
1 
 

GIScience & Remote Sensing 
51(4) Pages 445-467 June 2014 
http://www.tandfonline.com/doi/abs/10.1080/15481603.2014.939539 
doi: 10.1080/15481603.2014.939539 
 
 
Built-up area extraction using Landsat 8 OLI imagery 

Saad Saleem Bhatti, Nitin Kumar Tripathi 

Abstract 

The normalized difference built-up index (NDBI) has been useful for mapping urban built-

up areas using Landsat Thematic Mapper (TM) data. The applicability of this index to the 

newer Landsat-8 Operational Land Imager (OLI) data was examined during this study and 

a new method for built-up area extraction has been proposed. OLI imagery of urban areas 

of Lahore, Pakistan was used to extract built-up areas through a modified NDBI approach 

and the proposed built-up area extraction method (BAEM). Instead of using individual 

bands, BAEM employed principal component analysis (PCA) images of the highly 

correlated bands pertinent to NDBI computation. Through integration of temperature data, 

normalized difference vegetation index (NDVI) and modified normalized difference water 

index (MNDWI), BAEM was able to improve the overall accuracy of built-up area 

extraction by 11.84 % compared to the modified NDBI approach. Rather than employing 

the binary NDBI, NDVI and MNDWI images, continuous images of these indices were 

used and the final output was recoded by determining the threshold value through a double-

window flexible pace search (DFPS) method. Results indicate that BAEM was more 

accurate at mapping urban built-up areas when applied to OLI imagery as compared to the 

modified NDBI approach; omission and commission errors were reduced by 75.96% and 

33.36%, respectively. Moreover, the use of DFPS improved robustness of the proposed 

approach by enhancing user control over the segmentation of the output. 

Keywords: built-up area extraction method; normalized difference built-up index; thermal 

infrared; double-window flexible pace search; Landsat 8 OLI 
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1. Introduction 

Urban areas constitute just a small subset of the world’s overall land mass; however, population 

density and resource utilization intensity are very high in these areas as compared to their 

surroundings, compelling improved resource management practices (Cohen 2006, Lambin and 

Geist 2001). Understanding the spatial distribution and growth of urban areas is essential for 

urban planning and resource management, and one of the basic activities required for this 

purpose is mapping the built-up areas (Bertrand-Krajewski, Barraud and Chocat 2000). Such 

mapping activity requires a lot of resources if carried out through conventional means like 

ground surveying and aerial photography (Richards 2013). The often rapid urban expansion also 

makes the task of a timely and accurate mapping of urban built-up areas quite difficult (Small 

2003, Perepechko, et al. 2005, Lein 2006). 

Remote sensing (RS) data, especially from satellite remote sensing (SRS) systems, is an 

invaluable resource for mapping built-up areas for several reasons. It provides a synoptic and 

comprehensive view, which, in the case of large urban areas, is not possible through ground 

surveys (Richards 2013). Another practical advantage of utilizing RS data for urban studies is the 

availability of historical archives that can help in mapping and understanding urban sprawl over 

time (Guindon, Zhang and Dillabaugh 2004, Maktav, Erbek and Jürgens 2005, Xu 2008, 

Griffiths et al. 2010). 

SRS data has been increasingly used for automated and semi-automated mapping of 

vegetation, snow, water, and other land cover features (Lillesand, Kiefer and Chipman 2004, 

Joseph 2005, Jensen 2006). A number of techniques have been formulated for this purpose, 

which can be grouped into two generic categories. The first one is based on the classification of 

input imagery that broadly encompasses pixel and object based classification methods (Guindon, 
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Zhang and Dillabaugh 2004, Cleve et al. 2008, Gao 2008), whereas the second type involves the 

direct segmentation of the imagery through indices (Zha, Gao and Ni 2003, Zhang et al. 2005, 

Knight, et al. 2006). Each method has its own set of advantages and limitations; however, indices 

have a certain edge over other classification methods in terms of time needed to generate results. 

A variety of indices have been developed for the extraction of features of interest from satellite 

imagery. The normalized difference vegetation index (NDVI) is the most commonly used for the 

extraction of vegetation. Other indices include the normalized difference snow index (NDSI), 

normalized difference water index (NDWI) and normalized difference built-up index (NDBI) for 

snow, water and built-up area extraction, respectively (Bannari et al. 1995, Hall, Riggs and 

Salomonson 1995, McFEETERS 1996, Zha, Gao and Ni 2003). The calculations of these indices 

are based on the specific properties of the features of interest in terms of strong absorption or 

reflection in different spectral bands of multispectral imagery (Jensen 2006). The examination of 

the spectral signature of the object under observation helps in developing an index for its 

identification and extraction from an image (Gitelson and Merzlyak 1996, Huete and Jackson 

1987, Dozier 1989). 

