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Abstract

This thesis describes several calculations of quantities describing the deep-inelastic
scattering (DIS) of leptons and hadrons, within the framework of massless perturbative
quantum chromodynamics. The third order (NNNLO) contributions to the coefficient
functions Cy ., C7 , and Cy ., which describe charged-current (W*-exchange) DIS
in the linear combination W+ — W™ are presented. Complementing existing results for
the WT + W™ combination, these new results complete the third-order description of
charged-current DIS. The results are presented both as compact parametrizations and
exact expressions. The corrections are found to be small for experimentally relevant

values of the Bjorken-x variable.

The behaviour of the DIS structure functions in the small-z limit is considered.
By finding a suitable functional form with which to describe them, it is possible to use
the results of existing fixed-order perturbative calculations to resum the leading small-
x double logarithms of the coefficient functions and splitting functions to all orders
in the strong coupling constant «g. All-order descriptions of the leading three dou-
ble logarithms are discussed and presented for both coefficient functions and splitting

functions.

Finally, the results of recent advances in the fourth-order computation of the Mellin
moments of structure functions are used to reconstruct expressions for the general
Mellin-N dependence of the large-ny parts of the fourth-order contributions to the
splitting functions. The software package FORCER is able to compute a sufficient number
of Mellin moments to determine the N dependence of the n J? terms of the non-singlet
splitting functions, and the n;’ terms of the singlet splitting functions. The resulting
expressions are in agreement with, and extend, various existing computations found in

the literature.

iii






Acknowledgements

First and foremost, I would like to thank my supervisor Andreas Vogt for his help and
guidance throughout my studies at the University of Liverpool. He has always been
happy to discuss any aspect of our research with enthusiasm. I am very grateful for

the opportunities he has given me to work on many fascinating topics.

I also thank Sven-Olaf Moch, with whom I collaborated for the calculations of
Chapter 3, for hosting me at DESY for discussions of our work. I thank Jos Vermaseren
for hosting me at Nikhef several times during the summers of my PhD, for answering
my many questions about FORM, and for (along with Ben Ruijl and Takahiro Ueda)

writing the software package that made the calculations of Chapter 5 possible.

I would like to thank my contemporaries at the University of Liverpool for many
interesting discussions about physics and computing, and for making the department
an enjoyable place to study. In no particular order, Toméas Jezo, Stephen Jones, Panos
Athanasopoulos, Viraf Mehta, David Errington, Colin Poole, Maria Cerda-Sevilla and
Henry Kifler.






Contents

Abstract iii
Acknowledgements v
Contents ix
List of Figures xiii
List of Tables XV
1 Introduction 1
2 Formalism
2.1 The Parton Model . . . .. .. ... . ... ... ...
2.2 QCD Corrections to the Parton Model . . . . . . .. ... ... .....
2.3 Parton Distribution Functions . . . . . . . ... ... ... ... ..... 10
2.4 The Optical Theorem and Forward Compton Amplitudes . . . . .. .. 11
Third-Order QCD Corrections to Charged-Current Deep-Inelastic Scat-
tering 17
3.1 Imtroduction . . . . . . . . . . . . .. 17
3.1.1 Existing Results . . . .. .. .. . . oo 19
3.2 Software and Calculation . . . . .. ... ... ... ... ........ 20
3.3 Results. . . . . . . e 21
3.3.1 Perturbative Stability of the Coefficient Functions . . . . .. .. 25
3.3.2  Small-z Behaviour of the Coefficient Functions . . . . .. .. .. 27
3.3.3 Large-z Behaviour of the Coefficient Functions . . . . . . . . .. 31
3.3.4 Perturbative Stability of the Structure Functions . . . . . . . .. 32
3.4 Phenomenological Application: The Paschos-Wolfenstein Relation . . . 35
3.5 Conclusions . . . . . . .. L 35
Resummation of Small-x Double Logarithms in Deep-Inelastic Scat-
tering 37
4.1 Introduction . . . . . . . . . . .. 37
4.1.1 Small-x Expansion . . . . . . ... ... ... .. 38

vii



4.2

4.3

4.4

4.5

Method . . . . . . . 39

4.2.1 An Example: The LL Resummation of FQms ............ 41
4.2.2  All-Order LL Results for Cs s and fy?'; in the Small-x Limit . . . 44
NNLL All-Order Results for C5 s, CL ns, C’?:ns and 7,7, in the Small-z

Limit . . . . . e 45
Resummation of the Singlet Structure Functions . . . .. .. ... ... 52
4.4.1 Results . . . . . . e 53
Conclusions . . . . . . . . . e 56

5 Large-n; Contributions to the Four-Loop QCD Splitting Functions 59

5.1 Defininga Basis . .. .. .. ... 61
5.2  Solving Diophantine Equation Systems . . . . . . ... ... ... .... 62
5.2.1 An Example Reconstruction . . . . . . . .. ... ... ... ... 63

5.3 Bases for Large-ny Singlet Anomalous Dimensions . . . . .. ... ... 66
5.3.1 Third Order Structures . . . . . . . .. .. .. .. ... ..... 66
5.3.2 A Basis for 753) ............................ 69
533 ABasisfor 70 . ... 70
5.3.4 A Basis for Pyé‘g?pg ........................... 71
5.3.5 A Basis for 7,52) ............................ 71

5.4 A Basis for the Large-ny Non-Singlet Anomalous Dimensions . . . . . . 75
5.4.1 Third-Order Structures . . . . . . . . . .. ... ... .. .... 76
5.4.2 A Basis for 7,(1?;)’i ........................... 77

5.5 Results. . . . . oL 80
5.5.1 Results for the Singlet Anomalous Dimensions . . . . .. .. .. 80
5.5.2  Results for the Non-Singlet Anomalous Dimension . . . . .. .. 90

5.6 Verification . . . . .. .. Lo 94
5.6.1 Linear Combinations of Large-ny Singlet Anomalous Dimensions 94
5.6.2 Fourth-Order Cusp Anomalous Dimension . . . . . . .. ... .. 95
5.6.3 Large-N Behaviour of Diagonal Anomalous Dimensions . . . . . 95
5.6.4 Small-x Double Logarithms of Anomalous Dimensions . . . . . . 96
5.6.5 Large-x Double Logarithms of Anomalous Dimensions . . . . . . 96

5.7 Conclusions . . . . . . .. Lo 97
6 Summary and Outlook 99
Appendix 101
A1l Harmonic Sums . . . . . . . .. 101
A.2 Harmonic Polylogarithms . . . . ... ... ... ... ... ....... 101
A.3 The Mellin Transform and its Inverse . . . . . . . ... ... ... .... 102
A.4 The Mellin Convolution of Plus-Distributions . . . . . .. ... ... .. 103
A5 Dispersion Relations . . . . . .. ... ... L 104
A.6 The g-Functions . . . . . . ... ... 105



A.7 Third-Order Coefficient Functions in Charged-Current Deep-Inelastic

Scattering . . . . . . . . . e 109
A.8 Input Quantities for Small-z Resummation of Structure Functions . . . 127
A.8.1 Non-Singlet Input: Fp s and Fips o oo oo 127
A.8.2 Singlet Input: Fg,q, Fg’g, FL’q, Fng, Fcb,q and ]3'¢7g ......... 127

A.9 a? Predictions from the Small-z Resummation of DIS Structure Functions131
A.10 The Small-z Behaviour of the Fourth-Order QCD Splitting Functions at
Large-mp . . . o o o o 134

Bibliography 135

ix






List of Figures

2.1

2.2

2.3

2.4

2.5
2.6

3.1

3.2

3.3

3.4

3.5
3.6
3.7

3.8

Deep-Inelastic Scattering. A lepton | scatters from a hadron h, via the exchange
of a virtual boson carrying momentum q. The hadron breaks apart into some
hadronic system X .. . . .« . . L o e e e e e e e e e e e e
Deep-Inelastic Scattering in the parton model. We assume that the lepton scat-
ters from some parton within the hadron, which carries a fraction & of the
hadron’s momentum P. . . . . . . . ... 0oL
QCD corrections to the boson-parton interaction produce singularities in the
amplitude when particles become collinear with initial- or final-state particles. .
The optical theorem relates a squared matriz element to the imaginary part of
a forward Compton amplitude. . . . . . . . . . .
The leading-order foward diagrams contributing to photon-quark scattering.

The leading-order foward diagrams contributing to W*-down-quark scattering.

Representative three-loop diagrams for the diagram classes fly and flos of CC
DIS. In flys diagrams neither boson couples to the external quark line; they

both couple to the same internal quark loop. . . . . . . . . . . . ... ...
(3)+

The exact (labelled: (ex.)) third-order coefficient function contributions cs ",

(3)7_ (3)7+ (3)7_
CZ,ns and CL,ns ) CL,ns ’

Ca and Cr take their QCD wvalues of 3 and 4/3. The curves labelled (A, B)

are the previous approzimations. An overall factor of (1/2000) ~ 1/(4x)? is

plotted with four massless flavours. The colour factors

included to approximately convert the result to a series in as. . . . . . . . . .
As Fig. 3.2, for cg?’,); , Cg){s_- .........................

The perturbative expansion of the coefficient functions C’;f ns and Cy o to third

order, plotted with four massless flavours and an oy value of 0.12. The colour
factors Cy and CF take their QCD values of 3 and 4/3. . . . . . . . .. ...
As Fig. 8.4, for the coefficient functions sz and Cp oo v v oo oo
As Fig. 3.4, for the coefficient functions C;r,ns and C3_

3,ns*

(3),+

The small-x behaviour of the third-order coefficient function contributions cs ¢,

plotted alongside their logarithmic approzimations. The curves are plotted for
four massless flavours, and the colour factors Ca and Cg taking their QCD
values of 3 and 4/3. An overall factor of (1/2000) = (1/(47)3) is included to
approzimately convert the result to a series in as. . . . . . . ...

As Fig. 3.7, for S

L,ns

xi



3.9
3.10

3.11
3.12

4.1

4.2
4.3
4.4

5.1

5.2
5.3

5.4

9.5
5.6
2.7

As Fig. 8.7, for S

3,ns
The perturbative expansion of the structure functions F;K;iw* to third order,
using a reference distribution xf = \/r(1 — x)3. The curves are plotted with
four massless flavours, Cx and CF taking their QCD values of 3 and 4/3, and

an as value of 0.12. The lines are normalized to f(x) for plotting purposes. . .

WT+w-—
FL,ns :

As Fig. 3.10, for the structure functions

wt+w—
FMS e e e e e e e e

As Fig. 3.10, for the structure functions

The left panel shows the known fized-order perturbative corrections to the split-
ting function Pl.. The right panel shows the three leading logarithmic correc-
tions to all orders in as. The curves are plotted with the colour factors C4 and

Cr taking their QCD wvalues of 3 and 4/3, and with 4 massless flavours. . . . .
As Fig. 4.1, for the coefficient function Cy oo o o o o o oo
As Fig. 4.1, for the coefficient function Cp . . . .« . . ..o

As Fig. 4.1, for the coefficient function Cy oo« . . . .« o ..o

The coefficients of the n;’ terms of 7,53) and 7(5‘";), plotted in Mellin-N space.

The colour factors Cy and Cr have been set to their QCD values of 3 and 4/3
respectively. The solid points shows the values of the (integer) Mellin moments
computed by FORCER. . . . . . . . . . v v v i v i i ittt i e e e

As Fig. 5.1, for the coefficients of the n;o’ terms of 'yg:}) and 'yg;), .......

The coefficients of the n;’ terms of Pég), plotted in x-space. The colour factors
Ca and Cr have been set to their QCD values of 3 and 4/3 respectively. The
right-hand panel shows the small-x behaviour of the same curves, including the
leading small-x term of P(J(g?ps, The multiplication by x(1 — x) is for display
purposes, and suppresses the diverging behaviour of the splitting function at

each endpoint. . . . . . . L. L e e e e e e e e e e

The coefficients of the n;’ terms of Pq(g), plotted in x-space. The colour factors
Ca and Cr have been set to their QCD values of 3 and 4/3 respectively. The
right-hand panel shows the small-x behaviour of the same curve, including the
leading small-x term. The multiplication by x is for display purposes, and

suppresses the diverging behaviour of the splitting function near x = 0.
As Fig. 5.4, for the n;’ terms of Pg(g). .....................
As Fig. 5.3, for the n} terms of Pég). .....................

The coefficients of the n;’ (left-hand panel) and nJ? (right-hand panel) terms
of ’yr(i»)’—’_ and 'y,(l?;)’_. The colour factors C'y and Cg have been set to their
QCD wvalues of 3 and 4/3 respectively. The solid points show the values of the
even-integer Mellin moments of %(i)’+. The open points show the values of the

odd-integer Mellin moments of 'y,(f;)’_, .....................

xii



5.8 The coefficients of the an terms of P,(LEH_ and Pr(l?s’)’_. The colour factors C'y
and C have been set to their QCD values of 3 and 4/3 respectively. The right-
hand panel shows the small-x behaviour of the same curves, alongside their two

best logarithmic approximations. . . . . . . . . . . oo oo e e

A.1 The two integration contours of the dispersion integral. . . . . . . . . . . ..

xiii






List of Tables

4.1

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

A graphical representation of the expansion of Eq. (4.31). The cells marked “0”

and “R” are required to determine the all-order coefficients. Cells marked “V”

are known from fized-order perturbative calculations and verify the all-order

coefficients. Cells marked “P” are previously unknown coefficients which are

predicted by this resummation procedure, and extend to all powers of e. . . . . 47
The format in which we will define bases of functions for the reconstruction of

analytic expressions for the Mellin moments of anomalous dimensions. . . . . 62
The format in which we will define coefficient factors for bases. . . . . . . . . 62
A basis for the reconstruction of the Cany terms of ’ytgé). ........... 64
The structure of the Cpn}f terms of véz?ps .................... 66
The structure of the C’an2 terms of 733). ................... 67
The structure of the C’Anf2 terms of yéﬁ) ..................... 67
The structure of the C’an terms of 75,?,). ................... 67
The structure of the C’Fnﬁ terms of 'yéz). ................... 68
The structure of the C’Aan terms of 75%) ..................... 68
The basis for the reconstruction of the C’an3 terms of ’yg‘z). .......... 69
The basis for the reconstruction of the CFn]? terms ofv_((,‘z). For the CAnf3 terms

we use the same basis, but remove elements of overall weight 5. . . . . . . . . 70
The basis for the reconstruction of the Cpn]? terms of vég?ps. ......... 71
The basis for the reconstruction of the C’Fn;’ terms of 7,53). .......... 73
The basis for the reconstruction of the CAn]? terms of ’yfg’). .......... 74
The structure of the A part of ’yffg)’i. ..................... 76
The structure of the C’}%nf terms of 7;25)’4_ .................... 76
The structure of the C’I?nf terms of %(123)’7 .................... 7
The basis for the reconstruction of the C’lgnf terms of ’yé?;)’Jr. ......... 78
Coefficient factors for the reconstruction of the Clgnf2 terms of 'y,(l?;)’_ ...... 79
Coefficient factors for the reconstruction of the A piece of 77(5;)’# ....... 79

XV






Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN is the highest energy particle collider
ever constructed. Like the high-energy colliders of the past it collides hadrons, which
are bound states of quarks, anti-quarks, and gluons. Being composite particles, the
interactions of hadrons are very complex. In order to accurately interpret data collected
by such experiments, we must have a good theoretical description of their interactions
with other particles. The framework of Quantum Chromodynamics (QCD) forms this
description and is used for the computations of this thesis. In particular we focus on
the high energy regime of QCD, which is perturbative. That is, quantities of interest

can be expanded as a series in some small parameter, the strong coupling constant as.

The ever-increasing precision of experimental data demands that we compute more
and more perturbative corrections in order to provide sufficiently precise predictions
of measured quantities. A crucial theoretical input for hadron colliders is the Parton
Distribution Functions (PDFs). These functions describe the particle content of the
colliding hadrons and must be determined from experimental data. To perform an
accurate determination of the PDF's it is necessary to compute, as precisely as possible,

how external particles interact with the individual partons which form the hadron.

For this we rely on Deep-Inelastic Scattering (DIS), the high-energy interaction
of leptons and hadrons. Involving just a single hadron, this provides a “clean” (both
experimentally and theoretically) environment in which to study the effects of QCD.
Quantities that we are able to compute within the framework of DIS are universal to all
hadron reactions and are thus useful, in addition to their obvious application to lepton-
hadron colliders such as HERA, to proton-proton and proton-anti-proton machines such
as the LHC and Tevatron.

The structure of this thesis is as follows. In Chapter 2 we review the formalism of
QCD in the context of DIS, outlining the theoretical description of leptons scattering
from partons within a hadron by means of the exchange of a gauge boson. We describe
a prescription for the separation of the high-energy regime from the low-energy physics

of the hadronic bound state, which cannot be described by perturbation theory.



Chapter 3 concerns a high-order calculation describing a particular type of DIS,
lepton-hadron scattering by the exchange of a charged electro-weak boson; a W or a
W ~. Such an exchange allows one to consider the scattering of neutrinos from hadrons.
For these calculations one must consider the linear combinations of W* + W~ and
W+ — W~ scattering; only the W + W~ combination is currently known at third
order in QCD. We complete the description of these interactions to the third order by

computing the W — W™ combination.

In Chapter 4 we turn to a different style of calculation; a resummation of quantities
describing DIS in certain kinematic limits. Despite being perturbative, there are regions
in which the convergence of QCD quantities can be spoiled by large logarithms of
kinematic parameters. The determination of these logarithms to all orders in the strong
coupling parameter ag aims to develop a better understanding of the behaviour of the
quantities in these regions. It also provides predictions which cross-check higher fixed-

order calculations.

Finally in Chapter 5, we begin a project to determine the so-called splitting func-
tions of perturbative QCD at the fourth order in ag. At the time of writing, very few
calculations have been performed to this order in QCD. So far we only have analytic
expressions for certain, structurally more simple, terms and aim to produce numeri-
cal approximations for the rest in the near future. However, the eventual complete
calculation of the splitting functions at fourth order will allow for a reduction of the

theoretical uncertainties of PDFs determined from experimental data.



Chapter 2

Formalism

Deep-Inelastic Scattering (DIS) is the process in which a lepton scatters from a hadron,
I(k) +h(P) = U'(K)+ X. (2.1)

This reaction is depicted in Fig. 2.1, to leading order in Quantum Electrodynamics
(QED). An incoming lepton of (four-)momentum k exchanges a boson of momentum
q = k — k' with a hadronic state carrying momentum P. The hadronic state breaks
apart during the interaction, yielding an unspecified hadronic final state X; we consider

only inclusive DIS processes in this thesis, in which we sum over all possible states X.

w
q
h(P)
> > X

Figure 2.1: Deep-Inelastic Scattering. A lepton | scatters from a hadron h, via the exchange

of a virtual boson carrying momentum q. The hadron breaks apart into some hadronic system
X.

The exchanged boson may be a photon (v), a Z-boson or a Higgs-boson (so called
Neutral Current (NC) reactions) or a W*-boson (Charged Current (CC) reactions).

Since the exchanged boson is space-like, ¢? is negative. It is useful to define a positive

quantity Q?> = —q¢®. We also define the Bjorken-z parameter, which takes values
between 0 and 1 and is given by
Q2
= . 2.2

For x = 1, the invariant mass of the hadronic final state X is equal to that of the

incoming hadron; this is elastic scattering. x — 1 is called the large-x or threshold

3



limit. Small values of x correspond to large momentum transfer between the incoming

lepton and the hadronic final state. x — 0 is the high-energy limit.

To leading order in the electromagnetic coupling (cem) the cross section for the
process can be written as the product of two tensors; one describing the lepton side of
the interaction (L), and one describing the hadron side (W),

2

d 2
o - ﬂ-yaem L'LLVWNV' (23)

dedy Q%

where y = P-q/P -k and also takes values between 0 and 1. The lepton tensor is given
by
L =2 (KME" + KV K" — g™k - k) . (2.4)

We do not consider corrections that are higher order in aen here, on the grounds
that it is very small compared to the strong coupling, as. We decompose the hadron
tensor in terms of scalar hadron structure functions, which are the coefficients of the
Lorentz-invariant structures built out of the available vectors P and ¢ such that the
electromagnetic current is conserved (which requires that ¢*W,, = 0). The standard
definition is (see e.g. the PDG [6])

() (1 ) L

[ e

Fs(z,Q%), (2.5)

quq 2y, . Prq
+ <_g;w + ;;21/> Fl(va )+Z€uupam

or alternatively in terms of the longitudinal structure function defined as Fj = Fy —
21‘F1,

42 2z 1
pr = <_g,uu - P,U,PI/T - (P,uQI/ + Puq;L)2> 7F2(a7> QQ)
q q 2z
Quav '\ 1 2 Prq” 2
+ (g/u/ - 221/) EFL(x’Q ) + Zeuupamﬁé(x’Q )7 (26)

This is the combination used throughout this thesis. The structure function F3(z, Q?)
is only present in the case of CC DIS (W¥ exchange) or NC DIS (for Z° exchange
only), where we have axial terms in the vertex factors. It vanishes in the case of elec-
tromagnetic interactions since the e-tensor is contracted with the (symmetric) lepton
tensor (L") of Eq. (2.4).

2.1 The Parton Model

We now assume some further structure for the process. Let the hadron consist of non-
interacting partons. The probing boson scatters from one of these partons. The cross
section at the parton level is thus given by

da;

~ LW 0 2.7




where the lepton tensor is as defined in Eq. (2.4) and the “hatted” symbols refer to
parton-level quantities, which carry a label i that specifies the parton species under
consideration. We assume the struck parton to carry a fraction £ € (0, 1) of the hadron’s
momentum P; thus it carries no transverse component, it is collinear with the hadron.
The parton-level tensor decomposition for W; w is the same as Eq. (2.6) but is written

in terms of hatted parton-level structure functions F,.

The hadron structure functions are related to their parton-level equivalents by
integrating over all possible values of the momentum fraction £ and summing over all
parton species 7. In the electromagnetic case,

1
d¢ -, | - T - .
Re@) =Y [ Eion (1.¢) =X oo fuc)] @ @)
i x i
The parton-level structure functions have been weighted by PDFs ﬁ(f ) which describe
the momentum distribution of the parton species ¢ within the hadron, as a function
of the momentum fraction &. This integral is the Mellin convolution of f; and Fa,i,
as defined in Eq. (A.9), which we will denote by the symbol ®. The result of the
convolution is a function of x but we will suppress this in the following discussion, as

well as the dependence of each of the convoluted functions on the convolution variable
£.

The parton-level cross section can now be computed using the standard tools of
perturbation theory, since we have separated the long-distance behaviour of the hadron

from the hard interaction,

I(k) +p(EP) = I'(K') +P'(EP + q), (2.9)
as depicted in Fig. 2.2.
(k) I'(K)
” q
h(P) p(fP)
= = X

Figure 2.2: Deep-Inelastic Scattering in the parton model. We assume that the lepton scatters
from some parton within the hadron, which carries a fraction & of the hadron’s momentum P.

2.2 QCD Corrections to the Parton Model

We now identify the partons of the previous discussion with the quarks and gluons of

QCD. Within the framework of perturbative QCD, we can compute corrections to the



parton-level cross section as a series in the strong coupling constant ag = ag /4.

By making such corrections, we introduce divergences in the structure functions.
These may originate in loop integrals or from so-called mass singularities (or collinear
singularities), which occur when two particles become collinear. Consider Fig. 2.3,
for which the quark propagator will have (p — r)? in its denominator (denoting the
quark momentum by p = £P). Since we assume that the quarks are massless (p? = 0),
this is equal to —2|p]|7|(1 — cos?). As ¥ — 0 this denominator — 0, producing
a singularity in the amplitude. Such singularities involving final-state particles and
infra-red singularities due to loop integrals cancel since we consider only inclusive DIS
and thus sum over all possible final states. That these singularities cancel is guaranteed
by the Kinoshita-Lee-Nauenberg (KLN) theorem [7,8].

Figure 2.3: QCD corrections to the boson-parton interaction produce singularities in the am-
plitude when particles become collinear with initial- or final-state particles.

The structure functions appear directly in the expression for the cross section;
they must therefore be finite, since the cross section is an experimentally measurable
quantity. The parton-level cross section must be renormalized in order to obtain phys-
ically meaningful predictions. We use the framework of dimensional regularization [9],
in which we work in D = 4 — 2¢ dimensions. The divergences described above (from
initial-state mass singularities and ultraviolet singularities of loop integrals) manifest
as poles in ¢ in the limit ¢ — 0 (so D — 4). An arbitrary scale u? is introduced to
keep the strong coupling constant, o pare, dimensionless. From Eq. (2.8) we have that

(omitting the sum over j and the factors of e?)

. Q? -
Fa<$,Q2) :Fa,j <as,bar67u275 ®fj7 (2'1())
where Fa,i has picked up dependence on ;2 and ¢, and @ bare denotes the un-renorma-
lized strong coupling.

The first step in our renormalization procedure is to renormalize the coupling
constant agpare.- This removes the ultraviolet divergences due to the loop integrals,

introducing a renormalization scale 2. The relation between the bare and renormalized
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coupling is given by

2 3
Qg bare = Gs — a?% + ag’ <BO - il> — a;l (ﬁo — 7Hoh + BZ) + (’)(ag’), (2.11)

g2 g3 6e2 3e

where the coefficients of the QCD beta-function are given to fourth order in ag by [10,
11,12,13]

Bocp = —ase — afo — a3 B — ag B2 + O(ay),

11 2
= O =
Bo 5 Ca— 3y
34 10
9857 4 ., 205 415 , 11, , 79,
= — - — - — — — . (2.12
B2 71 Cy+Cgny 18 CrCany 71 Cing + 9 Crnj + 540Anf (2.12)

The coefficients of the next two terms of this expansion, f3 and 84, have been computed
in [14,15,16] but they are not required by the calculations of this thesis. The SU(N)
fundamental and adjoint Casimirs Cr and C4 have the values 4/3 and 3 in QCD. ny
is the number of participating massless quark flavours. Setting the arbitrary scale p?

of dimensional regularization to u2, Eq. (2.10) becomes

. Q2 .
Fu(e, Q) = Fu, (asm%), M) o (2.13)

T

The only remaining divergences are due to the collinearity of initial state particles.
We deal with these using mass factorization. We assume that one can factorize Fa,i
into two functions, one which is finite in the ¢ — 0 limit and one which contains the
poles. This is not a unique procedure; rather it depends on a factorization scheme
which specifies exactly what is to be included in each function. We have that

@) = 0 (), 5.1 Y o 2 () ) B 21

r r r

Cscheme g called a coefficient function (sometimes also a Wilson coefficient)

where
and Zizcheme a renormalization matriz (sometimes also a transition function). The
separation occurs at a scale ,u?. The dependence of Z;; on 1/¢ is to denote that Z;;

contains only pole terms in €.

The simplest choice of factorization scheme is called Minimal Subtraction (MS)
[17], in which we absorb only the e-pole terms of F, into the renormalization matrix.
Throughout this thesis, we use the Modified Minimal Subtraction scheme (MS) in which
we also absorb ubiquitous factors of In47 and vg (the Euler-Mascheroni constant) into
Zf}TS From here on we will not typeset the scheme tags on the coefficient functions
and renormalization matrices, but one should bear in mind that these functions always
depend on this choice. One should also bear in mind, then, that throughout this thesis

where we use the symbol € we in fact mean some €’(e, In4m, yg) which — 0 as ¢ — 0.
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We are free to set (without loss of generality, in the sense that the scale depen-
dence can be restored in the results, see for e.g. [18]) the arbitrary renormalization and

factorization scales p? and ,u% to the energy scale Q?, yielding

F,(2,Q%) = Cuy (as(Q%),€) ® Zyj <aS(Q2), i) @ f;. (2.15)

We can now renormalize the “bare” PDFs f] in such a way that the renormalization
matrix is absorbed into their definition, leaving us with a finite expression for the
hadron structure functions as ¢ — 0. That is, we define the renormalized (finite, but
scheme-dependent) PDF

Fia@) = 2 (@)1 ) @ (2,10

and so
F,(7,Q%) = Cui (as(Q%), ) @ fi (as(Q?)) - (2.17)

In the equations above Z;; and by extension the renormalized PDF f; do not carry
the label “a” of the structure functions. This is an important point; although we are
describing DIS here, we claim that all interactions with hadrons should depend on
these universal PDFs. When we determine QCD corrections to Z;; we are computing

quantities that are useful not just in DIS, but in all hadron interactions.

Comparing Eq. (2.10) and Eq. (2.17), we can see that this procedure has introduced
a dependence on ag of the PDF f;, which the bare PDF f] did not have. We have said
that the PDF is non-perturbative and so cannot be computed, but we can describe the
dependence of f; on the energy scale Q2. Suppressing all function arguments, we have
that

dfi dzi; _ z  dZp

dnQ? ~ dame® 2l = qmo?

dz; _
® (Z_lkj ®fj) = [dln52 ®Z lkj:| ®fj, (2.18)

Pi;

where the evolution kernels P;j(as(Q?)) are the Splitting Functions of QCD. Equa-
tion (2.18) is called the DGLAP evolution equation in the literature [19,20,21]. We
mentioned above that the PDFs are universal to all hadron interactions, so the split-
ting functions must be also. Using Eq. (2.18) one can take a PDF determined from the
experimental measurement of the structure functions at a particular energy scale, and

evolve it to a different energy scale for use with, say, a different experiment.

If we perform a Mellin transform of (any of) the above equations the convolutions
reduce to simple products, somewhat simplifying the notation. See Appendix A.3 for
a definition and discussion of the Mellin transform. In Mellin space, we define the

anomalous dimensions 7;; of the PDFs as (in line with the historic convention)

dfi(N)

dmgz ~ DiNEIN) = =95 (N) f(N), (2.19)



and we will use the terms “splitting function” and “anomalous dimension” interchange-
ably throughout this thesis. The splitting functions/anomalous dimensions can be ex-

panded in the QCD coupling, with coefficients defined by
Pij(z,as) Za Pn b and vij (N, as) Za 'yzn R . (2.20)

The coefficient functions of Eq. (2.17) can also be expanded in ag, and additionally in

positive powers of €. We define the expansions of the coefficient functions as

Ca (z,as(Q Za el (2.21)

and
oo oo
Ca (#,05(Q%)€) = Y _ ) ale P (a), (2.22)
i=0 j=0
where in Eq. (2.21) the dimensional regularization parameter € has been set to 0. Note
that the arguments x in the expansions above are convoluted over, as in Eq. (2.8).
They are not the Bjorken-x variable, but we nonetheless call them z in line with the

literature.
From Eq. (2.18) and Eq. (2.19) it follows that

dZp(N)

o dZ (N
75T T Q2

Z_I(N)kaﬁ(as) da. )Z—I(N)kj, (2.23)

where we have used that das/dInQ? = 3(as). Equation (2.23) can be solved order-by-

order in ag to determine Z;; in terms of the expansion coefficients of v;;. The result to

a2 is as follows,

1
Z =1+ asf’y(o)
€

1 1
+a2{ 55010 = Bo)y@ + 57V}

2e2 2e
1
i ag{ 653( 7O B) (7 = 250)7©
+ 25 [0© = 2807 + (O — B2 O] + 242 )
62 3e

1
+ {550 = B0) (10 = 260 (1) = 360)

4o [0 = 280 = 3019 + (50~ 380) (D - )2
1
+ (7(0) —Bo) (7 — 261)3%0)} + 575 |0 = 36027

+ (v = 28139 + (v - By)6y 0>] + 4 1 )} +0@d), (2.24)

where the symbols are to be interpreted as matrices and the arguments (N) have
been suppressed. To perform the mass factorization, one equates an unfactorized
parton-level structure function (N, ag, €) (which contains poles in €) with the product

Cai(N,as,€) Zij(N, as, é) Order-by-order in ag, the anomalous dimension expansion
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coefficients are determined from the coefficients of the € poles of Fa(N ,as,€) and the
coeflicient function expansion coefficients from the remaining finite terms. This matrix

equation forms a system of equations which must be mass factorized together.

