussion will be performed with respect to the set Ω.236
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The epistemic space The epistemic space Θ is formed by the Cartesian product of all intervals {Ii, i =237

1, 2, . . . , q} that contain epistemic uncertainty, that is Θ =×q

i=1
Ii. Since the epistemic uncertainty can be238

reduced when additional information is available, we will assume that a point θ∗ ∈ Θ in the epistemic space239

will represent the “true uncertainty model”, which will result once all epistemic uncertainty is removed from240

Θ. When new information is available, the epistemic space will shrink to a subset of it called the reduced241

epistemic space.242

For example, let’s consider a problem with four input variables: two correlated random variables X and Y243

modelled as a bivariate normal distribution and two independent variables W and Z which are modelled by244

the intervals IW and IZ , correspondingly. The joint CDF of X and Y is defined by the mean vector [µX , µY ]T ,245

variances [σ2
X , σ

2
Y ]T and a Pearson correlation coefficient ρXY . If we assume that all those five parameters246

are also unknown and represented by intervals, namely, IµX
, IµY

, Iσ2
X

, Iσ2
Y

and IρXY
, respectively, then,247

the aleatory space Ω is (0, 1]2 while Ω′ is (0, 1]4; in addition, a Gaussian copula is defined on the aleatory248

space Ω. Finally, the epistemic space Θ is a seven-dimensional space formed by the Cartesian product249

IµX
× IµY

× Iσ2
X
× Iσ2

Y
× IρXY

× IW × IZ . Notice that the point θ∗ belongs to that space.250

F. The system representation as a function of the aleatory and the epistemic uncertainty251

Let us denote by G : X → R a function that represents the system; this function maps from the input252

space X of input variables to the real line and let W : Ω×Θ→ X be a function which returns the point253

in Γ(α) after reducing the epistemic uncertainty in Θ to θ. The function W exists only if the random set254

Γ models intervals, CDFs, p-boxes or their joint combination. This function does not exist if Γ models255

Dempster-Shafer structures or possibility distributions, but this is not the case in this paper. Note on the256

one hand, that the image of Θ throughW(α; ·) is the focal element Γ(α); on the other hand, the image of Ω257

through W(·;θ) can be modelled as a CDF with parameter vector θ, that is, F (·;θ). Take into account that258

the definition of function W uses, in the case of CDFs and p-boxes, the inverse CDF of the input variable259

in consideration.260

We will define the function H : Ω×Θ→ R as H = G ◦W, that is, H represents the system as well, but261

its domain is the Cartesian product of the aleatory and epistemic spaces (see Figure 2).262
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reduced epistemic space

aleatory space

epistemic space

realization of the input of the
system for a given α and θ

system

α

θ

0

1

1

Ii

Ij

αi

αj

θ
∗

Ω

Θ

W : Ω×Θ → X G : X → R

H : Ω×Θ → R

Figure 2: Representation of the aleatory and epistemic spaces and their propagation through the model.

Here θ∗ represents the true uncertainty model after all epistemic uncertainty has been removed. The subset

of the epistemic space that appears after new information is available is the reduced epistemic space. The

functionW produces a realization for a given α and θ; this output becomes the input for the system G. The

composition of both functions forms the function H.

G. Mapping of a focal element through a system: the extension principle of random sets263

The capability to propagate intervals, CDFs, p-boxes, and their combination through a system represents264

the core of the developed computational framework. In order to find the image of a focal element, γi ⊆X ,265

through a function G : X → R, the extension principle of random sets is used (this principle states how266

to propagate a random set through a function – see Ref. 17). This can be done by means of optimization267

methods,18 sampling methods,19 a vertex method,20 or the interval arithmetic method.21,3 In the following,268

the optimization and the sampling methods will be explained in detail, since both methods have been269

employed to solve the NASA UQ challenge problem.270
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The optimization method If a focal element γi := Γ(αi) is connected and compact and G is continuous,271

then the image of the set γi through G, can be calculated as272

G (Γ(αi)) =
[
G(αi), G(αi)

]
(3)

where,273

G(αi) := min
xi∈Γ(αi)

G (xi) G(αi) := max
xi∈Γ(αi)

G (xi) ; (4)

are limit state functions defined in Ω. Using the function H defined in Section F, Eqs. (4) can be written274

as an optimization over the epistemic space:275

G(αi) := min
θ∈Θ
H (αi,θ) G(αi) := max

θ∈Θ
H (αi,θ) . (5)

This approach is usually employed when G is a nonlinear function of the system parameters. The main276

drawback of this method is that it requires a high computational effort in a complex and large scale system.277

The sampling method (random search) The image of the focal element γi through G can also be278

estimated using a sampling technique (this should not be confused with the double loop simulation used279

to deal with distributional p-boxes). Remembering that the focal element γi is a multi-dimensional box;280

random samples can be generated inside that box and then they are mapped through G; then Eqs. (4)281

are approximated by the smallest and largest values of the images of those samples. This method is easy282

to implement but it requires huge number of samples (due to the curse of dimensionality). The sampling283

method gives does not guarantee that the true minimum and maximum are identified even using a very large284

number of samples.285

III. Proposed approach for uncertainty management and quantification286

The robust design of safety-critical systems requires not only the explicit treatment of different forms and287

representations of uncertainty but also, performing a number of different tasks. Generally, the design of such288

systems requires inputs and criteria of different disciplines and one of the main challenges in uncertainty289

management is how to propagate the uncertainty and understand how the uncertainty in one field affects290

other disciplines. More specifically,291
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• the first task required is to refine the current uncertainty model using new available information. This292

task is often called model updating (see e.g. Refs. 22,23);293

• usually sensitivity analysis is performed for the identification of those parameters whose uncertainty is294

the most/least consequential. This allows to drive the collection of new data and information focusing295

on those parameters that affect mostly the variability of the outputs;296

• the propagation of mixed aleatory and epistemic uncertainties of the refined/improved model and the297

extreme-case system performance assessment are performed in order to identify the combinations of298

parameters that lead to the worst performance;299

• finally the design in the presence of uncertainty is achieved. This task is computationally demanding300

since it requires the propagation of the uncertainty through the system for each candidate solution.301

Different tools and approaches exist for uncertainty quantification and characterization that can be302

potentially used in the design of safety critical systems. Each method is based on some assumptions that303

often cannot be verified a priori. Moreover, the simulation strategies are able to produce accurate results304

only if the right set of parameters is selected and this often cannot be verified. Finally, the numerical305

implementation might contain errors.306

For these reasons, it is necessary to perform the analysis using different strategies and hypotheses in307

order to be able to cross-validate the results. Hence, different strategies implemented in a flexible and open308

computational framework are briefly summarized in the next sections.309

A. Model updating310

The aim of model updating is to reduce the epistemic uncertainty on the output of the model x = H(α;θ)311

based on the availability of a limited set of data (observations) De := {xek : k = 1, 2, . . . , ne}. These312

observations of the “true uncertainty model” θ∗ ∈ Θ can be used to improve the uncertainty model, i.e. to313

reduce the original intervals of the epistemic uncertainties by excluding those combinations of parameters314

that fail to describe the observations as shown in Figure 2. Two different approaches will be used for model315

updating: a non-parametric model based on some statistical tests and a Bayesian method.316
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Along the rest of this paper hats (F̂ ) and tildes (F̃ ) will be used for referring to empirical CDFs and a317

kernel density estimations of CDFs, respectively.318

1. Non-parametric statistic method based on the Kolmogorov-Smirnov test319

A simple and fast approach to improve the uncertainty model is based on the comparison of the CDFs of320

the observations of the true uncertainty model and those obtained by means of random combinations of the321

input parameters in order to identify tighter intervals which form a reduced epistemic space and which are322

in agreement with the observations.323

Let us consider the epistemic space Θ of the involved variables. Random realizations θi in the epistemic324

space Θ are generated assuming, for example, a uniform PDF on Θ (in agreement with the Laplace’s principle325

of indifference). Thereafter the points {αj , j = 1, 2, . . . , n} are sampled from the aleatory space Ω according326

to the copula C (Nelsen15 provides methods to do it), in order to simulate n observations from the system327

H as xij = H(αj ,θi). For a single realization θi, the Kolmogorov-Smirnov statistic, which is defined as328

Di = sup
x
|F̂ (x|θi)− F̂e(x)|, (6)

is used to measure the similarity between the CDFs obtained with the sampled set {xij , j = 1, 2, . . . , n} and329

the set of observations De. Here F̂ (·|θi) and F̂e are the empirical CDFs obtained using the random samples330

drawn according to the epistemic parameters θi and the provided experimental data, respectively.331

The Kolmogorov-Smirnov test is used to obtain confidence limits on F̂ (·|θi) by choosing different critical332

values of the test statistic D. This implies that a band of width ±D around F̂e(x) will entirely contain333

F̂ (·|θi) with probability 1− c. This allows to identify those combinations of epistemic parameters such that334

P (Di > D) = c. c = 0 means that all the CDFs F̂ (·|θi) are accepted and the refinement of the input335

intervals is not possible, whereas c = 1 implies that F̂ (·|θi) comes exactly from the same model that has336

generated the target distribution F̃e(x), i.e. no epistemic uncertainty is present.337

The selection of D is a critical task and generally depends of the amount of available information (i.e.338

number of observations). A practical approach is to use two different data sets that come from the same339

process to estimate the critical level of the measure of similarity Dv̂ (using Eq. (6)). The computed validation340

distance Dv̂ can be used to set the required confidence level, accepting all the combinations of epistemic341

parameters with Di < Dv̂. When an independent validation data set is not available, a cross validation data342
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set can be constructed to test the model in order to limit problems such as overfitting. This cross validation343

data set can be obtained by means of re-sampling techniques.24 Cross-validation is important to protect344

against hypotheses suggested by the data25 specially where further samples are costly or simply impossible345

to collect.346

The non-parametric approach based on the Kolmogorov-Smirnov test is a simple and fast method for347

performing uncertainty characterization (and model updating). However, it is important to keep in mind348

the limitations of the approach. In fact, the method assumes that the measure of similarity Di is distributed349

according to the Kolmogorov distribution,26 which is strictly true only for large sample sets. It is possible350

to use some smoother techniques such as the Gaussian kernel density estimation to overcome this limitation.351

Gaussian kernel density estimates for De are given by352

F̃e(x) =
1

nσ
√

2π

∫ x

−∞

ne∑
j=1

exp

(
−1

2

(
x′ − xej
σ

)2
)

dx′; (7)

here σ stands for the standard deviation of the Gaussian kernels that represents the smoothing parameter,353

proportional to the so-called bandwidth. Assuming x is a continuous random variable, for ne → ∞ the354

Gaussian kernel density estimate converges to the true underlying density. The support of the associated355

PDFs f̃e(x) (i.e. {x : f̃e(x) > 0}) and the bandwidth of the kernel have strong influence on the resulting356

estimate. We suggest to use the approach in Ref. 27 to estimate the support of the PDF and Silverman’s357

rule of thumb28 to estimate the bandwidth of the kernels. Using realizations from Eq. (7) the measure of358

similarity can be calculated via Eq. (6) where F̂e(x) is replaced by F̃e(x). Please note that the Gaussian359

kernels can be used to define a new critical measure level indicated with Dṽ.360

To summarize, the following pseudo-algorithm is used:361

1. Estimate the parameters σ and the Gaussian kernel CDF F̃e using Eq. (7);362

2. Estimate Dv̂ and Dṽ;363

3. Generate realizations on the epistemic space, θi;364

4. Draw n points from the aleatory space Ω, using copula C; we will call these samples {αj : j = 1, . . . , n};365

5. Evaluate the model xij := H(αj ;θi) for j = 1, . . . , n;366
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6. Estimate the empirical CDF F̂ (·|θi) of the set of samples {xij , j = 1, 2, . . . , n};367

7. Using Eq. (6), compute the measure of similarity Di;368

8. If Di < Dṽ (or Di < Dv̂) collect θi. The set of collected points identify a reduced space in the original369

epistemic space.370

2. Bayesian updating on the epistemic space371

Bayesian inference is a statistical method in which the Bayes’ rule is used to update the probability estimate372

for a hypothesis as additional information is available.373

Suppose we are given a set of observed data points De := {xek : k = 1, 2, . . . , ne} called the evidence, and374

which are sampled from a PDF p(·;θ∗) which belongs to a certain family of PDFs {p(·;θ) : θ ∈ Θ} called375

the parametric model. The idea of Bayesian inference is to update our belief about the vector of parameters376