The extent of urban land area is often linked to the impervious surface area that can be 

used to quantify and map urbanization (Bauer et al. 2004, Civco et al. 2002, Rosa and Wiesmann 

2013). However, such mapping is still challenging due to spatial, spectral and temporal 

variability in built-up areas (Powell et al. 2007). To assist urban built-up area mapping, Zha, Gao 

and Ni (2003) developed the NDBI on the footprints of the NDVI that used Landsat Thematic 

Mapper (TM) near-infrared (NIR) band 4 (low reflectance in built-up area) and mid-infrared 

(MIR) band 5 (high reflectance in built-up area). The output NDBI was further refined by 

removing vegetation noise using NDVI. Instead of using continuous raster images of NDBI and 
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NDVI for final computation, this approach recoded them into binary images with the 

presumption that positive values of NDBI and NDVI represented built-up areas and vegetation, 

respectively. Although this recoding simplified the interpretation of the final output (positive 

values indicating built-up areas), Zha, Gao and Ni (2003) mentioned that the usage of binary 

images restricted any refinement of results and due to this constraint, their approach was unable 

to separate urban from bare areas. 

The shortcomings of the NDBI approach of Zha, Gao and Ni (2003) in terms of 

refinement of the output were addressed by He et al. (2010) as they proposed a modified version 

of the conventional NDBI method. The core methodology remained the same, however, instead 

of using the binary images of NDBI and NDVI, this modified approach employed continuous 

images of both indices. The output was a continuous raster in which the pixels with higher values 

indicated a higher probability of them to represent built-up areas. The final segmentation into 

built-up and non-built-up classes was carried out using the double-window flexible pace search 

(DFPS) technique of Chen et al. (2003). Although not as straightforward as the customary NDBI 

method, this approach was comparatively better in terms of overall accuracy (He et al. 2010). 

Since the basic foundation of indices discussed above is the spectral response of built-up 

areas in different bands of Landsat TM data, the output of these approaches is supposed to be 

different if applied to the latest Landsat-8 Operational Land Imager (OLI) data. The basic reason 

is that OLI uses narrower wavelength ranges to acquire data for NIR and MIR bands as 

compared to those in TM data (USGS 2013a). Considering the sensitivity of these indices to the 

wavelengths being used (Teillet, Staenz and William 1997, Gitelson and Kaufman 1998, 

Maynard, et al. 2007), it becomes important to examine the spectral response of built-up areas in 

different bands of OLI data before applying any TM-data derived method to it.  
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Spatial resolution is another important factor in extracting and mapping built-up areas 

(Lwin and Murayama 2013). A decent spatial resolution is required for these purposes (Welch 

1982, Thomas, Hendrix and Congalton 2003); however, limited coverage area and high cost 

preclude the utilization of high-resolution satellite data. Enhancing the spatial resolution of 

multispectral satellite data through a resolution merging process is a common and cost effective 

way to increase the level of detail in satellite images with low spatial resolution. While 

enhancing the spatial characteristics, resolution merging methods should preserve the equally 

useful spectral properties of original multispectral data. Studies indicate that high-spatial 

resolution images produced using a high pass filter (HPF) resolution merging method have the 

least spectral distortion (Showengerdt 1980, Wang, et al. 2005, Ahmad and Singh 2002). 

Chavez, Sides and Anderson (1991) compared different resolution merging methods (hue-

intensity-saturation, principal component analysis and high pass filter) through statistical, visual 

and graphical analyses, and found that the distortions in spectral properties of the output of the 

HPF method were the lowest. 

When using indices for the extraction of desired information by processing the spectral 

bands of an image, it is important not to distort its spectral characteristics beforehand. In a study 

conducted by Jawak and Luis (2013), it was found that the NDVI values of high-spatial 

resolution imagery produced through resolution merging highly correlated with the ones in the 

original high-spectral resolution imagery, which indicated that resolution merging did not affect 

the spectral properties (less spectral distortion). In another study, it has been reported that the 

spectral characteristics were not altered when NDVI was applied to resolution merged high-

spatial resolution data (Acerbi-Junior, et al. 2005). This study concluded that the NDVI profile of 

a resolution merged image was very similar to the one derived from the original multispectral 
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image. The successful application of NDVI to resolution merged imagery has also been 

demonstrated in a study conducted by Walker, et al. (2012). Another study points out that the 

quality of NDVI computed through resolution merged imagery depended on the resolution ratio 

of the merged bands (Vrabel 2000). For instance, a few distortions were observed for smaller or 

linear features in NDVI image produced through resolution merged image that was sharpened 

from 30 m to 1m (30:1) but were not found in sharpening combinations such as 10:1 or 6:1. 

These examples indicate that spectral indices can be safely applied to resolution merged imagery 

if the resolution ratio between the merged bands is small. 