In this way, high order corrections to the DIS-specific coefficient functions and the
universal anomalous dimensions/splitting functions are determined from the perturba-

tive computation of the parton-level structure functions of DIS.

2.3 Parton Distribution Functions

We now discuss what “parton species” are present in the hadron, i.e. what values the
sum over ¢ in Eq. (2.17) should run over and what the PDFs f; are. In principle, the
hadron has PDFs associated with all quarks f;, anti-quarks f; and with the gluon g.
This makes the matrix equation of DGLAP evolution (Eq. (2.19)) a system of (2ny 4 1)
coupled equations, where ny denotes the number of (massless) quarks considered. In
the CC case of Chapter 3 we take n; to be even due to the considerations of Section 2.4.

We can simplify the description somewhat by noting a few symmetries.

Quark-gluon and gluon-quark splittings are independent of the quark flavour. We

must have then, that Py, = Py, = Pg,g = Py,4 and so define
Py =mnsPyg =nsPyg (2.25)
(i.e. a gluon splitting to one of ny quark-anti-quark pairs) and that
Py = Pyg; = Pog (2.26)

(any quark flavour radiates a gluon in the same way). By defining the singlet distribu-

tion
nf
0= fi+fi (2.27)
=1

the DGLAP evolution equation can be reduced to a system of just two coupled equa-

d <q5>: Fag - Log ®<q8>. (2.28)
dn@* \ ¢ P,y Py g

Differences in quark and anti-quark PDFs additionally must decouple from the

tions,

gluon PDF during evolution. We form three different so-called non-singlet combinations

which evolve independently,
ny
o= fi—fi and gL =fitfi— (fi+f)) (2.29)
i=1

the valence and flavour-asymmetric distributions. Their evolution is governed by the

non-singlet splitting functions Py, and Pfs.

10



With the exception of g, (called non-singlet to align with most of the literature),
the labels “singlet” and “non-singlet” refer to the transformation properties of the
PDFs under the SU(ns) flavour symmetry of massless QCD. The PDFs ¢4 and g, are
invariant under the switching of up- and down-type quarks and anti-quarks. The PDF's

qffs,ij rather pick up a (—) sign under such a switch and are thus called non-singlet.

The mass-factorized structure functions defined by Eq. (2.17) can be written in
terms of these PDF's. For example, considering just the u and d quarks in the electro-
magnetic case,

Fy = Cag (lu+@) + 5(d+d)) + ()Cagg (2.30)

which can be rearranged to give

5 . AL 7 D) + 2
Fo = 15Caq(u+u+d+d) + §Cans (u+0—(d+d)) + 15Cag9

1
= (2)Cuyqqs + 5Cans q;[s’ud +{e*Cuy 9, (2.31)

where (e?) denotes the average squared charge of the participating quarks. The coeffi-
cient function associated with q;“s,ud has inherited the “ns” label, and is not equal to
Cy,4 at higher orders. The various structure functions that we consider later can be
written in terms of the four PDF combinations defined in Eq. (2.27) and Eq. (2.29).

2.4 The Optical Theorem and Forward Compton Ampli-
tudes

In the preceding sections, we have defined a framework which describes DIS processes.
It separates the non-perturbative physics of the hadronic bound state from the pertur-
bative hard scattering of the lepton and a constituent parton within the hadron. This
allows us to consider QCD corrections to the hard interaction, and we have discussed
how one can renormalize these parton-level hard scattering cross sections. We now

discuss how we will compute them in the framework of massless perturbative QCD.

We proceed, not by squaring amplitudes and computing phase-space integrals, but
via the optical theorem. This relates the squared amplitude to a forward Compton
amplitude, shown in Fig. 2.4. We define this forward Compton amplitude TW (hatted

quantities still denote parton-level objects) such that

. 1 .
W, = —ImT),,. (2.32)
T

11



Figure 2.4: The optical theorem relates a squared matrix element to the imaginary part of a
forward Compton amplitude.

Instead of the phase-space integrals of the usual description, we now must compute

loop integrals. 7, w has the same tensor decomposition as W, (Eq. (2.6)),

R 422 22\ 1 .
TMV(Z7 QZ) = <g;w *p,upV? - (puC_Iz/ +p1/q,u)qQ> TZ(Za Q2)

2z
Qv ) 1 - : P -
+ (gl,LV - ’;2> %TL(ma QZ) + ZEMVPUng(Z’ Q2)7 (233)

written in terms of the parton momentum p = £P and the parton-level Bjorken variable
z = z/€. The (forward) structure functions can be projected out of this tensor using

the following projectors (in D = 4 — 2¢ dimensions),

1 - 1 2 (3—2¢ .
I =— <( g+ 2 ( )p“p”> T,

2z 2 — 2¢) (p-q)?(2—2¢)
1 . q2 N
T = ——5p"p" T,
22 (p-q) !
. ; wp'ay o,
Ty = ! S Ly (2.34)

1-2e)(1-¢) pqg "

It is instructive to consider the tree-level Compton amplitudes. Suppose we aim to
compute the parton-level quark structure function iplq- There are two contributing

forward diagrams, shown in Fig. 2.5. Denoting the quark spinor as u(p) (which can be

q q
_i’Y;L D ¥ q —i'y,,
p p

Figure 2.5: The leading-order foward diagrams contributing to photon-quark scattering.

any quark or anti-quark here), the contributions to the forward amplitude are

P4

P Cigute) and )i E ) (239

ﬂ(p)(_l’}/u) (p_ q)2

for the left and right (crossed) diagrams. The projector for %Tqu in Eq. (2.34) has
two Lorentz structures. Contracting the second (p*p”) with Eq. (2.35) yields 0 since
we take the quark to be massless (p?> = 0) (this implies that leTAqu = 0 at tree level,
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see below). Contracting (in 4 dimensions) with —35 g“”, averaging over the quark spin

and tracing over the gamma matrices yields

J 1 4p - q 4p - q )
— Ty, == <_ + —— ). 2.36
22" 77 2\ (p+q)? (p—q)? (2.36)

Assuming ¢ is large, we may expand the propagators to get

1 . 2p - q 1 1
Bl s R _ +
2.2 g2 ( 14 22 1—21“2"1>

:Ni)<21;2'q>]v+l [_(_1)N q+ 1], (2.37)

and using that the square-bracketed combination vanishes for even N,

%:/%:2 3 <2p2'q> N .S (229 q) =2y (i)N (2.38)

odd N q even N even N

It now only remains to connect this expression with the parton-level structure
function Q—IZFQ,(]. In the kinematic region of DIS 0 < z < 1 but the sum in Eq. (2.38)
does not converge here. A dispersion relation in the complex z-plane allows us to
analytically continue this result to the physical region of DIS, and determine the even-

N Mellin moments of the structure function,

1
R 1 .
Fy4(N,Q?) = /0 dzzV 15}727,](,2,@2), (2.39)

as the coefficients of 2(1/2)" in the sum of Eq. (2.38). See Appendix A.5 for a brief
explanation. We have, then, that qu(N, Q?) =1 at tree level, or 6(1 — z) in z-space.

We find that TLq 0 at tree level, since the projector produces only terms
proportional to p?> = 0 (this is the Callan-Gross relation). %T&q = 0 at all orders in
as, since the antisymmetric e-tensor of the projector (Eq. (2.34)) is contracted with a

Lorentz structure that is symmetric in its indices.

In the CC case, the situation is a little different. For any given incoming quark or
anti-quark, a crossed diagram (corresponding to the right-hand side of Fig. 2.5) must
have the oppositely-charged W boson due to charge conservation at the vertices. The
diagrams for an incoming d quark, for example, are shown in Fig. 2.6. The vertex factors
are (proportional to) —iv,Pr, = —iv,(1 — v5)/2 for initial state quarks or —ivy,Pr =
—iv,(1 + 5)/2 for initial state anti-quarks.

The contributions to the amplitudes of these two diagrams are proportional to

)i P B i Pu) and al) (=i P = S (<P (() |
2.40

for initial state quarks and, for initial state anti-quarks,

pt+d
p+q)?

v(p) (=i Pr) -~ ( 5 (=17 Pr)v(p) and v(p)(—inR)(Z__g
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Wq Wq W=q qW-

_Z"}/MPL _i71/PL _i’YI/PL p—gq _i’YMPL

P+q
p p p p

Figure 2.6: The leading-order foward diagrams contributing to W*-down-quark scattering.

If we sum the two diagrams (so we compute the linear combination W+ + W~
of W¥ scattering), contract with —%g’““’ , average over quark spin and trace over the

gamma matrices we find (expanding the propagators as in Eq. (2.37))

iTQWﬂ-W* _ 1 (_ 2p-q 1 2p-q > _ Z (1>N_ (2.42)
2z 1 2\ (+9?* @-9?) S\ \2
Again we find that éfgﬁ;‘kwi = 0 but now, due to the presence of the v5 matrix in
the vertex factors, there is a non vanishing contribution to T:K[(/IJUFW_ given by
TW++W_:1<_ dp-q  4p-q ):22 (1>N (2.43)
o 2\ (+a9? (-9?) "L\

and the same expression with an overall (—) sign if we are considering an initial state
anti-quark (due to the Pg in place of Pr, in the vertex factors). Unlike the expressions
for %Tqu and %TQW W above, in the expression for T;TJFW?

¢ the sum runs over
odd values of N.

We can also form a linearly independent combination in which we subtract, rather

than add, diagrams involving a W~ boson. Following the same steps as above, we have

1TW+—W:1<_ 2p-q B 2p-q >: Z <1>N
2724 2\ (p+9?* (p—9q)? z)

odd N
1 SWE—W
%TL,CI =0,
N
w1 dp - q dp-q 1
N =9 - 2.44
S 2( (P+Q)2+(P—Q)2> e%%:N(Z ’ (249

where again, the expression for T?K‘;JF_W_ picks up an overall (—) sign for an initial state
anti-quark. The sums run over different N values for this W™ — W™ combination. One
must consider these linear combinations W+ £ W ™~ in order to map onto either even-N
or odd-N Mellin moments. We are interested in both combinations, since in principle
an experiment can determine which W boson was exchanged in an interaction, or be

set up to only exchange one of the bosons.

The above considerations apply also at higher orders, and to the structure functions
for interactions with a gluon inside the hadron. Although we do not discuss it here, one

may also refer to the Operator Product Expansion (OPE) of the currents interacting
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with the parton. This procedure yields the same conclusions regarding the computation
of even-NN and odd-N Mellin moments for various structure functions. For a discussion

see, for example, [22,23,24].

For the quark parton-level structure functions we define also the “non-singlet” (ns)
coefficient functions, as briefly discussed below Eq. (2.31). In the W — W™ case there
are only the ns parton-level structure functions, which are convoluted with the flavour-
asymmetric PDFs qffs’ij of Eq. (2.29). These structure functions will carry an ns label
throughout Chapter 3.

In summary then,

e For Electromagnetic DIS, one computes even-N Mellin moments for the parton-

level structure functions Fs 4, Fo 4, Fr 4, FL 4.

e For CC DIS in the W+ + W™ combination, one computes even-N Mellin mo-

. AWHIW S AWEAW - AWt W—
ments for the parton-level structure functions FQVZ W FQMZJ two FZVq W

F2V[;++W_ and odd-N Mellin moments for F;Z++W_.

e For CC DIS in the WT—W ™= combination, one computes odd-N Mellin moments
for the parton-level structure functions FQZ+_W7, FEV;_W7 and even-N Mellin
moments for F;‘f]ﬂw—.

e For Higgs-exchange DIS, one computes even-N Mellin moments for the parton-
level structure functions F¢,qa F¢,g, which are a useful theoretical probe; one
considers the direct coupling of a scalar boson to the gluon. This allows the
determination of the “lower row” of the splitting function matrix, Py, and Py, of

Eq. (2.28).

The 3rd bullet point is the topic of Chapter 3, where we compute the third-order
corrections to these W+ — W~ CC parton-level structure functions. The 1st, 2nd and
4th points are the topic of Chapter 5, where we compute Mellin moments of the fourth-
order corrections to (parts of) these structure functions. Chapter Chapter 4 concerns
coefficient functions and splitting functions related to the structure functions of the
1st, 3rd and 4th bullet points.
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Chapter 3

Third-Order QCD Corrections to
Charged-Current Deep-Inelastic
Scattering

Full, analytic expressions for third-order QCD corrections to most quantities describing

massless DIS have already been computed. Here we provide a set of references for the
convenience of the reader. The non-singlet anomalous dimensions y,(i)’i and 77(125)"/

were computed in [25] and the whole singlet system 7-(2) in [26]. The corrections to

ij
the non-singlet and singlet coefficient functions cé?’) and c(LS) were presented in [27] and

g?%;W++W_ in [28]. The third-order corrections to the
(3)

Higgs-exchange coefficient functions ¢ " (which are useful only as a theoretical tool, as

to the CC coeflicient function ¢

explained in Section 2.4) were presented in [29].

In this chapter we consider third-order corrections to the other CC combination,
WT—W ™, as discussed in Section 2.4. Some calculations of these functions exist in the
literature, in the form of numerical approximations. These are discussed in more detail
in Section 3.1.1. The analytic computation of these coefficient functions presented in
this chapter completes the third-order description of CC DIS in massless QCD. Some
results of this chapter have been published in [2] and will be published in [3].

3.1 Introduction

Here we repeat some of the formalism outlined in Chapter 2. We define the structure

functions for this “W+— W ™" case as follows,

FVWo oWV W g 7 0, =CV TV g g (i=2,1L)

i,ns i,ns i,ns
WH-Ww= _ ~AWt—W~ + oAt AW +
F3,ns - CS,ns ® Zns ® dpns = CS,ns ® Qns- (31)

. . + . .
The anomalous dimensions 7,5 are defined in terms of the ZI, matrices,

dZ=,
dInQ?

= (z5)". (3.2)
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We define the short-hand C£ = CWV W™ for use throughout this chapter. It should

i,ns i,ns
be mentioned that this notation is different to some of the literature. For example, [28]
defines C’gf:l?rw_ = (3 _, where the (—) label is referring to the fact that the quantity

is based on odd-N Mellin moments. Throughout this thesis, the label rather refers to
whether the coefficient function is for the W+ + W~ or W+ — W~ combination. The
anomalous dimensions 'yfs are both already known to third order in ag [25] (the label of
%jfs does not refer to the combination W+ 41~ but to their evolution of the PDFs ¢,
see Eq. (3.1)). The calculation outlined here will reproduce them, providing a strong

check of the consistency of the results for the coefficient functions.

There are a few aspects of renormalization relevant here which were not discussed
in Chapter 2. The general procedure is much the same; we renormalize the strong
coupling as pare and mass factorize the remaining (collinear) poles in € into the bare
PDF, producing a physical result. The structure function Fﬁ:_wi, however, is slightly
more complicated (as would be F;ZL:J“W_). As discussed in Section 2.4, the vertices in
the diagrams for this structure function contain the projectors 3(1 — 7s) or (1 + 75)
where the W bosons couple to quarks or anti-quarks. One must consider carefully
how to treat the intrinsically 4-dimensional v5 in D = 4 —2¢ dimensions. Here, as in for

e.g. [28,30,31,32], we use the “Larin scheme” [33] in which one makes the replacement

7

YuYs — éful/po’YV'Yp’YU- (3'3>

This can be contracted in the usual way with the e-tensor of the projector of Eq. (2.34),
outside of the D-dimensional renormalization operation, yielding contractions of the
metric tensor which can be defined in D dimensions. The use of this scheme violates
the axial Ward identity, incurring the additional (MS) renormalization factors Z4 and

Zs. These factors are computed to a in [33,34] and are given by

2
Za=1+% (5CaCr — 3nsCr) + 6403 (f54 [44Cans — 121CF — 4n]

Cr
35922

[1780C 2 — 1386CrCy + 144Cny] — 416Cans + 4nf) (3.4)

and

Z5 =1 a,Cp(4 + 10 + [22 — 2¢2]e?) + a{CF (22CF ~ g Cat gy

te [CF(132 — 48(3) + CA(_% +48G3) + nf%])

185 | 3 2917 5 2147 | 7
+ 6dag (CE’(— o6 + 56) T CRCA(Z51 — 56) + CrCi(—T05 + 563)
3 1 89 1 13
+C}%nf(—g - 6C3) + CFCAnf(T% + 6(3) + 12960}771]?) . (3.5)

See [35] for discussion on the implementation of this scheme in a computationally
efficient manner. After multiplication by these factors, one may proceed with the mass

factorization of the parton-level structure functions.
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3.1.1 Existing Results

CC DIS in the WT — W~ combination has been fully computed only to the second
order in as [23,30]. First results on the third-order corrections were obtained in [36],

in the form the first five odd-N (even-N) Mellin moments of the third-order coefficient
3),Wt-w- B)Wrtr-w- , 3),WT-Ww~—
2,ns L,ns (03,713

Mellin transform to produce an xz-space expression requires not just a few moments but

function contributions ¢ and c ). Of course, an inverse

the analytic all-V dependence of the function.

However, given a few moments one can produce an approximation of the exact z-
space result by choosing a suitable functional ansatz and fitting coefficients to reproduce
the known moments. This procedure is performed in [37]. The sixth moments of the
W+ — W~ coefficient functions were presented in [38] and used as a verification of
the approximations. At large values of x, such approximations prove to be reasonably

accurate.

To second order, these coefficient functions and their opposite-sign (W+ + W ™)
counterparts have the same large-x behaviour. It is helpful to define and consider
the differences between the W + W™= and W+ — W~ coefficient functions, which are
therefore suppressed at large . The approximations of [37] are made, not directly to
the W — W~ coefficient functions, but to these differences. We define

§C; = VW _eWVEWE (=2 L),

5Cy = CYV =W _olvTHwT (3.6)

where we always form the difference as the even-N minus the odd-N quantity. This
difference must be formed in x space after the appropriate inverse Mellin transform
of the even-N and odd-N parts. Additionally, these differences are formed with the
caveat that the so-called “flye”-flavour-class diagrams (in which both bosons couple

CW++W7

3ms coefficient function

to a closed, internal quark loop, see Fig. 3.1) of the
are removed. This flavour class does not contribute in the W+ — W~ case, which is

proportional only to the flavour asymmetric PDFs.

flo floz

Figure 3.1: Representative three-loop diagrams for the diagram classes flo and flos of CC
DIS. In flys diagrams neither boson couples to the external quark line; they both couple to the
same internal quark loop.

These approximations are plotted in Figs. 3.2 and 3.3. They have been used in the
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analysis of [39] in which the N3LO corrections to the cross-section for Higgs production
via vector-boson fusion have been estimated. Although authors state that the additional
uncertainty in the cross-section incurred due to the use of these approximations is very
small, an exact result is always preferable if possible. There has also been a lot of
recent progress on the computation of massive quark corrections to DIS, see [40] for an
overview. These computations require knowledge of the massless coefficient functions,

motivating their complete calculation here.

3.2 Software and Calculation

We take a moment here to outline the software used in the computation of these third-
order corrections. Due to the large number of Feynman diagrams contributing at this
order, much automation is required. First the diagrams are generated by QGRAF [41],
which produces 3633 diagrams. These are further processed by a FORM [42] script known
as convdia, whose role is to simplify the QGRAF output and bring it into a form suitable
for further processing. (Throughout this thesis, references to FORM really mean scripts
run with the parallel implementation, TFORM [43], which provides large reductions in
wall-time when running on multi-core computers.) Where possible, diagrams are com-
bined into “meta-diagrams”; collections of diagrams of the same topology, colour factors
and flavour class, differing only in the particle type of various lines. This procedure

produces just 233 meta-diagrams for each of FVW" and F' =W and 198 meta-

2,ns L,ns
FW+—W_

diagrams for Fy)

, greatly reducing the time required to complete computations.

These meta-diagrams are the input for further tools. MINCER [44,45] is a package
which computes Mellin moments of the parton-level structure functions for fixed values
of N. The diagram database used here is much smaller than that of [36] due to a
greatly improved version of convdia. Between this and access to more significant
computational resources, we have extended the fixed-moment MINCER calculation from
the first 6 to the first 15 moments of each of the W — W~ structure functions. As
well as to verify this new, smaller, diagram database against the previous calculations,
these moments were used to attempt a reconstruction of the all-N expressions in the
style of Chapter 5. This approach was unsuccessful for the most difficult terms (those
proportional to ng)c) and all discussion of this method is deferred until Chapter 5 where

it is used to reconstruct other quantities.

The diagram database was also used with an in-house “all-N” code, which can
compute an analytic result directly from the diagrams. This is the code which was
used in other third-order computations of DIS structure functions and is described
briefly in [27]. This code is what ultimately completed the calculations here, although
the colours factors that were successfully reconstructed from Mellin moments of course
agree with the full results. The MINOS database facility [46] handles the automation of
both these and the MINCER calculations of the diagram sets.
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3.3 Results

Here we present the results of the calculations outlined in the previous sections. To
reduce the length of the typeset expressions, we present only the even-N—odd-N dif-
ferences as defined in Eq. (3.6). The exact expressions are nonetheless rather lengthy
and are deferred until Appendix A.7, in which they are presented in x space in terms

of the harmonic polylogarithms defined in Appendix A.2.

The parametrizations presented here are accurate to within 0.1% of the exact
expressions for z € (1076,1), to within 1% for € (107%,107%) and to within 3%
for x € (1071°,107®). They are not intended for use outside of this range. The ng
dependence is retained as a symbol and the colour factors C'4 and Cg are set to their

SU(3) values of 3 and 4/3 respectively. We also define the following abbreviations,

X1 = (1 — .T),
L; =log X1 =log(1 — x),
Ly =logz, (3.7)

to make the typesetting a little more compact. These parametrizations are obtained
by choosing a suitable z-space functional form (small-z and large-z logarithms and
interpolating polynomial terms) and fitting the coefficients to the exact result using
MINUIT [47].
8¢ = +(+273.59 — 44.950 — 73.562% + 40.682° + 0.1356L + 8.483L}
+ 55.90L3 + 120.67L% 4 388.0Lo — 329.8LgLy — xLo(316.2 + 71.63Lo)
+46.30Ly + 5.447L7) X3
+( —19.093 + 12.97z + 36.442% — 29.2562° — 0.76L§ — 5.317L3 — 19.82L]
—38.958L¢9 — 13.395Lo L1 + xLo(14.44 + 17.74L0) + 1.395L1 ) X1ny
+( = 0.0008 + 0.00017n7)d(1 — z), (3.8)

oel?) = +(— 620.53 — 394.5z + 16092° — 596.22° + 0.217L3 + 62.18L3 + 208.47Lg
— 482.5LgLy — xLo(1751 — 197.5L¢) 4+ 105.5L; + 0.442L7) X7
+( — 6.500 — 12.435z + 23.662% + 0.9142” + 0.015L§ — 6.627L§ — 31.91L,
— xLo(5.711 + 28.635L¢)) X3n, (3.9)

des)) = +( — 553.5 + 1412.50 — 990.3¢2 + 361.12° + 0.1458L3 + 9.688L{
+90.62L3 + 83.684L% — 602.32L¢ — 382.5Lo L1 — 2Lo(2.805 + 325.92L0)
+133.5L; + 10.135L7) X4
+( = 16.777 + 77.78z — 24.812* — 28.892° — 0.7714L§ — 7.701L}
— 21.522L3 — 7.897Lg — 16.17Lo Ly + xLo(43.21 + 67.04L)
+ 1.519L1) X1ny
+( = 0.0029 + 0.000067£)5(1 — z), (3.10)
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The delta-functions enhance the accuracy if these expressions are used to compute
approximate Mellin moments or convolutions, which require numerical integrations up

to the x = 1 endpoint.

The QCD corrections to the Paschos-Wolfenstein relation, which we will discuss
briefly in Section 3.4, require the second (N = 2) Mellin moment of these coefficient
function differences. As discussed in Section 2.4, the even-IN moments of CQVZ;,*W_
and CK;;Wﬁ are not directly accessible to these N-space computations. Since we now
have the exact z-space expressions for these coefficient functions we are able to perform
an even-N Mellin transform and thus obtain the “unnatural” even-N moments. The

exact expressions at NV = 2 are given by

3 1496939 4958 . |, 160852, |, 4520 8 -2
S5 (N =2)=+Cr( — Tgrn — o+ q05- G + 5 GG — 3G

309253 15616 7093
— T35 G+ A8GLG + T — TCG)

1482179 | 358747 910861 11764 368

+Cal — oqi T Tas6 2T Taop BT oo G2t 3G
181501 1028 . 2161
+ G4 — 4804l + —C + —5—C6
15 9 9
552223 23362 155744 . 704 53594 . 896
+ ”f< 7200 — 243 &2t 7405 3t g GG — T35 G- TC5>

(3.11)
and

3 45284 1316 12536 1664, 224
5C(L,)ns(N =2)=+ CF( 1215 — 27 2t T35 G +32GG — T5 G- T<5>

8119 3046 22028 12644 176
+ CA< 162 ~ 27 CZ ~ 135 CS + 32C3<2 + 45 C4 - ?CS)

+nf<%+12%6c2+112—§52g3— %2@1). (3.12)
In these expressions we retain the full dependence on the colour factors C'4, Cr and ny,
and suppress an overall “non-planar” colour factor of Cr (C'4 — 2CF) in both expres-
sions. This overall factor is a prediction of [48,49] and implies the vanishing of these
expressions in the large-N, limit (V. being the number of colours). Also of note is the
appearance of the irrational constants (s and (g. These do not appear in the “natural”
(3),+

3 (3)7_ ) —
moments of either Cims O Cini s fori=2,L,3.

The numerical values of these moments (which include the overall colour factor
combination of Cr (Cy — 2CF)) with Cp and Cj4 set to their QCD values of 4/3 and 3

respectively are

5es)) (N = 2) = —20.40014403 + 0.7220159109 n s (3.13)
and
5c?) (N = 2) = —24.77551732 + 0.8013314149 n 7. (3.14)
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The approximate values of 50525(]\7 = 2) and 50(521 (N = 2) computed in [37] prove
to be very accurate. They have errors of just 0.5% and 0.07% respectively, and the
exact values are within the quoted uncertainty. We thus expect that the conclusions
regarding the Paschos-Wolfenstein relation, i.e. that the third-order QCD corrections
are very small, will remain unchanged by the inclusion of the exact values of the second

Mellin moments.

The new exact results are plotted alongside the approximations of [37] in Figs. 3.2
and 3.3. While the new lines (labelled: s = — (ex.)) fall within the band formed by the
approximations (s = — (A4, B)), we see that for small values of x the approximations are
rather unreliable. Indeed, they describe the exact results to within a 5% error only for
x values above 0.12, 0.14 and 0.16 for 0(3)’_, i = 2, L, 3 respectively. The (s = + (ex.))

,MS
lines are ¢ and are plotted for comparison with the new results. The plots show the

o (3).+ (3).—

s e » Which will be discussed in more detail
k) k)

common large-z behaviour of ¢ and ¢

below.

It is worth pointing out that the even-N function cgggl’; is not approximated as

well as the odd-N Cg?f){s_ and 6533213_ This is because the small-z behaviour is governed
by the small-N behaviour, particularly for N values close to the pole at N = 0. Since
the odd-N moments N = 1,3,... are closer to this pole than the even-N moments

N = 2,4, ... they are better able to constrain the small-z behaviour.

Despite these small-x inaccuracies, the approximations are more useful than they
first appear. It is not the coefficient functions themselves that are of experimental
relevance but the their convolution with a PDF. As can be seen from its definition
(Eq. (A.9)), in the Mellin convolution integrand when one function is evaluated at
small values the other is evaluated at large values. Thus, the inaccurate small-x region
of the coefficient function approximations are multiplied by the (small) large-z part of
the PDF. [37] deems the convolution of the approximations to be reliable for = values

as low as 1073.

Note that in Fig. 3.3 as well as the plots of Sections 3.3.1 to 3.3.4, the curves for

Cgf s do not have their flpo contributions. This allows a “like-for-like” comparison with

the Cy,, curves. Fig. 3 of [28] shows C4 .., with and without the flps contribution and

ns

the paper contains a discussion of its effects.
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Figure 3.2: The exact (labelled: (ex.)) third-order coefficient function contributions c

cgsr)w and c(L3)n:_, (Lg’)ns , plotted with four massless flavours. The colour factors C'4 and Cp take

their QCD values 0f3 and 4/3. The curves labelled (A, B) are the previous approximations. An
overall factor of (1/2000) ~ 1/(4n)? is included to approzimately convert the result to a series
m og.
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Figure 3.3: As Fig. 3.2, for cég,)g, ngr)w .
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3.3.1 Perturbative Stability of the Coefficient Functions

In Fig. 3.4 (i = 2), Fig. 3.5 (¢ = L) and Fig. 3.6 (i = 3) we show the perturbative
(z) and C;  (z). They allow us to assess the stability of the

%,ns

expansions of both C’jns
perturbative expansion in the strong coupling constant as and investigate how this

stability depends on x.

As can been seen in all three pairs of plots, the second-order corrections (labelled as
“NNLO” in Figs. 3.4 and 3.6 and as “NLO” in Fig. 3.5) are rather large for small values
of x; the lines diverge significantly from the first-order expressions at x values as large
as 1072. One cannot claim to have a good understanding of the coefficient functions
with these contributions alone. The third-order corrections (labelled as “N3LO” in
Figs. 3.4 and 3.6 and as “NNLO” in Fig. 3.5) do much to improve the situation. We
observe rather small corrections to the second-order lines over much of the x range
plotted.

More quantitatively, for C;f ns and Oy, ¢ the N3LO curves correct the NNLO curves
by less than 3% in the regions (2.1 x107" <z < 0.74) and (5.8 x1078 <z < 0.75)
respectively. Cgf ns and Cg . o display rather similar behaviour. The N3LO curves cor-
rect the NNLO curves by less than 3% in the regions (3.5 x10 8 <z < 0.74) and
(9.6 x1078 <z < 0.74) respectively. C’Zm and C’L_’m converge less well by compari-
son. The NNLO curves correct the NLO curves by less than 5% only in the regions
(0.13 <2 < 0.92) and (0.0072 < x < 0.92) respectively, and by less than 11% in the
regions (8.7 x107% <z < 0.97) and (1.0 x 1077 <z < 0.97) respectively. A 100% cor-
rection is reached at z values as “large” as 2.4 x 10~7 and 8.3 x 1078, The reason for
this reduced convergence is the lack of a tree-level a’ contribution, which adds 1 to the
value of C5 _and C5

2,ns 3,ns"

It should be stated that these plots demonstrate a rather ideal scenario, with a very
low o value of 0.12. This is the value of o around the scale of the W+ mass, relevant
to high-energy neutrino scattering. A more typical «g value of, say, 0.2 would yield
somewhat less well-converging curves. Nonetheless, the new third-order corrections
provide the first opportunity to assess the convergence of these coefficient functions

and to assess the vales of x for which they can be considered reliable.
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Figure 3.4: The perturbative expansion of the coefficient functions Czns and Cy ¢ to third
order, plotted with four massless flavours and an as value of 0.12. The colour factors C4 and
Cr take their QCD values of 3 and 4/3.
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Figure 3.5: As Fig. 3.4, for the coefficient functions C;m and C;
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Figure 3.6: As Fig. 3.4, for the coefficient functions C’;:ns and Cg .