θ provided that θ∗, the true set of parameters of the PDF, is unknown. Bayes’ theorem updates that belief377

using two antecedents:378

• a prior PDF p(θ), which indicates all available knowledge about θ∗ before the evidence De is observed;379

• and the likelihood function P (De|θ), which is a function related to the probability of observing the380

samples De assuming that the true parameter underlying the model PDF p(x;θ) is θ; it is defined as381

P (De|θ) =

ne∏
k=1

p(xek;θ), (8)

when a set of independent and identically distributed observations De is available. Please note that382

in practice (i.e. for the numerical implementation) the log-likelihood is used instead of the likelihood.383

The updated belief about the vector of parameters θ after observing the evidence De, is modelled by the384

so-called posterior PDF p(θ|De) which is calculated by:385

p(θ|De) =
P (De|θ)p(θ)

P (De)
; (9)

where the probability of the evidence,386

P (De) =

∫
Θ

P (De|θ)p(θ) dθ (10)

17 of 73

American Institute of Aeronautics and Astronautics



can be understood as a normalizing constant. Bayesian updating hopes that after using the evidence De387

the posterior PDF p(θ|De) is sharply peaked about the true value of θ∗. We will update our belief about the388

true set of parameters θ∗ ∈ Θ propagating the evidence through the Bayes’ equation numerically. Samples389

of the posterior PDF can be generated without the necessity to evaluate p(θ|De), using an algorithm called390

Transitional Markov Chain Monte Carlo (TMCMC).29
391

As the prior PDF, we will use a uniform distribution on the epistemic space Θ, that is θ ∼ Unif(Θ), in392

accordance to the Laplace’s principle of indifference (or more generally, the principle of maximum entropy).393

Different likelihood functions can be used, based on different mathematical assumptions; in the following394

two methods will be proposed: a method that used a kernel density estimator to approximate p(·|θi) and a395

approximate Bayesian computational method.396

Bayesian computational method In this case, the likelihood is estimated through kernel density. As-397

suming that the samples De were drawn from p(x;θi), the likelihood P (De|θi) is defined in the following398

way:399

1. Draw n points, {αj : j = 1, . . . , n}, from the aleatory space Ω, using copula C;400

2. Calculate xij := H(αj ;θi) for j = 1, . . . , n;401

3. Using kernel density estimation and the samples {xij : j = 1, . . . , n}, estimate the CDF F̃ (·|θi) and402

its associated PDF p̃(x|θi) ≡ p(x;θi). This step is required because p̃(x|θi) cannot be obtained403

analytically;404

4. Calculate the likelihood function P (De|θi) as in Eq. (8).405

Approximate Bayesian computational method The likelihood calculated by means of the “Bayesian406

computational method” applies Bayes’ theorem directly and without strong assumptions. However it requires407

a large number of model evaluations and a relative larger data set to converge.30 Recently, approximate408

Bayesian computational methods have been proposed to reduce the computational costs of the expensive409

or intractable likelihood function.31,32 The likelihood can be for instance approximated with the following410

expression:411

P (De|θi) =

ne∏
k=1

1√
2πσ

exp

(
−1

2

(
δk
σ

)2
)

(11)
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where δk is the absolute value of the difference between the empirical CDF F̂ (·|θi) obtained for an individual412

realization θi of the epistemic space Θ, evaluated at each point {xek, k = 1, 2, . . . , ne} and the empirical CDFs413

of the experimental dataset De, that is:414

δk =
∣∣∣F̂ (xk|θi)− F̂e(xek)

∣∣∣ (12)

for k = 1, 2, . . . , ne. Please note that the Bayesian updating approach is generally applied to identify a fixed415

estimate of θ as close as possible to θ∗. Here, the approach has been used to identify a reduced epistemic416

space containing the true values of the unknown parameters. If a constant σ is used, the Bayesian updating417

formulation, here introduced, is equivalent to a minimization in the least square sense of the distance between418

the CDFs F̂ (·|θi) and F̂e. However the value of σ is unknown and hence it represents an additional parameter419

that needs to be estimated.33
420

This last approach is indeed based more on practical considerations than on a sound mathematical basis,421

and is open to criticisms since the differences δk are assumed to be independent and normally distributed422

with zero mean and unit variance, and that even though δk is normally distributed, it will only take values423

in the interval [0, 1] since the CDF ranges between 0 and 1.424

Using the above defined prior PDF and likelihood functions, the TMCMC algorithm29 is employed in425

order to find samples of the posterior p(θ|De). The likelihood P (De|θi) is calculated, using the approximate426

Bayesian computational method, by the following procedure:427

1. Draw n points ({αj : j = 1, . . . , n}) from the aleatory space Ω, using copula C;428

2. Calculate xij := H(αj ;θi) for j = 1, . . . , n;429

3. Using the samples {xij : j = 1, . . . , n}, estimate the empirical CDF F̂ (·|θi);430

4. Compute δk =
∣∣∣F̂ (xek|θi)− F̂e(xek)

∣∣∣ at each point xek ∈ De;431

5. Calculate the likelihood function P (De|θi) as in Eq. (11).432

B. Sensitivity analysis433

The aim of sensitivity analysis is to identify and rank the parameters that contribute mostly to the variability434

of the output of a system H. Two approaches can be used: the Hartley-like measure of nonspecificity and435
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the global sensitivity analysis based on Sobol’ and total sensitivity measures. Both approaches can be used436

to perform global sensitivity analysis in presence of epistemic uncertainty.437

1. Nonspecificity technique438

Before delving into this method of sensitivity analysis, a small introduction to the nonspecificity measure is439

presented.440

The nonspecificity, proposed by Klir and coworkers,34,35 is a measure of the amount of information441

required to remove the epistemic uncertainty; it is used in cases when we have to select a unique element442

from a set, but we are totally indifferent about which element of the provided ones to choose.443

The nonspecificity is based on the so called Hartley-like measure, which for a d-dimensional box (or focal444

element) A =×d

i=1
[li, ui], like the ones that we are considering in this paper is given by:445

HL(A) = log2

(
d∏
i=1

(1 + ui − li)

)
. (13)

The nonspecificity of a random set with an infinite number of focal elements is given by (see Ref. 36):446

HL((F , PΓ)) =

∫
Ω

HL(Γ(α)) dC(α); (14)

two special cases of Eq. (14) are:447

• the nonspecificity of a Dempster-Shafer structure (Fn,m) with focal set Fn = {A1, . . . , An} and basic448

mass assignment m:449

HL((Fn,m)) =

n∑
i=1

HL(Ai)m(Ai); (15)

• the nonspecificity of a distribution-free probability box 〈F , F 〉:450

HL(〈F , F 〉) =

∫ 1

0

log2

(
1 + F−1(α)− F−1

(α)
)

dα. (16)

The nonspecificity is a measure of epistemic uncertainty, and in consequence, it is useful for assessing the451

variability of the output due to the epistemic uncertainty in the input of the model.452

The method, which is detailed in Ref. 37, calculates a Dempster-Shafer structure that is the result of453

propagating the epistemic uncertainty through the system H (using the extension principle for random sets).454

Then, the Hartley-like measure of nonspecificity of that output Dempster-Shafer structure is evaluated. More455

specifically:456
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1. n samples αi ∈ Ω are drawn from copula C. Thereafter, the image of the focal element αi through457

H is calculated by means of Eq. (5) as [minθ∈ΘH (αi,θ) , maxθ∈ΘH (αi,θ)]. This set of n focal458

elements is used to construct a Dempster-Shafer structure (Fn,m) (as explained in Section II-C)459

which represents the propagation of the aleatory and epistemic uncertainty through the system. The460

basic mass assignment m of each focal element is 1/n.461

2. Compute HLunpinched = HL((Fn,m)) according to Eq. (15).462

3. Consider a set of points {pr : 0 ≤ p1 < p2 < . . . < pr < . . . < pz ≤ 1} which are evenly distributed in463

the interval [0, 1].464

4. For each point pr, do the following:465

(a) Each interval, Ij = [lj , uj ] that forms the epistemic space Θ, is pinched (or reduced) to the value466

given by lj + pr · (uj − lj), while leaving all other intervals unchanged (take into account that467

pinching of groups of input variables can be performed as well). After pinching the j-th input468

variable, a subset of Θ, namely Θrj , which includes the pinched inputs is formed.469

(b) n samples αi ∈ Ω are drawn from copula C; thereafter, the image of the focal element αi through470

H is calculated by means of Eq. (5) as
[
minθ∈Θrj H (αi,θ) , maxθ∈Θrj H (αi,θ)

]
. This set of n471

focal elements is used to construct a Dempster-Shafer structure (F rj
n ,m) for each pinching (as472

explained in Section II). The basic mass assignment m of each focal element is 1/n.473

(c) The nonspecificity HLrj := HL((F rj
n ,m)) of each of those output Dempster-Shafer structures is474

computed, as in Eq. (15).475

(d) The nonspecificity measure of the output Dempster-Shafer structure is normalized against the476

nonspecificity measure computed before pinching. In this way, the index Irj = HLrj /HLunpinched477

is calculated.478

5. The index Ij is calculated as the mean square of all indexes Irj (remember that E[I2
j ] = E[Ij ]

2+Var[Ij ]);479

those indexes are ranked according to their mean square.480

Ij is used as a measure of the propagation of the epistemic uncertainty to the output of the system H.481

The smaller Ij is, the larger is the sensitivity of the system to the epistemic uncertainty in the input variable482
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j. The mean squared has been chosen as a ranking criterion in order to account for not only the bias but also483

the variance of the estimator. Note that a precise estimation of Ij is not necessary, since only the ranking484

of the variables Ij is required; therefore, n is usually a small number.485

2. Global Sensitivity analysis486

The second approach is based on global sensitivity analysis to estimate the Sobol’ and the total indices.38
487

The global sensitivity approach cannot be applied directly to solve the problems where the uncertainty is488

described as a distributional/free p-boxes and intervals. In fact, this method requires the exact knowledge489

of the PDF of the input variables and the variance of a measurable model output. In consequence, an490

alternative mathematical model to H (as defined in Section II-F) has to be defined in the next.491

Consider a model H∗ : Θ→ R, that is, Y = H∗(θ), where θ = [θ1, . . . , θq] is a vector of random variables492

and Y is a chosen univariate model output.493

Let us associate Θ with the epistemic space; for a given value of θj ∈ Θ, the function H∗ returns the494

area between a CDF F (·|θj) and a reference CDF F (·|θ):495

yi := H∗(θi) :=

∫ +∞

−∞
|F (x|θi)− F (x|θ)|dx; (17)

here θ denotes the center of gravity of Θ (in other words, θ is a vector formed by the mean value of each496

input epistemic parameter), and F (·|θ) represents the CDF obtained after mapping all aleatory uncertainty497

through the system H, for a given set of epistemic parameters θ. Since the global sensitivity analysis is498

based on the variance decomposition, any reference CDF can be used in the model H∗.499

The procedure to estimate the empirical CDF F̂ (·|θ) as an approximation to F (·|θ) is as follows:500

1. Draw n points ({αj : j = 1, . . . , n}) from the aleatory space Ω, using copula C;501

2. Evaluate the model xij := H(αj ;θ) for j = 1, . . . , n;502

3. Estimate the empirical CDF F̂ (·|θ) of the set of samples {xij , j = 1, 2, . . . , n}.503

Using the above procedure, a sample from the random variable Y , namely yi can be estimated by means504

of Eq. (17) for each realization of input θi by using the empirical CDFs F̂ (·|θ) and F̂ (·|θ). Please note that505

when the model produces a scalar value for each realization of the input Θi, e.g. it returns the expected506
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value (yi = E(x|θi)) or a quantile of a distribution, it is not necessary to evaluate Eq. (17) but the model507

output can be used directly (see Section B-2).508

Finally, the first order Sobol’ indices are calculated as follows39
509

Si =
Varθi [Eθ∼i(Y |θi)]

Var[Y ]
(18)

where Var[Y ] represents the unconditional variance of the quantity of interest and Varθi [Eθ∼i(Y |θi)] the510

variance of conditional expectation. The total sensitivity index, Ti, measures the contribution to the output511

variance of θi of the input factors including all interactions with any other input variables,512

Ti = 1− Varθ∼i
(Eθi(Y | θ∼i))
Var(Y )

. (19)

Note that unlike the first order indices, the sum of total indices can exceed one.513