Another important characteristic of urban built-up areas is an increased land surface 

temperature which is directly related to urban intensity (Oke 1973, Weng 2001, Yuan and Bauer 

2007, Lo 2004) and thus can be used as an additional indicator of urban areas for mapping. The 

response of a built-up area is somewhat different from other land cover types in the thermal 

range of the electromagnetic spectrum (Zhangyan, Yunhao and Jing 2006, Tran, et al. 2006, 

Mallick, Kant and Bharath 2008). Obviously, the urban heat island effect is basically responsible 

for higher temperature values of built-up areas as compared to their surroundings (Jusuf et al. 

2007, Weng, Lu and Schubring 2004, Kim 1992, Gartland 2010). This characteristic suggests 

that temperature can be used as an indicator to separate built-up from non-built-up areas. 

The objectives of this study comprise: (1) examining the spectral response of built-up 

areas in different bands of OLI data to evaluate the applicability of previously developed built-up 

area extraction approaches; and (2) developing an improved approach that can be applied to 

Landsat-8 OLI data for urban built-up area extraction. 
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2. Study area and data 

Lahore, the capital city of Pakistan’s Punjab province, was selected as the study area to develop 

this built-up area extraction method. Located along the bank of the Ravi River towards the west 

and near the Indian-Pakistani border towards the east, the city has a total population of around 9 

million (estimated in 2012) with about 82% residing in urban and the rest in peri-urban and rural 

areas (Bureau of Statistics 2012). Covering an area of around 1772 km2 with an average surface 

elevation of about 217 m above mean sea level and characterized by a flat terrain, the city is 

administratively divided into 9 towns and a cantonment (Figure 1(A)). For the purpose of this 

research, five urban towns, namely Data Gunj Baksh, Gulberg, Ravi, Samanabad and Shalimar, 

covering an area of around 167 km2, were selected as they comprised areas having built-up 

densities ranging from very high to very low (Figure 1(B)). 

This research used Landsat-8 OLI imagery of Lahore (path: 149, row: 38) acquired on 

May 18, 2013. Spectral band 1 (visible, 0.43-0.45 μm) and band 9 (cirrus, 1.36-1.38 μm), which 

were not pertinent to this study, were excluded from further processing. The OLI optical bands 

2-7 had a spatial resolution of 30 m, whereas that of the thermal bands 10 and 11 was 100 m 

which had already been downscaled to 30 m by the data vendor, Earth Resources Observation 

and Science Center (EROS), United States Geological Survey (USGS). Panchromatic band 8 had 

a spatial resolution of 15 m. Universal Transverse Mercator (UTM) projection with zone 43 

North and WGS84 datum were used for the datasets in this study. 



8 
 

 

Figure 1. Study area: Lahore, Pakistan (A) towns in Lahore city and (B) towns selected for this 

study in Landsat-8 OLI false-color composite imagery of May 18, 2013. 

3. Methodology 

The proposed method for extraction of built-up areas using Landsat-8 OLI imagery comprised 

four major steps: preprocessing and examination of satellite data, image enhancement through 

resolution merging, development of the built-up area extraction method, and accuracy 

assessment. 

3.1. Preprocessing of Landsat-8 OLI imagery 

The file format and data type of the Landsat-8 OLI imagery were tagged image file format 

(TIFF) and integer respectively. All bands of the OLI imagery of Lahore (bands 2-8 and 10-11) 
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were clipped to the study area boundary. Since the imagery used was cloud-free, similar to the 

situation mentioned by Deng and Wu (2013) in their study, no atmospheric corrections were 

performed. Digital numbers (DNs) of bands 2-8 were converted to top of atmosphere (ToA) 

reflectance using Equations (1) and (2), whereas the DNs of thermal bands 10 and 11 were first 

converted to ToA radiance (Equation (3)) and later processed to obtain at-satellite brightness 

temperature in degree Celsius (°C) through Equation (4) (USGS 2013b). The conversion 

parameter values were obtained from the respective metadata files downloaded along with the 

satellite data. 

  (1) 

  (2) 

  (3) 

  (4) 

Where: 

 ToA planetary reflectance, without correction for solar angle 

 Band-specific multiplicative rescaling factor from the metadata 

(REFLECTANCE_MULT_BAND_x, where x is the band number) 

 DNs of the band being processed 

 Band-specific additive rescaling factor from the metadata 
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(REFLECTANCE_ADD_BAND_x, where x is the band number) 

 ToA planetary reflectance, with correction for solar angle 

 Local sun elevation angle. The scene center sun elevation angle in degrees is provided in the 

metadata (SUN_ELEVATION) 

 ToA spectral radiance (Watts/(m2 x srad x m)) 

 Band-specific multiplicative rescaling factor from the metadata 

(RADIANCE_MULT_BAND_x, where x is the band number) 

 Band-specific additive rescaling factor from the metadata (RADIANCE_ADD_BAND_x, 

where x is the band number) 

 At-satellite brightness temperature (°C) 

 Band-specific thermal conversion constant from the metadata (K1_CONSTANT_BAND_x, 

where x is the band number, 10 or 11) 

 Band-specific thermal conversion constant from the metadata (K2_CONSTANT_BAND_x, 

where x is the band number, 10 or 11) 

Bands 2-7 (excluding panchromatic band of 15 m spatial resolution) and bands 10 and 11 

were stacked into two separate Erdas Imagine .img files. Unsigned integer was used as the data 

type for bands 2-7 (stacked) and panchromatic band 8. 