3.3.2 Small-»

Behaviour of the Coefficient Functions

We now consider the behaviour of the coefficient functions in the small-z limit. First, we

present expressions for the functions in this limit, which give the dominant behaviour

in terms of powers of small-z logarithms Ly = In(x).
We find for cg?l’;,
3),— 2 53 29
chine |, = +3CACrF + 350k — 50aCE,
0
- 4 24 1
0
— 92 710 1873
cg?r)w 3 :—ﬁCFn?c+ (13* CQ) CF OF f+ 27 CACan
0
14183 220 7117
+ ( 162 CQ) C’AC’F ( 81 + <2> CACF7
— 496 2945 3652 112
Cg?r)Ls 2= T S1Crn} — ( o7 T Cz) Cin f+< -5 CQ) CaCrny
0
+ (—13607 — 026 — 818;) CF + (F51° + 281G + 344G ) CaCE
34115 352 212
_(8—1_ 5 G2+ C3> CACr,
3),— 1204 16 43207 644
s o (_1 - ?C2> Cpnj — < o+ et C3> Ciny
0
12 2752 112
+ (3 S0 _ 7? G2 + C3) CaCpny
182801 |, 21349 4862 1636
+( 320 T a7 G2t g Gt T3 C4>CACF
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01
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232 2
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374105 16832 1756
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(3.15)

+ o+ o+

(3)77

3ns We find

For ¢
(3)7_ _ 1 3
03 LS - _QCF’

0

91 2 3 1001
- +a0an + ZCF 108 CACF)
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(3)1_

Finally, for Clps WE find
92 104
Ph |, = +5Ch = g CaCE +8C5Cr,
0
Bl = 160402 +1604CFns — 20020 — 4402 Cp + 64C3
Lns L02 AV R AV FILf Fitf AVYF F
e |y = = Crni + 3RCaCony = BfChny — (218 + 3526,) O
0
— (B30 +566,) A0 + (B2 +352G) CaCh,
— 4 264 1
C(Iizw Lo — (339 —|—32C2) CF nf+ (5 04 _ §6C2> CACan
0
(6(2)%6 4688y + 464(3) CaC2 — (65;’%0 I 160{3) 20

- (1016 + 544¢, + 192@,) 3. (3.17)
As is the case with the cg?n):r coefficient functions, szz’; has a maximum power of L
that is two below that of {2 ().~

2,ns and C3,ns .

The convergence of these leading logarithms on the exact expressions is best
demonstrated with the plots Figs. 3.7 to 3.9. As above, we plot both the even-NV
and odd-N coefficient functions. We show lines for the Leading Logarithmic (LL) ap-
proximation (labelled L5 for cggr)mi and cg ,)Lsi , and L3 for C(L )ns ), the Nezt-to-Leading
Logarithmic (NLL) approximation which is the sum of the two highest power logarithms
(labelled + L for cg‘?,);si and cgsy)lj , and +L3 for c(l?zwi) and so on.

It is clear that the first few logarithmic approximations do not provide a good

(3)+ and 0(3)’i

description of the exact expressions over the plotted range. For ¢y 3 e

(3)+

Lns

we
appear to need a N3LL approximation, and for ¢ a NNLL approximation, to achieve

reasonable accuracy.

In Chapter 4, we will discuss the all-order resummation of small-x leading log-
arithms for various DIS quantities, including C5, ;. Looking at the results here, we
cannot hope that these resummations can have any direct phenomenological applica-
tions, since knowledge of just the highest few logarithmic contributions appears to be
insufficient to approximate the exact function, even for small values of z. Indeed, the
problem is worse at higher orders; the tower of logarithms grows ever higher with the
power of as. A fixed number of logarithms captures less and less of the behaviour. In
addition new flavour structures can appear, the behaviour of which cannot possibly

be predicted from lower-order information. For example, the flps diagrams discussed

(3),+

3,ns

below Eq. (3.6) have a large effect on ¢ at small-z. Nonetheless, the resummations
of Chapter 4 will be useful for more theoretical reasons and these will be discussed in

detail later.
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Figure 3.7: The small-z behaviour of the third-order coefficient function contributions cgi)wi ,

plotted alongside their logarithmic approximations. The curves are plotted for four massless
flavours, and the colour factors Cx and Cr taking their QCD values of 3 and 4/3. An overall
factor of (1/2000) ~ (1/(47)3) is included to approzimately convert the result to a series in as.
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Figure 3.9: As Fig. 3.7, for E

3,ns
3.3.3 Large-r Behaviour of the Coefficient Functions

Here we describe the large-x behaviour of the new results. This is done most com-
pactly by giving the large-x expressions for the even-IN—odd-/N differences as defined

in Eq. (3.6). As in Egs. (3.11) and (3.12) we suppress the overall colour factor combi-
(3)

2,ns?

nation Cr (C'4 — 2CF) in the typesetting. We have for dc

5es) = {(12 - 8<2> C’F] (1-2)+0((1-2)%),
5es) e K 50 — 48¢3 + 6842) Cr + <—22 + 643 — @)
—|—< )nf} (1—30)—1—(’)((1—30)2) ,
il = (5 + B 120 - ) cot (-4 Fas Ta)

(725;0 _ %g @@ _ 464@) } (1—2)+0((1-a)?) .

(3.18)

(3)

3,ns?

Similarly, for dc

5es) L [( 20+ 8§2> CF] (1-2)+0((1-2)?),
152
o) | = [(158 + 483 — 100@) Cr + (g — 64Cs + @)
1

N <196> nf} (L—2)+0 (12,
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scl3)

3,ns

608 64 160
o= [( — 28 — 96(3 + 88(3 + 172§2> Cr + < - G- 9C2> nf

1 9 3
4 4
(2 0 T 0] o (0.
(3.19)

Due to the longitudinal projection another factor (1 — x) relative to Eq. (3.18) and
(3)

L,ns’

Eq. (3.19) appears for éc

Ol L = [( ~ 32+ 16@) CF] (L= +0((1—2)%

1

1
+ 0O ((1 - 1‘)3) ,

608 64 160
e L= K — 28 — 96¢3 + 88 + 172@) Cr + (9 - G- 9@) ny
5600 | 192 , 496 . . 784

" (‘9 Ty Gty G 9<2> CA} (1-2)*+0(1-2)).

(3.20)

The coefficient functions C;rns

and C;, . display the usual large-z double-logarithmic

enhancement in their third order contributions. The differences 50525 show much can-
cellation, however. They are suppressed by two powers of (1 — z) compared to the
functions that form them, and their maximum power of L; is lower by 3. The leading

large-z behaviour of ¢~ is thus the same as that of ¢>F for i = 2,3, L.

i,ns i,nS

3.3.4 Perturbative Stability of the Structure Functions

We now investigate to what extent these new third-order corrections to the coefficient
functions affect structure functions. As explained in Section 2.1, the structure func-
tions are a convolution of the coefficient functions and non-perturbative PDFs. The
PDFs are determined by fitting (rather complicated) functions to experimental data.
This is a highly non-trivial procedure with many research groups adopting different
approaches and assumptions. Here we do not choose any particular PDF with which
to convolute our coefficient functions but rather use a simple but sufficiently realistic
function, intended to suitably represent the general shape of real PDFs. We use, as

in [25,27,37],
zf(x) = Va(l — z)>. (3.21)

This form is inspired at small-x and large-z by Regge theory and counting rules for

quark distributions. See for e.g. [50,51] for a discussion.

We plot in Figs. 3.10 to 3.12 the following six structure functions,

FWVTEWT _ oWTEWT g r 0 (i=2,L,3), (3.22)

i,ns 1,ns
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FWHEWS

©,ns

/f. Of course, each of
the PDFs in these equations should really be different, as discussed at the end of

normalized to the value of the PDF, i.e. we plot
Section 2.4. We use the same PDF everywhere here to facilitate an easy comparison
of the convolution of the different coefficient functions. There is a small technicality
in computing these convolutions. The coefficient functions contain plus distributions
and delta functions which must be handled carefully. The procedure is described in
Appendix A .4.

1.15

1.1

1.05

(Crn® )/ |

1.15

1.1

1.05

(Cons®@ 1) /1

0.95 1 |||||||I 1 |||||||I 1 ||||||‘ 1 |||||||I 1 |||||||I 1 |||||||I 1 |||||||I RN 0.95
8 6 4 2 -8 6 4 2
10 10 10 10 1 10 10 10 10 1
X X
Figure 3.10: The perturbative expansion of the structure functions F;‘i;iw7 to third order,

using a reference distribution xf = \/z(1 — x)3. The curves are plotted with four massless
flavours, Cy and CF taking their QCD values of 3 and 4/3, and an oy value of 0.12. The lines
are normalized to f(x) for plotting purposes.

Successive contributions to the as expansion for these convolutions converge better
than the coefficient functions themselves. As pointed out near the end of Section 3.3,
the convolution with a PDF suppresses the effect of the small-z region of the coeffi-
cient functions. This is exactly the region in which the third-order corrections to the

coefficient functions diverge significantly from the second-order corrections. The N3LO

contributions to ngffl:iw_ and F;‘giw_ thus correct the NNLO contributions by less
than 1% in the range (1078 < 2 < 0.82). The NNLO contributions to FZV:Siwi, as

with the associated coefficient functions, converge less well. Even so they correct the
NLO contributions by less than 3% in the range (107® < z < 0.12). All six struc-
ture functions of CC DIS therefore appear to be stable for x values relevant to current

collider experiments [6], when a3 corrections are included.
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Figure 3.12: As Fig. 3.10, for the structure functions
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3.4 Phenomenological Application: The Paschos-Wolfen-
stein Relation

The NuTeV experiment caused excitement some years ago due to a measurement of
the weak mixing angle, sin? ¥y, which was 30 above standard model predictions [52].
Dubbed the “NuTeV anomaly”, this measurement of sin?¥y was determined via
the Paschos-Wolfenstein relation [53], the ratio of neutral-current to charged-current
neutrino-nucleon scattering:
R o(vN - vX)—o(wN —1vX)

PW " g(vN - 1-X) —o(PN — It X)’
This discrepancy motivates, in [37], the consideration of the QCD corrections to this
ratio. Beyond leading order in QCD, Eq. (3.23) may be written as [37, 54]

(3.23)

1 T —d T -5 7 1
R;W:§—Sjn2ﬁw—|—u re 5 {1—3sin219w+<2—sin219w>><

u” +d-
8 ag 9 . ® 9 (3) 2
—— |14 1. s 61792 — o 2)+ —6 2
9 [ + 1.689¢a + <3 6179 25672 €5 ps(2) + 102472 CL,ns( ) | o
1 4
— . .24
+(’)<(u+d)2>+(’)(as) (3.24)
The symbols ¢~ = fol dzz(q— q) are the second moments of the valence distributions of

the quark flavours, and we have expanded in inverse powers of the dominant combina-
tion (u~ +d~). The quantities scid) (2) and 5ctd)

2.ns Lns

results of this chapter, and were given in Egs. (3.11) and (3.12). We mentioned that

(2) are known exactly from the new

the numerical values of these moments (given in Egs. (3.13) and (3.14)) are very close
to the approximations of [37] and as such, our conclusions about Ry, do not change.
The coefficient of a2 in Eq. (3.24) is given by 3.66109, compared to the previous ap-
proximation of 3.661 £ 0.002 (an error of just 0.009%). Rpy is thus stable under QCD
corrections. The third-order contribution increases the square-bracketed combination

by 16% and the curly-bracketed combination by just 1%.

3.5 Conclusions

In this chapter, we have computed the coefficient functions of CC DIS for the linear
combination WT— W ~. Along with the existing results for the W+ 4+ W~ combination
(see [27,28]) we have completed the description of CC DIS at the third order in massless
QCD. The main results of this chapter have been provided in terms of the difference
between the W+ + W~ and W+ — W~ coefficient functions. Compact, yet accurate,
parametrizations were given in Egs. (3.8) to (3.10) and the exact results are given in
Appendix A.7. FORTRAN and FORM files for these parametrizations and exact results will

be included with the arXiv source of the article [3].

We have found that by including these third-order corrections, the perturbative

expansion of these coefficient functions appears to be stable for the experimentally
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relevant range of . This was found to be especially true of the CC structure functions

Ft

ins U= 2,L,3, determined by convolution the new results of this chapter with a

reference distribution.

We also investigated the behaviour of the coefficient functions in the small-z and
large-x limits, paying particular attention to the extent to which the small-z double-

logarithmic approximations converge on the exact curves. The leading logarithms of
(3)7_

3,ns

which we consider the resummation of these double logarithms to all orders of pertur-

c given by Eq. (3.16) form the input for some of the computations of Chapter 4, in

bation theory.

Knowledge of the exact x-space expression allowed us to evaluate the second Mellin
moment of the differences between the W + W~ and W — W™ coefficient functions,
60@13 and 50?%8, which contribute to the third-order QCD corrections to the Paschos-

Wolfenstein relation. We concluded that these corrections are of negligible effect.
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Chapter 4

Resummation of Small-r Double
Logarithms in Deep-Inelastic
Scattering

4.1 Introduction

While high-order corrections to the anomalous dimensions and coefficient functions,
such as those of Chapter 3 and Chapter 5, allow us to describe DIS with great precision,
they do not do so for the entire kinematic range. For large and small values of the
parameter x, (that is, in the limits x — 1 and 2 — 0) we find powers of logarithms
of (1 —x) and x which can spoil the convergence of the series. For any fixed value of
as, one can of course find a value of = for which In(1 — z) or Inz dominates ag raised
to any power, as demonstrated by the plots and discussion of Section 3.3.2 above. We
also showed that knowledge of just a few of the leading logarithmic contributions to

the coefficient functions does not give a good approximation of their true value.

However, a systematic study and all-as-order determination of the leading loga-
rithms is mathematically interesting and provides predictions for the limiting behaviour
of higher fixed-order corrections, allowing us to check future calculations. Indeed, quan-
tities computed here provide checks of the fourth-order contributions to the anomalous
dimensions computed in Chapter 5. Knowledge of the endpoint behaviour also provides
additional constraints when one attempts to approximate a function based on a small

number of Mellin moments.

The method of this chapter is related to that of [55], in which the leading three
large-x double logarithms were determined to all orders in ag via the assumption of an
all-order form for un-mass-factorized DIS structure functions. Similar resummations of
both large-z [56] and small-z [57] double logarithms have also been performed in the
context of semi-inclusive annihilation. The procedure here is similar but applies to the

small-z limit of the DIS structure functions.
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4.1.1 Small-z Expansion

In this chapter we will be referring to the small-z limit of various quantities. Based
on the known fixed-order expressions, we summarize here the leading behaviour of the
anomalous dimensions and the DIS coefficient functions in x space. For the non-singlet

(even-NN') anomalous dimension

At = 4 20 (In*"z +In*" 'z + - - + const)

+ 2t (In* 2 +In®" "t 2 + - + const) + O (27?) (4.1)

and for the singlet system,

(n

Yij )4 % (hn"_1 r+In" 244 const)
+2° (In* z +In*" "'z + - + const)

+ ! (an” z+I* 'z 4.+ const) + O (:1:2) , (1,7 =14q,9)- (4.2)
For the (even-IN) coefficient functions,

cn=l) — 4 40 (ln2"‘1‘5aL x4+ In?"27 %L 4 ... 4 const

a,n )
+ ! (ann*l*‘s“L x4 In? 20l g 4 Const) +0 ($2) , (a=2,3,L),
(4.3)

and

C’fﬂzl) =+ % (In" 224+ W™ 2 + - + const)
+ 20 <ln2n_1_5‘1L +In2r2 0L L const) + O (xl) , (a=2,3,L,i=q,g)
(4.4)

where d,;, = 1ifa = L and d,1, = 0 otherwise. Finally for the scalar-exchange coefficient

functions,

(n>1) _ | 1/ 2n-1 2n—2
Cy.i —+$(ln” x4+ In*"?z + -+ const)

+ 20 (ln2”_3 +In?" 4 const) + O (ml) , (i=4q,9). (4.5)

For the singlet functions the leading terms are single-logarithmically enhanced %
(with the exception of Cy; which is double-logarithmically enhanced). These terms are
not considered here. They are resummed by the the BFKL formalism, see for e.g. [58,
59,60,61]. Rather, we consider here the sub-leading 2° double-logarithmic terms. It
is not inconceivable that for some intermediate values of x they in fact dominate the

formally leading % terms due to their double, rather than single, logarithms.

All calculations here are performed in Mellin-N space, so we note that the Mellin
transform of the leading small-z terms has the form

(—1)Fk!

N (4.6)

1
/ dz 2V 12" Ink 2 =
0
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The z°1n* z terms of interest here are thus expressed as poles in N as N — 0. The
highest powers of 1/N are the leading terms — the “leading logarithms” in z-space —
which we label LL. The second-highest powers of 1/N are labelled NLL, and so on.

We find that for even-N based quantities, this method applies to the z, 22, ...

double logarithms only, and for odd-N based quantities it applies just to the z!, z3, ...
double logarithms. We do not consider the odd-NN based quantities in this chapter,
so the resummations here focus on the non-singlet parton-level structure functions
Fa,ns (a =2,L) and Fg s and the singlet parton-level structure functions FM- where
a=2,L,pand i =gq,g.

4.2 Method

We begin with the expression for an un-mass-factorized structure function, as discussed
above in Section 2.2. In particular, we deal with the quantity F, of Eq. (2.13) and
Eq. (2.14) (the “parton-level” structure function) given by

F,(N, as,€) = Ca(N, as,€) Z(N, a5, 2), (4.7)

and recall that the coefficient function C, contains only terms which are finite in the
limit ¢ — 0 and the renormalization matrix Z contains only poles in €. In a typical
fixed-order calculation the next step is to absorb the renormalization matrix Z into the

bare PDF yielding a finite result for the structure function,

F,(N,ag,e) = Cy(N,as,€) Z(N,as,€) f = Co(N,as,€) f. (4.8)

Since the renormalization matrix Z is related to the anomalous dimension of the PDF
by

Az
7T dm Q2

dz

" z7t (4.9)

z7' = Blas)

we can compute, order by order, a perturbative expansion of Z in terms of the expansion
coefficients of . Such an expansion is given to a? by Eq. (4.10). High-order corrections
to this matrix have been computed (to NNLL accuracy only, many non-contributing
terms are discarded during computation) using FORM, to a2 for the 2x 2 matrix case and
to al® for the scalar case. These calculations become very computationally demanding,
although they are not the bottleneck of the calculations of this chapter. The mass
factorization of the all-order expressions that we obtain for the parton-level structure

functions is more difficult and limits how deeply we can push the expansions here.
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For the convenience of the reader we repeat Eq. (2.24) here,

Z=1+ a%y@)
+ a?{;?(v(o) — Bo)r” + 2%7(1)}
a3 {50 — o) (1 — 2607
+ é (10 = 280)yD + (v = )29 + é'y(”}
+at{ 500 = ) = 260) (0 — 350)7®
+ flg;s (1@ = 280) (4 = 380}y + (1) = 380) (v — B1)27

1
+ (1 = Bo) (1Y = 28397 + 375 | (v — 360)29?
1
+ (10 = 281390 + (4 — 8)67 ] + Ev(g”} +0(ad).  (4.10)

Note that the highest order e-poles at each power of as always have coefficients which
depend on the lowest order contributions to the anomalous dimension and beta func-
tion. This is a very important point; it means that given the nth-as-order contributions
to v and B we can determine the highest n poles of Z to all orders in as. The multipli-
cation of Z by C, (as in Eq. (4.7)) of course introduces expansion coefficients of C, into
the coefficients of the € poles, but we can make the same observation; N*~'LO knowl-
edge of the coefficient functions and anomalous dimensions determines the highest n

poles of Fj, to all orders in as.

In the phase-space integrals of the second-order calculations of [30,62], one can
see that the 2- and 3-particle phase spaces behave as 2° and 2% in the small-z limit.
A second order calculation would have, in addition to diagrams with 3-particle final
states, diagrams with a 2-particle final state and a virtual correction. At small-z, we
thus have behaviour of the form z° + x?¢. We take inspiration from this, and also
from the large-x resummations of DIS quantities [63] as well as large-x [56] and small-
x [57] resummations in the context of semi-inclusive e™e™ annihilation. We assume the

un-mass-factorized structure functions to have a small-z structure of the form

_ £(A=De (Agn,l) B 4 20D ) 7 (4.11)

where 72 = (n — 1) when considering F; , . and 7 = n when considering F} ,; and Fy ..

The sum over [ provides terms proportional to ™, ..., z°. The coefficients A((zn’l), Bén’l)
and C’én’l) correspond to the LL, NLL and NNLL small-z contributions to F u- Taking

the Mellin transform of Eq. (4.11) we find

n—1
1 1
— (nsl) (nl) 4 20(md) 4 ...
F,(N) " por lE: Nt (-De <Aa +eB" +e*CMY + > , (4.12)

which is the form used throughout the computations of this chapter; the small-z limit

becomes the small-N limit in Mellin space.
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This structure contains double poles in e, of the form a?e~2"*1. In Section 2.2
we briefly discussed how the KLN theorem guarantees the cancellation of infra-red and
final-state collinear poles in the structure function, leaving just the initial state collinear
poles (these are the poles we remove using the mass factorization procedure). This
implies that the double-pole terms of Eq. (4.11) and Eq. (4.12) must have coefficients of
zero. This requirement constrains the possible values of the unknown coefficients A((I"’l),
Bén,l) and C’én’l). Along with our all-as-order knowledge of the highest n single poles of
Fa, we have enough relations to determine the unknown coeflicients at arbitrarily high
values of n. Since Eq. (4.12) describes Fa to all orders in € for any particular n, we can
claim to know the LL, NLL and NNLL contributions to F, to all orders in both as and
£.

4.2.1 An Example: The LL Resummation of FMS

In this section, we discuss the resummation of the leading (LL) behaviour of }3’2,“5 in
detail. We then describe how one can deduce all-ag-order expressions for the anomalous
dimension 7,5 and coefficient function Cy s by mass factorizing FQ,ns at very high as
orders. In section Section 4.3, all-as-order expressions for the LL, NLL and NNLL
contributions to the anomalous dimension 4,y and coefficient functions Copss C

Lins
and Cj .. will be given.

We begin by considering the product of the expansions of the coefficient function
and renormalization matrix. By inserting the expansions Egs. (2.22) and (4.10) into
Eq. (4.7) we have (noting that some terms which do not contribute at the NNLL level

have already been discarded in this expression; specifically those proportional to 55 or

ﬁ17527 o )

FQ,ns:+1

+ as{ + e 1 O g etefbl 2D }

+alq - %8’2(7£§)ﬁ — Y ) + %8 (205 o +%(1?)

0 () + ) e (DD + )+ }

{ é (20085 - 3 B0 + 7n5)3>
— 2 (30508 — 30D - 37 0o + 241 o)
% 7 (3el Y - 3l 6 + 3+ 6c 0D + 29%)
+ %é‘o (C o Tns i T Bo 0517?725) + 255010 + 205&?) + }

41



1 3 4
+a§{ + 558 (117(0) B3 = 67 Bo+%(f? )

1 L0) 02 (1

- 7%&?7&? Bo + 37 53)

1 1,0 1 1,0 1,1) 0
+ 2748 2 (IQCé ns)FY?gs),%(Ls) - SCé ns)ﬁyns 50 + 80(2 ns ’Yns BO 1202 ns)77(zs) B

+ 4Cgln15) r(zs) - 120&2,”05 Tns BO + 1269739)77(15) + 8’7(0) @

ns ’y’ns
+ 3’)’(1) - 677(12'5)5())

1
Tt (4C§1n%£2 + 6c§ nﬁmiﬁvéﬁ 4051;35%;2/30 + ey B

+ 66;,'}Ls)fy7gs) + 12653729)’)/’!(18) + 37(3)) o }

+ O(dd). (4.13)

Only the first four ¢ terms at each order have been typeset here. With the exception
of %(13;) (appearing on the last line), the quantities appearing in this expansion are all
known from existing fixed-order calculations to third order in ag. Their three leading

small-IN terms are as follows,

S = 4 2N"2 £ 3N — [5 4 2¢]
1,1 _ _ _
gns):_2N 3_3N 2+[5+3<2}N !

S = 4 N £ 3N~ [5+ 3¢ N 2

20 — 4 10CEN " + (18CF — 560)N 3 + (1004 + 66y — [17 + 24¢)Cp) N 2

) = — 260 N5 — (500K — 136) N4 — (;CA + 3250 — 47+ 68¢2]CF) N7?
i) =+ 60CAN® + (13402 — 15280Cp ) N (1206*jg2 ~Spcr - g2
+ [30 + 524¢)CE — {220 n 384@} CAOF> 4 (4.14)

Y =—2NT =1 [2-4¢IN

() — _ 40pN"3 — (4CF — 280)N"2 + (Do, + 25, - Cr) N1
Tns = F ( F BO) + 3 VA + 3 60 <4+8C2) F
W2 = = 16CANT — (UCE —1260CF) N + (60C3¢ — 5§ 6Cr — 263

- [% + 192@] CaCp — (8 — 208@)03) N3, (4.15)

where an overall factor of Cr has been omitted in both Eq. (4.14) and Eq. (4.15).
Inserting these into Eq. (4.13) we find the leading three e-terms of FQ,ns at each order,
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to LL accuracy, to be

4 N3 N—%* 100N—°
3,3
C — -
Tastr{ T3 T8 3 € )
QN4 20N> 130N6
4.~4 5
+a,Cp <3 3 3 +—3 = >+(9(as). (4.16)

We of course know these three highest poles to “all” orders in ag, but we do not display

beyond a? here. Assuming the LL N-space structure to be (based on Eq. (4.12))

n—1

1 1 (n,l)
= g A7 4.1
82"71 — N (n . l)6 2,ns" ( 7)

FQ,ns (N)

n
aS

one can expand the fraction as

o~ ()~ v 2 () e

to obtain
F oms = T 1

ta @gygwg CARO N2 40 Aglnog JE )

b a2(1AED + AN + 12400 - AL 1 Al G
+o8ALD AL )

+ a3 (1400 + 400 + A2 & [-3af) - 240 - AT
+ 19480 + 4480 + AGIN
+ (27480 —gAPY — Ag?;;>]NE—;4+---) +O(ad). (4.19)

(4,7)

2,ns*

FQ’M (Egs. (4.16) and (4.19)), we can form systems of equations for the coefficients

Now we can determine the coefficients A5*). By comparing our two expressions for

A9 These can easily be solved to yield

2,ns
Asit) = =20,
Ag?;fl) = 7202 A§2nls) - 20F27

2 2
480 _ _§CF3 4G 703 462 _ gcl;’),

2,ns 2.ns 2.ns

(4.20)
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where we only show the coefficients to third order in ag.

The remaining terms of Eq. (4.16) (two terms per ags power were not used to
determine the coefficients) provide a non-trivial verification of the solutions. For each
extra power of as we have one additional coefficient to determine, but there are two

additional double poles in the expansion of Eq. (4.17) which must vanish. The LL
(4,9

coefficients A2 s

are over-constrained to all orders in ag.

We can now claim to know the leading small-z behaviour of }3’27ns to all orders in €
(we can expand the fraction in Eq. (4.17) as deeply as we please) and also to all orders
in ag (we can carry out this procedure as far as we please in the ag expansion). We
are limited only by how deeply in the as expansion we know Z (Eq. (4.10)). Using this
all-order (effectively, “very high order”) knowledge of 13'27715, we can now mass factor-
ize to determine high-ag-order corrections to the coefficient functions and anomalous

dimensions.

4.2.2 All-Order LL Results for (5, and ’y;[s in the Small-x Limit
The leading logarithmic “all-a,” contributions to s and Cy s are found to be
1 1 1 4 1
+ _ 2 2
Yns — — QCFCLSN — 4CF ag N3 160 SW — 800 SW
1 1 1
— 26886’ N 168966’ N 109824C N 732160C

1
— M8CRa

S N17
— 4978688C'A° ;OW + O(alh) (4.21)

and

1 1 1
Cops =1+ 2Cpas—5 + 10CEa? —; + 60C2al — + 3900;%a4m + 26520 2a’

N2 S N4 SNG s NlO
1
+ 18564CFaSW + 132600C fa! N— + 9613500Fas T
9 9 1 10 10
+ 7049900C pag 15 + 52169260C 7 ay W + O(alh). (4.22)

The contributions from al! to a2 have been computed but are not printed here. It was
not possible to perform the mass factorization of FZ,ns to higher order than this with

the available computational resources.

The integer coefficients of Eq. (4.21) are given by sequence A025225 of the Online
Encyclopedia of Integer Sequences (OEIS) [64]; 2"C(n—1), where C'(n) are the Catalan

numbers defined by

1

Cn) = — (i’;) n > 0. (4.23)

. . + . .
Thus one can write an all-as-order expression for 7,5 in terms of these coefficients,

Yh=-NY 2ic(i-1) (C]@gs) : (4.24)
=1
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or noting that the generating function of the coefficients is ¢(z) = (1 — v/1 — 8z)/2 we

can write a closed-form expression

, 1—4/1—8%¢s
s = =N ¢(Cras/N?) = =N : (4.25)

2

Alternatively, defining the function (which proves to be slightly more convenient for
the NLL and NNLL contributions later)

S(8) = /1 — 4€, (4.26)

we can write ’Y:zrg in the form

N 2CFrag
5 )

(S©-1), &= (4.27)

Tns =
This is in agreement with [65]. The integer coefficients of Eq. (4.22) are given by
sequence A004981 of the OEIS,

on n—1

- [Tk +1), (4.28)

" k=0

—1/4 or alternatively

which have the generating function f(z) = (1 — 8x)
F(§) = (1—4¢) " =577, (4.29)

with which we can write that

QCFaS

N2
Expanding Egs. (4.27) and (4.30) about £ = 0 recovers the explicit series of Eqgs. (4.21)
and (4.22).

CQ,ns = F(E)a §= (430)

4.3 NNLL All-Order Results for Cy s, Crns, Cs,, and v\
in the Small-x Limit

With the fixed-order knowledge available (coefficient functions and anomalous dimen-
sions to a2), the above procedure is readily extended to the leading three logarithmic
contributions to the coefficient functions and anomalous dimension for the parton-level
structure functions FZns? F Lns a0d Fg_ ns- We include the coefficients for the next-to-
leading (Bén’l)) and next-to-next-to-leading (C’C(Ln’l)) terms in Eq. (4.12) and assume the

following all-order forms,

n—1
. 1 1
_ (n,l) (n,l) 2 1(n,l) —
BN)| = X e (AR +e B +82000) . (= 2.9)
(4.31)
n—2
. 1 1 (n.0) (n0) | _2~(n)
BN = s D 1T (A7 +eBf™ +2cf™) . (4.32)

s l=
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The small-z limits of the coefficient functions used to determine F' T s and F:; e aTe
given, in the style of Eq. (4.14) and Eq. (4.15), in Appendix A.8.1.

Table 4.1 shows, at each ags order, the requirements to determine the all-order
coefficients A((ln’l), B((zn’l) and C((ln’l) (a =2,3). The cells are filled as follows:

0: a double pole produced by the expansion of Eq. (4.31) which must vanish. The

coefficients must combine to give zero.

R: a single pole whose coefficient is known from the results of fixed-order pertur-

bative calculations. It is required to determine the all-order coefficients.