The proposed approach allows to decompose the variance of the output Y into parts attributable to514

the variance of the input variables θ; in other words, it allows to identify and rank the contribution of the515

epistemic uncertainty, i.e. interval of the parameters, on the p-boxes of quantity of interest. The magnitude516

of the sensitivity indices are proportional to the contribution to the output variance, i.e. input factor517

associated with a large sensitivity index contributes most to the variance of the output. Hence, adopting the518

approach proposed here, the global sensitivity analysis allows us to identify the contribution of the epistemic519

uncertainty of input factors on the variance of the model.520

Different techniques exist to compute the sensitivity indices such as the extended-“Fourier Amplitude521

Sensitivity Test” (FAST)40,41 and the Saltelli’s method.38 The FAST method allows to estimate first order522

Sobol’ indices, whereas Saltelli’s method computes also the total indices.523

C. Uncertainty Propagation524

The focus of the uncertainty propagation analysis is to quantify the effect of the uncertain model parameters525

on quantities of interest such as the mean, variance and quantiles of the system’s response or its failure prob-526

ability. The generalized probabilistic model makes the UQ rather challenging task in terms of computational527

cost. The challenge is to compute the lower and upper bounds of the quantities of interest. Monte Carlo528

method remains the most versatile and simple tool to propagate epistemic and aleatory uncertainty.529
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1. Optimization in the epistemic space (standard approach)530

In this approach, the quantity of interest (e.g. mean or failure probability estimation) defines the objective531

function; and the bounds on that objective function are calculated by means of a global search in the532

epistemic space Θ. On one hand, the lower and upper bounds of the mean are obtained as:533

µ = min
θ∈Θ

µ(θ) µ = max
θ∈Θ

µ(θ) (20)

where the mean of the response model is given by:534

µ(θ) =

∫
Ω

H(α;θ) dC(α). (21)

On the other hand, the lower and upper bound of the failure probability, defined as the excedance of a535

critical threshold level Hcrit of the model response, are obtained as536

Pf = min
θ∈Θ

Pf (θ) Pf = max
θ∈Θ

Pf (θ); (22)

here Pf (θ) stands for the failure probability, that is,537

Pf (θ) :=

∫
Ω

I[H(α;θ) > Hcrit] dC(α). (23)

538

Monte Carlo method is used to calculate the bounds Eq. (20) and Eq. (22), by means of a double loop539

simulation:540

• The outer loop drives an optimization/search process in the epistemic space Θ to identify the lower541

and upper bounds Eq. (20) and Eq. (22). This search is performed by Monte Carlo sampling taking542

into account that this optimization method is very inefficient in high dimensional spaces since the543

search space grows exponentially with the number of variables. Better optimization strategies such as544

Genetic Algorithms can also be adopted as shown in Section V-C.545

• The inner loop propagates the aleatory uncertainty and estimates the statistical quantities of interest546

(e.g. expected value, failure of probability, CDF, etc). In this way, several αj are sampled from copula547

C in order to estimate integrals of Eq. (21) and Eq. (23). Take into account that this Monte Carlo548

integration in the aleatory space Ω is insensitive to the dimensionality of the problem although it can549
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be inefficient in case of the calculation of integral of Eq. (23), when the probability of failure is very550

small. The estimation of the integrals can be speed up by adopting the so called Advanced Monte551

Carlo methods such as Importance Sampling, Subset Simulation and Line Sampling.19
552

2. Propagation of focal sets (counter approach)553

The second approach for uncertainty propagation, which is proposed in Refs. 11, 12, 42, is based on the554

propagation of focal sets through a function. Using random set theory, as explained in Section II, it can555

be seen that the aleatory space Ω contains the regions FLP := {α ∈ Ω : Γ(α) ⊆ F,Γ(α) 6= ∅} and556

FUP := {α ∈ Ω : Γ(α) ∩ F 6= ∅} which are correspondingly formed by all those points whose respective557

focal elements are completely contained in the failure set F = {x ∈ X : g(x) > Hcrit} or have in common558

at least one point with F correspondingly (see Figure 1b). Notice that the set F is defined in the space of559

input variables X ; in this case, the lower Eq. (2a) and upper Eq. (2b) probability measures of F can be560

calculated by:561

Pf = LP(F ,PΓ)(F ) =

∫
Ω

I [α ∈ FLP] dC(α) Pf = UP(F ,PΓ)(F ) =

∫
Ω

I [α ∈ FUP] dC(α) (24)

provided that FLP and FUP are µC-measurable sets; here I stands for the indicator function.562

Eq. (24) can be evaluated by means of simple Monte Carlo method sampling n points from the copula C,563

namely α1,α2, . . . ,αn ∈ Ω, and then retrieving the corresponding focal elements γj := Γ(αj), j = 1, . . . , n564

from F . Afterwards, integrals Eq. (24) are computed by the unbiased estimators P̂f and
ˆ
Pf , which are565

given by:566

P̂f =
1

n

n∑
j=1

I [αj ∈ FLP]
ˆ
Pf =

1

n

n∑
j=1

I [αj ∈ FUP] . (25)

567

The image of Γ(αi) through the function G can be computed using the optimization method, as described568

by equations (3) and (4). Since, I [G (Γ (αi)) ⊆ F ] = I
[
G(αi) > Hcrit

]
= I [αi ∈ FLP] and I[G (Γ(αi))∩F 6=569

∅] = I
[
G(αi) > Hcrit

]
= I [αi ∈ FUP] it follows that Eqs. (25) can be written as:570

P̂f =
1

n

n∑
i=1

I
[
G(αi) > Hcrit

] ˆ
Pf =

1

n

n∑
i=1

I
[
G(αi) > Hcrit

]
. (26)

571
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Observe that this approach operates by inverting the order of execution of the loops in the double loop572

described above:573

• the outer loop propagates the aleatory uncertainty by sampling the points α1,α2, . . . ,αn ∈ Ω using574

copula C.575

• the inner loop drives an optimization/search process in Γ(αi) in order to find the image of the input576

focal element through the system G; this step is performed when evaluating Eqs. (3) and (4).577

One of the main advantages of the random set theory is that, for a problem where inputs are defined using578

any possible imprecise probability framework (CDFs, intervals, distribution-free probability boxes, possibility579

distributions, Dempster-Shafer structures, etc.), it allows to employ the methods developed by the community580

of stochastic mechanics for estimating the failure probabilities of the two limit state functions G and G, i.e.581

calculating of bounds on probability [P̂f ,
ˆ
Pf ]. In case that the calculation of very small probability bounds is582

requested, the plain Monte Carlo simulation described here is not efficient. Advanced Monte Carlo methods583

can be used to estimate small probabilities of failure as described in e.g. Ref. 43,19.584

It is worth noting that although the random set theory is in general not applicable in the case of dis-585

tributional p-boxes, the method presented in Section C–1 can still be used as far as the bounding CDFs of586

the input p-boxes can be identified. However, applying this approach to distributional p-boxes treats those587

p-boxes as distribution-free ones. This inevitably leads to loss of information which results in the underes-588

timation and overestimation of the lower and upper bounds respectively, when compared to the method of589

optimization in the epistemic space (standard approach).590

3. Numerical considerations591

Two degrees of error can be identified using both approaches for UQ. The first error concerns the estimation592

of the statistics and failure probability, which can be reduced by increasing the number of samples or by593

implementing an efficient sampling technique.43,19 In reliability analysis, the limited set of samples may594

lead to both an underestimation and to an overestimation. The confidence of the estimator can always be595

improved adopting a larger set of samples but at the cost of increasing the computational demand.596

The second error concerns the global search. In general it is not possible to guarantee the identification597

of global optima. Only when the feasible (search) domain of the input variables is small (≈ 5 variables), a598
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thorough search can lead to a good approximation of the global optima. The search error can only affect the599

results in one direction. For example, if a global minimum is searched, the identified minimum can only be600

greater than the global one; in the same way, the identified maximum can only be smaller than the global601

maximum.602

Under the assumption that the sampling error for estimating the failure probability is very small, the603

“optimization in the epistemic space” approach (Section C-1) always results in an overestimation of the lower604

bound and an underestimation of the upper bound, which may lead to an optimistic decision.605

D. Extreme case analysis606

The extreme case analysis consists in identifying the the combinations of epistemic realizations θ that leads607

to the worst/best behaviour of the system. This analysis can be seen as an inverse problem of the uncertainty608

propagation, the forward problem, described in Section C.609

This problem is a by-product of the uncertainty propagation but the ability to solve it depends on the610

approach used to perform the forward problem. The extreme case analysis can not be performed using611

the approach “propagation of focal sets” presented in Section C. This is because distributional p-boxes are612

treated as distribution-free p-boxes. Hence, extreme cases might result associated with distributions that613

lay inside the p-boxes but that do not comply with the associated parental distributions. Only the approach614

“optimization of the epistemic space” can be used because the approach holds a bijective mapping between615

the inputs in the epistemic domain and the quantity of interest.616

Solving Eqs. (20) and (23)) it is possible to identify directly realizations of the epistemic space θ that617

produce the bounds of quantity of interest, as618

θµ = arg min
θ∈Θ

µ(θ) θµ = arg max
θ∈Θ

µ(θ) (27)

θPf
= arg min

θ∈Θ
Pf (θ) θPf

= arg max
θ∈Θ

Pf (θ). (28)

Unfortunately, the uncertainty makes the inverse problem an ill-posed and difficult to solve problem. For619

instance, the objective of the optimization can involve the calculation of some statistics. These are generally620

estimated by means of samples and those statistics are not exact but approximate. Stochastic optimization621

methods44 are specially suited to make optimization with random objective functions.622
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In addition, the necessity to separate epistemic and aleatory uncertainty makes the extreme case anal-623

ysis even more difficult. This is because an extreme case can derive from different combinations of epis-624

temic/aleatory uncertainty (α, θ).625

E. Robust Design626

The final task in the design of a safety critical system is to perform a robust design optimization. The main627

aim of the robust design is to consider explicitly the effects of the uncertainties in the optimization problem.628

A solution of this problem can be obtained by performing an optimization analysis able to identify the design629

point with improved robustness and reliability characteristics.9630

This requires to repeatedly evaluate the performance of the system that can be defined as e.g. expected631

values, probability of failure. The approach described in Section C can be adopted for the estimation of632

these quantities (inner loop) and it generally requires considerable numerical efforts. In addition, it has to633

be performed for each candidate solutions of the optimization procedure (the outer loop).634

Generally in robust design only one bound is of interest. For instance we would like to reduce the635

probability of failure. In this sense, the optimal design point dopt, would be given for example by:636

dopt = arg min
d∈D

Pf (d) = arg min
d∈D

max
θ∈Θ

∫
Ω

I[H(α;θ;d) > Hcrit] dC(α) (29)

or by637

dopt = arg min
d∈D

µ(d) = arg min
d∈D

max
θ∈Θ

∫
Ω

H(α;θ;d) dC(α), (30)

where D is the design space and H becomes a function Ω×Θ×D → R.638

Nevertheless, the estimation of bounds of the system performance for this subproblem, remains a compu-639

tational challenge. Thus, due to the tremendous numerical cost involved, caused by the repeated assessment640

of the system response for different candidate solutions, the direct solution of this subproblem may render641

the computational task unfeasible, even for academic problems. Then, it is necessary to resort to specific642

techniques such as the use of surrogate models in order to decrease the computational costs.45,46 Surrogate-643

models mimic the behaviour of the original model, by means of an analytical expression with negligible644

computational cost. The approximation is constructed by selecting some predefined interpolation points in645

the design space, at which the maximal failure probability is estimated; then, a surrogate model is adjusted646
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to the data collected in a least squares sense. As the construction of this approximation over the entire647

domain can be demanding, it may be easier to generate an approximation of the failure probabilities over648

a sub-domain,47 i.e. to generate a local surrogate model. Local surrogate model might require generally649

less evaluation points to be constructed although they have to be continuously updated in order to follow650

the current values of the design variables. Artificial neural networks are very versatile surrogate models;651

other methods such as kriging can be used as well.45,46 Surrogate models should not introduce unnecessary652

approximations and errors. Hence, only the most computational expensive part of the model should be653

replaced keeping the original models for the less demanding parts.654

IV. Numerical Implementation655

The uncertainty quantification and management require the availability of flexible numerical tools able656

to deal with the different representations of uncertainty. Furthermore, since the non-deterministic analysis is657

computationally quite demanding, such numerical tools need to be very efficient and scalable. In fact, since658

such analyses need to be repeated a large number of times, the computational cost could be excessive even659

when the solver is reasonably fast (e.g. the computation of g in the challenge problem requires 2 seconds on660

a common desktop computer). For these reasons, the proposed approach has been developed and integrated661

into the OpenCossan framework.10
662

A. OpenCossan663

OpenCossan is a collection of open source algorithms, methods and tools released under the LGPL licence,48
664

and under continuous development at the Institute for Risk and Uncertainty at the University of Liverpool,665