3.2. Spatial enhancement and examination of data 

A high pass filter (HPF) resolution merging algorithm as proposed by Gangkofner, Pradhan and 
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Holcomb (2008) was employed to enhance the spatial resolution of spectrally rectified Landsat-8 

OLI bands 2-7 (30 m spatial resolution) using panchromatic band 8 (15 m spatial resolution). 

First, the pixel sizes of both high-spatial resolution band and multispectral bands were 

interpreted to calculate the value of R, which is the ratio of cell size of multispectral data to that 

of the high resolution data. This ratio was 2 to 1 in case of OLI, thus, a value of 2 was used for R. 

After that, a high pass convolution filter kernel (HPK) was applied to filter the high resolution 

input data which resulted in an HPF image. The HPK size, which is a function of the R value, 

was set to 5x5 for R=2. The center value of the kernel is also determined by the value of R, in 

this case, it was calculated as 24. The kernel used for producing the HPF image is shown in 

Figure 2. 

 

Figure 2. High pass convolution filter kernel. 

 

Multispectral bands were then resampled to the pixel size of the high resolution image 

(15 m) using a bilinear 4-nearest neighbor algorithm. Weighting was applied to the HPF image 

before adding it to the multispectral bands. The value of weight was determined by applying R 

and the standard deviations (SD) of HPF image and multispectral bands to Equation (5). 

  (5) 

Where W is the weight applied to the HPF image, SD(MS) is the standard deviation of the 
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multispectral bands being enhanced, SD(HPF) is the standard deviation of the HPF image and M 

is the modulating factor determining the crispness of the output image, the value of which 

depends on R. For R=2, the recommended value of M was 0.25. Each input multispectral band 

was then added to the weighted HPF image using Equation (6). 

  (6) 

Where x is the multispectral band being processed and W is the multiplicative weight computed 

by Equation (5).  The last step of the HPF resolution merging algorithm was to apply a linear 

stretch process that rescaled the output DNs to match the mean and standard deviation of the 

respective input multispectral bands. The output multispectral bands had an improved spatial 

resolution of 15 m. Figures 3(A) and (B) illustrate the difference between non-enhanced and 

spatially enhanced images, respectively, at a sample location in the study area. The increase in 

sharpness and level of detail in the enhanced image are evident. In order to be consistent with the 

spatial resolution of multispectral bands, thermal bands 10 and 11 were resampled to a resolution 

of 15 m. 

Spectral and thermal variations in built-up, vegetation and water areas were examined, at 

ten sample locations each, in spatially enhanced multispectral bands 2-7 and thermal bands 10 

and 11. The sample DNs of each of the above classes were separately averaged to plot the graphs 

shown in Figures 4(A) and (B). 
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Figure 3. Landsat-8 OLI image in true-color composite (A) before resolution merging (30 m 

spatial resolution) and (B) after resolution merging (15 m spatial resolution). 

 

 

Figure 4. Reflectance of built-up, vegetation and water areas in (A) optical bands 2-7 (DN value) 

and (B) thermal bands 10-11 (temperature in degree Celsius) of Landsat-8 OLI image. 
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3.3. Built-up area extraction approach 

3.3.1. NDBI and modified NDBI approaches 

In an effort towards automated mapping of urban areas using satellite imagery, Zha, Gao and Ni 

(2003) proposed the NDBI. This index was primarily developed for Landsat TM satellite data 

through analysis of the spectral response of built-up areas in different bands of the imagery. The 

methodology comprised three arithmetic computations (Zha, Gao and Ni 2003). First, a 

continuous normalized difference vegetation index (NDVI) imagery was obtained using Equation 

(7), which was then recoded into a binary image, NDVIB, according to the conditional argument 

given in Equation (8). 

  (7) 

 ; ;   (8) 

Second, based on the high reflectance of built-up areas in the 1.55 - 1.75 μm wavelength range 

(TM band 5) and their low reflectance in the 0.76 - 0.90 μm wavelength range (TM band 4), 

NDBI was computed using Equation (9). A continuous NDBI imagery was obtained as a result 

which was then recoded into a binary image, NDBIB, using the conditional argument shown in 

Equation (10). 