V: a single pole whose coefficient is known from the results of fixed-order pertur-
bative calculations. It is not required to determine the all-order coefficients, and

thus verifies that the all-order coefficients produce the correct numbers.

e P: a previously unknown coefficient, predicted by the all-order coefficients. These

predictions extend to all powers of €.

We see that for the LL coefficients, the double-pole zeroes and one single-pole term are
sufficient to determine the all-order coefficients. We thus have two further terms as
verification. At NLL, everything is shifted upwards by one power of € (c.f. Eq. (4.31)).
We thus only have a single term which verifies the all-order coefficients. At the NNLL
level, everything is shifted by two powers of € with respect to the LL and so we have no
verification that the all-order coefficients are correct, based on knowledge from fixed-

order calculations.

This may seem a little unsatisfactory, but in fact the constraints on these coeffi-
cients are a lot stronger than they first appear. Consider the ate~! term at the NNLL
level which, according to Table 4.1, is an unverified prediction of our all-order structure.

Looking at Eq. (4.13) we can see that its prediction determines the NNLL contribu-

. 3), 3),+ . _ _ _ _
tion of 7,25) . 7(13) appears again in the ag’s Q,ag’s 1, ... terms, the age S,ags 2, e

4 7-—3

terms, the a’e~*, ale3,. .. terms and so on. The coefficients of each of these terms has

6 7

S gyt c e

-
been independently predicted by the all-e-order expressions at each of a2, al, a
This “unverified” coefficient in fact satisfies an infinite number of additional equations
(of course, in practice we can only demonstrate this for some finite, computer-limited,

value of n).

The crucial point is this: the “clean” mass factorization of a structure function to
order a requires the mutual consistency of the first n coefficients of the ¢ expansion of
every power of as up to af. Any errors in the determination of lower-as-power higher-
e-power coefficients will break the mass factorization of the poles at higher powers of

as.
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LL 5—9 8_8 5—7 —6 —5 5—4 5—3 8_2 E_l EO 61 52
al R| V|V | P
a? O | R| V|V |P|P
a’ o 0| R |V |V |P|P | P
al Oo|0|O0O|R|V |V | P |P|P|P
al o|,0}0|]O0|R|V |V|P|P|P|P|P
NLL [ e | e8| 7|6 Dlet e B e 2|0 el g2
al R| V |P
a? R|R|V|P|P
a? O | R|R |V |P|P|P
al 0O O/ R|R|V | P|P|P|P
al o|l0|O0O|R|R|V | P|P|P|P|P

NNLL | e | e8| e T |eb|ed et |e3 |2l | |2
al R P
a? R|R|P | P
al R|R|R|P | P |P
al O | R|R|R|P|P | P |P
al O/ 0O/ R|R|R|P|P|P|P|P

Table 4.1: A graphical representation of the expansion of Eq. (4.31). The cells marked “0”
and “R” are required to determine the all-order coefficients. Cells marked “V” are known from
fixed-order perturbative calculations and verify the all-order coefficients. Cells marked “P” are
previously unknown coefficients which are predicted by this resummation procedure, and extend

to all powers of €.
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After mass factorization we find that we can write the anomalous dimensions and
coefficient functions to all orders in as in terms of powers of the functions S(&) and
F (&) defined above in Eq. (4.26) and Eq. (4.29). The method here is to choose a basis
of powers of these functions, with arbitrary coefficients, and solve for them by Gaussian
elimination. We also determine, but do not present here, all-ag forms for the first five
e-power contributions to the coefficient functions.
2= (

Omitting the argument of S and F, £ = as above), we have

[N
=+ <S—1>]

:2 LL
a

#5657 - - 200571
:2( )|

_ aslV -3 —1 _ —1 _

12(S73 + 2571 + 135 — 96¢2.S ™" + 144¢> — 80(2S)C2

|96C K

+16(587 — 58 + 720,571 — 144, + 726:,5)CACE
—360(CaS™! — 2¢o + (2S)C 2 — 4(3572 — 28571 + 259)30Cr

13573 —2571 4 5)53)] (4.33)
NNLL

and for the coeflicient functions,

CQ,ns =+ F:|
L LL

N
-3 (4F—1 _3F— F5>
SN
2 (—44F — 6F® 4+ 12F° 4 5F7 33F’1)
+ 192CF< + + + Bo .
+1% <8F3 +3[3 — 64¢o)F® + 5F9 — 237 — 152(](F 3 — F~1)¢!

—2[125 — 384C2]F>

— 35F! 4 9232(F 3 — F‘1)£_1>60 4+ & (5[1 —T2G)F + [5 + T2 F°

‘:;2 (340F — 15F3 4+ 216F° + 18F" — 60F°

4[5 — 144G) (F~3 — F~1)¢™ )C + (5111F 632F3 — 2003 F°

9216CF
— 1232F7 + 181F? + 840F'" + 385F"% + 1280(F ~° — F‘1)€_1>63
1
+ 2o <5F —FP 2P - Fl)fl)CQCﬁ] , (4.34)
4CF NNLL

)

ClLns =+ 4CLSCFF:|
L LL

[a N
_ %(8F‘1 L F— F5)CF

(15F U _4F 4 6F3 — 12F° — 5F7) BO}

48 NLL

( — 2[193 — 64C)F + 16F3 + [1 — 192¢o] F® + 5F° — 2[25 + 8¢ F 3¢~

2
4

1\ 2, 202 5
+ 241 + 8] F e )CF+ . <[25—72§2]F+[5+72C2]F
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2
+5(F73 - F—l)g—l)cACF - Z—; ( +960F — 115F> + 188F° + 38F"
2

— GOF® — 35FM + 184(F 3 — F—l)g—l)ﬁocp - 2384 (1321F — 424F3

+ 269F5 + 752F7 — 181F% — 840F! — 385F3 4 256(F 3 — F*l)(l) B2

+15a2(F — F“’O@Oﬁ] , (4.35)
NNLL

Cyps =+ F} L

‘N N
|2 (F - F5) n ( _44F — 6F% + 12F° 4+ 5F7 + 33F‘1)60
E 192Cp VL
+ %6( — 2[157 — 384¢o)F + [1 — 192(,]F5 + 5F°

249 — 152(,) (F 3 — F*l){l)CF + % (5[1 — T2G]F + [5 + 26| P

Qs

192

+[5— 144G)(F~3 — F’l)(l) Ca+ (72F +20F3 + 202F5 4 38F7

—60F° — 35F'1 + 168(F 3 — F~1)¢-! _ % _ (5111F — 632F3
60F — 3551 + 168( €7 ) B+ gy, (F11LF - 63

—2093F° — 1232F7 + 181FY + 840F ' + 385 F13 + 12%(1%3 - F—l))ﬁg
15ag 5 -3 —1\¢—1 2

o <5F F5 4 2(F3 — Fl)¢ )@CA . (4.36)

NNLL

As in the previous section, expanding the S and F' functions about £ = 0 recovers
the expansion coefficients for these expressions to any order in as. We now show the a2
contribution to ~,f, explicitly, since it contains a term which features in the calculations
of Chapter 5. We have that

ABF(N)Y = —80CAN 7 — C2 (160Cr — 808y) N 6 — C2 ([128 — 1600 (]C 2
+ 8005 + [160 + 1536 (o] CpCa +2452 — 480 &C j)N -5 L O(N ),
(4.37)

where the (2 term is of interest (and has been highlighted ) as it contains the nJg

dependent term of 77(13;)’+

)

32 5 o

The a? predictions for the coefficient functions are
S (N) = + 390CAN 5 + (105201;l - 1822/3@)025)]\7’7 + ( —1560C 2C ¢
— 448B0C 2 +1951/682CE + [336 — 5872(2)C st
+[2180/3 + 4992g2]CAC§)N*6 +ON, (4.39)

i) (N) =+ 240CAN =0 + (4720 — 992/360C2 )N 7 + (= 1200C3CEG
+ 5680C2 + 460/365C 2 — [644 + 4016()C 2
+ [480 + 3840@]@105’) N4+ O(N3), (4.40)
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DT (N) =+ 390CAN 5 + (78005% . 1822/3ﬁ0(1§’)N*7 + ( —1560C 2C ¢
—8/3B80C2 +1951/683C 2 — [496 + 5872(|Cp
+[2180/3 + 499242]CA05)N*6 +O(N ). (4.41)

The a2 predictions for both the anomalous dimension and coefficient functions are

presented explicitly in Appendix A.9 for future reference.

To compare the numerical size of these logarithmic corrections with the fixed order
results, we plot the functions in Figs. 4.1 to 4.4. In the left panel of the figures we
show the fixed order corrections, to a2, to the splitting function Prj; = —%ers and the

coefficient functions Cy .o, Cp o and Cy .. In the right panel, we show the sum of the

NS
fixed order corrections and the all-as resummation of the leading logarithms. We show
the logarithmic approximation achievable with each fixed order, for e.g. LO knowledge

allows for a LL resummation, NLO knowledge allows for a NLL resummation, etc.

We see, for all functions plotted, that the logarithmic corrections are large and do
not converge. Based on these results, one cannot claim to know any form of “all-order
endpoint behaviour”, since the leading three logarithms alone are not indicative of any
particular behaviour. Despite being of no direct phenomenological use, the corrections
are mathematically interesting. The highlighted term of Eq. (4.37) provides a cross-
check of the results of Chapter 5, and the other terms will provide cross-checks of future

fixed-order calculations.

1 i T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII LBLBLLLLL 1 i T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T TTTTI
L =+ ] L
o P (x) |
Tt o =02
. n, = 4
0.6 - -
: ........... LO
7 NLO -
- —N°LO |}

_0'2 cond vl vl vl 3wl 3l _0.2 TEERTITT EENETRTTTT EENETRTTIT AR ETIT B ETTT AR

10° 107 10* 107 107 107" 1 10° 107 10 107 107 10" 1

X X

Figure 4.1: The left panel shows the known fized-order perturbative corrections to the splitting

function P, The right panel shows the three leading logarithmic corrections to all orders in
as. The curves are plotted with the colour factors Ca and Cg taking their QCD wvalues of 3 and
4/3, and with 4 massless flavours.
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Figure 4.2: As Fig. 4.1, for the coefficient function Cy ,,.
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Figure 4.3: As Fig. 4.1, for the coefficient function Cp .
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Figure 4.4: As Fig. 4.1, for the coefficient function Cy .
4.4 Resummation of the Singlet Structure Functions

We now turn to the discussion of the singlet structure functions F, ,, Fy g FL g F; @

F p and F 69" Here we have at the parton level

FQ,q = C2,gZgq + Co,gZgq
FQ,Q = CogZqg + CagZgg
FL,q = CLqZqq + CLgZyq
FL,g = CLqZqg + CLgZyg
Fy g = CsqZ4q+ Cs.9Z4
Fyg=CoqZ4g + CogZgg (4.42)

where Z;; satisfies the matrix equation
-1
_ ( Yag  Vag ) :B(Cls)i [( Zgq Zag >] < Zgq Zqg > ‘ (4.43)
Yga  Vag das Zgq  Zyg Zgq  Zgg

As in the non-singlet case, the entries of Z can be determined order-by-order in their
as expansion in terms of the expansion coeflicients of the anomalous dimensions. In
this case, each entry of Z will depend on the expansion coefficients of all of the entries
of the anomalous dimension matrix. For this reason, computing the expansion of Z

for the singlet system is significantly more difficult and it is only known (at the NNLL
30

level) to a2”.
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We assume the same small-z structure for these singlet structure functions as in
the non-singlet case, given by Egs. (4.31) and (4.32). In particular, F5; and Fj; have

the same form as F, ,, and Fp, ; has the same form as FL ns?

(where i = q, g).

In exactly the same way as in Section 4.2.1, we determine the structure functions
to all orders in ag and all orders in . Mass factorizing the result gives us all-ag-order
contributions to the singlet anomalous dimensions and all-as- all-c-order contributions

to the corresponding coefficient functions.

4.4.1 Results
Defining

Yag = Vs T Vaaps
=tag t+ (4.44)
Y99 = Tns,gg T Vgg9.ps> .
where 'y;g,ns is a “non-singlet like” quantity describing the pure-C'4 terms of “Quantum

Gluo-dynamics”, from diagrams with an unbroken external gluon line reaching the

(scalar) boson. v, was given in Eq. (4.33), and we find that

N 4C yaq

sz,gg = E(S(‘g,) - 1)a gl = - N2 (445)

For the remaining singlet contributions, a closed-form expression has not been found
at the time of writing. The LL terms can be reproduced with the series of Eq. (4.46),
but such series have not been found beyond the LL contributions. The NLL and NNLL

contributions to high powers of as will be tabulated in [4].

L7 Jn 1-2¢ . .
n 2n+1 - 7, 1 k: i+1 vk k+1 p+Z+1
) J(N) = —C, e z; Z it )+CAC£3( N )( ) )
2n+1 LanlZ@ 1k o k+2+1 P+7J
VéZ?ps(N): n N2t Z Z 2) (g Cp)™ CACIg( k >( P >’
k=0
2n+1 ngn 21 k s ki-f—’L 5-}-@
W) = =i Cogzn 3 3 erreked (U (05
=0 k=0
n 2C n
) = ), (4.46)

The presence of the Catalan numbers and factors of 2"*! suggests that these could
be written by some generalization of the S function of the non-singlet results, but we
have not been able to find a closed form. For the next-to- and next-to-next-to-leading
contributions we cannot even find a series representation in the form of Eq. (4.46),
although of course we can produce the expansion coefficients to “arbitrarily many”
orders in as. It should be noted here that the relation between 752’) and 752) holds only

at the leading-logarithmic level.
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We present explicit predictions for the NNLL behaviour of the singlet anomalous
dimensions at fourth order, since some terms feature in the calculations of Chapter 5.
These terms of interest are highlighted . It should be noted here that linear combina-
tions of these terms were computed in [66,67], see Section 5.6.1 for more details. We
have that

HN) = 224 s O {NT (10C 6100y O + 4807 —320m,Cr )
LN <2176 c? - 3424 CpCu + 10324 CF +256n; CF>

15232

LN <288nfCA - ngCr +52n? + 5 [519 — 524¢] O3

% (541 — 1332 () Cr Ca + 5 [1709 — 192 G] C;f‘) } +O(N™Y), (4.47)

YO(N) = ngd N7 (6400;{’ —320CrCZ +160C2C4 —80CS —640nfCFC'A
+320nfcg) + NS (416 Ci—1920rC3 + 82 CE0s + 32 Cf
+3§0 CA +&308nfCFCA*432anCF> + N5 < CA

—=57 niCF + [148+81§2]nfC'A— (557 — 1448 (5] C'2

3
57 (1711 + 108 Cz] = [2951 +300 (o) ny Cr Ca
= 6427 — 3960 (o] Cr CF + 5 [6707 — 19368 (2] C2 Ct

xll’“ \1|°° ﬂlg

L 13583 — 3600 C2] CF) } +ONY), (4.48)

FO(N) = Cp {N—7(— 1280C3 +640CrC2 —320C2Cy + 16007
+1280n; Cp Oy — 6407 Cﬁ) +N*6( 10 3 +12800FC'A
20 oze, v3200f - Yo} +640nf CpCa — nch)
+N— ( Bn2o, 41228 12256 n}Cr +73 (25 — 1248 (o] O
[542+81C2]nfCA+ [817+16442]nfcpc,4
15 (1969 + 936 (o] Cr CF — 30 [3871 +2340¢5) O

N7, (4.49)

YI(N) = N*7(— 1280C4 +1920n; Cr C3 —640n; C2Ca + 1600, CF
—320n}0£) +N—6( me CA 20, 0p 88, 00
- B0y 0 - fCF + 8007 CFCA 4 142 1472 ]?(JF)
N (- 20A + 488 2 op oy —% 20F +32nicr
- e [20+9@] npC3 —32 [137+64§2] Ci + 5 [195 — 148 (o] ny O
- % (1997 — 756 (o) ny C2 Ca + g 2751 +688§2] nyCp Cj) +ONY.

(4.50)
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Similarly, we can describe the leading-logarithmic contributions to the coefficient

functions with a series but not with a closed-form expression. Defining
C2,q 02 ns + CQ,pSa
CL,q = CL ns + C’L ,DS»

C¢7g = C(;S g,ns + C¢ g,ps» (451)

we have for the “non-singlet-like” part of Cy 4

Cogns(N) = F(£), (4.52)

and for the remaining singlet contributions
on anJn222 k+i p/—l—i—i-l
G =t 3 o g WW( )T
=0 =

QnLQJn 1-2i

)i (k40 (0 +i
i=0 k=0

) Jn 2—21 . .
n antl g i ; (k+i\ [(p+i+1
P =Porzs 3 3 menaie (1) (77, 7),

& (N) = nsD

n—1 N2n—2 k p/
=0 k=0

LL*lj .
2n+1 2 In—1-21

SR YD DR e i ten el oh (k;:l> (5,;i>,

1=0 k=0

c(Ln;(N) =nsDp_1

"z Jn 1-24 . .
2ntl "< )i (k40 (6 +i
00 = -0rP S 3 e R [}
=0
- nLQJTLQQZ k+2+1 pl+Z
n z+1+k i+1 o
C¢,gvps( N2n Z Z (nsCr) C C < k >( 0 )’
=0 =
(4.53)
where p =n —k—2i—2, 8 =n—k—2i — 1 and the symbol D, is defined as

n—1
D, = % [J+4k). (4.54)

2"D,, are the expansion coefficients of the function F'(§) defined in Eq. (4.29), again

hinting at some deeper structure which is worth further investigation in the future.

The explicit predictions for the NNLL behaviour of the a} contributions to the

coefficient functions C3 4, Ca 4, C 4 and Cp, 4 are as follows,

S (N) = Sh (N)+nsCr {N‘s( — 312003 +3120Cp Cy — 2340 C2
15600y Cp ) + N7 (S8 o S0 0 THB

5216 _ Logss 9848 552
+ == fC —_— fCF>+N (—I— o7 fCA—Tan
1
— 3 [16611 — 21752 @] CE+5 [24251 20439 (5] C C'g
2
+ o [124303 — 14688 Co ny O — 5 [242611 — 22752 (o] Cj) }
+O(N7?), (4.55)
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ENN) = ny {N*g ( — 312003 + 1560 Cp C2 — 780 C2 Cy + 390 C2
+8120m; Cr Ca = 1560n; C2 ) + N7 (= 252 ¢ + B2 ¢ ¢
—wCFCA +8§90F _|_536 fcj —2056nfCFCA 4 13778 3778 fCF
_ 2080 CF> jar ( B 22478 20y 4 2000 20
+ 2 [771 — 41 &)y Op Ca + 5 (2453 — 23816 5] O
% 2882 + 1647 (o] ny OF + g—; (3265 — 1512 (] Cp C 3
— 5 [19957 — 145440 (o] C2 Ca — 5= [25579 — 9972 (o] ny C 2
— 37 [48911+ 846 CF ) |+ O(N ), (4.56)

Y (N) = D (N) +my Cr {N‘ﬁ( — 192003 +1920Cp Cy — 1440 C2
+ 9607 CF) L NP ( 2040 2 | STU8 2048 (2

2176 13024 _ 5696 128 o
+ 9 fCA—— fCF)—i-N (—TnfCA—Tnf

—%M93qu~ﬁﬂm82wgq%
— 2 [4913 + 11988 (2] Cp Ot + 30 [8461 — 1188 (o] CF> }
LO(N?, (4.57)

H(N) = ny {N‘6< —1920C3 +960Cp C2 —480C2Cy +240C

+1920n; Cp Oy —960nf013) + N7 (=R ci + B onc}

3 8296 czo, - 18 CF 3 704 02— 4640 0y Cp Gy + 13018 13648

_ 10988 n2 CF) N4 ( 64 n 2 CA 4 11776 11776 J?CF
[115 + 1964 o] CF — 32 [263 +162¢)n; C2

(1231 — 118 (o) ny Cp Ca — 52 [6314 — 459 (2] Cf
(6487 + 24048 (o] C2 Ct + 55 [8785 — 77225 Cp C

14249 — 5256 o] ny CF ) |+ O(N2). (4.58)

fCF

+ o+
o e ol

Explicit expressions for the a2 small-z contributions are given in Appendix A.9 for

future reference.

4.5 Conclusions

In this chapter, we have computed z° double logarithmic small-z contributions to
coefficient functions and anomalous dimensions to all orders in the strong coupling
constant ag. By inspecting the D-dimensional structure of the phase space of existing
fixed-order perturbative calculations, we were able to make an assumption for the all-
order structure of un-mass-factorized parton-level structure functions which allowed

their computation, in the small-z limit, not just to all orders in ag but also to all orders
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in the dimensional regularization parameter €. Such knowledge allows for the mass
factorization of the structure function to arbitrary order in ag, yielding the all-order

expressions for the coefficient functions and anomalous dimensions.

In the non-singlet sector we were able to compute the leading three logarithmic

contributions to the coefficient functions C’Q, Cy s and C5 ~ and to the anomalous

ns?
dimension 7:5. We constructed closed all-ags-order expressions for these functions, first
by inspecting the coefficients with the help of online resources and then by making

suitable guesses of the functional bases required to describe the coefficients.

In the singlet sector we were not able to determine closed-form expressions for the
logarithmic corrections to either the coefficient functions or the anomalous dimensions.
The LL terms are described by means of series, the overall coeflicients of which are
related to the expansion coefficients of the functions used for the non-singlet expressions.
There are tantalizing hints that a “nice” closed-form expression should be achievable
but at the time of writing it has not been found. This will be the topic of future

research.

We showed by plotting the non-singlet results that knowledge of just the three
leading contributions is insufficient to describe the functions at any reasonable values
of x; the leading three all-order corrections do not converge. However this knowledge
is nonetheless useful in a more mathematical context. The a? terms of the expressions
for the anomalous dimensions computed here provide a cross-check of the results of

Chapter 5, increasing our confidence that they are correct.
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Chapter 5

Large-n ¢ Contributions to the
Four-Loop QCD Splitting
Functions

The first approximations to the third-order contributions to the splitting functions
and DIS coefficient functions were determined from a small number of Mellin moments
computed [24,68,69,70] with the MINCER package [44,45]. These approximations became
available some 5 years before a full analytic result was computed, see for e.g. [18, 37,

71,72].

With the recent development of the FORCER package [73,74] for FORM, we are now
in a similar position at the four-loop level. FORCER is able to compute Mellin moments
of the DIS parton-level structure functions to fourth order in ag. Like MINCER it imple-
ments a parametric reduction of the integrals, yielding results in terms of known master
integrals. The usual mass factorization procedure, as described in Chapter 2, yields
Mellin moments of the splitting functions (or, anomalous dimensions) and coefficient
functions to this order. As might be expected, the calculations of these moments is

much more computationally demanding than their third-order counterparts.

At the time of writing, the Mellin moments (N = 1,2,...,6) have been computed
in full [1] for the non-singlet structure functions and moments (N = 2,4) for the
singlet structure functions. These moments alone are not sufficient to produce z-space
approximations, but more will be available in the near future. Some Mellin moments
(N = 2,3,4) of the non-singlet anomalous dimension have also been computed by other
methods (see [75,76,77]) as well as the first moment of cgﬂ’: [78]. The results of FORCER
are in agreement.

The topic of this chapter is not the z-space splitting function approximations
or even the computation of the Mellin moments of the structure functions (i.e. the
internal workings of FORCER), but rather the reconstruction of analytic all-N formulae
for particular parts of the fourth-order contributions. Further discussions of the results
of this chapter will be published in [5].
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To third order, the anomalous dimensions can be written in terms of harmonic
sums (defined in Appendix A.1) and powers of simple “denominator functions” in N,
for which we define the notation

1
- N+

D; (5.1)

The harmonic weight of a harmonic sum is defined to be the sum of the absolute values
of its indices. We define the overall weight of a term to be the sum of its harmonic

weight and the power of its denominator function, if present.

(n)

. . . n . .
To third order, the anomalous dimensions ~;;* contain terms of maximum overall

weight 2n + 1. One would expect, then, that the fourth-order contributions '71‘(]3)

written in terms of overall weight 7 combinations. The subsets of diagrams with colour

can be

factors proportional to powers of ny contain only terms with harmonic sums of reduced
harmonic weight and so have a much smaller potential functional basis than their n ]9
counterparts. These “large-n;” diagram subsets are also (by far) the easiest for FORCER
to compute; they consist of simpler topologies and many 2 and 3 loop diagrams with

gluon propagator loop insertions.

Equipped with some number of Mellin moments for the large-n; terms of the
fourth-order anomalous dimensions and “educated guesses” of their functional bases,
we aim to compute the analytic all-IV expressions for these Mellin moments. This
technique was used in the evaluation of the third-order corrections to the polarized
(helicity dependent) splitting functions [79]. We will see that some of the expressions
below are rather more difficult to solve, but the method is very similar. Another
work which has used related techniques to reconstruct analytic formulae from Mellin

moments is [80].

For the non-singlet anomalous dimensions %(l?;),i’ the n;’ contribution is already

known [81]. Here we aim to compute the n]? contributions, for which we have 57
contributing (meta-)diagrams. In the singlet sector we aim to compute the n;’ con-
tributions, which are currently unknown except for the linear combinations of [66,67].
For the singlet structure functions F, ,, I, F¢’q and F¢>,g we have just 6, 36, 6 and 70
contributing (meta-)diagrams to fourth-order in as. Additionally for F;, , and F, , we
must compute 8 and 6 (meta-)diagrams with external ghosts, due to the un-physical
gluon helicity projection used by FORCER. One may use a physical projection, removing
the need for these external ghosts, but this is much more demanding to compute (as

demonstrated at three loops in [24]).

These large-n; diagram sets being small and “easy” to compute makes such ana-
lytic reconstructions viable. We will see that nonetheless, these “easy” diagrams become
very computationally demanding for high values of N. The remaining diagrams (with
fewer n; powers than what we consider here) are sufficiently difficult to compute that
finding analytic expressions with the methods of this chapter is impossible, even with

a large supercomputer.
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The reconstruction procedure, then, is as follows,

e Compute Mellin moments of the large-n; contributions to the structure functions
using FORCER. Renormalize and mass factorize the resulting expressions, yielding

Mellin moments of the large-n; terms of the anomalous dimensions.

e Determine bases of functions that should describe them in Mellin space, taking

inspiration from the known lower order quantities.

e The moments and these bases form systems of equations, with an unknown coef-
ficient for each basis function. Solve this system (using that they are Diophantine
systems, see the following discussion), yielding analytical Mellin space expressions

for the anomalous dimensions.

5.1 Defining a Basis

Here we introduce some notation to facilitate the description of the functional structure
of lower-order anomalous dimensions and the bases used to determine analytic expres-
sions for the moments of fourth-order anomalous dimensions. We define the following

sets of harmonic sums,

SWo0 = {1},

SW1={5},

SW2 = {SQ’S—% 81,1},

SW3 ={S3,5_3,551,512,5 91,51, -2,511,1 }» (5.2)

where we skip harmonic sums containing indices —1; these are not present in any
coefficient function or anomalous dimension to third order. The generalization to a set
SW N, i.e. “harmonic sums of harmonic weight N”, should be clear. In addition we
define sets which skip not just sums containing indices —1, but sums containing any

negative index. We denote these

SW2+ = {32781,1}7
SW3+ = {S3,591,512:S11.1}- (5.3)

Again the generalization to SW N+, “all-positive index harmonic sums of harmonic
weight N7, should be clear.

We will describe the functional structure of the third-order anomalous dimensions,
as well as define bases for the reconstruction of new fourth-order quantities, with tables

in the format of Table 5.1.

61



Harmonic Sums | Denominators
SW?2 1, D}
SW1 1, D?
SW0 1, D}

Table 5.1: The format in which we will define bases of functions for the reconstruction of
analytic expressions for the Mellin moments of anomalous dimensions.

For each entry of the specified harmonic sum set, we include products with the objects
in the Denominators column. An entry of 1 is to be interpreted as one might expect —

we include the bare sums. A Dl.l""’a

is to mean that we include products of the sums
with each of Dil7 D?, e Dg_l, D¢. Each element of a basis has its own coefficient, to

be determined by the reconstruction procedure.

We must pull some factors out of these coefficients since the algorithm used to fix
them requires them to be integers (see the discussion in Section 5.2). We will assign
these factors based on the overall weight of the term, and refer to them as coefficient
factors. They will be specified in a second table, in the format of Table 5.2. The

required values of these factors will be discussed in Section 5.3.1.

Overall Weight | 3 | 2 | 1
Coeft. Factors | d | e | f

Table 5.2: The format in which we will define coefficient factors for bases.

5.2 Solving Diophantine Equation Systems

In Section 5.1 we briefly alluded to the requirement that the unknown coefficients of
our basis should be integer coefficients. This is an important point; in general we
will not be able to compute a sufficient number of Mellin moments to determine the
coefficients in full generality (solution by, say, Gaussian elimination which would allow
the coefficients to take rational values). As we will see in Section 5.3.1, the denominators
of the coeflicients of the third-order anomalous dimensions appear in a structured and
predictable way. Arranging our basis to make the unknown coefficients integers proves

to be quite powerful.

Rather than a general system of linear equations for the coefficients (one equation
per computed Mellin moment) we thus have a Diophantine system of linear equations;
a system of equations with integer solutions. One can find solutions to such a system
using fewer equations than the number of unknown coefficients to be determined. Of
course, these solutions will not necessarily be be unique. We discuss later how we can

convince ourselves that a particular solution of a system is the “correct” solution.
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A method based on the Lenstra-Lenstra-Lovdsz (LLL) lattice reduction algorithm
[82] is used here. Given a basis describing some lattice, the algorithm finds a short (in
the sense that the vectors have a small norm), nearly orthogonal, basis for the same

lattice in polynomial time.

The number-theory calculator program CALC [83] includes a routine called AXB [84]
(summarized in [85]), intended to provide short integer solutions to matrix equations
AX =8 using LLL lattice reduction. We provide it with a matrix of our basis elements
evaluated at the appropriate N values and a vector of the Mellin moments we wish to
reproduce with that basis. Each row is suitably normalized such that the entries are
integers. This is the solver used throughout this chapter. If there are few enough
coeflicients to determine, it perform a Gaussian elimination. We now show an explicit

example of the reconstruction of a low-order quantity using this method.

5.2.1 An Example Reconstruction

As a simple, yet demonstrative, example of the method outlined in Section 5.2, consider
the determination of the analytic form of the C'sans part of fy(%) from its Mellin moments.

It is given by

1
759

=+ [8(2D2 — 2Dy + Dg)S_y + 8(2D3 — 2Dy + Dy)S; ; + 16(D3 — D})S,
Cang

4
+8(4Dj + 2D} + DS)} - [3(441)3 +12D% + 303)}

OwW3 ow?2

4
+ [ — 2(20D_y — 146D, + 153D; — 18D0)] (5.4)
9 ow1

where the square brackets collect together terms of the same overall weight. Note that
the harmonic weight 2 sums come with the same combination of denominator functions,
Dy — 2D 4 2D5. This is proportional to the the leading order contribution 'yég). That
this combination appears with the highest weight harmonic sums will be used later to

assist in the reconstructions.

Suppose we choose the basis (in the notation of Section 5.1) given in Table 5.3.
With the coeflicient factors given, the coefficients that we must determine are all inte-

gers and we can use AXB to attempt a solution.
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Harmonic Sums | Denominators
SW2 D, ,D, ,D,
SW1 Dy® , D1? , Dy?
SWO Dy*?, Dy Dy** Dy

Overall Weight | 3
Coeff. Factors | 4

oo | DN
kOl— | =

Table 5.3: A basis for the reconstruction of the Cany terms of 7,5?.