UK. The source code is available upon request at the web address http://www.cossan.co.uk.666

OpenCossan is also the computational core of a general purpose software, namely COSSAN-X, originally667

developed by the research group of Prof. G.I. Schuëller at the University of Innsbruck, Austria.49,50 As a668

general purpose software, it means that a reasonably wide range of engineering and scientific problems can669

be treated by the software.670

This computational core, developed in MATLAB R© using an object-oriented programming paradigm,671

includes several predefined solution sequences to solve a number of different problems. The framework is672
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organized in classes, i.e. data structures consisting of data fields and methods together with their interac-673

tions and interfaces. Thanks to the modular nature of OpenCossan, it is possible to define specialized674

solution sequences including reliability methods, optimization strategies and surrogate modelling or parallel675

computing strategies to reduce the overall cost of the computation.676

OpenCossan provides intuitive, clear, well documented and human readable interfaces to the classes.677

Furthermore, the developed numerical methods are highly scalable and parallelizable, thanks to its integra-678

tion with distributed resource management, such as openlava and GridEngine. These job management tools679

allow to take advantages of high performance computing, as shown in the next sub-session.680

B. High performance computing681

The proposed strategies for solving the challenge problem are generally very demanding in terms of compu-682

tational resources. For instance, sensitivity analysis and uncertainty quantification might require more than683

106 up to 109 model evaluations (see e.g. Section V-B)).684

Even though the computational cost to evaluate the model might be low, the huge number of model685

evaluations required by the analyses represents a computational challenge. A possible way to reduce the686

execution time of the analyses is to employ surrogate models to approximate the input/output relations687

with faster analytical approximations. This, however, introduces loss of accuracy in the analysis, and such688

surrogate models have to be accurately calibrated before being employed in the analysis.689

Alternatively, multiple independent instances of the solver can be executed simultaneously for different690

values of the input to the system, allowing for a reduction of the analyses time without any loss of accuracy.691

Hence, in order to reduce the computational wall-clock time required by the analyses two types of692

parallelization can be used. The first type of parallelization is used to speed-up the analysis of most internal693

loop required by the simulations. In this case, a special job on a pool of MATLAB workers is created on694

each multi-core machine, connecting the MATLAB client to the parallel pool (e.g. using the command695

parpool). Features from the MATLAB parallel toolbox e.g., parfor, can be used to distribute the tasks696

on the MATLAB clients. This type of parallelism can be implemented on each single computational node.697

Clearly such kind of parallelization can only be used if the model is evaluated in MATLAB. In case the analysis698

of the inner loop requires the call of an external solver (such as a FE/CFD analysis) the multi-thread, shared699
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memory parallelism capabilities of the external software need to be adopted in order to enable the first level700

of parallelization. The second level of parallelization exploits cluster and grid computing, i.e. the availability701

of machines connected in an heterogeneous network. In this case, the total number of simulations is slitted702

in a multiple number of independent batch jobs. The jobs are then submitted to the job scheduler/manager703

and distributed efficiently on the available machines of the grid/cluster.704

As a final consideration, these two types of parallelization can be combined together. As an example,705

the model evaluation required by global sensitivity analysis can be spread using batch jobs along multiple706

computational nodes. Then, for each batch processed on each node of the cluster, a subset of analyses is707

performed in parallel on the cores of the node in order to compute the quantity of interest, e.g., Monte708

Carlo simulation can be performed to evaluate a stochastic model and to compute the empirical CDFs of709

the quantity of interest.710

Although, using OpenCossan framework, the parallelization of the analysis is straightforward, the711

parallelization of a generic model might be quite challenging. In fact, independent multiple stream and sub-712

stream should be generated by the master node and distributed to the workers. In MATLAB, a combined713

multiple recursive generator (mrg32k3a) can be used to generate such independent sub-streams. When user-714

supplied code is involved, the standard approach, taken by OpenCossan to parallelize MATLAB functions715

with independent jobs, is to compile such functions using mcc and then distribute the compiled code to716

the node of the cluster (workers). Hence, it is possible to execute in parallel MATLAB code without the717

necessity to install MATLAB on each computational node of the cluster, but only accessing the MATLAB718

runtime libraries. When this approach is not possible, for instance due to license limitations to deploy code,719

multiple headless instances of MATLAB are executed (available MATLAB licenses on each cluster node are720

necessary).721

V. Numerical application722

NASA Langley multidisciplinary uncertainty quantification challenge723

The necessity to determine limitation and range of applicability of existing uncertainty quantification (UQ)724

methodologies and to advance the state of the practice in UQ problem of direct interest of NASA has lead to725
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the development of a challenge problem. The reader is referred to Ref. 9 for a full description of the NASA726

UQ challenge problem.727

A mathematical model that describes the dynamic of a remotely operated twin-jet aircraft developed by728

NASA Langley Research Center is analyzed (see Figure 3). The model, provided as a “Black Box”, contains729

21 parameters, p, 16 design variables, d and 8 outputs, g. Furthermore, a set of intermediate variables, x,730

that can be interpreted as outputs of the so-called fixed discipline analysis, x = h(p), are the inputs of the731

cross discipline analysis g = f(x,d). One of the main objectives of the proposed problem is to identify the732

design parameters, d, that provide optimal worst case probabilistic performance in presence of the model733

parameters uncertainty, p i.e. perform a robust optimization. This requires to solve a series of subproblems,734

such as uncertainty characterization, sensitivity analysis, among others, in order to improve the model.735

In the following, the term “original model” is used to describe the uncertainty model as provided in the736

challenge problem; “reduced model” refers to the model with reduced uncertainty after the solution of the737

subproblem A and “improved model” refers to the reduced model with four parameters with the smallest738

ranges of uncertainty obtained from NASA. Only the main findings are reported and the reader is referred739

to Ref. 30 for detailed results of the challenge problem.740
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Figure 3: Relationship between the variables and functions of the NASA Langley multidisciplinary uncer-

tainty quantification challenge problem.8

Decomposition of variables p into its aleatory and epistemic components Table 1 lists all741

variables of vector p decomposed into an aleatory component and an epistemic component. Note that on742

the one hand, the aleatory component of a random variable or distributional p-box can be represented as a743
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uniform random variable in (0, 1]; on the other hand, the epistemic component of a distributional p-box is744

given by the intervals that describe the parameters of the parental CDF; in this way, the aleatory Ω and the745

epistemic Θ spaces have respectively 17 and 31 dimensions.746

Representation of variable p1 In Section II it has been shown how to represent p-boxes. However,747

variable p1 requires special considerations in its representation. These are discussed in detail in the following:748

The input variable p1 is represented as a unimodal beta distribution whose mean µ and variance σ2 are749

uncertain, but are known to lie in the intervals [3/5, 4/5] and [1/50, 1/25] respectively. Instead beta750

distributions are characterized by shape parameters a and b which are related to µ and σ2 by:751

µ =
a

a+ b
σ2 =

ab

(a+ b+ 1)(a+ b)2
(31)

that is,752

a = −µ(σ2 + µ2 − µ)

σ2
b =

(µ− 1)(σ2 + µ2 − µ)

σ2
(32)

The required unimodality implies that a and b are greater than 1. For shape parameters lower than 1 the753

beta distribution assume the U-shaped bimodal distributions.754

Representation of variables p4 and p5 One drawback of the proposed approach is that the copula755

must be perfectly modelled, without any epistemic uncertainty in its parameters. The copula that relates756

variables p4 and p5 has an interval parameter, namely I8, which models the correlation ρ(p4, p5). Variables757

p4 and p5 are modelled using the following formulation, which permits to split uncertainty into the aleatory758

and the epistemic spaces while representing the dependence with an independent copula, which does not759

have any epistemic component at all:760

• The aleatory part of the joint probability box is given by α3 and α4 which are independent and uniform761

random variables on (0, 1]. Note that z3 = Φ−1(α3) and z4 = Φ−1(α4) where Φ represents the standard762

normal CDF.763

• The epistemic part of the joint distribution is given by the 5-dimensional box×8

i=4
Ii.764

A simulation from variables p4 and p5 can be performed by using the vector z = [z3, z4]T and a parameter765

vector θ ∈×8

i=4
Ii; the simulation uses the standard procedure for sampling from a multivariate normal766

PDF. This method employs the Cholesky decomposition of the covariance matrix.767
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Table 1: Aleatory and epistemic components of the input variables pi, The first column provides the param-

eter’s symbol, the second one its category (see above for a description of the categories), the third and fourth

one describe its aleatory and epistemic uncertainty model. Here ρ(, ), E[·] and Var[·], denote the correlation,

expected value, and variance operators respectively.

Variable Category Aleatory Epistemic Description

component component

p1 III α1 ∼ Unif(0, 1] I1 = [3/5, 4/5] Interval of E[p1]

(distribution type: I2 = [1/50, 1/25] Interval of Var[p1]

unimodal Beta)

p2 II I3 = [0, 1] Interval

p3 I α2 ∼ Unif(0, 1] Random variable

p4, p5 III α3 ∼ Unif(0, 1] I4 = [−5, 5] Interval of E[p4]

α4 ∼ Unif(0, 1] I5 = [1/400, 4] Interval of Var[p4]

(distribution type: I6 = [−5, 5] Interval of E[p5]

multivariate gaussian) I7 = [1/400, 4] Interval of Var[p4]

I8 = [−1, 1] Interval of ρ(p4, p5)

p6 II I9 = [0, 1] Interval

p7 III α5 ∼ Unif(0, 1] I10 = [0.982, 3.537] Interval of a

(distribution type: Beta) I11 = [0.619, 1.080] Interval of b

p8 III α6 ∼ Unif(0, 1] I12 = [7.450, 14.093] Interval of a

(distribution type: Beta) I13 = [4.285, 7.864] Interval of b

p9 I α7 ∼ Unif(0, 1] Random variable

p10 III α8 ∼ Unif(0, 1] I14 = [1.520, 4.513] Interval of a

(distribution type: Beta) I15 = [1.536, 4.750] Interval of b

p11 I α9 ∼ Unif(0, 1] Random variable

p12 II I16 = [0, 1] Interval

p13 III α10 ∼ Unif(0, 1] I17 = [0.412, 0.737] Interval of a

(distribution type: Beta) I18 = [1.000, 2.068] Interval of b

p14 III α11 ∼ Unif(0, 1] I19 = [0.931, 2.169] Interval of a

(distribution type: Beta) I20 = [1.000, 2.407] Interval of b

p15 III α12 ∼ Unif(0, 1] I21 = [5.435, 7.095] Interval of a

(distribution type: Beta) I22 = [5.287, 6.945] Interval of b

p16 II I23 = [0, 1] Interval

p17 III α13 ∼ Unif(0, 1] I24 = [1.060, 1.662] Interval of a

(distribution type: Beta) I25 = [1.000, 1.488] Interval of b

p18 III α14 ∼ Unif(0, 1] I26 = [1.000, 4.266] Interval of a

(distribution type: Beta) I27 = [0.553, 1.000] Interval of b

p19 I α15 ∼ Unif(0, 1] Random variable

p20 III α16 ∼ Unif(0, 1] I28 = [7.530, 13.492] Interval of a

(distribution type: Beta) I29 = [4.711, 8.148] Interval of b

p21 III α17 ∼ Unif(0, 1] I30 = [0.421, 1.000] Interval of a

(distribution type: Beta) I31 = [7.772, 29.621] Interval of b

34 of 73

American Institute of Aeronautics and Astronautics



Consequently, the joint distribution-free probability box formed by variables p4 and p5 can be represented768

as the random set Γ : (0, 1]2 → F ,α 7→ Γ(α) where α = (α3, α4), F is the system of focal elements given769

by the preimages of {α3 × α4 × I4 × I5 × · · · × I8 : (α3, α4) ∈ (0, 1]2} through Fp4p5
. Since α3 and α4 are770

independent uniform random variables in (0, 1], they can be considered as the realization of a bidimensional771

product copula, defined on (0, 1]2. For the interpretation of α3, α4, I4, . . . , I8 the reader is referred to772