  (9) 

 ; ;   (10) 

Finally, the built-up areas were extracted using Equation (11). The resultant binary image, BUB, 

showed positive DNs for built-up and bare areas, whereas the rest of land cover types had a value 
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of zero. 

  (11) 

This methodology was modified and improved by He et al. (2010). The binary NDBIB and 

NDVIB in Equation (11) were replaced by the continuous NDBI (Equation (9)) and NDVI 

(Equation (7)), respectively, as shown in Equation (12). 

  (12) 

In contrast to the binary output of the original technique proposed by Zha, Gao and Ni (2003), a 

continuous image, BU, was produced through this modified approach in which a higher value of 

a pixel indicated a higher possibility that it indicated a built-up area. The output image was later 

segmented into a binary image (1 showing built-up and 0 showing non built-up areas) using an 

optimal threshold value. A systematic approach based on the idea of the DFPS technique of Chen 

et al. (2003) was devised and used to determine the optimal threshold value (He et al. 2010). 

3.3.2. Proposed built-up area extraction method 

Zha, Gao and Ni (2003) and He et al. (2010) found in their studies that TM band 4 (0.76 - 0.90 

μm) and TM band 5 (1.55 - 1.75 μm) were most suitable for discriminating built-up areas from 

other land cover types (Equation 9). As the spectral ranges of Landsat-8 OLI bands differ from 

those of TM it was necessary to study the spectral responses of built-up areas in different bands 

of OLI data before developing a method for extraction. Due to this, the spectral responses of 

built-up, vegetation and water areas in different bands of spatially enhanced OLI imagery (15 m 

resolution) of Lahore were examined. Band 5 (0.85 - 0.88 μm) and band 6 (1.57 - 1.65 μm) of 

OLI closely corresponded to band 4 and band 5 of TM, respectively. On examination, it was 
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found that DNs of OLI band 6 highly correlated to those of band 7 of OLI (2.11 - 2.29 μm) 

(Figure 5(A)). The relationships between DNs of both bands were further studied for the pixels 

of built-up, vegetation and water area samples separately. The Pearson’s R values of 0.997, 

0.982 and 0.998 for built-up, vegetation, and water area samples, respectively, indicated a very 

strong positive relationship between OLI bands 6 and 7 at a significance level of 0.01. For an 

optimal utilization of data from these two highly correlated bands, a principal component 

analysis (PCA) was performed. PCA is a mathematical method that, while removing redundancy, 

preserves all the necessary information in correlated datasets (Jolliffe 2002, Richards 2013). 

Each principal component (PC) is orthogonal to the other and the first PC has the largest possible 

variance.  The first PC image of bands 6 and 7, with the data type of unsigned integer, was used 

in the proposed method. 

 

Figure 5. Scatter plots showing the correlation between (A) band 6 (x-axis) and band 7 (y-axis), 

and (B) band 10 (x-axis) and band 11 (y-axis) of the Landsat-8 OLI image. 

 

The degree of imperviousness, which is directly related to urban density, has an effect on 

land surface temperatures (Oke 1973, Weng 2001, Yuan and Bauer 2007). This characteristic 

was found examining the thermal data. It was observed that the built-up areas had higher 
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temperature values in thermal bands 10 and 11 of OLI compared to vegetation and water (Figure 

4(B)). It was also found that band 10 highly correlated with band 11 (Figure 5(B)). A strong 

positive correlation between these bands was observed for the pixels of built-up, vegetation and 

water area samples with Pearson’s R values of 0.981, 0.996 and 0.994, respectively, at a 

significance level of 0.01. Therefore, the first PC image of bands 10 and 11 was used in the 

proposed method. The data type of the PCA output was set to unsigned integer to match that of 

the optical bands. To augment the high response of built-up areas in the PCA of bands 6 and 7, 

the PCA of bands 10 and 11 was added and the NDBI formula of Zha, Gao and Ni (2003) was 

modified as shown in Equation (13). 

  (13) 

TM band 5 in the original NDBI formula was replaced by the sum of PCA of OLI bands 6 and 7 

and PCA of OLI bands 10 and 11, while TM band 4 was swapped with OLI band 5 (Equations 

(9) and (13)). As in the method proposed by Zha, Gao and Ni (2003) for built-up area extraction, 

NDVIOLI was subtracted from NDBIOLI. NDVI OLI was computed by replacing TM band 3 and 

band 4 in Equation (7) by OLI band 4 and band 5, respectively. 

The use of an NDWI has been suggested by Ogashawara and Bastos (2012) for reducing 

the spectral confusion between built-up and bare areas, arguing that bare areas (pervious 

surfaces) are likely to have a higher water content than built-up areas (impervious surfaces).  The 

modified normalized difference water index (MNDWI) is the revised form of the NDWI and is 

reported to yield better results (Xu 2005, Chao and Sheng 2001). Hence, to remove water 

signatures from the output image and increase the spectral contrast among built-up area, bare 

land and other land cover classes, an MNDWI is introduced in the proposed method. This 
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MNDWI processes green and mid-infrared spectral bands to extract water areas (Xu 2005). For 

OLI, MNDWIOLI was computed using Equation (14). 