This basis has 25 unknown integer coefficients. We attempt to determine them from

some number of Mellin moments of the function. The first 11 are given below,

35
1
ng|  (N=2=-33
Canyg
16387
(1) )=
gl (N =4)
q99 Cany 233253
867311
(1) —6) =
gl (N =6)=
q9 Cany 23335173
100911011
(1) _g) — IO
gl (N =8)=
q99 Cany 26 36 53 71
373810079
(1) —10) =
g (N =10) =
a9 Can; 23345271113
653436358741
1 _ —
g | (N =12) =g g
Cang
386324173
(1) 14—
~ (N =14) =—— -
a9 Can; 926335273111
56849473253143
1 _ —
|, (N =10) =grsera i
Cang
106266207488029
(1) N =18) =
Yag | (V=18 =g it 131 171 199
ANf
1006804883130941
(1) N =20) =
Yag | (V=200 =B st 17 190
ANy
108581251285561567
(1) N =922) = ) 5.5
Yag CAnf( ) = E I3 171 191 239 (5:5)

The denominators have been prime factorized, since we will make some observations

and arguments based on the prime structure of the denominators in later sections.

We thus have a system of equations like Eq. (5.6) (for (N = 2)), where C; denotes

the coefficient of basis element 7. We have multiplied by appropriate factors to remove
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all denominators from the equation,

—560 =720 CS2D1 + 540 CS2D2 + 1080 CS2D0 —432 CS_2D1 — 324 CS_2D2 — 648 CS_QDO
+ 1008 CSLlD1 + 756 CS1,1D2 + 1512 CS1,1D0 + 144 Clel + 288 Cle%
+ 108 CSID2 + 162 Cle% + 216 CleO + 648 CSID% + 48 CD_1 + 16 CDI

+32Cp2 + 64 Cpg + 12Cp, + 18 Cpg + 27 Cpg + 24 Cpy, + T2 Cpg + 216 Cps.
(5.6)

AXB correctly determines the 25 basis coefficients here using Mellin moments N = 2
to N = 18, i.e. by solving just 9 equations. This shows the power of the method; a
solution by Gaussian elimination would require Mellin moments to N = 50. While it
is possible to compute moments this high for anomalous dimensions at second order,
it will not be possible to compute enough moments at fourth order for a solution by

Gaussian elimination. The vector of coefficients returned by AXB is

(2,6,72,8,88,584, 4,24, —612, —80,0,0,4,0, —4,0,2,4,—-4,2,4,-4,0,0,0).  (5.7)
S?/I,/O SW1 SW2

Suppose we make an incorrect choice of basis to determine this function, for example,
we neglect to include the D_; with SW0. Again with Mellin moments N = 2 to
N = 18, AXB returns the coefficients

(— 43,423,123,1492, —102, 1332, 4, 24, —612, —15, 437, 102, —2399, 80, 1700,
— 146,180, —26, —1065, 670, 579, —919, 490, 605). (5.8)

Using more Mellin moments the coefficients start to look even worse, as the solver forces
a solution using the inadequate basis. With N = 2 to N = 20 we find

(—178,4391, —25712, 412, —10348, —6476, 4, 24, —612, —572, 25401, —2178, —5642,
— 3526, —20152, —3302, —3161, 6474, —4011, 5092, 3775, —3283, —4617,11029). (5.9)

We claim that it should be “obvious” that such a solution is incorrect. The correct
coefficients should be small (especially since we pull some factors of 2 into the coefficient
factors). This should be particularly be the case for the higher weight harmonic sum
sets (the right-hand end of the vector in Eq. (5.7)) where also many coefficients should
be zero; we typically do not need the full set of higher weight sums.

With the larger systems that we will consider later, bad solutions might be less
clear. In particular, solutions where the basis is correct but the number of Mellin mo-
ments used is insufficient to determine the correct solution can be harder to distinguish.
For this reason we must have a way to satisfactorily verify a potential solution. We will
always require a potential solution to correctly reproduce one (or ideally, more than

one) Mellin moment beyond those used for its determination.
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5.3 Bases for Large-ns Singlet Anomalous Dimensions

In this section, we choose bases with which we can determine the analytic all-N forms
of the large-ny (n ;’) contributions to the fourth-order singlet anomalous dimensions.
We begin by making a careful investigation of the structure of the large-ny (n }?) con-
tributions to the third-order anomalous dimensions, which will motivate our choices of

elements for the fourth-order bases for each entry of the anomalous dimension matrix.

We will then discuss the bases used in detail, as well as any additional assumptions
made, for each reconstruction. We give in each case the number of Mellin moments
required for the successful solution of the Diophantine equation system as well as how
many moments were used as verification of the result. In Section 5.6 we will discuss
where the results determined here overlap with other calculations in the literature and

show that they agree.

5.3.1 Third Order Structures

We now turn to our investigation of the structures of the large-n; contributions to the

third-order singlet anomalous dimensions, fyc(,g?ps, %(13), ég) and ’yg). These are terms

with the colour factors Crn ]? and Can fQ We introduce the following symbols,

n= Do — Dy, (5.10)
n'=-Dy+ D_y, (5.11)
p=Dg—2D1 +2D>, (5.12)

which are combinations of denominator function which commonly appear with the
highest weight harmonic sums in some of the anomalous dimensions. They are related to
the leading order anomalous dimensions %(12), ég) and ’y,gg). The third-order functional
structures are presented below, in Tables 5.4 to 5.9, and some discussion follows the

table for each quantity.

Harmonic Sums | Denominators
SW2+ Dy* ,Dy* ,D, ,D_,
SW1 Dy*? D™ Dy? Dy
SO Dé,2,3,47 Di,2,3,4’ D;’2’37 D_,
Overall Weight | 4 | 3| 2 | 1
Coeff. Factors % % 2% 2%

Table 5.4: The structure of the Cpnf terms of D s

’yc(,?]?ps contains overall weight 4 objects, but with positive-index harmonic sums of no
more than harmonic weight 2. D_q never appears to more than the first power. The

maximum power of Do is reduced by 1, compared to that of Dy and D;.
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Harmonic Sums | Denominators
SW 3+ P
SW2+ Dy* D . D,
SW1 Dy* . D* D,
SO D(1),2,3,4,5’ Di’2’3’4’5a D%’2’3’4, D_,
Overall Weight | 5 |4 | 3| 2 1
Coeff. Factors | 32 % % 2% T181

Table 5.5: The structure of the Cpnf terms of 'yg).

Harmonic Sums | Denominators
SW3 P
SW2 D, ,D;* ,Dy?
SW1 D, ,Dp* | Dy
SO D(1),2,3,4’ D%,2,3,47 D%’Q’?’A, D,

Overall Weight
Coeff. Factors

oloo | W~
koloo | Qo
oo | 0o
2o | =

Table 5.6: The structure of the C’An}? terms of %5_3,).

2
’chg)

for the Crn J? terms which have an overall weight of 5 (just D and D}). D_; appears

has overall weight 4 elements, except for some pure-denominator-function elements

only without harmonic sums and only to the first power. The highest weight harmonic
sums appear only with the denominator function combination p, defined in Eq. (5.12).
Unlike the Cyn J? terms, the Can2 terms appear only with positive-index harmonic
sums. These structures have the largest number of elements of all of the third-order

non-singlet anomalous dimensions, so we anticipate that the Crn ;? and Can ]‘3’ terms of

7(52) will be the most difficult to reconstruct at fourth order.

Harmonic Sums | Denominators
SW2+ Dy, D, ,D_;
SW1 Dy, Di’Q . D_,
SWO0 Dy, D}’Z?’, D_,

Overall Weight | 3 | 2
Coeff. Factors % % %

Table 5.7: The structure of the C’Fnﬁ terms of 'yé?l),

2
%(vq)

weight 2. Dy and D_; appear to first power only, with all harmonic sum weights.

has elements of overall weight 3, with positive-index harmonic sums to harmonic
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Harmonic Sums | Denominators
SW2+ nt2,
SW1 Dy*? Dy Dy, D4
SWO 1, Dy** Dy** Dy, Dy

Overall Weight | 4

Coeff. Factors 1—36

oloo | o
1ol | 10
o | =
kol— | ©

Table 5.8: The structure of the C’an2 terms of ’yg(,z,).

Harmonic Sums | Denominators

SW1 1, D}? . DI | Dy, D4
SWO 1, DY*2 DM3 D, D_,
Overall Weight | 3 | 2 | 1 | 0
Coeff. Factors 196 227 827 2719

Table 5.9: The structure of the CAan terms of 'yg).

Unlike the above, 753)

contains harmonic sums which are not multiplied by denominator
functions. The Cpnf2 and CAnJ? contributions have terms of overall weight 4 and 3,

respectively. Dy and D_q1 appear to no more than the first power.

We now make some general observations about the structure of these third-order
singlet anomalous dimensions. We will assume that these observations will apply also

at fourth order.

o (Coefficient Factors: We can take factors of two out of most of the coefficients,
particularly at high overall weight. It depends which function we are considering,
but in general it seems safe to take out an additional factor of two for each increase
in overall weight, starting from some minimal factor (which is 27!, in some cases).
Taking these factors out of the coefficients makes them smaller which should help
AXB, but if too many powers of two are taken out of the coefficients they will no

longer be integers.

o (Coefficient Factors: We must take factors of a third out of almost all of the
coefficients. Again, it depends which function we are considering, but we must
take an additional factor of a third per reduction in overall weight, starting from
some minimal factor at maximal overall weight. Occasionally moving from overall
weight 2 to 1, or 1 to 0, does not incur and extra factor of a third. If too few

factors of a third are taken out of the coefficients, they will not be integers.

o Denominator Functions: For some anomalous dimensions, the highest weight
sums appear only with particular combinations of denominator functions (this is
also true below third order). These are the 1, n’ and p defined in Eqgs. (5.10)
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to (5.12). Including just these combinations with the high-weight sums greatly
reduces the size of a basis. The denominator function D_; never appears to more
than the first power. No denominator functions other than Dy, Dy, Do, D_; ever

appear (this is the case also for the other colour factors).

e Harmonic Sums: For some functions, no negative-index harmonic sums appear.
Sums with an index of —1 never appear (not even with the other colour factors,
or at lower orders, or in any of the coefficient functions). Hence the definitions
of the sets SWN in Eq. (5.2) do not contain sums with an index of —1; we will

assume these sums do not appear at fourth order either.

We now discuss the bases for reconstruction of fourth-order singlet anomalous

dimensions. We begin with the lower row of the anomalous dimension matrix, 'yé:;) and

3
’75(19)

solve. We must increase the maximum allowed overall weight by 1 for the fourth-order

, as it appears that these will require a lower weight basis and thus be easier to

anomalous dimensions; an extra 2 for the increase in order, but a reduction of 1 for the

increase in power of n;.

For all of the singlet anomalous dimensions considered above there are terms pro-
portional to (3. The overall weight of these terms is reduced by 3 or equivalently, ¢
symbols contribute to the harmonic weight of the term (after all, the zeta numbers are
just single-index harmonic sums at infinity, (; = S;(co) for i > 1). We can use the
same bases for the reconstruction of these (3 terms, but with the highest three weights

of basis elements discarded.

5.3.2 A Basis for ”yéz)

We assume a basis with a similar structure to Table 5.7, with (positive index) harmonic
sums of weight 3 and a maximum overall weight of 4. We allow denominator functions

Dy and D1 up to to the maximum overall weight, and D_; to a single power only. As

. 2
in jq

factors; a generous factor of (1/3)% is taken from the overall weight 1 coefficients.

, we assume Do does not appear. We make a rather relaxed choice of coefficient

Harmonic Sums | Denominators
SW3+ DO , Dl ., D_;
SW2+ D(l]v2 ,D%:Q . D_,
SW1 Dé’2’3 ,D}Q’?’ D,
SW0 Dy DA D

Overall Weight | 4 | 3 | 2 1
Coeff. Factors | & gil 2 | s

Table 5.10: The basis for the reconstruction of the C’Fn;’ terms of 'yg(,z).
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This is a basis with 38 unknown coefficients. Mellin moments N = 2 to N = 18
reconstruct the all-IV result, with moments N = 20 to N = 28 serving as verification
of the result. For the (3 terms we reduce the basis overall weight by 3, leaving just
Dy, D1 and D_;. The coefficients can be determined by Gaussian elimination using

moments N =2 to N = 6, leaving N = 8 to N = 28 as verification of the solution.

The solution is Eq. (5.31). It proves not to require powers of Dy above the first

: o . . (2
in combination with harmonic sums, as observed in Wéq)

5.3.3 A Basis for ’yg;)

(

'yg:;) has contributions from both Cgn ;’ and CAnj} terms. The third-order structures
(Tables 5.8 and 5.9) are rather similar in their lower overall weight contributions. We
choose a basis suitable for both, but remove the overall weight 5 terms when solving for
the Can ;’ moments. For Crn Ji” we assume the same denominator function structure at
harmonic sum weight 3 as the fyéz) had at sum weight 2; just the combinations 7, n? and
n’. We assume that Dy and D_; appear only to the first power, and that sub-maximal

weight harmonic sums may appear alone.

Further evidence for the reduced overall weight of the C An]ig basis compared to
that of Crn ]? can be seen by analysing the prime structure of the denominators of the

Mellin moments. Consider the (N = 18) Mellin moment of both functions,

1204343230800942414809786168123
~ (N =18) = — : (5.13)
Cpn} 2531254 73113133174 19°
§e (V= 18) = 2522300408158699916579371 (5.14)
Can} 2731 5372112132173 19

The reduced power of 1/19 in Eq. (5.14) contribution suggests that D; = 1/(18 4+ 1)
does not appear to the fifth power, unlike in Eq. (5.13). This could of course be an
“accidental” cancellation with the numerator, but we observe the same pattern in many
other Mellin moments (any for which (N + 1) is prime). This is highly suggestive that

this is a structural feature and not an “accident”.

Harmonic Sums | Denominators
SW3+ nt2 0
SW2+ 1, DY** Dy Dy, D4
SW1 1, Dy*** | D3 Dy, Dy
SWO 1, D> Dp®3YS Dy Dy

3 2 1 0

4 2 | L) _1
81 | 243 | 729 | 2.729

Overall Weight | 5

Coeff. Factors %

Ko |

Table 5.11: The basis for the reconstruction of the Cpn]? terms of vég). For the CAn;’ terms
we use the same basis, but remove elements of overall weight 5.
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This is a basis with 54 unknown coefficients. The Crn ;’ solution is found using moments
N =2to N = 26, with N = 28 to N = 32 verifying the solution. The C’an’gg terms
are determined with moments N = 2 to N = 16, or by Gaussian elimination using
moments N = 2 to N = 28, after reducing the maximal overall weight of the basis by
3.

Removing the overall weight 5 terms leaves a basis of 34 unknown coefficients. The
CAn;’ solution is found using moments N = 2 to N = 20, with N = 22 to N = 28
verifying the solution, and the Cyn fg;», terms are determined with moments N = 2 to

N = 14, or by Gaussian elimination with moments N =2 to N = 28.

The result is given in Eq. (5.32).

5.3.4 A Basis for y(gg?ps

For ’yég?ps we extend the structure of vég?ps by one in overall weight; we allow positive-
index harmonic sums to harmonic weight 3, in combination with denominator functions
to overall weight 5. We maintain the assumption that D_; appears only to the first

power, and that Dy appears with its maximum power reduced by 1 compared to that
of Do or Dl.

Harmonic Sums | Denominators
SW3+ pDy*  ,Dy* D, ,D.
SW2+ py** pr**  pi? D,
SW1 D(l)’2’3’4 7Di,273’4 ,D%’2’3 D,
S0 Dé’2’3’4’5, D}’2’3’4’5, D%,2,3,47 D,
Overall Weight | 5| 4 | 3 2 1
Coeff. Factors % 2% 8% 2}1—3 ﬁ“

Table 5.12: The basis for the reconstruction of the C’an3 terms of 7&3?,,5.

This basis of 69 unknown coefficients can be determined using moments N = 2 to
N = 30, with N = 32 to N = 44 verifying the solution. The C’an’go, terms are solved
by moments N = 2 to N = 14, or by Gaussian elimination using moments N = 2 to
N = 22. The result is Eq. (5.29).

5.3.5 A Basis for 753)

(2)

The leading-n s terms of 'ng have higher weight harmonic sums than those of the other

(3)

singlet anomalous dimensions, so we anticipate the same for ~4,’. This will mean it has

by far the largest basis and thus require many more Mellin moments to solve.
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Based on the structure of the Crn ]? terms of fyg) (Table 5.5) we might anticipate
positive index harmonic sum and denominator function combinations to overall weight
5 (with harmonic sums to harmonic weight 4), and denominator functions without sums
to overall weight 6. We make some observations based on the prime structure of a few
Mellin moments of the Cpn ;’ terms of 'y(gz) which force us to extend our assumptions a

little further.

1672242508473024481360
Ne (V= 12) = 10 084730244813603 (5.15)
Cpn} 28312574114 136
3) 11320026610047050844587941595233751575201420001
Ve (N =26) =+ ,
Cpn} 29 320 5875113 136174194 234
(5.16)
3) (N = 54) = 4 13999172800221409300869930450084204201885706755632 .-
’)/ = = .
ey 216 320 5979 116 134 174194 231 201 314 371 411431 474 531
(5.17)
The - - - signifies that some numerator digits have been truncated. They are unimpor-

tant for the present discussion. We observe that:

e The 13% of (N = 12) (and also any other N value for which (N + 1) is prime)

requires that we include DY in the basis.

e Assuming the above, the 32° of (N = 26) suggests that we require a coefficient

factor of 1/9 for basis elements of overall weight 6. It can be formed by D{/9 =
1/(279)/9 = 1/(3'%) /9.

e If one pushes the moment calculation to a high enough N value, one finds a 1/32%
at (N = b4). This requires overall weight 6 basis elements which contain powers
of Dy and a coefficient factor of 1/9. It can be formed by D§/9 =1/(2-27)%/9 =
1/(2%-38)/9, but we also include weight 6 elements with powers of Dy with all

sub-maximal weight harmonic sum sets.

Although the Cpn ]? terms of 7,53)

contain D_1 only without harmonic sums, all of
the other singlet anomalous dimensions at third order include it in combination with
them. We include it with the sub-maximal weight harmonic sums here. We choose for

a basis, then,
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Harmonic Sums | Denominators
SWA+ P
1,2,3 1,2,3 1,2
SW3+ D} , D! DY D,
1,2,3,4 1,2,3,4 1,2,3
SW2+ D} , D! , DY D,
1,2,3,4 1,2,3,4,5 1,2,3,4
SWl D07 Ing) »5 , D17 737 ) , D2’ g , _Di1
SWO D(l],2,3,4,5,6, Di’2’3’475’67 D%,2,3,4,5’ D_1
Overall Weight | 6 | 5 | 4 3 2 1
16 8 4 2 1 1
Coeff. Factors 9 o7 3L 543 729 55187

Table 5.13: The basis for the reconstruction of the C’Fn)i3 terms of 7§§>.

This basis has 101 unknown coefficients. The Mellin moments N = 2 to N = 40 yield a
solution, with NV = 42 to N = 54 providing verification. The Crn ;?Cg terms are solved
by moments N = 2 to N = 22, or by N = 2 to N = 50 using Gaussian elimination,

after reducing the maximal overall weight by 3.

The C’Anﬁ terms in 733)

include harmonic sums with negative indices, but have a
lower maximum overall weight than the Cpn ]‘? terms. Assuming the same here increases
the size of the Cyn ]‘? basis relative to that of C'rn J‘f As above, we begin by analysing

the denominator prime structure of the moments to confirm our suspicions.

886247558029
VW (N=8)= —— (5.18)
Can} 313 5o 73
804866035734231246739
s (N =12) = (5.19)
Can} 233105475113 13°
40994144768200972412968695803347793
| (N=26)= , (5.20)
Can} 27 318 5675113 135172192 232
0] (v = 36) = 3123380103177626727641706638841518149311266992097533
“leuns 21331555 74 114134 174195 23229231 375 ’
(5.21)
0] (v = 0 = LTOTTOS1322713650508438 1879121 1216545078844 77736773 -
o 213313 5774114134 174194 232292312372 415
(5.22)
0] (v = 4z — 21562030197025 14918906754 7055457 11116911842662408012 -
“loan? 211313 5575 115134 174194 232292 31237 413 43
(5.23)

e The 13% of (N = 12), along with other N values for which (N + 1) is prime,

require Di’.

e The 3'3 of (N = 8) and 3'® of (IV = 26) suggest that, since we assume no more
than D?, we must have a coefficient factor of 1/27 on the overall weight 5 basis

elements. This is also what the Cpn ];9’ basis required at overall weight 5.
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The prime structures at N = 36, 40, 42 serve to demonstrate an (unexplained) curiosity,
observed also at lower orders. Primes P in the range N/2 < P < N — 1, appear with
lower (here, at least 2 lower) powers in the C'4 terms compared to the Cr terms.
Compare these with Eq. (5.17) above, for which the high primes all appear to the 4th
power (since we have harmonic weight 4 sums). It is not that the individual Cy terms
lack the ability to produce these primes, but rather that they all cancel among each
other when evaluated at a particular N and summed. A systematic way to explain this
behaviour would presumably yield some powerful constraints on the basis coefficients

we are trying to determine here.

For the C'yn ]‘? terms we choose a basis of the form

Harmonic Sums | Denominators

SW4 p
SW3 Dy ,Dy* . Dy* D
SW?2 Dy** DY Dyt Dy
SW1 Dé’2’3’4 ,D%’2’3’4 ,D;’2’3’4 D,
SO D(l)’2’3’4’5, D%’2’3’4’5, D%’2’3’4’5, D_,
Overall Weight | 5 | 4 3 2 1

8 4 2 1 1
Coeff. Factors 5 | a1 | 233 | 725 | 75187

Table 5.14: The basis for the reconstruction of the CAn]?’ terms of 7(55;’).

It has 125 unknowns. This is too large to yield a solution with the Mellin moments we

have been able to compute. We must therefore try some additional assumptions:

e Upon making a large-z expansion of the basis (after inverse Mellin transformation
to = space) we note the appearance of terms proportional to the irrational numbers
In2 and Lig(1/2)!. These do not appear in the large-z expansion of any anomalous
dimension computed to date, and we assume the same here. We can therefore
form some relations between the coefficients of some of the basis elements such

that these irrational terms cancel. We require that

2Cq — 2051773 + 40327 —4Cs + Cs

2 —2,2 1,1,-2

— Cs =0, (5.24)

—3,1 —2,1,1

removing one coefficient from the basis.

e We often observe a relationship between the coefficients of 5,5 and S;;. In

the C’Anf terms of ’y(%)

we have that Cs , = —Cs, (in combination with any
denominator function), so we assume the same for the fourth-order basis. This
removes 7 coefficients. (Such a relationship, where Cs,, = £Cs, |, is also visible

in other third- and fourth-order expressions).

!The constants In2 = S_(c0) and Lisg(1/2) = S—1,1,1,1(00).

74



These assumptions fix 8 coefficients in total, leaving a basis with 117 coefficients to
determine. The Mellin moments N = 2 to N = 44 yield a solution, with N = 46
providing verification. The CAnJ‘?gg terms are solved by moments N = 2 to N = 24

after reducing the maximal overall weight by 3.

The full result for the n J‘? terms of 7(53) is given by Eq. (5.30).

5.4 A Basis for the Large-n; Non-Singlet Anomalous Di-
mensions

In the non-singlet sector, the leading-n; contribution to %(Li)’i is already known [81],

it is given by Eq. (5.28). By computing Mellin moments with FORCER we are able to
verify this result and also to extend this result to the next-to-leading-ny terms, i.e. terms
proportional to the colour factors C' }?n f2 and CrCan ]? For 77(5;) * the computation with
FORCER is sufficiently easy that such a next-to-leading-n s reconstruction is possible; this
was not the case for the singlet anomalous dimensions discussed above. Even so, the
reconstruction is only possible here if one considers some very particular combinations
of the colour factors. Rather than writing

<3)¢’

ns ns

= OB+ CpCanyB3)* , 5.25
nz - P ga, TOFCAST o s (5.25)

we can form alternative linear combinations of the colour factors,

vﬁ‘?’i‘ , =2CA+ Cp(Ca—2Cp) B, (5.26)
nf
=207 (A— BF) + CpCaB*. (5.27)

In the large-N, limit, the combination (C'4 —2CF) vanishes. The remaining terms,
given by QCIEA, should be common to both the even-N 7,(5;“ and the odd-INV 7,(135)’_,
which we observe at lower orders. By computing even-N moments of ’yr(l?;)’Jr and odd-N
moments of %(L?;)’_ for each of the colour factors Clgn J? and CrCyn f2 we can form the
combination of Eq. (5.26) and discard terms proportional to (C'4 — 2CF) to obtain both
even-N and odd-N moments for 2C }%A. This provides a sufficient number of moments

to reconstruct A without the value of N becoming too high to compute.

To reconstruct BT (B~) we can only use even-N (odd-N) moments. However, the
a? diagrams proportional to C’I%n]? are 2-loop diagrams with 2-loop gluon propagator
insertions. These are comparatively easy for FORCER to compute. By computing the
moments for just the C Ign }? diagrams, we can compute even-N moments for (4 — BT)
and odd-N moments for (A — B™) to sufficiently high N values to reconstruct these
linear combinations of A and B*. Knowing both linear combinations, along with A

alone, we can determine both B*.
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5.4.1 Third-Order Structures

We now consider the functional structure of the same colour factor combinations at

third order, the only difference being that we have an overall factor of ny rather than

2 2),+
S

ng. For the third-order A part and C}%nf terms of 'y,(L we observe the following

structures:
Harmonic Sums | Denominators

SW4a+ 1
SW 3+ 1,n
SW2+ 1,nt? | D?
SW1 1, nh23 | D?
SWOo 1, pt234, D3

Overall Weight | 4 | 3 | 2 1 10

Coeff. Factors % % % %27 %

Table 5.15: The structure of the A part of ’y?(«?s)’i.

Harmonic Sums | Denominators
SW4 1
SW3 1,n
SW?2 1, n4? | D?
SW1 1, nh?3
SWO 1, nt23, D2
Overall Weight | 4 | 3| 2 | 1 |0
Coeff. Factors % g 2% 227 1

Table 5.16: The structure of the anf terms of 7532’*.

76



Harmonic Sums | Denominators
SW4 1
SW3 1,n
SW2 1, n? | D%
SW1 1, '3 D}
SWO 1 771’2’3’4 D%3,4
Overall Weight | 4 | 3| 2 | 1 |0
Coeff. Factors % % 2% 2% 1

Table 5.17: The structure of the C2ny terms of 'yr(?s)’_.

We observe that
e The A part has positive-index harmonic sums only.

e Using the combination 7, rather than Dy, we never see D%. This reduces the size
of the basis.

e We may have to relax the coefficient factors to reconstruct the A piece, compared

to those suitable for the an J? pieces.

e There are no terms with an overall weight greater than 4. Harmonic sums of

weight 4 appear without denominator functions.

5.4.2 A Basis for %(g),i

It is not possible to make any conclusive statements based on the prime structure of
the denominators of the moments, other than that we should have weight 5 objects
present and that they should have a coefficient factor of at least 1/3. We assume
slightly more generous coefficient factors than the primes suggest, along the lines of the
reconstruction of the singlet anomalous dimensions, i.e. allowing 1/9 at overall weight
5. Based on the third order structure, it seems we may get away with not adding an
extra factor of 1/3 between the overall weight 2 and 1 basis elements, and perhaps even
between the overall weight 3 and 2 basis elements. The constant term (STWO0 - 1) also

seems not to require such a generous coefficient factor.

We try the following basis, then, to first reconstruct the C' FQn fQ terms of 75;“:
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Harmonic Sums | Denominators

SW5 1

SW4 1,7

SW3 1, n'? , D?

SW?2 1, nl23 ’D%,S

SW1 1, nl234 ,Df’3’4

SWO 1, ph23:45, D%’3’4’5
Overall Weight | 5 | 4 | 3 2 1 0
Coeff. Factors 1@6 2% gil % Ti:ﬂ .

Table 5.18: The basis for the reconstruction of the C'Ignf terms of 77(135)’+.

Without further assumptions, this basis contains 139 unknowns. At this point this is
the largest basis of any reconstruction described here, largely due to the inclusion of
the harmonic sums of weight 5 (of which there are 41). The Mellin moments computed
are insufficient to solve the system. As in the reconstruction of the leading-n; terms of

(

’ng) (Section 5.3.5), some additional constraints are required. We assume:

e In the large-N limit, the non-singlet anomalous dimensions should behave as
In N [86] in the MS scheme. This can be enforced by killing off combinations of

basis elements which contribute higher powers of In NV in the large-N expansion

of the basis. Additionally, 77(125) T and ’y%)’_ have the sub-leading behaviour of
1‘}\]]\2[2 (and only with the colour factor C’Ifi’) We assume that we can allow such

behaviour in the C' I?n f2 terms of yﬁli)’i, but kill off combinations of basis elements

which go as In N3, to all powers in 1/N. These assumptions reduce the number

of unknown coeflicients to 123.

e In the large-N limit, there should be no terms proportional to the irrational
numbers In2, Liy(1/2), and Li5(1/2)%. Enforcing the that their coefficients are

zero leaves 119 coeflicients to determine.

e As with 'y(g)

’}’7(125) = We set Cs, , = Cs, | in combination with any denominator function. This

, we use the relationship between the coefficients of S; 5 and S, in

leaves 115 coefficients to determine.

With these additional assumptions, the equation system can be solved with Mellin
moments N = 2to N = 40, with N = 42 serving as a check. After reducing the maximal
overall weight of the basis by 3, the C }%n f(g terms can be solved using moments N = 2
to N = 10 or by Gaussian elimination using moments N = 2 to N = 18. After reducing
the maximal overall weight by a further 1, the Cﬁn?@; terms (which do not exist in
the n;’ reconstructions) can be solved by Gaussian elimination with moments N = 2
to N =6.

2The constant Lis(1/2) = S—1,1,1,1,1(00).
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Inspired by this result, we adjust the coeflicient factors of the basis; it appears we
can tighten them such that the coefficients to be determined are significantly smaller.

Choosing

Overall Weight | 5 | 4

32 | 16
Coeff. Factors 5 | 9

M- | o

1
2
81

Koo | w0
NN

Table 5.19: Coefficient factors for the reconstruction of the C’ﬁnﬁ terms of ’yy(,i.)’*.

with the same basis and assumptions as above, we are able to solve the system for the
C Z?n f2 terms of 77({?’7 using Mellin moments N = 3 to N = 37, with N = 39 serving as
a check of the result. Similarly, the C2n f(g terms can be solved with moments N = 3
to N = 11 or by Gaussian elimination with N = 2 to N = 19 and the an]%@ terms
by Gaussian elimination with N = 3 to N = 7. (Just for information, these tighter
coefficient factors allow for a re-solution of the C Ign }? terms of %({?’Jr with two Mellin

moments fewer: with N =2 to N = 36.)

For the A piece, we keep the same assumptions made above but also remove all
harmonic sums which contain negative indices. This vastly reduces the number of
unknowns, to just 65. To find a solution, however, we must assume some further
structure still. Based on the third-order counterpart to this function, we assume that

particular high-weight harmonic sums should not appear in the result:

e At harmonic weight 5, we assume that the sums S; ; 9,5, 191, 519211 and So 1

do not appear. Also we assume that the sums S; 5 9, 591 5 and Sy 5 | do not appear.

e At harmonic weight 4, we assume that the sums S;;,, S;5; and Sy;; do not

appear.