Table 1.773

A. Subproblem A774

The aim of the uncertainty characterization or subproblem A is to reduce the epistemic uncertainty compo-775

nents of the category II (p2) and III parameters (p1, p4, p5) that are inputs of a subsystem h1. The subsystem776

provides a scalar output x1 as a function of those five uncertain parameters, that is,777

x1 = h1(p1, p2, p3, p4, p5). (33)

778

In this subproblem, the vector [p1, . . . p5] is the output of the system W, the system h1 is equivalent to779

the function G defined on Section II-F, the epistemic space is the Cartesian product Θ :=×8

i=j
Ij and the780

aleatory space, which models variables α1 to α4, is defined by Ω := (0, 1]4 (see Table 1).781

Two sets of 25 observations of the “true uncertainty model” θ∗ ∈ Θ are available to reduce the uncertainty782

in Ω. The approaches described in Section III-A are here adopted.783

One of the main challenges of this subproblem is provided by the limited available information (25784

observation points for each dataset) and the relatively large dissimilarity of the empirical CDFs associated785

with those datasets as shown in Figure 4.786

1. Non-parametric statistic method based on the Kolmogorov-Smirnov test787

The procedure presented in Session III-A has been used to solve the subproblem A. First, the validation788

similarity level has been calculated after using a Gaussian KDE to compute the CDF F̃e for the observation789

sets. A validation similarity level Dṽ = 0.18 has been obtained calculating the maximum distance between790

the two KDEs adjusted to the two datasets respectively F̃e (i.e. using Eq. (6)). The measure of similarity791
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Figure 4: Empirical CDF, F̂ , of the two set of observation points and CDF obtained adopting the Gaussian

kernel density of Eq. (7), F̃ . The dots and squares show the two datasets De, respectively.
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obtained comparing the two empirical CDFs, F̂e, of the datasets is Dv̂ = 0.24 as shown in Figure 5. This792

allows to identify those points θi ∈ Θ that conform with the observations such that Di < Dv.793

Assuming a uniform distribution on Θ, 10000 samples θi are drawn and for each θi, n = 5000 samples794

from the aleatory space Ω are used to propagate the aleatory uncertainty through the model (using the795

function p_to_x1). Finally, using the empirical CDF of x1 (F̂ (x1|θi)), the measure of similarity Di is796

calculated against F̃e according to Eq. (6) (i.e. Di = supx |F̂ (x|θi) − F̃e(x)|). Please note that due to the797

large number of samples used F̂i(x1|θi) ≈ F̃i(x1|θi). The histograms of the measure of similarity Di are798

shown in Figure 5 computed for the dataset of 25 and 50 observations, respectively. It is possible to observe799

that Di is smaller when the KDE F̃i(x1|θi) and all 50 observations are used.800

The measure of similarity Dṽ = 0.18 identifies model outputs, x1 obtained from the realizations in the801

epistemic space, θi, that are in agreement with the observations (represented in Figure 5 by the bars on the802

left of Dṽ). Calculating P (Di > Dṽ) = c, two confidence levels have been obtained: cṽ(25) = 0.8031 and803

cṽ(50) = 0.547 when Di is calculated against the F̃e obtained using 25 and 50 observations, respectively.804

Figure 6 shows the parallel coordinate plot of the epistemic realizations. Please note that for readability805

purposes, only 1000 realizations are shown. In a parallel plot a multi-dimensional quantity is shown graphi-806

cally and represented as a polyline with vertices on the parallel axes. The vertex on the m-axis corresponds807

to the i-th realization of the m-coordinate (i.e. θ
(i)
m ). The axes of the plot have been normalized, between 0808

and 1. The top panel of Figure 6 shows combination of epistemic realizations for different level of similarity809

measure computed against F̃e constructed from 25 observations. The Figure shows all the combinations of810

all epistemic realizations (c = 0), those with a similarity measure Di < Dv̂ (i.e. c = 0.547) and Di < Dṽ811

(i.e. c = 8031), respectively. The top panel of Figure 6 shows the parallel plot with measures of similarity812

calculated using all the 50 observations. c = 0.0547 correspond to a similarity measure Di < Dṽ while813

c = 0.0547 correspond an arbitrary level Di < 0.1.814

The parallel coordinate plot allows to identify the epistemic uncertainty that can be reduced. For instance,815

all the realizations of E[p5] with similarity level lower Dv are in the normalized interval [0, 0.6] while E[p1]816

is in the normalized interval [0, 0.7]. On the contrary, the intervals of Var[p1], p2,E[p4], Var[p4], Var[p5]817

and ρ(p4, p5) cannot be improved based on the current available data. Although the resulting model for818

θ obtained are collection of points, the identified realizations cover connected ranges (remember that only819
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1000 over 10000 realizations are shown in Figure 6). The results are summarized in Table 2.820

2. Bayesian updating on the epistemic space821

The Bayesian inference is the second approach used to reduce the epistemic uncertainty as explained in822

Section III-A-2. In this method, Transitional Monte Carlo Markov Chains have been used to sample 1000823

realizations from the posterior PDF p(θ|Dn). Two strategies have been employed to estimate the likelihood824

P (De|θi): the standard Bayesian and an approximate Bayesian computational method.825

Bayesian computational method (BC) In this case, the likelihood is computed using Eq. (8) and826

p(x|θi) is estimated by means of a KDE, computed with n = 1000 points from the aleatory space. Figures 7827

shows the posterior distributions sampled using TMCMC with 25 and 50 observation points as evidence,828

respectively. Histograms of the posterior samples are normalized, assigning a value of 1 to the number of829

counts in the bin containing the majority of samples. After normalizing the histograms, it is possible to set830

a general limit of normalized counts used to exclude outliers of the TMCMC algorithm and indicated by the831

horizontal red lines in Figures 7.832

Approximate Bayesian computational method (ABC) In this case, 200 samples are used to evaluate833

F̂ (·|θi) and the quantities δk by means of Eq. (12). Thereafter, the likelihood (11) is computed. Figures 8834

shows the normalized posterior distributions sampled using TMCMC with 25 and 50 observation points as835

evidence, respectively.836

The results The proposed method has been able to identify a reduced epistemic space associated to837

E[p1] and E[p5] but no conclusions can be drawn for the other input parameters. The updated ranges of the838

epistemic uncertainties are summarized in Table 2.839

The Bayesian updating procedure successfully managed to reduce the uncertainty associated to the840

output x1 as shown for example in Figure 9, for the approximate Bayesian computational method. Figure 9841

shows different p-boxes of x1 obtained with the updated epistemic uncertainty parameters, using the first842

set of 25 observations and the full set of 50 observations, respectively. The approximated p-boxes have843

been obtained using the following procedure. First, 10000 samples θi of the epistemic variable are drawn844

from uniform distributions defined by the full range of the updated bounds (light gray) and by the updated845
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Figure 5: Histogram of the measure of similarity, Di, between the CDF calculated sampling randomly in

the epistemic space and the observations, for 25 (top panel) and 50 (bottom panel) observations (De). Di

has been computed using the empirical CDF of the experimental data (blue bars) and the CDF obtained

using Gaussian kernel smoother functions (yellow bars). The figure also shows the values of the measure

of similarity between the two set of observation data computed using Gaussian kernel smoother techniques,

Dṽ, and empirical CDF, Dv̂, respectively.
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Figure 6: Parallel coordinates plot of the 8 category II and III parameters of the input factors of h1 (i.e.

pi, i = 1, · · · , 5) for 25 (top panel) and 50 (bottom panel) observations (De). The figure shows only 1000

realizations (over a total sample of 10000) of the epistemic space for different significant levels c of the

Kolmogorov-Smirnov test. c = 0 represents of all the realizations. cṽ represents realizations of θ with a

measure of similarity Di < Dṽ. cv̂ represents realizations of θ with a measure of similarity Di < Dv̂ and

cD=0.1 realizations with a measure of similarity Di < 0.1.
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(a) 25 observations.

(b) 50 observations.

Figure 7: Normalized histogram of p(θ|De) obtained using Bayesian Computational method with (a) 25

experimental observations and (b) 50 experimental observations (b) of x1, respectively. The normalization

assigns a value of 1 to the bin with the highest number of counts. The red line represent the cut-off value to

determine the updated range.
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(a) 25 observations.

(b) 50 observations.

Figure 8: Normalized histogram of p(θ|De) obtained using Approximate Bayesian Computational method

with (a) 25 experimental observations and (b) 50 experimental observations (b) of x1, respectively. The

normalization assigns a value of 1 to the bin with the highest number of counts. The red line represent the

cut-off value to determine the updated range.
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(a) 25 observations.
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(b) 50 observations.

Figure 9: P-boxes of x1 and the empirical CDFs of the experimental data. The p-boxes have been obtained

using the full range of the posterior parameters and using the range that excludes the outliers, respectively.
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bounds obtained excluding the outliers (dark gray). Then, the CDF F̂ (·|θi) is computed for each epistemic846

realization. Finally the curves enveloping all the CDFs are obtained and shown in Figure 9. It is possible847

to notice that the updated p-box of x1 is tighter when all the 50 experimental observations are used.848

Additionally, the experimental CDFs of the calibration data set are fully contained in the light gray area849

(i.e. the p-boxes obtained excluding the outliers). However, the validation data lay inside the updated p-box850

only when the full intervals of updated parameters are considered.851

The reduced uncertainty model identified by the non-parametric approach and by the Bayesian inference852

approach are summarized in Table 2, respectively. Although only the uncertainty of two parameters can be853

significantly reduced, the results provided by the proposed approaches are in agreement providing a cross854

validation of the developed procedures used to solve the subproblem A.855

B. Subproblem B856

The aim of this subproblem is to identify and rank the input parameters of category II and III (i.e. intervals857

and distributional p-boxes) according to degree of refinement in the output p-boxes which one could hope858

to obtain by refining their uncertainty models. More specifically, in problem B1 the focus is to rank the 4859

input factors that affect the variability the output xi of each model hi(·), i = 1, . . . , 4, respectively. In tasks860

B2-B3, 17 parameters need to be ranked according to the reduction in the range of J1 = E[w (p,dbaseline)]861

(task B2) and J2 = 1 − P [w (p,dbaseline) < 0] (task B3), respectively. In those expressions, the worst-case862

requirement metric w is defined by w(p,d) = max1≤i≤8 gi(p,d). The strategy presented in Section III-B863

will be used.864

1. Problem B1865

Nonspecificity technique By means of the nonspecificity measure, each interval [Ii, Ii] is reduced866

to the value given by Ii + pr · (Ii − Ii), where pr ∈ {0.1, 0.3, 0.5, 0.7, 0.9} . For instance, interval867

I1 = [E[p1], E[p1]] = [3/5, 4/5] is reduced to the constants 0.62, 0.66, 0.70, 0.74 and 0.78 and n = 50868

samples from the product copula that links aleatory variables, (α1, α2, α3, α4), are employed to construct869

the output Dempster-Shafer structure for each reduction. Note that α3 and α4 are used to model the870

variables p4 and p5, according to the transformation explained at the beginning of Section V. Then, the871
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Table 2: Reduced uncertainty model using the non-parametric approach (c = 0.547) or 25 observations and

c = 8031 for 50 observations) and the Bayesian inference, respectively. A – means that the method could

not reduce the epistemic uncertainty for the referred variable.