  (14) 

The MNDWIOLI was then subtracted from NDBIOLI to obtain an output image with water-free 

areas. Correlations between NDBIOLI and NDVIOLI, NDBIOLI and MNDWIOLI, and NDVIOLI and 

MNDWIOLI were also tested to examine the spectral distribution of built-up, vegetation and water 

areas in these datasets. Finally, continuous NDBIOLI, NDVIOLI and MNDWIOLI images were used 

to extract a continuous built-up area image, BAEMOLI (Equation (15)). Higher DN values in 

BAEMOLI indicated a higher possibility of those pixels to represent built-up areas, whereas lower 

values depicted land cover classes other than built-up. 

  (15) 

Histogram segmentation was performed using a threshold value to segregate built-up from non-

built-up areas in the BAEMOLI image. DFPS was used to determine the optimal threshold value 

for this segmentation (Chen et al. 2003). Before application, the data type of the BAEMOLI image 

was converted to unsigned integer. The DFPS approach was developed by Chen et al. (2003) 

basically to determine the optimal threshold value between change and non-change pixels while 

examining land use/cover transitions. However, this method has also been used to find the 

threshold value for segmenting a thematic imagery to extract built-up areas (He et al. 2010). The 

process involving three steps was systematically applied to the BAEMOLI imagery. 

First, sample built-up areas were chosen through visual interpretation of the input 

imagery, subject to the condition that they should only include built-up pixels and had to be 
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“built-up islands” surrounded by non built-up pixels. Two visual areas were considered here, an 

inner window consisting of built-up area pixels only, and an outer frame surrounding the inner 

window and containing the pixels indicating non-built-up areas. In the second step, the histogram 

of the BAEMOLI imagery was examined to find out range and pace. The first search pace 

(increment) P1 was calculated using Equation (16), whereby the search range was determined by 

the difference between the minimum (a) and maximum (b) values of BAEMOLI. 

  (16) 

Where m, which represented the number of possible threshold values in the search process, was 

decided manually. The potential thresholds were assigned within the range of (a, b) as b-P1, b-

2P1, …. Threshold values were then processed one by one to determine the success rate of built-

up area extraction. For a potential threshold value of k, the success rate Lk was computed using 

Equation (17). 

  (17) 

Where A is the total number of pixels in the sample (within the non-built-up frame area), Ak1 is 

the number of pixels detected as built-up inside the inner window and Ak2 is the number of pixels 

wrongly detected as built-up in A. For all m thresholds in one particular search process, the 

maximum and minimum values of Lk were calculated and assigned to Lmax and Lmin, respectively. 

These two values were examined whether or not they satisfied the exit condition given in the 

final step of the DFPS process (Equation (18)). If the exit condition was not satisfied, a new 

search began with a new search range (kmax – P1, Kmax+P1) and a new search pace that was 

calculated using Equation (16), where kmax was the threshold value corresponding to Lmax in that 
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particular search iteration. 

The final step, the termination of the iterative process of steps two and three, was 

performed when Lmax and Lmin satisfied the condition given in Equation (18). 

  (18) 

Where  is the acceptable error constant. Its value in this case was 1 since the image used was of 

an integer, and not floating point, data type. The optimal threshold value to separate built-up 

from non-built-up areas in the BAEMOLI image was the one corresponding to Lmax in the final 

iteration of the DFPS process. Using this threshold value, the BAEMOLI image was finally 

categorized into two classes, built-up (pixel value = 1) and non-built-up (pixel value = 0). 

3.4. Accuracy assessment 

The performance of the proposed BAEM was tested through accuracy assessment at 200 

locations (pixels) using a stratified random sampling technique (Congalton 1991). Two strata, 

built-up and non-built-up, were formed and random samples were taken from each of them based 

on their proportion in the output image. In addition, the NDBI approach proposed by He et al. 

(2010) (Section 3.3.1) was also used to generate a map of built-up areas, which was tested using 

the same accuracy assessment method in order to compare the performance of the two 

approaches. Producer and user accuracies of both approaches were compared to assess their 

efficiency in terms of segregating built-up areas from other land covers/uses. Different areas 

were visually examined in detail to understand the differences in the outputs of both approaches. 
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4. Results and discussion 

4.1. Examination of Landsat-8 OLI data 

Spectral responses of built-up, vegetation and water areas were examined in OLI multispectral 

bands 2-7 and thermal bands 10 and 11.  All three land cover types had a unique signature in 

optical bands which indicated that they can be segregated from each other through proper 

application of their respective indices (Figure 4(A)). Compared to the other two land cover types, 

the spectral reflectance curve of vegetation had a prominent slope between bands 5 and 4. This 

indicated that the NDVI could be more efficient in terms of accuracy compared to NDBI or 

MNDWI.  Another relevant finding was the difference between temperatures of the three land 

cover types (Figure 4(B)). Both thermal bands 10 and 11 exhibited the highest temperature 

values for built-up areas (around 50°C), followed by vegetation (around 46°C) and water (around 

40°C). The primary reason for this characteristic of built-up areas is the usage of construction 

materials that absorb heat during daytime and release it at night (Gartland 2010, Goward 1981). 