These assumptions reduce the basis to just 54 unknowns. Relaxing the coefficient

factors to

Overall Weight | 5 | 4

Coeff. Factors | 3 | o=

M- | o

1
L
81

N

oo
Xl | o
Zleo | 2o

Table 5.20: Coefficient factors for the reconstruction of the A piece of ’yﬁl?;)’i.

allows for a solution using Mellin moments (both even-N and odd-N) N = 2to N = 17,
with N = 18,19,20 and N = 22 serving as a checks of the result. The (3 terms are
then solved with moments N = 2 to N = 7 or by Gaussian elimination with N = 2
to N = 10. The (4 terms are solved by Gaussian elimination with moments N = 2 to
N =4.
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5.5 Results

Having discussed the bases and assumptions used for the reconstruction of the analytic
N dependence of various quantities in the previous section, we now present the results.
They are not especially lengthy so are reproduced in full here. Further verification that
they are correct (beyond their reproduction of higher Mellin moments) is discussed in
Section 5.6.

It should be noted that these Mellin moment calculations with FORCER really push
the limits of what is possible, computationally. The hardest diagrams at the highest
(3)

moment computed of the C’An;’ terms of yq?; each took around 2 weeks to complete
on rather fast machines, and produce some 10TB of intermediate expressions (around
130 billion terms) during the calculation. This also demonstrates the power of FORM;

no other Computer Algebra System can perform manipulations at this scale.

The wall-time and disk space required increase approximately exponentially with
N so to reconstruct, say, the O(n }?) colour factors of the singlet anomalous dimensions
is out of the question with current resources. The combined effects of (very much)
more computationally demanding moment calculations and larger reconstruction bases
requiring yet more moments for solution increase the resource requirements far beyond

what could be provided by even a large supercomputer.

There is one remaining viable target for reconstruction; the n ]? terms of flgo dia-
grams which contribute to the evolution of the valence PDF ¢y, defined in Eq. (2.29).
The computations would be approximately of the difficulty of the A part of ’ygi)’i but
without the benefit of being able to use both even-N and odd-N moments. A solution
is thus estimated to require odd moments of these diagrams to some N value in the
40s. Such a computation would be significantly harder than anything required by the
results of this chapter and would certainly require improvements of the efficiency of

FORCER or some very tight constraints on the basis.

5.5.1 Results for the Singlet Anomalous Dimensions

Here we present the leading contributions to the singlet anomalous dimensions in the
large-n s limit. That is, terms proportional to Can ;’ and Cgn ;’ These are the results
of the discussions of Sections 5.3.2 to 5.3.5. We display the results in both Mellin-N
space and Bjorken-x space and plot the functions in both spaces. Eq. (5.28), necessary
to define Eq. (5.29), has been taken from [81].

+
+&)

3

+CF [+ 32/27S, —160/81S; —32/81S, —32/81S, [1 — 6 (3] — 1/81 (192 D2
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— 176 D3 448 Dy — 192 D? 4176 D} — 48 D} — 32[2 — 3 (3] Do

+32[2—3¢] Dy —[131 — 144 gg])} (5.28)
3 _ 3),£ 3 _ 3),£
’Véq) 3 - ’Yr(Ls) 3 + Vtgq?ps - T(Ls) 3+
7 nf 7 nf

+Cp [ —64/27S,,,(3Dy —6D —3D; —6D7 —4D;y +4D_y)
+64/27S,, (11 Dy —13D§ +6D§ — 17Dy —4D} +12D} +2D, +8Dj
+4D_y) —32/81S, (94 Dy — 98 D +87D3 —18 D§ — 226 Dy + 100 D?
+ 111D} — 90D} + 128Dy +88D3 —48 D3 +4D_y) 4 16/81 (146 D — 87 D
+18 D5 — 54 D} — 309 D} +198 DY 472 D3 — 176 D3 + 96 D3
—4[1—18¢3] D_1 +2[26 +27(3] Dy — 2[59 + 54 (3] D2 4+ 4[91 — 18 (3] Do
—2[206 + 27 (3] D1 + 2[215 — 54 (3] D%)] (5.29)

3 —
KdW

ny

+ Cp [ —32/27S, 111 p +32/9S,p —32/818, (71 Dy — 30 Dj
+18D3 —115D; —36 D3 +42Dy +24D3 —8D_1) +32/81 S5 (71 Dy — 27D}
+18D§ — 109Dy —36 D} +36 Dy +24 D5 —8D_1) +32/81[S; 5+ Sy,] (81 Dg
—27D% +18D§ —135D; — 36D} + 62Dy +24D3 —8D_)
—16/243 8, | (416 Dy — 102D — 72 D§ — 1633 Dy + 90 D} — 288 D} — 216 D}
4+ 1174 Dy 4 648 D3 4288 D3 +72D_1) — 32/243 S, (976 Dy — 891 D2
4360 D3 — 216 D§ + 88 D — 459 D? — 72 D3 4 540 D} — 1101 Dy — 852 D3
—432D3 +68D_1) —16/729 S, (8634 D — 6822 D3 + 2430 D3 — 1620 D)
+ 1125 D} — 2070 D3 — 3456 D} + 3240 D} — 1812 D3 — 2448 D3 — 1728 D}
+ 352 D_q + 24[427 + 27 (3] D1 — [763 + 648 (3] Dy — 12 [802 + 27 (3] Do)
+4/729 (17370 D§ — 15012 D§ — 25992 D} + 49464 D} — 28512 D$ — 5280 D3
— 3456 D3 + 13824 D3 + 128 [31 + 27 (3] D_1 — 6 [281 — 9936 (3] Dy
+72[635 — 18 (3] D} — 54[835 + 144 (3] D3 + 24[959 — 432 (3] D3
— 61621 — 2592 G3] D} + 24 [1988 + 459 (3] D — 9 [7037 + 3852 (3] Dy
+ 2[31649 — 14688 (3] Dz)}

+Ca [32/27 p (81,1,1,1 —Si12 +S121 5211 —S13 = S22 +531 +45 4
+ 384) _128/81S_4 (509 — 7Dy +7Ds) — 64/81 S (5D — 4Dy — 3D?
+4Dy +3D5) +64/81[S;5— Sy, —S1.1.1](5Dg — 10Dy + 3D} +10 D,
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—3D3) —4/2438, (316 Dy — 45 D§ + 144 D§ — 641 Dy — 354 D} + 349 D,
+792D3 — 288 D3 —104D_;) +16/243S_, (38 Dy — 10Dy +9D? + 28 Dy)
—4/243 S, (468 Dy — 45 D2 + 144 D} — 1659 Dy + 912 D? — 576 D + 1277 Dy

— 168 D3 +288 D35 —104D_1) —2/729S; (6354 D3 — 3258 D + 3456 Dg

+ 5298 D} + 648 D} — 5184 D} + 15408 D3 + 16992 D3 — 3456 D3 — 128 D_;

— 61895 + 864 (3] D1 — 3[2863 — 864 (3] Do + [17447 + 5184 (3] Do)

+2/243 (554 D} + 696 Dj + 432 DS + 8508 D} — 6816 D} + 3168 D} + 2720 D3
— 4608 D3 + 2304 D3 —192[2 — 3(3] D_1 + 6[125 + 288 (3] Dy

— 3[269 4 912 (3] Dy + 2[643 — 432 (3] DE + 8[653 — 216 (3] D2

— [655 — 432 (3] Dy — 2[2399 + 864 (3] D?) (5.30)

3
Véq)

"y

+ Cp [64/27 Si11(2Dy —Dy —2D_1) —64/81S,, (16 Dy —8Dy + 3D}
—16D_1) +64/81S,(8Dy —4 Dy +8D? —3D? —8D_;) —64/81 (4 D?

— 8D} +3D} —12(3 Dy + 63Dy —|—12C3D1)] (5.31)

3 _
7589)

nf

+Cp [64/27 (3Dg —6D —3Dy —6D} —4Dy +4D_1)[S111 —S15 —Say
+S3/2] +64/81 S, , (57 Dy +21D§ + 18 D — 39Dy + 12 D7 + 20 Dy
—38D_1) —32/81S,(42Dy +69 D3 +18D3 — 42Dy + 69 D3 — 18 D} + 70 Dy
—70D_y) —32/243 S, (429 Dy 4 276 D + 207 D} + 54 D3 — 33D, — 30 D?

+ 135 D3 — 54D} —26 Dy — 370 D_y) —2/243 (77 — 3360 D3 — 1656 D

— 432 D} — 3840 D} 4 3816 D} — 1296 D} — 1296 [3 + (3] Dy

—432[11 — 3¢3] Doy + 96 [43 — 18 (3] Dy + 96 [47 + 18 (3] D_;

— 24179 + 108 (3] D3 + 24193 — 108 (3] D%)]

+Ca |4/81[Sy —28,,](33Dy +48 D5 — 33Dy +48 D} +52D; —52D_)
1 4/243 S, (480 Dy + 456 D3 + 144 D3 — 480 Dy + 456 DI — 144 D? + 527 Do
—527D_; —24[1 —6(3]) —1/243 (5 + 1380 D3 4 912 D3 + 288 D + 1380 D?
— 912 D3 4288 D 4 6[229 — 96 (3] Do — 6229 — 96 (3] Dy
+4[331 — 144 (3] Dy — 4 (331 — 144 (3] D_l)} (5.32)

Figures 5.1 and 5.2 show plots of these N-space expressions for the coefficients of n ;’
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The solid points show the function values for integer Mellin moments. The smooth
curves through them are the result of an inverse Mellin transform of the results to x
space followed by a numerical evaluation of the Mellin transform integral for non-integer
N.
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10 F a C ]
B 1 r B
75 a i ]
B 1 2r 7

s a i ]
[ 1 3r ]

25 -_'.‘ ] i ]
[ 1 4r 7

0 -— “"'--0--.-0-0-0--0--0--.-.-0--.—-0--.-.-0--.—-1 : :
[ 1 ¢ ]

i coeff. of n? ] i coeff. of n? 1
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Figure 5.1: The coefficients of the nf3 terms of ’yéz) and ’yég), plotted in Mellin-N space. The

colour factors Ca and Cg have been set to their QCD wvalues of 3 and 4/3 respectively. The
solid points shows the values of the (integer) Mellin moments computed by FORCER.
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Figure 5.2: As Fig. 5.1, for the coefficients of the n;’ terms of véz) and 7_((73).
Defining the functions
Dgq(x) =2(1 — N
peg(z) =1 — 22 + 222
pgg(z) =201 -2+
pgx)=1—2) "+t —2+2—2? (5.33)

we have the same quantities in z-space, presented as splitting functions (i.e. with a
relative (—) compared to Eq. (5.28) to (5.32), as defined in Eq. (2.19)).

P(3)7:|:

ns

nf
16 32 16 80 16 16 32
+Cp [pqq(x) <_8_1 + 57 G — 57 Hooo — 57 Hoo +8_1H0> +T <ﬁ+ﬁHo,0

208 16 32 208 131 32 304
+ﬁHo) +<—ﬁ — 57 Hop —ﬁHo> +5(1—x><—ﬁ SRR TS

32

B <4>] (5.34)
Pq(g) = P . + Pq(g,)ps = P~ 3+
g g g 'y
1 (64 128 256 128 160 64
+Cr [5 (ﬁ — 79 @+ o7 Hin +ﬁH1> +{1+2) (T@l +9 H
128 128 32 928 464 2336
- T H3,1 + T H2,1,1 - ? HO,O,O,O + 2_7 HS - W HO,O,O 81 HO,O

64 928 128 o 448 2432 128
— g HooC2 = 57 HoC2 _THOC?’) i <_8_1 TR T G
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256 256 2432 128 2048 2176
+ 57 Hoy = 57 Hypg — 37 Ho — 79 Hyy + 57 Ho + 757 Hl)

320 3136 128 832 64 3136 320
+<— -1 @~ 8- 57 Hyy +5 Hypy + Hy — =5 Hy,

27 27 81 9 ,
1888 3008 1216 64 64 448 64
— 51 Ho t 751 H1> +$< ST 8192~ 9 & 97 Hoy — g Hiag
64 448 352 5312
+ ﬁHQ + Tlel - gHO — 81 H1>:| (535)
|
wg| -
g

1 (4352 512 256 256 256 256
+CF {5 <_729 — 57 G — 37 Hip 37 Hioo — J7 Hio — J7 Hig

92944 128 9088 256 64
— 513 Hio + g1 Hin + 759 Hi + 8_1H1C2> (1 -2a) (_ 9 6362

- %4 G — % Hs + %4 Hso — % Hyo — % H3 00 + %4 H310 + %4 H3 14

+ 39_2 Hi 000 + g_g Hii11 — %4 Hs G + % Hop 0062 + 6_34 HooCs — % Hy Ca
B 69_4 H, C3> b ( B 257320916 N 4gi§4 G — 3181136 G — % ot % H,

+ % Hso — % Hsp — % Hyp1 — %%6 Hy0,00 — 8;1% Hy — % Hy 5

- % Hyo — 4;# Hyy — % Hooo + % Hipo — % Hiio

- 32% Hypp — 4(2)%424 Hy + % Hoo — % HooC2 — % Hyp — % Hyy
#5006 - B G+ G+ 1w )

+a? <%— 1ZZ§4<2 +%C3 +%C4 +%§0H4 _%HQ,Q +%H3,0
+ % Hs; + % Hopo — % Hoyio — %4 Hoy1 + 3%0 Hp 0,00 + %4 Hi 000
+ % Hy111 — % H; + % Hys — % Hyp — % Hyy — %26 Hoo0

- % Hygo + % Hyq0 + % Hyqqp + % Hy + % Hy G + 11;% Ho o
- % HooC2 + %?2 Hyop + % Hyy + 157028900 Hy + % Hy C2
e s B, - B - Bug) (B 0
+72%C3 —%44 —%Hzl +%H2,2 —%H&o —%Hs,l —%Hzo,o
+ ?;3_2 Hypo + 32_270 Hoqp + % Hoo00 — % Hy +32H, 5 — % Hy o

+ 584_14 Hyy + % Hoo0 — %? Hygo +32Hy 0 + 22% Hyp — % Hy

32 19784 160 30464 7424 67328
=3 HoG + =57 Hoo + 737 Hoo G2 — T3~ Hio + 543 Hin + 7555 Ho

12128 640 52480
+ %7 HoQ +57 HoGs — S5 Hy —32H1C2>}

1 448 128 416 416 1504
+Ca [E (‘ 729 — 27 & T i — o3 i — 759 H1>
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256 32 64 64 32 32
+(1—-2x) <— WHzL - ﬁHLg - 2_7H3,0 + ﬁHs,l + 2_7H1,1,2 + ﬁHLQ,o

+ % Hioi + % Hip00 + % Hy100 — 3—3 Hyt10 — ‘;’—3 Hij11 - 782_14 Hj

+%H0,0C2 + %H1,0C2 - %Hm@ ‘1'%111(3) +$<— % +%C2

- % G — % G4 — % H_1000 + % Ho0,00 — %_(7; H 50 + % Hy 5

+ % Hyo — % Hyy — % H 100 — % Hooo — 48%8 Hioo — 4%8 Hiio

- 48i18 Hyijp — % H, — % H o - %4114 Hyo + % Hyp - % Hy,

+z? <% + 92572138 G + 2;# G — % Hyz + % Hypo + % Hioo + % Hioa

- % H 1000 % Hi 00 + % Hy 100 — % Hyq10 — % Hyj1 + 22# Hy

- 48i18 Hyp + % Hyo — 45%16 Hyy — % H 100 + % Hoopo + 484_18 Hio0

+ 48%8 Hyio + % Hyig - % H, — %g H o - % Hoo — % H o

+ g_éHLoCQ + %HLI - g_?H1,1C2 + %Ho - 2(8)%}10@ + %Hl

Jr%ﬂﬂz +%H1C3) + <%+%@ +%C3 + 19—6C4 - %H—I,O,O,O

- % 0,000 — Sgllo Hyp — % Hyo + % Hyy — 65%10 H 100 + 48i14 Hp 0,0

+ % Hyoo + % Hyio + :%0 Hyiig - % H, — % H o - % Hy o

- %HI,O + %Hm +%Ho +%Hoﬁ2 - %78}10@ - %Hl

+ 320y, @)] (5.36)
7| -

1 128 | 256 128 640 128
+Cr [; <_8_1 o7 6 o7t =g Hu —ﬁH1>

)

128 64 512 256 128 256 128
+x (2_7 G+or Hin — 37 Hin +8_1H1> + <ﬁ — 576 — 57 Hig
640 128
+ ] H171 + 1 H1>] (5.37)
3 _
wg| -
"y

1 2 128 256 128 256 256
+Cp [(5 —z7) <T G—%7 Hip — 57 Higo — 57 Hino — 57 Higg

1472 956 1/ 1088 = 1664 4544
+ =51 Hipo +7H1€2> +2 (‘ 913 T 81 Hi,1 — 243 H1>
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64 32 64 64 64 64
+(1—x) < -9 Hio =G Hioo—79gHo—79gHu1—9Ho+tgH C2>

160 64 128 64 128 64
+(1+x) <—TC4 — 9 Hy =75 Hyp — 5 H3g — 5 Hzy — 5 Hypp

128 32 448 128 64
— 5 Haio =75 Haun — 9 Hopoo + 57 Hoy + 75 HaGo + 75 Hop G2

256 1376 2048 64 928 928 464
+?Ho<3) +a (——243 — %51 Gt G+ o7 Hy + 57 Hop + 57 Hopp

2048 1280 64 176 928 160
+ 537 He — g1 Hoo + 73 Hip — 75 Ho — 57 Ho G +ﬁH1>

o2 [ 1856 512 256 256 256 128 512

+ <_243 +37 @+ 57 Hy + 57 Hyg + 57 Hyy + 57 Hogo — 37 H
1472 512 2368 256 2368 608 2176

— 51 Hoo — g7 Hin — 553 Ho — 57 Ho G2 — 3 Hl) + <%+ TS

64 736 736 368 2176 1856
+ 75 G+ o7 Hy + 57 Hop + 57 Hopo — T Ho — Tg7 Hoo — 757 Hiy

112 736 2144 154

32 64 1 416 860
+Ca [ng@) <_8_1 +2—7C3> +(z =27 <_8_1H170 — 31 Hia +ﬂ3H1>

1 [ 256 44 88 224 64
+E <%> —|—(1—:L‘) (ﬁHLO_FﬁHI,l —gl‘h) —|—(1—|—33) <_ﬁH3

64 128 32 64 206 344 64
- 2_7H2,0 - 2_7H2,1 - ﬁHo,o,o +2_7HOC2> +z <ﬁ3 — 8_1@ +2_7C3

344 172 28 o 256 416, | 416 208
+ %51 Ha + g7 Hop _81H0> Tz <_243 — 51 G2t g7 Ho + 37 Hop
860 206 608 64 608 304 28
—mHo> * <—m ~ 81 62 T a7 G g Mo T Hoo —§Ho>
11— 2) (55 (5.38)
243 '

Figures 5.3 to 5.6 show these expressions plotted z-space. In each figure, the right-hand
panel shows the small-z behaviour of the same curves, including their leading small-x
term (1/x). In all cases the curves have been multiplied by z for plotting purposes,
to suppress the large divergence in the small-x limit. The diagonal splitting functions
have additionally been multiplied by (1 — z) to suppress a divergence in the large-z
limit. In each case, the 1/ term becomes a reasonable approximation at the lower end
of the plotted = range. The small-z expressions for these functions are presented in
full in Appendix A.10. Figure 5.3 clearly shows the end-point dominance of either the

pure-singlet (small-x) or non-singlet (large-z) parts of Pq(g).
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Figure 5.3: The coefficients of the n? terms of Pq(g), plotted in x-space. The colour factors
Ca and Cg have been set to their QCD values of 3 and 4/3 respectively. The right-hand panel
shows the small-xz behaviour of the same curves, including the leading small-x term of Pq(;;‘,)ps.
The multiplication by x(1 — x) is for display purposes, and suppresses the diverging behaviour
of the splitting function at each endpoint.
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Figure 5.4: The coefficients of the n;’ terms of Pq(g), plotted in x-space. The colour factors Ca
and Cg have been set to their QCD values of 3 and 4/3 respectively. The right-hand panel shows
the small-x behaviour of the same curve, including the leading small-x term. The multiplication
by x is for display purposes, and suppresses the diverging behaviour of the splitting function
near x = 0.
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5.5.2 Results for the Non-Singlet Anomalous Dimension

Here we present the next-to-leading contributions to the non-singlet anomalous dimen-

sions vﬁ‘?’i in the large-ny limit. The terms proportional to Crn })’ are given in N-space

by Eq. (5.28) and in z-space by Eq. (5.34). The new results, proportional to C’FCAnJ?
and Cﬁn?, are given below. As defined in Eq. (5.27) we present the A and B* parts
of 77(1?;). We also show the (rather compact) difference §B = BT — B~

2A =
32/27 [ —38/3S,5 +20S;5 +6S;, —38/3Sy; +40S,5 —12S,5 +6S;, (10

+m) — 2485, — 308y, +1/4885, (33921 — 36567 + 4327° + 720"

— 3392 D} — 576 D} — 1728 D + [2119 + 2880 (3 — 1296 (4]) — 1/12'S, (4167
— 127 — 144n® — 768 D + [1259 + 216 (3]) + 1/3 S5 (287 — 127 + 187
—36D3%) —3/2S,(53 +27n) +36S; 4+ 1/96 (944n> — 8647° — 7088 D3

— 2736 D} — 1728 D} + 9[127 — 264 (3 + 216 (4] — 24[1705 + 72(3) D?

— 2[2275 — 432 (3] 1 + [20681 — 2880 (3 + 1296 C4] ) — 12 817371] (5.39)

BT =
32/27[ —12S_4; —6S_3 5 +2S 3,(10 —=31n) —6S_y _»n +2S 5, (107
—3n° +6D}) +6S; 4, —20S; 5 +38/3S; 5, +6S,; (21> +71°) =308, 5
+248; 4 +6Sy 3 —20S, 5 +9S55 +6S3 5 +S35 (10 +3n) —3S;,
—6S,, —9S 5 +S_4(20 —3n) —1/3S_5(19 —30n + 97> — 18 DY)
+1/3S_,(8n +391% —96D?) +1/96 S, (158471 — 36727n% + 7207° + 864 n*
— 1728 D? — 1728 D3 — 2592 D} + [923 4 5760 (3 — 2592 (4]) + 1/48 S, (144 1
+ 7213 — [1585 + 864 (3]) + 1/12 S5 (619 + 18071 — 547> + 108 D?)
—1/2S,(73 +24n) +9S; —1/192(13927> — 15847n* + 3168 D}
— 3[193 — 1584 (3 + 1296 (4] + 2[2447 — 864 (3] 1 + 4[7561 + 864 (3] D?
— [15077 — 5760 (3 + 2592 (4] m) — 128 5, — 128 5,1 +12S; 3,
+128; 5 5 —40S; 55 — 65,5, +128, 5, +24 81727171} (5.40)

B =
32/27| —128_4, —6S_5_5 +2S_35,(10 =3n) —6S_, _,n +2S_5, (107
—3n° +6D7) +6S; 4, —20S; 5 +38/3S; _», —6S,; (21> +1°) —30S, 5
+24S;4 +6Sy 3 —20Sy 5 +9S55 +6S5 5 +S3, (10 +37n) —3S;,

— 65,1 —9S 5 +S_4(20 —3n) —1/3S_5(19 —30n + 97> — 18 DY)
+1/3S 5 (8n +3n% —18n> —96D?) —1/96 S, (4327 — 10327n* + 2407°

90



+ 2887 — 576 D? — 576 D} — 864 D} — [923 + 5760 (3 — 2592 (4])

+1/48 S, (1440 +721° — [1585 + 864 (3]) + 1/12 S5 (619 + 1807 — 547>
+108 D?) —1/2S, (73 4+ 24n) +9S; +1/192 (72807> — 3367 — 1728 7°

— 11136 D} — 18144 D + 4608 D + 3[193 — 1584 (3 + 1296 (4]

— 18[583 — 96 (3] 1? — 4 [10489 + 864 (3] D? + [25541 — 5760 (3 + 2592 (4] )
=128 3,7 =125 5,,n +125; 35 +128; 5 5 —405; 51 — 653,

+12Sy o1 +24S; 55, (5.41)

6B =
32/27{— 1281, (20" +71%) —6S_5(2n* +7%) — S, (21n —499* +109°
+12n* —24D? — 24D} —36 DY) +1/6 (3270 — 17579 +271n* —60n*
—541° — 366 D? — 348 D} — 468 D} + 144 D?)] (5.42)

These N-space expressions are plotted in Fig. 5.7. Note that the curves for the nf

terms of 77(%)’+ and 'yfl?;)’* lie almost exactly on top of each other in the right-hand

panel. The closed points show the function values of the n J? coefficients of %(133)’+ for

even integer N, the open points the function values of the n f coefficients of 'yr(f;)’* for

odd integer N.
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Figure 5.7: The coefficients of the nf3 (left-hand panel) and nf2 (right-hand panel) terms of
77(1?;)’+ and ’yr(l?;)’_. The colour factors Cs and Cg have been set to their QCD values of 3 and
4/3 respectively. The solid points show the values of the even-integer Mellin moments of '77(35)’+.

The open points show the values of the odd-integer Mellin moments of 77(135)’7.
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In x-space, these expressions are given by

2A =
2119 608 1280 112 160 64 128
aa(2) <_81 81 @ty 6T Gt g Hy— g Hig + 757 Hy
64 64 32 320 640 424
+ 95 Hao0 5 Hopoo =9 Hiooo + 79 Hs + 57 Hayg + =5~ Hopp

320 608 4592 160 608 64
+ 57 Hipo + 357 He + 37 Hoo — 79 HooC2 + 37 Hio + 75 Hipl

5036 320 64 64 22916
+ 51 Ho — 75 HoC2 + 75 Ho (3 +§H1C3> +(1-x) <8—1 +32¢3

64 928 736 560 32 32 32
+ 9 Hioo + 57 Hip +WH1) +x (2_742 — 3 Hopoo — 3 Hs — 3 Hap

)

296 560 6016 5078 32 32
— 9 Hooo — 57 Ho = 7 Hoo — 57 Ho + 3 Hy C2) —48¢ —F Hopo0
224 160 7424 17822 224

56
+75 Hs + =5~ Hoo + 75 Hyoo +48Hy + 37 Hoo + 57 Hy — =5 Ho G2

127 10072 1864 320 2584 64
+6(1—x) <—T +7 51 @ -7 B8+ T5 B -5 G +§C5> (5.43)

B =
923 304 160 - 64, |, 32 32 32 16
Pqq() <162 “Rr et 8 -3 atgH -G H 50— H s+ g Hyp

- % Hi 90— % Hyp0 + % Hoo,00 — % Hio00 + 12L70 Hy + % Hoo,0

- %HI,O,O + 2g%Ho,o - %Ho,o@ + %Ho - %Ho@ + %Ho@

“Sme) + (mp-s0-0) (Re-Bo+ Fa+ Pu,

+ % H 30 — % H 55 — % H 13— % H3, + %4 H 500 + % H o121

+ % H_ 1000 — % Ho 0,00 + % Hy + % H o — %?O H ,+ % H_ 100
640 128 1216 608

64 64
— 57 Hopo +75 HoG +37 Hoyo+75 Ho106 — 37 Hoo — 9 Hool2
1280 128

320 32 2374
+ 57 H G -5 H 1 G -5 HoGe — §H0C3> +(1—x) (W
32 32 128 448 128 16
— S Higo +75 Hip -5 His "‘THl) +(1+z) (‘THl,z + 3 Hap
64 64 544 128 200 320
_ §H271 +§H_17070 +WH_170 +TH_1CQ> —l—x(—w@ —TC;g

112 32 248 844 1112 16 104
+ 75 Hy + 3 Hooo + 55 Ho — 57 Hop — =5~ Hy —gHo@) -3 G

4 2 104 1 4
+ 8¢ F16H, + 32 H 5, + T H, + 150 Hy + U H, — 16H, 6
193 3170 . 320 . 80 80, 88
+5(1—«’U)<— w1 TR 2 — T G +§C3C2—§C4—§C5> (5.44)

BT =
923 304 . 160 . 64, _ 32 32 32 16
Paq(2) <162 “R et 6 -3 atgH -G H 0~ 5 Hiy+ g Hyp
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16 16 128 160 584
— 9 Hi 20 — 3 Hooo + 3 Hoooo — 75 Hiooo + 57 Hz + 57 Hoop

64 1585 320 112
— 79 Hioo + g7 Hoo — 75 HooC2 + g7 Ho — 57 HoGe + =57 Ho (3

64 1 1 608 320 16 128
—§H1<3) + <—(1+x) —§<1—$)) (8—142 9 etgatgiL
128 128 64 256
+9 Hiso—"9g Hop -5 Hyz -5 Hyy + 5 Hooo+g Hoos

64 32 640 640 1280 640
+9 Ho1000 =5 Hopoo + 57 Hs + 57 H oo — 57 Hoyo + 57 H g0

640 128 1216 64 608 64
— 57 Hopo 75 HoG +37 Hoo+75 H o106 — 37 Hoo — 9 Hoo 2

1280 128 320 32 11554
+57 H G -5 H G — 57 Hol §H0<3) + (1 —x) <T

128 128 32 32 128 608
=75 Hy +75 Hyy —F Higo + 75 Hig + 75 Hiy —WH1>

64 128 16 64 64 928
+ (1 +2) (3 H30—-"g Hoyp+9 Hyg+5 Haoy +5 Hoypo +57 Hogp

128 32 1496 2464 160
+5 Ho G +3H0C3> +x (2—742 — 57 G +80G — =5 Hopopo

1168 32 736 568 4532 64
+ 557 Hy + 5 H oo — 57 Hooo — 57 Ho — 57 Hop — 5 Hoo G2

5176 1072 376 1696 88 32 784
— 51 Ho — 57 H0C2> T 597 @+ 57 G+ 3 G+ Hogoo — 357 Hs

32 1120 376 6476 128 10808
+ 3 H o0 + 57 Hooo — 57 Ho + 37 Hoo + 75 Hoole + g7 Ho

784 193 3170 320 80 80 88
+ 5 Hy G2 +4(1 —2) <—5—4 +597 -9 B+ 3 875 & —§C5>

(5.45)
0B =
4432 128 128 64 256 1952
(1-2) <8_1 — 5 Hy+ 75 Hyy +75 Hogo + 5" Hiy —7H1>
64 128 1312 128 4832 32

+(1+.’L‘) (?H&O +TH271 - 27 H2 +TH*LO + 81 HO +§H0C3>

1696 1504 160 832 736 2000
+x (_27 G — 57 63 +8C — —g- Hopoo + 57 Hy — 57 Hopoo — g7 Hop
64 1024 1312 1120 88 32
— 9 Hopl2 — WHOQ) + 57 @+ 57 B +3 G+ 35 Hyoop
1216 1120 4784 128 1216
— 57 Hz + 57 Hpoo + 37 Hoo + 75 HooC2 + 57 Ho (5.46)

(

The z-space curves for the coefficients of the n]? terms of Pni)’Jr and P,Ei”* are
plotted in Fig. 5.8. The n}g coefficients have already been plotted in Fig. 5.3. In z-
space one starts to see the difference between P,(Li)’Jr and Pﬁ)’f and this is made clear
in the right-hand panel, which shows the small-x behaviour. The two best logarithmic
approximations to the curves are also plotted. Here, unlike the singlet functions, there is
no 1/z term. These leading logarithmic approximations are the terms Lo+ L+ L3+ L3
(N3LL) and L2 + L3 + L§ (NNLL). The small-z expressions for these functions are
presented in full in Appendix A.10.
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Figure 5.8: The coefficients of the an terms of PT([;’)’+ and P,([z)’_. The colour factors C 4 and
CF have been set to their QCD wvalues of 3 and 4/3 respectively. The right-hand panel shows
the small-x behaviour of the same curves, alongside their two best logarithmic approzimations.