Original Nonparametric Bayesian methods

Variable interval method BC ABC

25 observations

E[p1] [ 0.6000, 0.80] [ 0.6000, 0.72] [ 0.6000, 0.73] [0.6030, 0.755 ]

Var[p1] [ 0.0200, 0.04] – – –

p2 [ 0.0000, 1.00] – – –

E[p4] [-5.0000, 5.00] – – –

Var[p4] [ 0.0025, 4.00] – – –

E[p5] [-5.0000, 5.00] [-5.0000, 0.78] – [-5.0000, 4.50 ]

Var[p5] [ 0.0025, 4.00] – – –

ρ(p4, p5) [-1.0000, 1.00] – – –

50 observations

E[p1] [ 0.6000, 0.80] [0.63, 0.76] [0.60, 0.75] [0.618, 0.791]

Var[p1] [ 0.0200, 0.04] [0.0260, 0.04] – –

p2 [ 0.0000, 1.00] – – –

E[p4] [-5.0000, 5.00] [-4.50, 4.80] – –

Var[p4] [ 0.0025, 4.00] – – [0.097, 3.943]

E[p5] [-5.0000, 5.00] [-4.90, 0.30] – [-5.00, 4.45 ]

Var[p5] [ 0.0025, 4.00] – – –

ρ(p4, p5) [-1.0000, 1.00] – – –
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nonspecificity which is a measure of epistemic uncertainty, of each of those Dempster-Shafer structures is872

calculated. Following a similar procedure, the rankings of input variables have been calculated (see Table 3)873

according to the output nonspecificity for the systems h2, h3 and h4, respectively. In all cases, the evaluation874

of equation (5) was performed for each focal element using a genetic algorithm with a population of 30000875

individuals and 10 generations.876

Global sensitivity analysis technique The global sensitivity analysis has been performed on a re-877

defined mathematical model h∗ of the original h as detailed in Section III-B-2. h∗ takes as inputs only878

uniform distributions (that represents the epistemic space Θ) and returns a scalar output yi (the area of879

distribution-free p-boxes) as shown in Figure 10.880

For each combination θi ∈ Θ of the input parameters, the model h∗ performs an internal Monte Carlo881

simulation using n = 500 samples αj to calculate an empirical CDF of xij , F̂ (·|θi). A sample size of 500 is882

sufficient to rank unequivocally the most important parameters with respect to the outputs xk, k = 1, . . . , 5,883

as shown in Figure 11. Then, F̂ (·|θi) is compared with a “reference CDF”, F (·|θ) and the final output yi is884

returned (see Eq. (17)).885
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Figure 10: Redefined model h∗1 used for performing the Global sensitivity analysis with aleatory and epistemic

uncertainty.

In order to reduce the computational noise of h∗ (i.e. the variance of the output), the common random886

number technique51 has been used to propagate the aleatory uncertainty (i.e. performing the internal Monte887

Carlo simulation for the model h∗). The extended-FAST method has been used with 2048 samples of θi for888

each of the 8 input factors of the refined model, and in consequence, 16384 simulations are required for each889
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measure of xk while the Saltelli’s method has been run with 16384 samples for a total cost of 540672 model890

evaluations for each xk.891

Figure 11: Effect of different samples size for the internal Monte Carlo simulation on the estimation of the

Sobol’ indices with respect to x1 by means of extended-FAST method method.

Since the global sensitivity procedure computes the sensitivity measure of the individual components for892

the category III parameters (e.g. E[p1], Var[p1], the numerical values for the input parameters have been893

calculated as: S(p1) = S(E[p1]) + S(Var[p1]), S(p4) = S(E[p4]) + S(Var[p4]) + S(ρ(p4, p4)), and S(p5) =894

S(E[p5]) + S(Var[p5]) + S(ρ(p4, p5)).895

From the results summarized in Table 3, it is possible to see that the results obtained applying the two896

approaches are in agreement.897

2. Problems B2 and B3898

Similar strategies applied in the solution of of task B1 have been here applied. In this case, for the nonspeci-899

ficity technique, the variables are mapped through the system w(p,dbaseline) with only 10 focal elements and900

the range of the interval was measured instead of the nonspecificity of each focal element.901

The redefined model h∗ has also been adopted for performing global sensitivity analyses. Here, h∗ takes902

as input uniform distributions representing the epistemic uncertainties and returns the output J1 and J2.903

For each realization of the epistemic uncertainty, a Monte Carlo simulation with 500 samples is performed904
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Table 3: Ranking of the 4 category II-III parameters according to the nonspecificity technique (NST) and

global sensitivity analysis (GSA) for xi, i = 1, . . . , 4, respectively. Note that using the global sensitivity

analysis, the larger the value of the “first Sobol’ index” is, the more important the input factor is. On the

other hand for nonspecificity technique parameters with the lower values are more important than parameter

with larger values.

Output Rank #1 Rank #2 Rank #3 Rank #4 Strategy

x1 p1(µ)(0.235) p5(µ)(0.757) p4(µ)(0.808) p2(0.850) NST

p1(0.684) p5(0.145) p4(0.056) p2(0.02) GSA

x2 p6(0.063) p7(a)(0.596) p8(a)(0.922) p10(b)(0.993) NST

p6(0.701) p7(0.153) p8(0.021) p10(< 0.001) GSA

x3 p12(0.026) – – – NST

p12(0.835) p15(0.017) p14(< 0.001) p13(< 0.001) GSA

x4 p16(0.121) p17(a)(0.779) p18(a)(0.786) p20(a)(0.938) NST

p16(0.761) p18(0.073) p17(0.025) p20(0.001) GSA

to propagate the aleatory uncertainty Although the distribution of J1 is very sensitive to the number of905

aleatory samples αj , a sample size of 500 has been demonstrated to be sufficient for ranking unequivocally906

the most important parameters as shown in Figure 12..907

The values of g are computed via f function and the CDF of w computed. Finally, J1 and J2 are908

calculated from F (w). Finally, the sensitivity indices of J1 and J2 are calculated. The extended-FAST909

method and the Saltelli’s method has been used to estimate the sensitivity measure. The extended-FAST910

method has been computed using 1000 samples θi for each input factor of the model h∗ (i.e. the intervals of911

the epistemic space) for a total cost of simulations 31000 whereas the Saltelli’s method has been performed912

with 8192 samples for a total cost of 270336 model evaluations. Figures 13-14 show the sensitivity measures913

of the input factors p with respect to J1 and J2, respectively. The most important factor that contributes914

to the variance of J1 is p21 and in particular its variance. The total indices for p4 and p5 show that their915
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Figure 12: Effect of different samples size for the internal Monte Carlo simulation on the estimation of the

Sobol’ indices with respect to J1 by means of extended-FAST method method.

interaction also contributes to the variance of J1 but it is not possible to discriminate the single contribution916

of the parameters p4 and p5. All the other components provide similar (small) contributions to the variance917

of J1. Regarding the variance of J2, the first order and total indices indicate that the parameters p12 and918

p1 are the most important parameters. The first order index indicates also a contribution from p4. All the919

other components provide similar (small) contribution to the variance of J2.920

The results of the sensitivity analysis are summarized in Table 4. The most important variables in the921

reduction of uncertainty on J1 are p21 and the one that reduces the uncertainty on J2 is p12. Again, the922

different approaches have provided consistent results.923

Four variables have been selected (p1, p4, p12 and p21). An improved uncertainty model for these variables924

has been obtained from NASA. p21 is the most important parameter for J1, p12 and p1 are the most important925

parameters for J2. The sensitivity analyses indicated that the parameters p4 and p5 are also important926

however without been able to discriminate between the two parameters. Since the parameter p5 has been927

already reduced during the Uncertainty Characterisation analysis (see Section A), it has been decided to928

ask for an improvement of the parameter p4, in case p4 and p5 where strongly correlated. The improved929

uncertainty intervals cannot be disclosed, as requested by the challengers.930

49 of 73

American Institute of Aeronautics and Astronautics



Figure 13: First and total sensitivity measure of the p parameters respect to J1.

Table 4: Ranking of the category II-III parameters for J1 and J2 computed by means of the nonspecificity

technique and global sensitivity analysis (GSA).

Output Rank #1 Rank #2 Rank #3 Rank #4 Strategy

J1 p21(b)(0.726) p6(0.751) p1(µ)(0.763) p7(a)(1.007) NST

J1 p21(0.089) p5(0.036) p4(0.031) – GSA

J2 p12(0.189) p1(µ)(0.571) p5(µ)(0.945) – NST

J2 p12(0.666) p1(0.393) p4(0.201) p5(0.179) GSA
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Figure 14: First and total sensitivity measure of the p parameters respect to J2.
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C. Subproblem C931

For this subproblem, we were asked to find the range of the metrics J1 = E[w (p,dbaseline)] and J2 =932

1 − P [w (p,dbaseline) < 0], both with the reduced and with the improved uncertainty models. The metric933

J1 is the expected value of the worst-case requirement metric w, while the metric J2 represents the failure934

probability of the system. For solving this problem two different strategies, introduced in in Section III-C,935

have been employed.936

Optimization in the epistemic space (standard approach) A global optimization is performed in937

the epistemic space Θ ≡×31

i=1
Ii, in order to find those points in Θ that produce the upper and lower bounds938

on J1 and J2. For any candidate solution provided by the optimization algorithm , i.e. θi ∈ Θ, a set of939

n = 1000 random points {αj , j = 1, 2, . . . , n} is drawn from the aleatory space Ω ≡ (0, 1]17 to estimate the940

metrics. The number of samples from the aleatory space has been selected after performing a convergence941

test. More specifically, in this test, both J1 and J2 are estimated with increasing values of n (i.e. 100, 500,942

1000, 5000 and 10000) for 5 representative realizations of the epistemic space, as shown in Figure 15. From943

the figure, it can be seen that n = 1000 points are sufficient for estimating J1 and J2, with a C.o.V. of 0.1944

and 0.05 respectively. The confidence of these estimates can be improved by using a larger sample size at945

the expense of increasing even more computational cost of the analysis.946

The search for lower and upper bounds is performed by means of Monte Carlo optimization using Latin947

Hypercube sampling, with approximately 50000 samples. A total of 5×107 evaluations of the function x_to_g948

(model f) are thus, required to complete the analysis. Here, Monte Carlo is a convenient method to solve the949

optimization, as the objective functions J1 and J2 can be quite noisy, varying approximately between ∓10%950

of the true value. In order to reduce the effect of the estimation error introduced by using finite sample sets,951

the objective functions maximum and minimum of Ji=1,2, are redefined as lower Ji (1− tα/2 C. o.V.) and952

upper Ji (1 + tα/2 C. o.V.) estimations, respectively, where α = 0.14 and tα/2 = 1.48 is the 86th t-Student953

percentile (see also52).954

Note that, in order to run the analysis within a reasonable time, parallelization lies at the foundations955

of this approach. On a common dual-core personal computer, a single estimation of Ji takes approximately956

3.4 minutes, thus a total of ∼120 days for a complete analysis. By means of a double parallelization, as957
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described in Section IV, it has been possible to reduce the running time by two orders of magnitude, making958

it possible to complete the analysis in just ∼ 80 hours.959

Propagation of focal sets (counter approach) Using the propagation of focal sets method, n =960

1000 random vectors {αj , j = 1, 2, . . . , n} are drawn from the aleatory space Ω ≡ (0, 1]17. Thereafter, the961

procedure described in Section III-C-2 was applied. In order to evaluate equations (3) and (4), genetic962

algorithms with a population of 125 individuals and 50 generations are adopted requiring a total computa-963

tional cost of 5 × 106 evaluations of w. Figure 16 shows the convergence of the genetic algorithms for two964

representative focal elements. The convergence is achieved using 30 generations for the identification of the965

minimum/maximum of the Eq. (4).966

For this approach, parallelization is also essential. In fact, approximately 5 × 106 evaluations of the967

function x_to_g are required to complete a full analysis. Although, in this case, the use of GA makes the968

parallelization a little more articulated (jobs need to be sent at any iteration of the algorithm), it is still969

possible to significantly reduce the running time up to two orders of magnitude (as in the standard approach).970

It is worth noting that the overall number of function evaluations makes this approach about 10 times more971

efficient than the standard approach.972

Results The results of the reduced uncertainty model and the improved model are summarized in Table 5.973

Using the proposed methods, it has been possible to bound the actual solution for the targeted metrics. As974

expected, the improved uncertainty model is far more informative than the reduced model, which is shown975

by a sensible reduction in the upper bound of J1. An even more significant difference is documented for the976

range of J2 (see Table 5), where the model of uncertainty from being totally uninformative, J2 ∈ [0, 1], is977

reduced to J2 ∈ [0.20, 0.41]. Note also that the optimization in the epistemic space (standard approach)978

provided tighter bounds than the propagation of focal sets (counter approach). This result was expected979

inasmuch as, the random set methodology cannot cope with distributional probability boxes and has to treat980

them as distribution-free p-boxes, as discussed in Section III-C-2.981

The computational costs using the optimization approach in the epistemic space is less intensive than982

the propagation of focal sets inasmuch as only four optimization tasks are required to find the lower and983

upper bounds of J1 and J2 while the counter approach requires a pair of optimization tasks for each focal984
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Table 5: Bounds of the variable J1 and J2 for the reduced and improved uncertainty model obtained by

means of the two proposed approaches (Optimization in the epistemic space and Propagation of focal sets),

respectively.