Compared to other land cover types, the cooling process in construction materials is very slow 

which subsequently increases the overall temperature in built-up areas. Higher temperature 

readings of built-up areas in the thermal bands implied that temperature can be used as an aiding 

factor to separate built-up areas from vegetation and water. 

4.2. Relationships among NDBI, NDVI and MNDWI 

The NDBIOLI imagery was derived through Equation (13). As illustrated in Figure 6(A), pixels 

with white and bright grey tones show built-up areas, whereas light grey, dark grey and black 

tones show areas with other land cover types. Densely vegetated areas appear dark in this image, 

whereas water and a few areas with less dense vegetation are shown in bright tones. However, 
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for extracting the built-up areas, both vegetation and water were later filtered using NDVI and 

MNDWI, respectively. The NDVIOLI image is presented in Figure 6(B) in which the pixels with 

white and bright grey tones show vegetation, moderate to dark grey tones show other land 

covers, and black is associated with water. A very clear separation between vegetation and other 

land cover types is evident in this output. A considerable difference in reflectance of vegetation 

in OLI bands 4 and 5 was the basic reason for this characteristic of the NDVIOLI image (Figure 

4(A)). The MNDWIOLI imagery generated using Equation (14) is illustrated in Figure 6(C). Water 

is shown as white pixels in this image, whereas other land cover types are depicted in the tones 

of grey and black. Areas with dense vegetation appear dark whereas the built-up areas are shown 

in variable tones of grey. 

The NDBIOLI, NDVIOLI and MNDWIOLI images, apparently looking different from one 

another, were examined in detail for any interrelationship. It was found that NDBIOLI had a weak 

positive correlation with NDVIOLI, whereas a negative correlation was observed between 

NDBIOLI and MNDWIOLI (Figures 7(A) and (B)). NDVIOLI also negatively correlated with 

MNDWIOLI (Figure 7(C)) implying that these datasets showed different features. The scatter plots 

shown in Figure 7 also indicate a clear separation in spectral responses of built-up, vegetation 

and water areas in NDBI, NDVI and MNDWI imageries. The Pearson’s R values revealing the 

degree of relationship between NDBIOLI, NDVIOLI and MNDWIOLI images are shown in Table 1. 

These values and the scatter plots confirmed the divergence of NDBIOLI, NDVIOLI and MNDWIOLI 

images from one another signifying that these datasets are ready for further processing for built-

up area extraction. 
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Figure 6. The resultant images of (A) NDBI, (B) NDVI and (C) MNDWI derived from the 

Landsat-8 OLI image. 
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Figure 7. Scatter plots showing the correlation between (A) NDBI (x-axis) and NDVI (y-axis), 

(B) NDBI (x-axis) and MNDWI (y-axis), and (C) NDVI (x-axis) and MNDWI (y-axis).  
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4.3. Built-up area map and its accuracy 

A continuous raster of the built-up area, BAEMOLI, was derived by Equation (15) through 

processing the NDBIOLI, NDVIOLI and MNDWIOLI images. The output is illustrated in Figure 8(A) 

where the pixels in white, bright grey and light grey tones show built-up areas, whereas the dark 

grey and black tones represent other land covers. The variability in the bright tones indicates the 

differences in built-up density, where the areas with high built-up density appear the brightest 

and vice versa. In order to determine the optimum DN value to segregate built-up from non-

built-up areas in the BAEMOLI image, the DFPS method was applied. The image data type was 

first converted to unsigned integer and then its histogram was examined to set the initial search 

range. The search process is shown in Table 2 showing that the search range changed five times 

with the pace of 50, 20, 8, 2 and 1. In total, 23 threshold values were tested to determine the 

optimum, which was identified as 83 with a success rate of 93.72%. Pixels with values above 83 

were extracted and classified as built-up areas in the BAEMOLI image (Figure 8(B)). 
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Figure 8. Map showing (A) a continuous image of built-up areas derived by BAEM, and (B) 

segmented output of BAEM (built-up area extracted through segmentation of (A) using the 

threshold value from DFPS). 
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The accuracy of the proposed BAEM and the approach suggested by He et al. (2010) 

were assessed using a stratified random sampling technique. Results of BAEM were 80.50% 

accurate, whereas those derived by the method of He et al. (2010) returned an accuracy of 

71.50% (Table 3). The commission error was higher than the omission error in both approaches 

signifying that both outputs contained some areas that were wrongly extracted as built-up; 

however, the low omission error indicated that both approaches were able to extract built-up 

areas quite well (Table 4). Nevertheless, its low values of omission and commission errors and 

the high k-statistic value suggested that the BAEM was more accurate than the established 

method. 
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For comparison, the input OLI image and the outputs of the two built-up area extraction 

approaches showing the same sample location are displayed in Figure 9. It was found that the 

method of He et al. (2010) over-classified built-up areas as compared to the BAEM (Figure 9). 