5.6 Verification

There are some existing results in the literature which overlap with the results presented
above. We briefly review it here, to further convince ourselves of the validity of the

reconstructed expressions.

5.6.1 Linear Combinations of Large-n; Singlet Anomalous Dimen-
sions

The papers [66,67] present large-ny contributions to linear combinations of the singlet

anomalous dimensions computed above. Introducing the notation

Ygq = a10s + (aziny + ag) a? + (a31nf2 + agany + ass) a2 + O(af)

Yag = C1ngas + congal + (csinf + csang + css) al + O(ad)

Ygq = bras + (bainy + ba2) ag + (bglan + b3any + b33) ag’ + (’)(ag)

Ygg = (diinyg + di2) as + (doiny + da2) ag + (dglnf + dzony + d33) ag’ + (’)(ag) (5.47)

the following diagonalized anomalous dimensions are computed at leading ny to all

orders in asg,

1

1
AL = B (Vag + Vgg) 5\/(%1(1 —Y90) + VagVeq- (5.48)

In terms of the coefficients of Eq. (5.47) (and their obvious fourth-order extension),

bicy ba1cq 2 bs1c1 2 3
A= - + — + —
<a1 . > as <a21 i ) nrag asy i nyag
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baic
+ <a41 - = l)n;’ag—l—(’)(n;}af),

d11
v (4 bica ba1c1 2 bsic1\ o 3
+ = (dunydiz + — ) as + | d21 + nrag + | dz1 + njyag
diq di1 di1
b
+ <d41 + 2101> n;‘a;l +0 (nfag’) . (5.49)
11

di1
we find that the results of this chapter agree. Unfortunately these combinations do

By computing the same combinations of coefficients, (a41 — bj‘j%) and (d41 4 b41701>’

not include the fourth-order corrections to 'y(gz) (Eq. (5.30)), which were the hardest to

determine and least verified by further Mellin moments.

5.6.2 Fourth-Order Cusp Anomalous Dimension

There have been recent computations of the so-called cusp anomalous dimension. The
large-N limit of our results for the non-singlet anomalous dimension (with the n ;f’ terms
coming from [81]) yield

32 64 2392 640
79)51; = CF”? <_81 + 27(3) + Cﬁn]? <81 - ?C:i + 32C4>

923 608 2240 112
+ CACFn]? (81 - g@ + T?CB - 3C4> + O (ny). (5.50)

After taking the large- N, limit and some conversion of notation, this expression agrees
with the n ]? and n ]? contributions to the results of both [87] and [88].

5.6.3 Large-N Behaviour of Diagonal Anomalous Dimensions

In [89], the large-N structure of the diagonal anomalous dimensions 74, and g4 is
studied and some predictions of higher order contributions are made, based on lower

order coefficients. In the notation (where a = ¢, g)

A = A" InN+ B - C! (W) +0 <le> : (5.51)
it is determined that
Ccl=o,
C2=(43)%,
O = 24,47,
Cl = (A2)% +24L43 (5.52)

in MS. That the higher-order C' coefficients can be written in terms of the lower-order
A coefficients had been previously observed at three loops in [25], i.e. up to C3. The
relation for C;l is thus a prediction that we are now able to (partially) verify. We should

have that
o4 1216

2,2
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and
Cy =0+ 0(nj). (5.54)
(3)

The previously known n ;’ terms of ’ng already satisfy Eq. (5.53), in that they give a

contribution of zero. The new n ;’ terms of 753) satisfy Eq. (5.54); they also contribute
(3)

zero. The new n]? terms of ’ng provide the first “non-trivial” verification of this

conjecture.

5.6.4 Small-z Double Logarithms of Anomalous Dimensions

In Chapter 4, we computed the leading three small-x logarithms of the anomalous
dimensions and coefficient functions of DIS to all orders in their ags expansions. We
thus have existing calculations of the small-x logarithms which serve as a verification
of the new fourth-order results. The large-ny terms of the results in Section 4.3 and

Section 4.4.1 are as follows (in N space),
32 32
V@) = (chnj? - 305@) N7+ O(N™),

32 2224 _ _
7{53) = <QCA71J§ — 727 C’FTL}S> N5 + O(N 4),

59 =0+ O(N™Y),

32
7 = (chn ;f) N7+ O(N™?), (5.55)

in agreement with the new fixed-order results of this chapter. For future reference, we
provide the complete small-z behaviour of the large-ns terms of the splitting functions
in Appendix A.10.

5.6.5 Large-r Double Logarithms of Anomalous Dimensions

The leading logarithms of the fourth-order anomalous dimensions in the x — 1 limit are
also the result of various resummation efforts. In [29], the large-x structure of physical
kernels is used to predict the leading logarithms of the anomalous dimensions to all
orders of the expansion in powers of (1 —z). Just as the splitting functions/anomalous
dimensions determine the energy-scale evolution of the PDFs, the physical kernels

determine the energy scale evolution of the structure functions themselves. They are
defined as K where

d . d _(dC [ ,dC .
Q" ~ dng? (C“’>_<ﬂ das C”)“KB da, C”>C ]F (>:30)

K

To third order the physical kernels are observed to have single logarithmic enhancement,
that is, in the large-x limit they have logarithms which go as af In(1 — z)™. This is

a non-trivial property since the quantities that form them, the anomalous dimensions
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and coefficient functions of DIS, largely display double logarithmic enhancement; they
go as a” In(1—2)?". These double logarithms cancel when combined to form a physical

kernel.

The conjecture that this property should hold to all orders in as allows one to
determine the double-logarithmic contributions to fourth-order anomalous dimensions
and coefficient functions. It is predicted that

(3)
q

128 32 128 64
/Yq 7105:6’1:71?[1?( 1 — 2P

128 32 . 04 2
TP 27( ) TR 27(1 +:c)H0> + O (L7)

. 4
yég) = (Cy — CF)nfgL% <_81pqg($)> +0 (Li’)

75;) =04+0 (L:{’)

755) = Vs (5.57)

in agreement with the new results of this chapter.

5.7 Conclusions

The recently developed FORCER package has been able to compute low-N Mellin mo-
ments of the structure functions of DIS at fourth-order in massless QCD. It has verified
and extended previous calculations of some moments of the non-singlet QCD splitting
functions, and computed moments of the singlet splitting functions for the first time.
Once some additional moments are available it will be possible to produce the first

numerical approximations to the fourth-order QCD splitting functions.

In this chapter, we have used FORCER to compute a sufficient number of Mellin
moments of very particular sets of diagrams (those leading in the colour factor ny) to
perform reconstructions of the analytic N-dependent expressions for the large-ny a?
contributions to the splitting functions. These results are the first analytic calculations
of the n f2 terms of the non-singlet splitting functions and the n ;’ terms of the singlet
splitting functions. Where they coincide, we have shown the expressions to be in agree-
ment with existing results in the literature. These expressions can be combined with
low-N moments of the remaining colour factors to produce numerical approximations
to the fourth-order splitting functions. Such approximations will be the topic of a

future publication.

The computations of this chapter exhaust the opportunities to reconstruct analytic
expressions for anomalous dimensions from a fixed number of Mellin moments, with the
possible exception of the n J? terms of the flpo diagrams contributing to the evolution
of the valence PDF ¢Y,, defined in Eq. (2.29). The computations involved would be
more computationally demanding than anything computed for the reconstructions of

this chapter, but may be possible with further optimization of the FORCER package.

97






Chapter 6

Summary and Outlook

The research presented in this thesis concerns QCD corrections to the deep-inelastic
scattering of leptons and hadrons. The framework in which we performed our cal-
culations allows the extraction of the coefficient functions, which are specific to DIS
processes, as well as the splitting functions of QCD which are universal to all inter-
actions with hadrons. As such, they are crucial theoretical input for data analysis at
current and future collider experiments, such as the LHC and its potential upgrades.

This motivates the computation of high-order QCD corrections to these quantities.

In Chapter 3, we considered the scattering of leptons and hadrons via the exchange
of a charged boson. As determined in Section 2.4, we must compute parton-level
structure functions for the linear combinations of W+ + W~ exchange and W+ —
W~ exchange. The third-order QCD corrections to the structure functions FZ-W++W7
were computed and presented in [27,28]. For the W' — W~ combination, only a
numerical approximation based on the first five Mellin moments was available [36,37].
The main result of Chapter 3 was the computation of the exact expression for these

3 3 3 3 3 (3)7_ (3)7_ (3)7_
third-order coefficient function contributions, ¢y, Clps and 3

We investigated
how these exact corrections compare to the existing approximations and how they affect
the convergence of the perturbative expansions of the coefficient functions themselves
and also of the structure functions after convolution with a PDF. We found both the
coefficient functions and structure functions to be reasonably well-converging for x
values as small as around 10~7 for cg?l; and cg?’%; , and around 10~* for 0523)71; We
also provided an exact version of the discussion of [37] regarding QCD corrections to
the Paschos-Wolfenstein relation. The approximations of the required second Mellin

moment proved to be very accurate and the conclusions here were unchanged.

In Chapter 4 we studied the small-x behaviour of both non-singlet and singlet
parton-level structure functions. In this limit, the coefficient functions and splitting
functions exhibit diverging logarithms which spoil the convergence of the perturbative
series. We saw the effects of such logarithms in Chapter 3. Our focus was on the z°

double logarithmic contributions which give the leading behaviour in the non-singlet
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cases. In the singlet cases these terms are sub-leading to the % single logarithms. We
chose a functional form for the parton-level structure functions in this small-z limit,
inspired by the terms that appear in the 2 and 3 particle phase-space integrals which
were computed for calculation of the second-order coefficient functions [30,62]. Using
the results of fixed-order N?LO calculations, we were able to determine the highest 3 e-
poles of the parton-level structure functions to all orders in as. These poles completely
determined our functional form and thus allowed us to express the leading small-z
double logarithms (to the NNLL level) at all orders in both as and €.

The subsequent mass factorization of the parton-level structure functions allowed
us to determine the small-x expansion coefficients of the DIS coefficient functions and
splitting functions to all orders in as. In the non-singlet cases we were able to provide
closed-form expressions which give the double logarithms to all orders in ag. In the
singlet case this was not achieved but we noted some features that suggest that this
should be possible with some further investigation. We also noted that the procedure
should apply to the sub-leading 2, z%, ... double logarithms of even-N quantities, and
to z!', 23, ... double logarithms of odd-N quantities. While not directly phenomenolog-
ically relevant, the resummation of such contributions would provide additional checks
of reconstructions, such as those of Chapter 5, by predicting the coefficients of fur-
ther sub-leading double logarithms. Such resummations will also be the topic of future

research.

Finally in Chapter 5 we used a recently developed software package, FORCER, to
compute a large number of Mellin moments of diagrams contributing to both the non-
singlet and singlet structure functions in the large-ny limit. By investigating the func-
tional structure of the QCD splitting functions at lower orders, we were able to form
bases of functions that we assumed to be sufficient to describe the fourth-order contri-
butions. By equating these bases with the computed Mellin moments, we were able to

form systems of Diophantine equations for the unknown coefficients of these bases.

By making use of a specialized software package, we were able to solve these
Diophantine systems and thus reconstruct analytic expressions for the N dependence
of the large-ny terms of the fourth-order splitting functions. The results given in
Section 5.5 are the first analytic expressions for the n f2 terms of the non-singlet splitting
functions and the n ;’ terms of the singlet splitting functions at fourth order. In the
near future, these reconstructions will be combined with numerical approximations
of the remaining colour factors to produce the first numerical approximations of the

fourth-order splitting functions.
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Appendix

A.1 Harmonic Sums

The harmonic sums [90] are used extensively in this thesis when discussing results
and computations in Mellin space (see the below discussion of the Mellin transform,
Appendix A.3). A harmonic sum is defined by a vector of integers mi. For negative
integers we have an alternating sign in the numerator of the sum. For a vector of length

one, m, we define

Sm(n) =" Zim (A1)

i=1
and
~ (1)’
Som(n) =Y e (A.2)
i=1
The single-positive-index harmonic sums correspond, if we let n = oo, to positive

integer values of the Riemann zeta function ;. Indeed, we find that fixed values of the

Riemann zeta function appear in our results.

For a vector of length [ the harmonic sums are defined recursively;

1
St ,ma,my (1) = Z Z»milsmz,---,mz (n) (A.3)
i=1
and as above
S ) = 3 ), (A1)

i=1
The harmonic weight of such a sum is defined as Zé:l ).

We will often suppress the argument N in typesetting, to reduce the length of

expressions.

A.2 Harmonic Polylogarithms

The harmonic polylogarithms [91] are another useful set of functions with which we
can describe the results of calculations in perturbation theory. They are related to the

harmonic sums (Appendix A.1) via the Mellin transform (Appendix A.3).
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As with the harmonic sums, a harmonic polylogarithm is defined by a vector, here

with entries € {—1,0,1}. Defining the three rational functions

fe) = =)
o) =,
file) = 70— (A5)

we have for a vector of length [ the recursive definition

Hmth,m,ml(x):/O dyfml(y)ng,...,ml(y)~ (A.6)

There is a caveat to this definition; for an all-zero vector of length [, we define

1
Hy,. o/(x)= il In z. (A7)
We introduce the “shorthand” notation that zero entries in the vector (with the
exception of in the last position) are removed and the absolute value of the following

entry is increased by one. That is,

Hy,....0410,.0+1,.() = H:I:(m—«—l),:l:(n-&-l),.‘.(x)' (A.8)
~— =
We will often suppress the argument z in typesetting, to reduce the length of expres-

sions.

With the above “shorthand” definition, we can define the weight of a harmonic
sum as either the number of indices in the full vector, or the sum of the absolute values

of “shorthand” indices.

A.3 The Mellin Transform and its Inverse

When performing calculations of various quantities of DIS, we often encounter Mellin
convolutions of the form
vea@=[ Y (2w, (A9)
z Yo NY
As with other types of convolution, the appropriate integral transform of the functions
reduces the convolution to a simple product. In this case, the Mellin transform has

this property and is defined by

1
M@ = [ de () (A.10)

The z-space harmonic polylogarithms described above in Appendix A.2 can be written
in terms of harmonic sums (Appendix A.1) in Mellin N-space; this is why these classes

of functions are particularly useful to us.
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The inverse transform is in general rather complicated. It is defined by an integral

over N in the complex plane,
1 [etioo

flz) = 2m’/c_m dN 27N f(N). (A.11)

Here, since we only deal with fairly restricted classes of functions (the harmonic sums

and harmonic polylogarithms) it is possible to construct a database of the inverse

transforms of the harmonic sums by forming suitable linear combinations of harmonic

polylogarithms such that the forward Mellin transform produces the harmonic sum

desired.

The routines to perform these transforms are all included within the FORM packages

summer [90] and harmpol.

A.4 The Mellin Convolution of Plus-Distributions

In Section 3.3.4 we discussed convolutions between coefficient functions and a PDF. We
noted that one must take care to properly convolute terms of the coefficient functions

involving plus-distributions, defined by a (x) such that

1 1
| drar@)is@) = [ dva@) (f) - 0] (A12)
0 0
where f is a regular (analytic) function of z.

To convolute such a plus-distribution with a PDF zf(z) we must compute (see
Eq. (A.9))

slor o f@) = [ 1 Ve (y) | (A13)

xT

Extending the range and subtracting the “extra” part,

= /Oldya+(y) gf <Zj) — /Ox dya(y)gf <§) 7 (A.14)

we can insert the definition of the integral of a plus-distribution into the first term,

= [Cwaw |2 (2) -] - [ (2). a9

Splitting the range of the first integral, the second integral cancels a term in the lower

yielding

part of the range,

= [ vt 21 (2) et + [Cavan | 2o —xf<w>]

- / “ayat) i), (A.16)
0 Yy

= [ 21 () -] - [“avatwese)| (A7)

103



In Section 3.3.4 we have that

In(1 — x)*
at(z) = [1—:1:] . ) (A.18)
so the second integral can easily be evaluated by substitution as
z In(1—y)k In(1 — x)k+1
- _ - = Al
of@) [ ay == - ) (A.19)

In the coefficient functions, we also have terms containing 6(1 — x). For these the

convolution integral is trivial,

X

/ ays - () ==s) (A.20)

Similar to the notation of [92], we decompose the coefficient functions into regular
and singular pieces. Let C; 4 be the regular piece and C; g be the plus-distribution
piece. Let C; ¢ be the integrated plus-distribution and delta-function piece, that is, the
sum of the results of integrals Eq. (A.19) and Eq. (A.20). We have then, that

a:[C'i®f](x):+/

! T
[ aawe ()

+/: dy Ci p(y) [zf (5) —xf(x)]

+ Cic(z)xf(x). (A.21)

In the third line of Eq. (A.21) we must be careful to consistently handle the
(—) signs between the second integral in Eq. (A.17) and the results of Egs. (A.19)
and (A.20).

A.5 Dispersion Relations

Here we discuss the dispersion relation required to connect Eq. (2.38), an expression for

the forward amplitude %Tzq, to the parton-level structure function 2—12}3’2&. We found

that
R > A (A.22)
22 21~ z ' '

The problem is that this sum converges for z > 1, but the physical kinematic region for
DIS is the range 0 < z < 1. Here we follow the reasoning of [93,94] and Appendix B
of [36]. Writing z as é, we consider iT 2,4 as a complex function of v. It has a branch

cut for v > Q2 and, since it is an even function of v, another for v < —@Q?. Consider

dv 1 1. dv 1 v\ Y
L= [ o5, 124=2 | 5=~ =3 A2
/ omi pntl 9, 21 / 2 1 Z <Q2> (A.23)

even N

the integral
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around a closed contour around the origin (avoiding the branch cuts starting at £Q?2).
By Cauchy’s residue theorem, it is given by the residue of the pole at v = 0; the
coefficient of the ™ term of the sum. Thus,

I, =2 (&)n (A.24)

Figure A.1: The two integration contours of the dispersion integral.

Alternatively we may consider a deformation of the contour, pushing it out to
infinity (but avoiding the branch cuts) as depicted in Fig. A.1. The integral around
the curves at infinity and the curves around the poles vanish, leaving us with just the
integrals along the straight lines above and below the branch cuts. Each cut gives an

equal contribution, given by the discontinuity of %ng across the cut,

© dv 1 . 1 .
ITL = 2/@2 %WDISC |:22:T27q:|

0o
=2 /Q ] %# 2i Im [;ZTM] : (A.25)
Making a change of integration variable v — z = Q2 /v, we find that
I, =2 <C;2>” /01 dzz”_I%Im [;Tg,q] , (A.26)
and thus by equating Eq. (A.24) and Eq. (A.26) that
! 1 R
1= /O dzz"‘lglm [QZTQ,Q] . (A.27)

Comparing Eq. (A.27) with our statement of the optical theorem (Eq. (2.32)) we see
that this is nothing but the Mellin transform of the parton-level structure function
iplq- The Nth Mellin moment of iﬁ’g’q is thus simply given by the coefficient of
2(1/2)" in the forward Compton amplitude.

A.6 The g-Functions

Splitting functions and coefficient functions in DIS can generally be written using (in

Mellin-space) the harmonic sums, possibly multiplied by simple denominators in the
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Mellin variable IV, such as %, 7 etc.

_1
N+
This is not always the case, however. Starting at 3 loops (a) we find terms which
must be written with numerator N dependence. This numerator N dependence appears
with very particular combinations of harmonic sums and Riemann zeta values which
we call the g-functions. These were first documented in [27]. We extend the definition

a little here, to make clear whether we are discussing even- or odd-N functions.
With

f(N) =5(5 —25_54+45_o(3 — 45_2,_3 + 85_27_2,1 + 4537_2 — 45471 + 255 (A.28)

and
RE(N)=(¢—S_3—S_2+2S 21,
hO(N> =(3— S_3+S5_9+ 25_2,1 R (A.29)
we define
g1(N) = Nf(N),
g2(N) = N?f(N),
g5 (N) = N*f(N) —2Nh"(N),
g9 (N) = N3f(N) 4+ 2NhO(N). (A.30)

The forms of g1 (N) and g2(V) differ in z-space after inverse Mellin transformation,
so in the z-space expressions below we define ¢ (x) and g (z) (for i = 1,2,3) as the
inverse transforms for even- and odd-IN. The z-space expressions are as follows, where
the odd-N functions are typeset as the even-N functions plus the odd-N—even-N

difference for compactness.

gf(x) = 2(1—a)? [ — G +4H 9C —3HyG +2Hy +Hygoo —2H 509
~4H_yy —3HgoG | +2(1— )" | —4H_5¢ +4H_, G +2H,
—2Hy —Hp00 +2H 500 =2H_ 100 +Hopp +4H 55 —4H_;;
+3Hp oG —3(¢&— () Hy —(3C3—C4)} +2(1+2)7? [24_1C4 +2Hy G
—Hp0,00 +2H_50 +Hop C2} +2(1+a)” [Ho,o,o,o —Hpo —2H_3p

1
+2H 50 —HypoG + (G2 —2¢)Hy +7 (8¢ — 21C4)} +2¢ —8H_; (&

gy (x) = A(1—2)7° [C4 —4H_ 3¢ +3Hy¢ —2H, —Hygpo +2H 500
+AH gy +3 Mo G| +4(1-2)72 [6H 5 ¢ — 4H_, G — 2H; + 31,
3
+ 5 Ho00 =3H 200 +2H_ 199 —Hpoo —6H 55 +4H 4,
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~ S HooG +3 (26 -3G)Hy +3 (26— )|

+4(1—2)7! [ —2H 3¢ +4H_ ;¢ +2H; —H, — % Ho 000 TH_200
—2H 490 +Hppo +2H 55 —4H ;5 + % HoppoC2 + % (C2 =63+ Ca)
~3RG- G| +40+2)7 | =5 G - 2Hy G + Hygg0 —2H g
—Hyp C2} +4(1+2)7? [ - % Hp 0,00 +Hooo +3H 390 —2H 5

+ % Hoo ¢ — (G2 —3¢3) Hy — % (16 ¢3 — 6344)} +4(l+a)! {Hz

+ % Hoo,00 —Hooo —H_30 +2H 5o —H_ ;5 + % (2—C)Hyy

+ (¢2 — ¢3) Hy —%(1242—16C3+21C4)} +4(1 —2) [(C2+C3)} +4¢
—AH, +4H_, — 4H, (A.32)

gF(@) = 12(1—2)™ [ =G +4H 5 G — 3Hy G +2H, +Hygpp —2H 50
—4H_,, f3H0,0¢2] +12(1—2)73 [ —8H_,C +4H_, ¢ +2H,
—4Hy —2Hgg00 +4H 500 —2H_y 00 +Hppo +8H 55 —4H_;
+6Hp0¢ —3(—2¢)Hy — (3¢ —2C4)] +2(1—2)7% | 28H_, (o
—36H_, o — 18H, + 14 H, +THy oo — 14H_y0, +18H_ o
—9Hygo —28H gy +36H_ 5 — 21 HyoCo — (3G — 27Cs +7C)
+3(9C — 7c3)H0} +2(1— )t [ M, G +12H_, G +2H, +6H,
—2Hy —Ho00 +2H 3500 =6H_ 190 +3Hoop +4H 55 —12H 4,
+(14+3G) Hop + (G =96 +C1) ~3(3¢— o) Hy
+12(1+2) 7 [ B G+ 280G — Hogop +2H g +Hoo G|
+12(1+a)7° [QHO,O,O,O —Hypo —4H_30 +2H 55 —2Hj( (2
+ (2 —4¢)Hy + % (4¢3 —21 C4)} +2(1+a)7? [ —THpp00 +9Hoop
F14H_ g — 18H_yo +6H_ o — (3= 7C) Hyy — (3+9C — 14¢5) Hy
+ % (4G —24G+ 4944)} +2(1+2)"! [ —2Hy +Hpp00 —3Hpppo
—2H 35 +6H 45y —6H_; 5 + (2 —(9) Hypo + (443 —2¢)H,
—1AHG-20G+216) | 4001 -2) [ — (G +G)| +2 - 2H, (A33)

_ 21
@) = gF@) +2(1+2) 2| =G — 4y G +2Hpp0 —4H 50 —2Hoy G|
+2(1+2)7! [ —2Hp 000 +2Hppo +4H 30 —4H 5o +2HyoC

—2(C— 2G5 Hy — § (8¢ —21Gr) | +8Gs +4Hy G — 4Hy
+8H_,, (A.34)
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g9 (@) = gF(@) +4(1+2)7 [ ¢ +4H G — 2Hg 00 +4H 50 +2Hyg o
+4(1+a2)7? [3H0,0,0,0 —2Hp0 —6H_ 30 +4H_ 5 —3Hgo (2
+2(C— 3G Hy + 5 (16— 63¢0) | +4(1+2)7" [ ~Hygp,
+2Hgo +2H 50 —4H_ o5 +2H_; 5 — (1 —C2) Hyy —2(¢2 — ¢3) Hy

+}1(4g2—16§3+21<4)} Fo(1— ) [ —2g3} —4¢ —8H_, +4Hy,
(A.35)

99 (x) = g () +12(1 +2)* [ - % G —4HyG +2Hgg00 —4H 30 —2Hgg C2}
+12(1+a)7° [ —4Hyp00 +2Hpoo +8H 30 —4H_ 5o +4Hy(C
—2(C2—4¢3)Hy — (4¢3 —21 C4)] +2(1+a)? [14H0,0,0,0 —18Hg
—28H 50 +36H_ 40 — 12H_ +2(3 - 7¢) Hy,g
+2(3+9C —14G)Hy — 2 (4¢ - 246 +49c4)}
+2(1+2)""! [ — 2Hy 000 +6Hpoo +4H 50 —12H 5o +12H_,
~2(3—C)Hyg —2(4+3G —2()Hy +3 (4412 — 24 +21g4)]
+5(1—w)[2<’3} — 4 +4H, (A.36)

Despite containing these positive powers of IV the expressions are nonetheless finite

as N — oo or equivalently, z — 1. In the large-z limit they go as powers of In(1 — x)

suppressed by powers of (1 — ),
9F (@) > (G + Gl = (1= D)+ Gl + (1= 2)? [§ = 1G — 3G — yIn(1 - 2)]
+0(1-2)%),
g8 (@) = 61— 2)[Go + Gs] — (G2 + Go] + <1 — o) [3+ 3G -1 -2)
+ (1= 2)? =5+ 3G+ §Ge+ (i —2)| + O (1 -2)%)
gF (@) = = 0(1 = )[Go + G + | 2<2+1n<1—x>} +(1-2) |5 +G]

(1 a)? [—% — LG+ 3G -3l - $)} +O(1-2)%),  (A37)

g0@) =[G = Gl = (1= )G — Gl + (1= 2)% [ = G + 3G — 5 In(1 - )]
+0(1-2)%),

g€ (@) = (1 - 2)(G2 — )~ [ = Gl + (1= 1) [§ + o — (1 - )]
+(1—2)? [~g+ 3G~ 3G+ 5(l— )| +O (1 -2)?)

@) == 01— 2)(G— &)~ [} - 5 —I(1—2)| + (1-2) [§ - &]
41— )2 [3—}1*1—12@*%@* 1—x}+(9 —2)) . (A.38)
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It is worth taking the time to describe how an inverse Mellin transform of these
quantities can be performed. The numerator N adds an additional complication and
the transform cannot be automatically performed by the procedures we usually use to

produce z-space expressions, which use routines from the FORM package summer [90].

We seek a function g; (x) (this argument applies to both even- and odd-N functions)
such that

a) = | dexN gy ()] = N / e 1 (@) (A.39)
Proceeding by parts
.’L‘N ! 1 X
a(N) =N [N f(x)] 0 —-N /0 dazN 1 [}7 f'(x)} : (A.40)

and bringing the boundary term inside the integral

1
(V) = [ daa¥ [5(0 - ) (1) ~ af'(2)]. (A1)
0
we have in the square brackets an x-space expression for gj (V).

We can use our z-space expression for g;(N) to compute the inverse Mellin trans-

form of go(IN) in the same way,

1
g2(N) = /0 dzaN 1 [5(1 —x)g1(1) — xg’l(x)] ) (A.42)

Since it turns out that f(1) = 0, we sidestep the issues of evaluating the delta function

at 0 and of taking its derivative.

Similarly for gf ’O(N ) we have

1
gf’O(N) = /0 dpzN-1 [6(1 —x) (92(1) T hE’O(l)) - (gé(x) = hE’O(aU))] . (A43)

Here, delta functions at 0 and delta function derivatives from go(x) are exactly cancelled

by contributions from h#© () and again we do not have to consider how to treat these.