Reduced Uncertainty model Improved Uncertainty model Strategy

J1 = [1.37× 10−2, 4.97] J1 = [2.88× 10−2, 1.11] Optimization in the epistemic space

J2 = [6.4× 10−2, 0.82] J2 = [0.24, 0.38]

J1 = [−1.57× 10−4, 54.05] J1 = [−1.10× 10−4, 3.05] Propagation of focal sets

J2 = [0, 1] J2 = [0.20, 0.41]

element and for each quantity of interest (i.e. J1 and J2). Both approaches are based on global optimization985

strategies and hence, they both suffer from the curse of dimensionality. The approaches proposed require986

an increasingly larger sample size (number of individuals and generations) in order to explore properly the987

optimization domain. In consequence, it is no longer guaranteed that the calculated optima are actually988

the global ones. In uncertainty propagation problems, missing the global optima means computing ranges989

of the targeted variables that are narrower than the sought ones. In this case, the methods result in an990

under(inner)-estimation of the actual solution, which may lead to an under-prediction of e.g. the failure991

probability of the system.992

D. Subproblem D993

Subproblem D aims at identifying the epistemic realizations that lead to the smallest and largest values of J1994

(task D1) and J2 (task D2). The extreme case analysis has been performed both for the reduced uncertainty995

model and the improved uncertainty model, as requested. However, for conciseness, only results from the996

improved model will be herein presented.997

The extreme case analysis in presence of uncertainty is an ill posed inverse problem. The direct identi-998

fication of the epistemic realizations, θ, leading to the maximum/minimum of J1 and J2 from the forward999

simulation has not been possible. Further, due to the complexity of the problem (in terms of nonlinearity1000

and computational costs), a specific strategies has been developed as explained in the following section.1001
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Figure 15: Effect of the number of samples sampled from the aleatory space in the inner loop on the

estimation of J1 and J2, respectively, in the optimization in the epistemic space approach applied for the

solution of subproblem C.
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Figure 16: Convergence of the objective function w to the minimum and maximum for a representative

focal element. Genetic Algorithms have been used with a population of 1000 individuals to identify the

realizations in the epistemic space that minimize and maximize the objective function w.
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1. Extreme values of J1 (task D1)1002

In this task we are focusing on J1 = E[w] that is the expectation (mean) of the worst-case requirement1003

metric: w = max
i=1:8

(gi). In order to be able to identify the realizations of the inputs p that produce the1004

extreme values of J1, the relationships among intermediate variables, g, x and p are analyzed.1005
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Figure 17: Analysis of the performance function g with respect to the output of the subdisciplines, x. In

the plot the ranges of xi=1:5 leading to large positive values of gi=1:8 are shown using coloured bars. Grey

bars (and dashed lines) indicate variables that are not important for the maximum of the corresponding

performance gi).

Dependence of J1 on w The extreme values of J1 depend on the presence of very large (but rare) values1006

of w (hereafter indicated as outliers of w). The outliers of w can assume values w > 1000, while the most1007

probable values of w are limited to values around 0. Two well distinct classes for w have been identified. A1008

first class identifies values where w < 3, and a second class identifies the outliers, where w > 100 and have1009

values as high as 1000. Hence, J1 may assume its smallest value only if no outliers are present. On the other1010

hand, the more outliers are present, the larger the value of J1.1011

Dependence between g and x Next, the dependence between the performance functions of the system1012

g and the output of subdisciplines x is analysed. The interest is to identify values (and ranges) of x that1013

produce the maxima of the performance functions g.1014

This study is performed by means of an optimization procedure where gi=1:8 are the objective functions1015
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to be maximized and x are the search variables. Genetic Algorithm with 243 individuals and 50 generations1016

is used for analysing each performance function gi. The results are shown in Figure 17. The analysis of1017

the function x to g (i.e. the model f) has revealed that only the performance functions gi=3:8 yield values1018

w > 100, while g1 and g2 are always lower than 1 and 2.8, respectively.1019

Then, the individuals that produce g1 > 0.1, g2 > 0.1 and gi=3:8 > 100 are collected and shown in1020

Figure 17 using coloured bars.1021

Some variables, shown in the Figure using grey color and dashed line, do not influence the maximum of1022

the performance functions (i.e. they can assume any value within their bounds).1023

From Figure 17 critical sets (or regions) for each variable xi can be identified. For instance, there are1024

three sets of x1 able to produce values of g4 > 100, namely x1 ∈ [0, 0.05] ∪ [0.82, 0.91] ∪ [1.11, 1.17].1025

However, these sets have been found without taking into account the probability distributions associated to1026

the inputs pi=1:5. The most probable regions of x has been identified by means of the double loop Monte1027

Carlo simulation used in Section C.1028

Interestingly, the most probable realizations of x that produce outliers of w belong to a very clear pattern1029

of coordinates, as shown in Figure 18.1030

x1 x2 x3 x4 x5

0

0.2

0.4

0.6

0.8

1

1.2

x

Parallel coordinates of  "x
i
" leading to high values of "w"

 

 
w > 1000
bounds

Figure 18: Parallel coordinates of xi=1:5 leading to the outliers of w. The plot shows also the bounds of the

variables xi=1:5 identified for the improved uncertainty model.

Dependence between x and p Once the regions of x that produce the outliers of w have been identified,1031

it is necessary to establish if such critical sets can be produced by any feasible realizations of inputs p. This1032

analysis has been performed by studying the functions p to x (i.e. the model h) by using a double loop1033

Monte Carlo approach, with an outer loop of 10000 Latin Hypercube samples (for the epistemic uncertainty,1034
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θ) and an internal loop (for the aleatory uncertainty, α) of 1000 samples.1035

p1 p2 p3 p4* p5* p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21
0

0.2

0.4

0.6

0.8

1

d
Normalized parallel coordinates of  "p

i
" leading to high values of "w"

 

 

w > 1000

Figure 19: Parallel coordinates of the inputs pi=1:21 leading to values of w > 1000 and J1 > 1.0. The y-axis

has been normalized between the lower and upper bound of the inputs pi=1:3,6:21. p4 and p5 have been

normalized between ∗[−5, 5].

Epistemic realization that produce maximum of J1 Figure 19 shows the identified realizations of1036

p that produce critical values of x (as shown in Figure 17). Only some inputs can lead unequivocally to1037

the critical values of x, namely p1, p4, p5, p14, p15 and p21. In the matter of p4 and p5, only values in the1038

region where 3.72 < p4 < 4.70 and −3.46 < p5 < −2.70 can produce x1 in the critical set and hence leading1039

to large values of w. Since p4 and p5 are normally distributed, it is possible to select distributions peaked1040

around the identified region as shown in Table 6. The epistemic realizations of Table 6 are calculated by1041

maximizing the joint probability πp4p5
= P [3.72 < p4 < 4.70, −3.46 < p5 < −2.70]. Using the distribution1042

parameters reported in Table 6, such target maximum probability is max
Θ

(πp4p5
) = 0.9912.1043

Table 6: Epistemic realizations of p4 and p5 leading to the maximum of J1. The parameters of the multivariate

distribution are calculated maximizing the probability πpi of being inside the specified ranges (i.e. Critical

range Rc).

πmax
pi Critical range (Rc) Epistemic real.

p4 0.9912 3.72 < p4 < 4.70 E(p4) = 4.21 V (p5) = V (p4) ρ = 0

p5 0.9912 −3.46 < p5 < −2.70 E(p5) = −3.04 V (p5) = V (p5) ρ = 0

Epistemic realizations corresponding to parameters p1, p14, p15 and p21 are also calculated in a similar1044

way. Table 7 show the epistemic realizations of these inputs corresponding to the critical values, and the1045
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second column shows the corresponding values of the maximum probabilities πpi .1046

Table 7: Epistemic realizations of p1, p14, p15 and p21 leading to the maximum of J1. These realizations

maximize the probability of the input parameter πpi of being inside the specified ranges (Rc).

πmax
pi Critical range (Rc) Epistemic real.

p1 0.141 0.81 < p1 < 0.9 E(p1) = E(p1) V (p1) = V (p1)

p14 0.854 0.00 < p14 < 0.54 a(p14) = a(p14) b(p14) = b(p14)

p15 0.940 0.29 < p15 < 0.78 a(p15) = a(p15) b(p15) = 6.498

p21 0.077 0.27 < p21 < 0.45 a(p21) = a(p21) b(p21) = b(p21)

p1 and p21 are somehow problematic inputs in the determination of the epistemic realization. By analysing1047

the realizations from the input parameters p1 and p21, it can be seen that critical values of x are obtained1048

when 0.805 < p1 < 0.902 and 0.27 < p21 < 0.45, respectively. However, from the p-boxes associated to these1049

inputs (see Figure 20), it is not possible to select any CDF within in the p-box of p1 and p21 that permits1050

to exclude (or include) completely the critical realizations (shown as round dots in Figure 20).1051

(a) (b)

Figure 20: P-box representation of parameter p1 and p21, respectively. The figures show the ranges of values

that produce critical values of x (and in turn large values of w).

Epistemic realization of the remaining parameters p, which do not appear to have influence in the1052
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generation of the critical values of w (see Figure 19), have been obtained by maximizing the probability1053

νc = P [w > 1000 | pi ∈ Rc(pi)] for i = 1, 4, 5, 14, 15, 21. A random search for the maximum values of the1054

mean of pi has been performed. 1000 aleatory samples have been used to calculate the above conditional1055

probability. The results are reported in Table 8. The maximum identified frequencies is νmax
c = 0.572 and1056

minimum νmin
c = 0.261. These values are quite close meaning that the epistemic uncertainty may play a1057

secondary role for the extreme value of J1.1058

The parameters of the p-boxes have been calculated using the identified values of E[pi] and the maximum1059

admissible value for V [pi].1060

Table 8: Epistemic realization that are very likely to produce the maximum of J1. The realization has been

identified maximizing the probability νc.

Parameter Epistemic real. Parameter Epistemic real.

p2 0.719 p12 p12

p6 0.760 p13 a = 0.45,b = b

p7 a = a, b = 0.73 p16 0.590

p8 a = a, b = b p17 a = a, b = 1.32

p10 a = 3.55, b = b p18 a = 3.26, b = b

p12 p12 p20 a = 10.68,b = b

The realization leading to the minimum of J1 can be directly identified from results of task C1 (see1061

Section C). The results are summarized in Figure 21.1062

2. Extreme values of J21063

The task D2 asks to identify the extreme case for metric J2, where J2 = P [w ≥ 0] is the failure probability1064

of the worst-case requirement metric w = max
i=1:8

(gi). Differently form J1, this metric is not sensitive to the1065

largest values of w. A double loop Monte Carlo approach has been adopted to solve this problem. 10001066

aleatory samples have been used to compute the failure probability J2. It is known from Section C that1067

both lower and upper bounds of J2 are greater than 10−1, hence 1000 samples are enough for a sufficiently1068

61 of 73

American Institute of Aeronautics and Astronautics



Figure 21: Extreme case analysis of J1: parallel plot of the epistemic parameters. The y-axis represents

normalized values of the epistemic variables.

robust estimation of J2 in the analysis.1069

The realizations of the input parameters p that produce the extreme values of J2 are shown in Figure1070

22. Results from this analysis show, as expected, that realizations leading to the maximum (minimum) of1071

J2 are generally different from those leading to the maximum (minimum) of J1. It is also noted that many1072

realizations are very close to the bounds of the epistemic domain.1073

Figure 22: Extreme case analysis of J2: parallel plot of the epistemic parameters. The y-axis represents

normalized values of the epistemic variables.

3. Solution of task D31074

In task D3, it is asked to identify some representative realizations of x that typify different failure scenarios.1075

The results of this task have already been discussed in Section D-1 and visualised in Figure 17. Overall, the1076

following failure scenarios have been identified:1077

• Values of xi=1:5 close to their upper bounds lead to large values of gi=1:8;1078

• Small values of x1 combined with large values of xi=2,3,4,5, lead to values of gi=3,4,5,6,7,8 > 1000;1079
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• Values of x1 ∈ [0.84, 0.9] combined with large values of xi=2,3,4,5, lead to values of gi=4,6,7,8 > 10001080

• Values of x1 ∈ [0.4, 0.425], combined with large values of x2,3,4,5, lead to values of g1 > 0.1 and1081

gi=3,5 > 1000.1082

Analysing the results of the simulations used in Section C ( Genetic Algorithm with 125 individuals and1083

45 generations), it is also possible to study the relationship between x and g. For example, large positive1084

values of g5, whose maximum is gmax
5 = 1021, are insensitive to x3 and x4. This can be appreciated in1085

Figure 23, where the evolution of objective function g5 and search variables xi are represented. During the1086

optimization the values of variables x3 and x4 change frequently, despite that the value of the objective1087

remains the same. Analogously, for the other performances, it is found that large positive values of g4, g6,1088

g7 and g8 are totally insensitive to x2 and slightly insensitive to x4.1089

Figure 23: Evolution of the objective function g5 and search variables xi. Note that the values of variables

x3 and x4 change frequently during the optimization, despite the values of the objective remain the same.