This finding conforms to the higher commission error in the previous approach as compared to 

the BAEM (Table 4). Besides, the use of temperature data in the proposed method helped in 

segregating less dense built-up areas from other land cover types, thus improving the overall 

accuracy. Vegetation and water were very well separated from built-up areas indicating that both 

NDVI and MNDWI were correctly processed in the BAEM. Thus, the reason for the high 

commission error may be attributed to spectral mixing of built-up areas with land cover types 

other than vegetation or water. 

 

 

Another interesting finding was the difference between the outputs of the method 

suggested by He et al. (2010) and BAEM in terms of segregating water from bare land. It was 

also found that the proposed method was better at extracting water as non-built-up area in 

comparison to the conventional method (Figure 10), which can be attributed to the inclusion of 

MNDWI in the BAEM. Moreover, both approaches could not completely separate bare land 

from built-up areas because of the resemblance between spectral characteristics of these two land 

cover types (Herold et al. 2004, Lu and Weng 2004, Lwin and Murayama 2013). However, due 
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to the use of thermal-infrared band, MNDWI and DFPS, the BAEM was somewhat better at this 

segregation which was evident from lower commission error values as compared to the previous 

approach. 

 

Figure 9. Comparison of the results from the NDBI approach and BAEM at a sample location 

(A) OLI image in false-color composite, (B) output from NDBI approach and (C) output from 

BAEM. (black rectangles in each panel show the places where the NDBI approach wrongly 

extracted other land covers as built-up areas). 
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Figure 10. (A) OLI image in false-color composite, (B) output from NDBI approach and (C) 

output from BAEM. (black rectangles in each panel show the places that produced obvious 

commission errors in both methods). 

5. Conclusions 

Both NDBI and modified NDBI methods were able to extract built-up areas with reasonable 

accuracy when applied to Landsat TM data (Zha, Gao and Ni 2003, He et al. 2010). However, 
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this study found that the accuracy of the NDBI approach of He et al. (2010) decreased when 

applied to Landsat-8 OLI data of urban areas of Lahore, Pakistan. This aspect was explained by 

the differences between spectral wavelength ranges of the different bands of the two datasets. 

Therefore, a new method, BAEM, is proposed in this study for extracting built-up areas using 

OLI data employing NDBI, NDVI and MNDWI. In addition to the modification made to the 

established NDBI approach by applying PCA image of OLI bands 6 and 7 instead of just band 6, 

PCA image of thermal bands 10 and 11 was also integrated in the BAEM. The reason for using 

PCA images was the significant correlations between bands 6 and 7, and bands 10 and 11 of 

OLI. The use of PCA images consequently helped in capturing the variance and comprehending 

a broader range of useful data. Since higher temperature values were observed in built-up areas 

compared to other land cover types, inclusion of thermal data in BAEM resulted in better 

separation of built-up from non-built-up areas. Weak correlations among NDBI, NDVI and 

MNDWI indicated a reduced spectral confusion and produced a better contrast among different 

land cover types in the output. The DFPS method was quite efficient at determining the optimal 

threshold value for segmenting the BAEM output to segregate built-up areas from other land 

cover types. Although the use of DFPS reduced the element of automation, the flexibility of this 

method can help in achieving improved results when applying the BAEM in areas with 

topographic conditions different from this study area. Another advantageous option could be the 

double application of DFPS to identify two threshold values, one for separating high density 

built-up areas from low density ones, and the other for separating low density built-up areas from 

non-built-up ones. The results of the proposed method revealed a higher accuracy than the one 

suggested by He et al. (2010); however, it was found that both methods could not completely 

separate built-up areas from bare land. Since the urban heat island effect is more significant at 
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night when the temperature difference between built-up areas and other land covers is greater 

(Oke 1982), integrating night-time thermal data in the proposed method could yield better results 

in separating built-up from bare areas. Night-time remotely sensed light data, which has been 

helpful in mapping the spatial extent of urban areas (Voogt and Oke 2003), can also be 

incorporated to improve the overall accuracy of BAEM in future studies. Further application and 

analysis of the proposed method on data from other satellites is suggested. 
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