E. Subproblem E1090

The last task of the challenge problem is to perform a robust design of the multidisciplinary system: per-1091

forming an optimization able to identify the design point d with improved robustness and reliability charac-1092

teristics. This requires to perform UQ for each candidate solutions leading to unmanageable computational1093

costs. Hence, it is necessary to adopt surrogate models. Here, it has been decided to replace with surro-1094

gate models only the computational costly part of the model and keeping the original functions for the less1095

63 of 73

American Institute of Aeronautics and Astronautics



demanding parts. In fact, training a surrogate model to approximate the non-linear, an noisy, functions J11096

and J2 : R21 × R14 → R would have required a huge number of training samples with no warranties on the1097

quality of the approximation.1098

The subproblems E1 and E2 require the calculation of w(p,d) = maxi=1,...,8 gi(x), where g(x) = f(x,d)1099

and x = f(p) where the most computationally expensive part is the evaluation of g(x) = f(x,d). Multilayer1100

perceptron artificial neural networks53 are suggested to speed up the calculation of function g = f̂(x,d) :1101

R5 × R14 → R8; in other words, the artificial neural networks act here as nonlinear response surfaces.1102

To train the artificial neural networks, training examples of {x,d, g} are passed to an error backprop-1103

agation algorithm. A set d(i) : i = 1, 2, . . . , 2000 of Latin Hypercube quasi-random points were generated1104

in the 14-dimensional space of the design variables.The design variables d can theoretically assume any real1105

valued quantity, but they have been actually generated in a bounded space to generate a local surrogate1106

model. For the first local meta-model, the following bounds has been assigned to each design variable,1107

di : [min(0.5 ∗ di,baseline, 1.2 ∗ di,baseline),max(0.5 ∗ di,baseline, 1.2 ∗ di,baseline)]. Please note that the base-1108

line di can also be negative, and this definitions guarantees that the baseline is included in the bounds.In1109

case the optimization procedure would have found a optimum design laying on one of the bounds of the1110

training region, a new local surrogate model would have needed to be trained, around the identify optimum.1111

Then, the optimization procedure is restarted.1112

The generation of samples of x is more involved. One possible approach is to determine the bounding1113

box of x using an optimization procedure over the function x = h(p) and then draw samples from this box.1114

However, with this approach samples will be drawn from regions where it is less probable to obtain values1115

of x, and where the neural network does not need to give an accurate prediction.1116

To concentrate the generation of training samples only in the region of space of higher probability of x,1117

a set θ(i) : i = 1, 2, . . . , 2000 of Latin Hypercube quasi-random points was generated in the 31-dimensional1118

box of the epistemic space. For each set {θ,d}(i), 200 Monte Carlo samples are generated in the aleatory1119

uncertainty space, obtaining x(j) : j = 1, 2, . . . , 200 realizations of the function h(p). The main draw back of1120

this procedure is that few samples will be generated in the tails of the distributions, thus the neural network1121

will perform badly in the prediction of the extreme values.1122

In the end, 400000 points x,d are available to compute the model outputs f(x,d) and then train the1123
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surrogate model f̂(x,d). Since the minimum values gj , for variables j = 3 to 8 are very close to zero and1124

very small compared to the respective maximum value of variable gj , the following nonlinear transformation1125

of variables gj for j = 3, 4, . . . , 8 is employed:1126

z(gj) :=
1

200|min(gj)|
− 1

100(gj + 2|min(gj)|)
(34)

This nonlinear transformation of variables gj stretches the interval of gj for those values that are close to1127

zero but preserving the sign of gj . This is a very important characteristic since zero represents the limit1128

value between the failure and the safe region.1129

Using nonlinear transformation Eq. (34), we set map gj to:1130

yj =


gj for j = 1, 2

100z(gj) for j = 3, . . . , 8

(35)

in this way, T = {(x(s),y(s)) : s = 1, 2, . . . , 400000} served as the set of samples that were used for training,1131

validating and testing the artificial neural networks.1132

Given different levels of non-linearities in the relations between the inputs and each gj , one multi layer1133

perceptron has been trained for each gj , and the optimal network architecture, i.e. characterized by the1134

smallest regression error, has been identified for each output quantity. The first 300000 samples of T have1135

been used to train each multilayer perceptron using the Levenberg-Marquardt learning algorithm, a least1136

squares curve fitting algorithm. The rest of the samples were used for validating and testing the artificial1137

neural networks. The LGPL library FANN (Fast Artificial Neural Network),53 integrated in OpenCossan,1138

has been used. Finally, the surrogate model will approximate g(x) by applying the invers of the non-linear1139

transformation of Equation 341140

gj =


yj for j = 1, 2

(
1

2|min(gj)| − yj
)−1

− 2|min(gj)| for j = 3, . . . , 8

(36)

where yj is the output of the artificial neural network. Tanks to the non-linear transformation, the neural1141

network will provide a very accurate response for very small values of g, e.g., centered around 0, at the1142

expenses of a less accurate prediction for values of bigger magnitude.1143
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The robust design requires to minimize the upper bound of J1 and J2 and those values need to be1144

estimated for each candidate design d.1145

Genetic algorithms have been used to identify the optimal d that minimize the largest value of J1 using

a population size of 50 individuals. 100 α-cuts are randomly generated for the input parameter p and

2500-sample internal Monte Carlo simulations are used to identify the upper and lower bounds of wα. This

allows to estimate J1 for each candidate design in approximately 25s, and hence leading to approximately

10 minutes of computational time for each generation using a local parallelization strategy (as explained in

Section IV-B) on a Intel Xeon Processor E5-2450-v2 (8 cores at 2.5GHz). The identified optimum is:

dE1 = [0.0140,−0.2568,−0.0944,−0.4405,−0.1508,−0.1029,−0.0713, . . .

0.2002,−0.4431, 0.2579, 0.0044,−0.2086, 0.6330,−0.0166] (37)

corresponding to an optimum value of J1,opt = 0.0044. Subsequent run of the optimization algorithm1146

demonstrated that the optimum found is robust.1147

The optimal design identified is better than the baseline in respect to the range of J1. In fact, the range1148

of J1 at the optimum design is [J1, J1] = [1.798 · 10−4, 0.0044] and it is narrower than the range identified in1149

Table 5. A optimum design point d that minimize the largest value of J2 has also been identified. Monte-1150

Carlo simulation has been used to compute the upper value of the probability of failure, max(J2). In order1151

to reduce the coefficient of variation of the probability of failure estimator, 1500 α-cuts have been used. In1152

order to asses the robustness of the identified optimum, the optimization have been performed 3 times using1153

different initial populations and the results are shown in Table 9.1154

Although, the maximum of J2 is very close, the identified design variables shows a large variability, in1155

particular variables d1, d5 and d14. In order to asses the importance of these design variables with respect to1156

the computation of the upper bound of J2, a global sensitivity analysis of the model with respect the design1157

variables has been carried out. The first order indices has been computed by means of the extended-FAST1158

method with 1000 samples. The most important (design) variables are d9, d4, d12 and d14, and the remaining1159

variables has a lower, similar importance. It can be noticed that the range of J2 at the optimum is larger1160

than the range of J2 using the base design (Table 5). However, it is important to keep in mind that the aim1161

of the robust design is to reduce the upper bound of J2 and not its range.1162
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run d1 d2 d3 d4 d5 d6 d7 d8 d9

1 -0.0013 -0.2322 -0.0993 -2.0426 -0.2417 -0.1681 -0.0979 -0.4362 -0.5958

2 0.0052 -0.2658 -0.0874 -1.0996 0.2852 -0.1798 -0.0981 -0.4362 -0.5958

3 -0.0001 -0.2722 -0.1003 -1.6712 0.3191 -0.1640 -0.0981 -0.4362 -0.5958

run d10 d11 d12 d13 d14 J2

1 0.0730 0.0053 -0.2012 0.5144 -0.0083 [0.0053 0.2973]

2 0.3337 0.0053 -0.2014 0.5875 0.0054 [0.0047 0.2993]

3 0.3230 0.0053 -0.2127 0.5641 0.0187 [0.0033 -0.3073 ]

Table 9: Robust desing dE2 with respect the upper bound of J2

Finally, the sensitivity analysis for the identified design points that minimize the J1 and J2, have been1163

rerun. The extended-FAST method have been computed using 16384 samples for each input factor for a1164

total cost of 507904 simulations. Each model evaluation requires the propagation of the aleatory uncertainty1165

and 500 Monte Carlo samples have been used. The sensitivity analysis has been performed using the real1166

model f(x,d) and not the surrogate model.1167

Figure 24 shows the sensitivity analysis of the epistemic input factors respect the performances J1 and J21168

evaluated at the design points dE1 and dE2, respectively. The design point dE1 seems to be very robust since1169

all the sensitivity measures are all very small (1 order of magnitude smaller compared to the sensitivity of1170

Section B. The most important factor that contribute the the variance of J1 is the expected value of p5. The1171

most important factor that contribute the the variance of J2 is the parameter p14 followed by parameters1172

p2, p1 and p16. It is interesting to notice that the sensitivity analysis using the baseline for d does not show1173

the importance of p14 and p2.1174

VI. Conclusions1175

The development and design of robust safety-critical systems is a challenging problem since in general1176

quantitative data is either very sparse or prohibitively expensive to collect. Moreover, the failure of such1177

67 of 73

American Institute of Aeronautics and Astronautics



(a) Respect J1 at dE1

(b) Respect J2 at dE2

Figure 24: First order sensitivity measure of the category II and III input factors evaluated. The first order

sensitivity computed using extended-FAST method.
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systems might have severe consequences. In order to increase confidence and consistency in safety predictions,1178

modelling and simulation standards require estimates of uncertainty and descriptions of any processes used1179

to obtain these estimates.1180

In this paper, a unified theory and an integrated and open general purpose computational framework to1181

deal with scarce data, aleatory and epistemic uncertainties has been presented. The proposed computational1182

tools are generally applicable to solve a reasonable large number of different problems and numerically1183

efficient and scalable. The applicability of the proposed strategy has been shown solving addressing the1184

NASA Langley UQ challenge problem.1185

The presented results of this challenge problem clearly show that there are many ways of performing1186

analysis when different types of uncertainties, namely epistemic and aleatory, are present. All of these1187

methods have at some point made some weak or strong assumptions in order to find an answer. This1188

forms a sound basis for future improvements and developments. In fact, it is envisaged that this quantitative1189

comparison of the approaches will be most instrumental and useful for the engineering community, since it will1190

highlight the advantages and disadvantages of existing methods for the handling joint existence of epistemic1191

and aleatory uncertainty. As a general remark, the suggested procedures reveal the capability of random set1192

theory to represent without any assumption epistemic and aleatory uncertainty. A major drawback of the1193

proposed techniques was that many of them were based, up to some point in global optimization algorithms,1194

which is known to be difficult for noisy and high dimensional objective functions, and will lead to spurious1195

results when convergence to non-global optima occurs. It is left as an open problem how to circumvent that1196

optimization step when mapping focal elements through a function. Furthermore, the proposed techniques1197

are still very computational demanding requiring up to millions of model evaluations. Clearly this can only1198

be archived resorting to some sort of parallelizations strategies and to the computational power of cloud and1199

cluster computing.1200

Considering different approaches to solve the same engineering problem might be seen a waste of resources1201

and time. However, all the existing approaches for dealing with epistemic and aleatory uncertainty require1202

fine tuning of their parameters in order to be efficient and accurate. Hence, it is of paramount importance to1203

be able to verify and cross-validate the results against different procedures. In this respect, the availability1204

of an open, flexible and modular computational framework implementing a number of different numerical1205
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strategies is essential.1206

Apart from assessing existing procedures in model updating, sensitivity analysis, quantification of bounds1207

on statistics, and optimal design, the challenge results are expected to serve as a reference for the engineering1208

community in order to test new algorithms and computational procedures.1209
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