A.7 Third-Order Coefficient Functions in Charged-Cur-
rent Deep-Inelastic Scattering

We show here the full z-space results for the coefficient functions discussed in Sec-
tion 3.3. We typeset only the differences between the even-N and odd-N coefficient
functions to save space; the full expressions can be reconstructed by combining these
expressions and those presented in [27] and [28]. We repeat the definition of the even-
N—odd-N differences here for convenience. See Eq. (3.6) for a more detailed discussion.
Let

§C, = O AW ol W =21,
5Cy = ?Yz;—w’ _ ;V,;W’. (A.44)



In terms of the harmonic polylogarithms defined in Appendix A.2 and the g-functions
defined in Appendix A.6, the third-order contributions to these coefficient function

differences are given by

Sy (x) =
Cr(Cy—2CFp)Cr <x2 {2464 H ,( +832H; + 1856 Hy — 448H 5

—1184/5H 55 —2368H 5, —2464H_; (o —160H_;, —1664H_, 4
—416H, g — 96H, ; (2 +192H, 5 — 576/5H,, — 576/5H,; + 192Hy
+192Hs, +192H 5 —1664H 500 +192H | ,( —256/5H_;
+2368H ;15 +176H 0o —192H_ ;55 —192H_,,, +688H,
—256H, 50 —192H,00 —192H | ;14 +1664H_ | ;0 —704H_ 4,
+832Hg00 +128H, 909 — 192H; ; oo — 16/5 (12 — 20(3 + 325 (o) H,
—96/25 (52 + 25 () Hy 4 8/25 (185 — 59003 + 1876 (o + 1610¢3)
+16/25 (293 — 3050 (3 — 2825 (o) Hy + 32/25 (586 + 1475 () H_

— 16/25 (827 + 3600 (2) Hy g + 672/5 (15¢3 + () H_, } + 23 {
—4368/5H_5Co +96/5H, (o — 144/5 Hy (o — 10416/25 Hy — 2496/5 H,
+96H 5 +10416/25H 5 +3936/5H 5, + 7008/5H_; ;¢
+19872/25 H_ 1, +960H_; 5 —288/5Hs, —288/5Hs, —864/5H_5
+2976/5H 500 —576/5H_; 50 —16032/25H_; _; —1344H_; _,,
+21792/25H_ oo +576/5H 15 +576/5H_; 5, —11376/25 Hy
+96/5H,00 +576/5H_1 1 19 —960H_; 100 +384H_; 00

—1056/5 Hy 00 + 32/25 (314 — 825 () H_; o — 12/25 (337 — 1240 () Hy
+ 144/25 (95 C3 + 138 ¢2) Hy — 48/25 (600 (3 + 581 G) H_; + 12/25 (20103
+337¢ —322¢3) } + (1/2% +92%) {96/5 H 5 ¢ +32/5H, ¢

—128/15H 55 —64/5H 5, —1168/15H_; _; ( —3152/75H 4,
—160/3H_, 5 + 112/15H, 4o +16/5H, ; ( —32/15H, 53 +64/5H_,
—64/5H 500 +32/5H_| 5 +2512/75H_| 4 +224/3H_, _,,
—3472/T5H_ oo —32/5H_10 —32/5H_1 5, +64/15H, 4
—32/5H_y 4 10 +160/3H_1 ;190 —64/3H_1 000 —32/15H, 0,
+32/15H, 5 ¢ — 4/225 (1501 — 3300 ) H_y o — 8/75(30¢s — 197 () Hy
+8/75 (6003 + 551 () H_; } + (1/z + 92?) {1888/15 H_, ¢ —16/25H,
+832/15Hy —32/3H_, o — 1024/25 H_; , —320/3H_, , +2672/75 Hy
—32/5H,, —32/5H,, +32/5Hy +32/5Hy, +192/5H_;
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—256/3H_1 0 +352/15Hy o —32/15H; o4 — 16/25 (19 —20¢2) Hy
—4/225 (743 + 3720 (2) Hy + 4/225 (983 — 34203 — 2208 () } +(1—2) {
—3728/3H_3(; —1912H, — 248/3H; +1504/3H_,, +3728/3H_3,
+2080/3H_55 +9808/3H_o _; (2 +10544/3 H_5 5 + 5584/3H_, 4
+3040H_; _,C +13136/3H_ 5 + 1760H_, , +856/3 H, , — 448/3 H, 4

— 448/3H,, + 320H, 5 — 1948/3 Hyy — 2528/3 Hy, + 32/3 Hs, — 32H,,
—32H,, —3296/3H_5 ;o +1248H 500 —928H_ 5 _,, —4880/3H_,
—7936/3H_5 15 +3168H 500 +640/3H 5,0 +224H 5, —800H_; 3,
—2408/3H_, 5, —2560H_; 5, —4960H_; ; ;¢ —18080/3H_; ,,
—3040H_; ;3 +2048/3H ;55 +896H 5, +160H ;35 +160H_; 3,
—64H; 50 +1808/5H; 5 + 184H; ;5 +192H;;; —32/3H,;

+64/3H, 50 —320H, 5o —256/3H, 00 —256/3H,y, ¢ —96H,
+32/3Hy00 —32/3Hy, 0 +1248H , | ;o —8336/3H_,

+ 1456 H 5000 +960H ;| 5 1 —2400H ; 500 +960H ;| o

+1424H |, o +4480H ; ; ;5 —13064/3H_; ;50 —320H_; 5,
—320H_; 5, +2380H_; 500 —320H_; 500 — 1184 Hg 00 — 64/3Hy g0
—32/3 Hii00 + 32/3 Hy11,0 +160Hy 000 —320Hy 190 —960H 4 5 1 19
+4000H 4y 100 —1920H_3 1000 +800H_1 9000 —136Hg 00,0,

—4/3 (189 + 1864 (o) H_5 5 +40/3 (209 — 168 (o) H_ o — 8/15 (569

+1050 &) Hy g +8 (607 +20 () H_; 5 —8/15 (799 + 150 () Hy y + 8/15 (971
+7200G)H | 1o +8/15(1623 +490(2) H, o +8/15 (2283 +370(2) H,
—4/15 (16091 + 1240 (o) Hy + 2/75 (17569 + 11800 (3 + 21440 () H,

—2/15 (18767 — 780 (2) Hy g + 2/75 (32084 + 101450 3 + 210835 (s

+ 2660 ¢3) Hy + 4/225 (46153 — 94500 (s — 309150 &) H_; o +2/75 (47983
43000 (3 — 31050 o) Hy + 2/225 (63894 — 112350 (5 + 5400 ¢y + 574155 (3
— 98758 (; — 87000 (2 C3 + 17775¢2) + 2/225 (103519 + 36600 (3

+252300 (o) Hy g — 8 (347 (3 + 541 ) H_y +8/3 (1530¢3 + 2527 ) H_ | _;
—4/15 (21720 (3 4+ 17239¢ — 1770¢3) H_, } + pyq(—2) {5600/3 H ;¢
—52H, +560H; —512H_, 0 +112/3H_3, — 1472H_ 3,5 —3024H_5 _; (2
—240H_5, — 8048/3H_53 —3008H_; 5¢; —400H_, 3 —2096H_,
+8Hyy —96Hy 3 +84H;3 +128Hz, +416/3 Hyo +976/3 Hy o +432H,
+2368/3H_3_, o —4480/3H_5 +640H_5 5o + 112H_,
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+2624H 5 15 —16H 50 —768H 5,55 —2912/3H 55, +2624/3H_; 3,
+120H_y _y0 +2624H_ 5, +4032H_y | ;¢ +384H_; 4,
+12448/3H_; 15 —192H_ ;50 —256H_; 5, —288H_; 5, —2800/3H_, 5,
—3616/3H_ 13, +64/3Hy 5o —8Hy o —32/3Hy, 5 +64/3H,,5
+512/3Hs 00 +96Hs, o +96Hs,; —800H 5 1 14 +2512H 5

— 1856 H 509 —768H_ | o 10 +7520/3H_; 540 —T736H_| |
—288H_; ;10 —3648H_; ; ;5 +240H ; ;0 +3968/3H_;
+1664H 1 ;51 +36H 1000 —1216/3H_ ;500 —544/3H_1 5,

—192H 15, — 596/3 Hp 0,00 —64Hy000 —64Hy1 00 + 32/3 Hy110
+T68H_y 4 10 —3424H_y | 100 +8720/3H_; ;00,0

—1264H_, 900 +272Hg 0000 —8(4 —310¢s —53C)H_; o +16/3 (6
+43¢)Hyy +16/3 (6 +53C2)Hyp —32(8 +149¢C)H_ | ;5 —4/3 (24
—308¢3 —183(2) Hy — 16/3 (31 +41¢)H 1, —4/3 (54 +572(3

—107¢2) Hy g +8/3 (61 + 164 () Hy +8/3 (79 +894 () H_ o +8/3 (85
+1184¢2) H 5y —2/3(239 4+ 904 (2) Hy g9 — 2/15 (1205 — 360 (4 — 103
+555C + 916 C3)Hy — 4/15 (2480¢5 + 75¢3 — 60 ¢ — 3660 (o G5 + 408 ¢32)
—48(85¢3 +11¢)H_; | +8/3(1100(3 + 111 () H_y + 4/15 (2055 (3
+140¢ — 476 C3)H_, } +1200H_3(p +7264/3H, —288H_,,

—1424H 3, —672H 3, —3744H_, ;(; —5232H ,, —2016H ,,
—3648H_; (o —7696H_; 5 —2112H_,, —512/3H, 5 + 288 H,,

— 384 H, 3 +2704/3 Hyy 4+ 3616/3 Hs; +1056H_5 ;o — 1056 H 3
+960H 5 5o +5648/3H 5 o +3072H_, |, —13040/3H_,

—192H 550 —192H 55, +960H_; 35, +3808/3H_; 5, +3072H_; ,,
+5952H 1 _1C +29792/3H ;5 +3648H_; ;3 —4096/3H_, 5
—1792H_ 5, —192H_; 59 —192H_; 5, +2676H oo +640/3H; 5,
+64/3H, oo +384Hy oo +224Hy 0 +544/3 Hyy o +192H, 4

—1344H_ 5 | 10 +2976H o ;oo — 1344 H 5000 —1152H_; 5
+2880H | 500 —1152H_ | | 5 —6016/3H_; | ;o —5376H_; | 1,

+22192/3H_; 10 +384H_; 150 +384H_; 15, —13184/3H_, 0,
+384Hy 100 +1152H 4 4 4 40 —4800H_; 4 100 +2304H_; 1000

—960H_; 00 +64(1+C)Hy, +64/3(3 +16¢)Hy, +32/3(15 -3¢
+64G) Hy +16/5 (17 + 840 (o) H_y g +16/5 (353 +30(2) Hyy — 32/15 (373
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+2160C) H_y 1 — 16 (487 +12(2) H_; 5 +8/15 (1483 + 1260 (o) Hy g
—8/3(1649 — 1008 () H_y 0 +8/3 (1789 + 126 (2) Hy — 16/225 (3290
— 21600 s + T7625C3 + 631 ¢ — 10125 Ca (3 + 4695 (2) — 4/75 (6793
+1800¢3 — 26450 (o) Hy — 8/225 (27083 — 56700 C3 — 268200 C2) H_y 4
— 4/225 (32249 + 5400 C3 + 159000 C2) H o — 2/225 (42037 + 344400 3
+ 692400 C5 + 2700 ¢2) Hy + 40/3 (234 ¢5 + 463 () H_, — 32/3 (459 (s
+1025C) H_y _; +8/15 (179453 + 13864 — 1062 ¢3) H_

+2/3 (g () — 02(2)) — 46/3 (97 () — g2(x)) — 4/3 o 6(1 — x))

+Cr(Ca—2CF) Ca (:c2 { — 1408 H_5 ¢, — 1104/5H, — 208 Hy — 800 H,
+256H 50 —384H 5 + 1408H 5, +1408H_; ;¢ —176H_;,
+T704H_ 5 +224H, ¢ —96H, 3 +704H _,0, +384H_;
—1408H_; ;5 —984H ;4 +3192/5Hy o + 256 H; 5 +96H,
—704H_y 400 +128H_; 000 —256Hg 000 —128H; 900 +96H; ;100
—416/3 (7 +6(2)H_;y —8/15 (132 + 135(5 + 2291 ¢, — 24(3)
+16/15 (853 + 990 (2) Hy o — 8/25 (2769 — 3100 (3 — 855 (2) Hy — 8 (8¢s
—37¢)H, —16(66¢; —23¢)H_, } + 23 {384 H_, (> +456/5Hy
+1008/5H, —192/5H 50 +944/5H , —384H ,, —768H_, ¢,
—912/5H ;5 —384H_ ;3 —192H 54, +224/5H | ,( +768H ; ,,
+1544/5H oo — T72/5Hy 00 — 48/5H,y +384H_|
—192/5H_1 00 +192/5Hg 000 — 12/25 (623 +500(2) Hy, + 8/25 (1649
+1320G)H 1o +64/5(45¢3 + 16 (2)H_; —4(60(3 +37¢2) Hy
—4/25(995(3 — 1869y — 72(3) } + (1/2% +92%) { —352/15H_5
+128/3H_; ;¢ +152/15H ;5 +64/3H_; 3 —16/5H, 3¢ +16/15H, 5
—112/45H_; ;4 —128/3H_; ,, —772/45H_, o —64/15H; ,
—64/3H_, 100 +32/15H 100 +32/15H, 500 —16/15H; 1 99
—4/225 (1429 + 1320 ) H_; 5 +4/15(20¢3 —19(2) H; — 32/45 (45(3
+16¢)H_, } + (1/z +92?) { —128/3H_, ¢» — 184/15H, + 184/15H,
—112/5Hy +64/15H 5, —472/9H_, , +128/3H_, , +964/45 Hy
+64/3H_ 00 —64/15H, 0 + 16/15H, oy + 16/225 (386 + 375 (2) H,
—4/225 (2864 — 1500 (3 + 575 (o) } +(1—x) {136/3 H_ 5o +2048/3 H,y

+16/3H; —16H_y +768H_5 —32/3H_5, —4000/3H_, _; (>
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— 1504 H_p, — 1976/3H_p5 — 1280 H_; _,Co — 22744/9H_, ,
—6016/3H_, 5 —800H_, , — 128/3H,, + 304/3H, 5 + 2272/9 H,,
+32H, 5 — 160 Hyy + 616/3 Hy +320H, , — 16/3Hy, +208/3H_5
—56H 500 + 112/3H_y o —2336/3H_5_, o +3920/3H_,_,,

+832/3H 00 + 16/3H 500 +320H_; 5o — 1040H_; _, o +1280H_; _,,
+2560H_, ;4 Co +8960/3H_, 1, +1280H_; 5 —896/3H_, 5,
—1280/3H_ 5, +64H, o, — 1472/15H, oo + 128/3H, 1 o +32/3H, 1,
—64/3H, 5 +320H, o0 +64/3Hy g —32H, o +16/3Hy
—160/3H_y_y 1 +2152/3H_y_1 0 —592/3H_y000 +640H_, 54,
+2416/3H_; 4 10 —2560H_; ;15 —56H_; 100 +8H 1900

+160H ;500 +644/3Hg 00 +16H; 300 —32/3H; ;9 —160Hy00
+160Hy ;00 —1280H_1 4 100 +320H_1 1000 —320H_ 19000

+16Hy 0,00 + 160 (1+2¢) Hyg — 64/9 (71 +18Co) Hy, —8/3 (91
+58Ca) Hy g +32/9 (158 + 315 (o) H_y 0 + 64/15 (418 + 195 (o) H_y g
+4/45 (491 — 90 o) Hy 0 — 4/27 (626 + 1404 (5 + 2799 &) Hy — 8/9 (2891
1800 Co) H_y o — 8/27 (2920 — 1269 (o) Hy + 8/15 (3869 + 10¢) H,

— 4/15 (7844 + 190 Gs + 3135 (o) Hy o + 4/135 (54673 + 32400 (s

+T8120 o) H_ o + 2/2025 (217793 + 318600 C5 — 48600 ¢4 — 1320750 3
1831500 Ca + 396900 Ca (s + 174825 C2) — 2/2025 (1192459 + 507600 C

+ 2489850 o — 16740 ¢3) Hy — 8 (240Gs + 323 ) H_y _, +8/3 (379G

+418C) H_y +4/9 (4686 C3 +2795C, +T2¢3)H_, } + Pgg(—2) {
—2048/3H_5 (o +1648/9 H, — 160H; +160/3H_,, — 3920/9 H_5,
+T04H gy +1312H_5 1 (o —352/9H_ 5, +3472/3H_ 5 + 1296 H_; _,
—352/9H_, 5 + 768 H_y 4 —512/3Hy (o — 128H,, G +224/3 H, 4
—352/9Hy, —64/3Hy, —64H,, —320/3H,, +128/3H_5
+1120/3H_500 +64/3H_y oo +3872/9H_y o —1312H_,
—6128/9H 500 +928/3H_y,0 +1280/3H_ 5, —128/3H_; 4,
+3872/9H_) 5 —1312H_; ,, —1920H_; | ;1 (p —1984H_, 4
+T04/9H_y 5 +160/3H_y 5o +784/3H_; 50 +1280/3H_, 54
—64/3Hy 50 +16H,00 +32/3Hy 5 —64/3Hy 0 — 160/3Hy g
+64/3Hy, 0 —2128/3H 5 100 +1424/3H 5000 —32H_ | 5 1
—T04H_y 500 —64H_| ;1 50 —3520/9H_ ;o +1920H_; | i,
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+5984/9H_, 00 —1792/3H_, 150 —2560/3H_; 5,

—5912/9 H_, 500 +448/3 H_ 00 — 160/3H_, 51 +2972/9 Hy g 00
+128/3Hy 900 +128/3Hy ;00 —32/3Hy 10 +1088H_; 1 100
—2432/3H_, 1 000 +928/3H_, 0000 —64Hyg000 + 16/27 (17

— 396 (o) Hy — 32/27 (17 — 144 G) H_ 5, +16/3 (21 — 46 (s — 27(o) Hy
+64/9 (67 +312C) H_, _, o + 16/27 (463 + 288 C2) Hoy g0 — 16/27 (679

+ 2277 Co) Hg g — 16/27 (973 + 1548 Go) H_, 5 — 8/81 (2129 + 8964 Cy

— 1305 C) H_, o +4/81 (6125 + 3888 (s — 5220 () Hy o + 2/135 (17715
—3240¢4 — 16620 (3 — 5440 Co + 4176 ¢2) Hy + 2/81 (6372 ¢5 — 10260 C
—8794¢y — 14040 G 3 + 1107¢3) +32/9 (543(3 —55Ca) H_ _,

—16/9 (687¢3 — 143 2) H_5 + 8/135 (2640 (5 + 4360 (2 + 423 (22) H_, }

— 2176 Hy — 2896/3 H, —2480/3H 3, + 1536 H 5 ;{2 +7280/3H_,,
+T68 H gy + 1536 H_; 5 Co +35024/9H_ , + 10816/3 H_, 5 + 960 H_, ,
—192H, G +256/3 H, 5 — 4544/9 Hy, — 160/3 Hy + 192 Hy 5 — 808/3 Hy
—1280/3Hy, +3248/3H_y 1o — 1536 H_p_1 5 + 64/3H_50

—384H_, 40 +3760/3H_, o — 1536 H_ _,, —3072H_, _, ;G
—15488/3H_; 15 — 1536 H_; ;5 + 1792/3H_, 5 +2560/3H_, 5,
+136/45 Hy g — 640/3 H, oo — 32/3H, oo — 384H, oo — 176/3 Hy
+160/3 Hy g — T68H_p_1 0 +192H 5000 — T68H_; 50
—2768/3H_, _, 1o +3072H_, ;15 —T92H_, ;oo + 1184/3H_; 00
—192H_; 40 — 1120/3 Hy g0 +320/3Hy 000 — 256/3H, 10 +192Hy 000
—192Hy 100 +1536H_y ;100 —384H_; 1900 +384H 15000

+16/3 (23 +2Cs — 46 Co) Hy + 148/5 (69 + 40 Go) Hy o — 8/3 (107

+144Go) Hy +128/9 (277 +135Go) Hy _, o — 40/9 (607 + 216 (o) H_y
—8/9 (1237 + 1512 (o) H_, g + 8/27 (1781 — 2070 () Hy + 4/45 (6520
37805 + 12005 G5 — 17351 o — 4860 Ca ¢G5 — 1788 ¢2) — 8/135 (51538
+19440 5 + 70065 o) H_, o + 4/2025 (630679 + 390150 G5 + 1303920 &) H,
—8/3(432C5 + 707 (o) H_y + 8/3 (8643 + 1763 Cy) H_; _; — 8/45 (21945 G

+10810¢; +216¢3)H | — 1/3 (g5 (z) — g5 () +23/3 (97 (z) — ¥ (2))
+2/3 C3 (5(1 —$)>

—2032/15Hyy — 128 H_y 1o +192H_; 4 — 192Hy o +16/15 (12 + 1203
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+199¢2) 4 16/25 (139 + 100 ¢) Hy } + 23 {192/5 H_, ¢ —96/5H, (o
—384/5H 5, —2224/25H_,, +1272/25H,, +384/5H_;
—576/5H_; 0 +288/5Hy g —24/25 (40(3 + 53 () } + (1/2% +92%) {
—32/15H_; (o +64/15H 54 +952/225H_; 5 —64/15H_; ;4

+32/5H_ 1, } + (1/z + 92?) { —472/225 Hy +224/15H_, 5 —32/5Hg g

+8/225 (179 + 60 (s) } +(1-2) {320/3 H ,( —976/27 H, + 656/27 H,
+32/3H; —160H_5, —2336/9H_,, —320/3H_, ;& —128/9H_,
+5192/15 Hyy +128/9H, | —64/9H, | +640/3H_,_, o —640/3H_,
+640/3H_; 5 +1280/3H_; 1 —3008/9H_; 5 +120H, 4
—640/3H_; _; 14 +320H_; 100 — 160H_; 500 — 8/135 (5969

— 900 () H_y 5 — 8/2025 (30059 + 55800 (3 + 58680 (2 + 8100¢3)

+8/2025 (30157 — 13500 (5 — 7425 (3) Hy +64/9 (15(3 +32¢)H_, }

+ pgq(—1x) { —416/9H_, (s —320/27Hy — 64/9 H, +800/9 H_3
+1600/27TH 54 +64/9H 55 +320/9H_; (o +640/27H_;, +64/9H 4
+64/9Hy, —704/9H 5 ;o +1088/9H 54, —704/9H_; 4,
—640/9H_; ;5 +2560/27H_; 4, —128/9H_, 5, —664/27 Hy

+640/9H | | 5 —1088/9H | ;40 +1088/9H 400 —368/9Hgg00
+32/81 (83 —63C2)H_;, —8/27 (87 —66(3 —23(2) Hy — 16/81 (191
—45G) Hyy — 64/27 (12(3 + 25 () H_y +16/405 (1350 (3 + 415
+513¢3) } —128H ¢, —1312/27H, — 64/3H; +192H 3

+1280/3H 50 +128H | (2 +256/9H 5, — 17912/45H, + 128/9 H,
—256H 5 1o +256H 500 —256H ; 5, —5632/9H ;
+1664/3H_, 59 —496/3Hy 0 +256H ; ;15 —384H ;

+192H_, 90 — 8/45 (430 — 1600 (3 — 1433 (2 — 216 (3) + 16/135 (5039

— 540 () H |y — 16/2025 (28942 — 8100 (3 — 6075 (2) Hy — 128/3 (3¢5

+8¢2)H_; ) (A.45)

50(5)”5(@ =

Cr(Cy—2Cp)Cr (:c—? {384/5 H ¢ +256H (3 +19072/75H_, G
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—64/5H, (3 +6784/75H, (2 +128/5H, (s —512/15H 5 —256/5H_,,
—4672/15H_; ;¢ —25936/225H_; 5 +704/3H_; 3¢ —13568/75H_
—640/3H_; 3 +448/15H, oo +64/5H, 1 (o —128/15H, 3 +256/5H 5 1
—256/5H 500 +128/5H | 54 +11008/75H | ;4 +896/3H_; ;,

— 14848/7T5H_ g9 — 128/5H_ ;55 —128/5H_; 5, +256/15H; ,

—128/5H_ | | 19 +640/3H_; 100 —256/3H ;00 —128/15H, 0
+128/15H; 1 } + 27! {16688/225 —1216/5 (3 — 13696/75 (2

—192H , ¢ —672H_; (3 —4448/15H_, (o — 12848/225 H, — 3968/15 H, (o
—1536/25 H, + 64/3 H, (3 — 4432/15H, ( + 256/25 H, — 64 H, (s
+3328/15 Hy — 128/3H 5, +128H 4, +2464/3H ; ; {» —5248/75H_,
—1888/3H_, 4Co +800/3H_; 5 +1664/3H_, 3 +11648/75 Hy
—128/5H, 5 —416/3H, o2 —128/5H,; —32H, ; (o +64H, 3 + 128/5 Hy,
+128/5Hy —128H 5 1o +128H 550 —64H ; 5, —896/15H ;
—2368/3H_; ;15 +112H ;55 +64H ;55 +64H ;,; +1408/15Hy
—256/3H, o, —128/15H, 5 +64H |, ;5 —1664/3H_;
+704/3H_; 500 +128/3H, 500 —64H, 5 o0 } +z {46136/75 — 3256/15 ¢4
+1024 ¢G5 — 15112/5 (3 — 155656/225 (2 + 480 (2 (3 + 800 H_4 (s

+2080H_5 (3 4+ 7664/3H_5 ¢ — 1888/5H_; (3 + 3472 H_, (3

4 15008/5 H_; (o — 54904/25 Hy — 16 Hy (2 — 880H, (3 — 14112/5 Hy ¢s
—89792/75 H, + 32H, (3 —2864/15 H, (o + 43456/75 H, — 64 H, (3
+752H, (o +10752/5 Hy + 224 Hy (2 + 1664/3H, —192H_,

—1760/3H_ 3 —448H 3, —2496H 5 (o —848/3H_, + 1792H_, (o
—6176/3H 55 — 1344H 55 —2432H_; _,( —3264H_; ;3
—12992/3H_; ;{2 —44008/225 H ;5 + 1344H ;¢35 +8864/3H_; o (o
—9184/3H_;, —128H_;,(; —6688/3H_, 3 — 1408H_,,

+131608/225 Hy y — 64H o (s — 1984/3 Hy o2 — 512/5H, o —320/3H, (o
—512/5H,; +256/3H, 3 +896/5Hyy + 448 Hy 5 ¢ +896/5Hyy + 64 Hy; (o
—256H, 3 +64Hs +64Hy, +704H 3 15 —704H 34, +640H , ,
+992H 5 1o +2048H 5 ;5 —4960/3H 500 —128H 5,50 — 128H 55,
+640H_; 30 +576H_; 5, +2048H | 5, +3968H_; | ;(
—1792/15H_; ;o —3072H_; ;¢ +11456/3H_; ;5 +2432H_; ;3
—5744/3H_1 00 +1792H_, o¢ —128H_; 55 —128H_;,; — 128H_, 5
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—128H_; 3, +18896/15Hy o — 128/3H; 50 +128/5H; g + 256 Hy 5
—448/3Hy 00 —896H 5y 1o +1984H_ 5 100 — 896 H_ 5400
—T68H_y 5 10 +1920H_; 500 —T68H_j 1 50 —1024H_; _;
—3584H_y 15 +8032/3H_; 100 +256H_1 50 +256H_| 14,
—3232/3H_ 400 + 256 H_1 500 +656/3Hyg00 +64/3H, o0,

—256/3Hy 00 — 128Hy 000 +256Hy1 90 +7T68H_1 1 1 10

~3200H_; _; _j 0 +1536H_; 1500 —640H_ 0000 } +a? {3608/25

+5152/15 (5 — 24352/15 (3 + 12352/75 G +4928/3 H_5 (o + 1344 H_; (3
+4224/5H_ (2 + 1144/25 Hy — 3904/3 Hy (3 — 24032/15 Hyy 2

—2464/25 H, + 128/3H, (3 — 9248/15 H, (, — 3424/25H, — 64 H, (»
+13312/15Hy + 3712/3H, —896/3H_5, — 3328/15H 5, — 4736/3 H_,,
—4928/3H_; ;¢ +19072/75H_; 5 +3776/3H_, o (o —2240/3H_, ,
—3328/3H_; 3 — 10432/75 Hy g — 1536 H o2 — 192/5H, o —832/3H, (o
—192/5H,, —64H, (o +128H, 3 — 192/5H,, — 192/5H,; + 128 Hy
+128Hy, +128H 5 ;o —3328/3H 5 +128H | 5 +2944/15H |
+4736/3H_; 15 —1184/3H_ ;oo —128H ;54 — 128H 5,

+8992/15Hg oo — 512/3H; 5 —64/5H, gy —128Hy gy —128H_; |
+3328/3H_; ;9 —1408/3H_; 5 + 1664/3Hy 00 + 256/3 Hy g0
—128H, 19 } + 23 { — 2576/25 C3 4 3216/5 (3 + 2696/25 (s
—2336/5H_5( —384H_, (3 —9776/25 H_, (2 + 1824/5 Hy (3

+13248/25 Hy (o — 96/5 Hy (3 + 3472/25 H, (2 + 96/5 Hy (o — 6944/25 Hy
—1664/5H, +64H 5, +5664/25 H 5 +448H 5, +2336/5H_; |
+2696/25 H_; o —352H_; 4 (o +6944/25H_ |, +320H_; 3 —2696/25 Hy
+1984/5HyoCo +224/5H, o +96/5H, ;¢ —64/5H, 3 —192/5 Hg
—192/5H, —192/5H 5 1 +320H 550 —192/5H_;

—5664/25H | g —448H_; ;5 +7584/25H | ¢ +192/5H 5,
+192/5H 45, — 7584/25Hy g + 128/5H; 54 +64/5H,

+192/5H 419 —320H_; ;00 +128H ;00 — 704/5Hy 0

—64/5H, 500 +64/5H; 99 } — 187568/225 + 8176/15 (3 — 2273675 (o
+544H 5 G +1632H_ (3 + 18224/15H_, ¢ + 2024/45 Hy + 2432/5 H, G

+101792/75H, — 64 H, (3 + 4368/5 H, (3 + 54496,/75 Hy + 160 Hy (5
—5056/15Hy — 128 H 5 +128/5H 5 —320H_5, — 1984 H_; 1 (o
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+42544/75H_; o + 1536 H_; 4 (o —3424/3H_;, — 1216 H_, 3

—9424/75Hy, +832/5H, o +448H, (2 +832/5H, | +64H,; (s —256H, 4
—64/bHy —64/5Hy; +448H 5, | o —512H 550 +384H ;

+736/5H 1 1 +1792H | 1, —2240/3H_ ;55 —128H_;, —128H_; 5,
—3056/15Hg 0 +256H; 5 —64/15H, 05 —384H_; |

+1600H_; 99 —768H ;00 — 128H; 50 +256H, | o0

~16 (o ()~ )

+Cp(Cy—2CF)Cy < + 72 { —128H_ (3 —2048/45H_; (> +64/3H, (3
—304/15H, (o —1408/15H 5 +512/3H_; ;¢ —28144/225H
— 1408/15H_; o ¢ +608/15H_; 5, +256/3H_, 3 —64/5H, ;¢ +64/15H, 4
—448/45H ;o —512/3H ; _;, —3088/45H ;5 —256/15H, 4

- 256/3 H_17_17070 + 128/15 H_1,07070 + 128/15 H1707070 - 64/15 H1717070 }

47! { —51104/225 +320/3 (3 —368/9 ¢ +352H_1 (3 — 112/3H_; (&
+29984/225 Hy + 320/3Hy (2 — 736/15 H, — 64/3 H, (3 + 296/3 H, (o
+736/15Hy —448/5Hy +3776/15H 5, — 1408/3H_; (2 +3784/9H_,
+832/3H_; 3¢ —80/3H_, 5 —704/3H_, 3 +3856/45 Hy, +224/3H, (o
—32H,3 —128H ; ,, +1408/3H ; ;, +856/3H_, ¢ —256/15H
+256/3H, 5 +64/15H, 00 +704/3H ;59 —128/3H 1,

—128/3H, 900 +32H, 100 } +z {36064/225 —704/15¢2 — 224 G5

+3736/9 (3 —7240/9 (o —288(2(3 —T68H_5(3 — 576 H_, (o

—128/5H_, (5 —3104/3H_, (3 — 2032/3 H_, (> + 233168/225 H,

+160/3 Hy ¢z + 9592/9 Hy ¢ + 1184/3 H, +32/3H, (3 + 320/3H, &
+224/3H, — 352H, (; —12688/15Hy — 192H, —544H 5, + 1024H_, _, ¢
—49504/45H 5 — 640H 5 (2 +2816/3H 5,5 +512H 55 +1024H | 5
+1536H_; | (3 +4480/3H_; _; (; —16832/15H_, , — 768H_, (3
—1120H_, gCp + 1504 H_; 5 +2752/3H_; 3 + 640H_, 4 + 64952/45 H
+784/3Hg (2 +64H, gCo —128/3H, 3 — 256 Hy g (2 + 128 Hy 4
+2176/3H_5 1o —1024H 5 1, —1088/3H 550 —256H_; 3
+2432/3H_| 50 —1024H_ | 5, —2048H_; | (o +4960/3H ;
+1280H_, 10 —5504/3H_; 1, —1024H_; ;4 —544H_,

— 896 H_ o0 C2 +664/45Hy o +128/3H, 5 —64/5H, 5 —256H,
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+ 224/3 H2’070 - 5].2 H—2,—1,0,0 + 128 H_2?070’0 - 512 H—l,—2,0,0
—2048/3H_y 1 1o +2048H_; 1, +1088/3H_y 10 —800/3H_1 0,

[Ag]

—128H_;1 590 — 208/3 Hp o000 — 64/3 Hygoo + 128/3 Hy 100 +128Hy000

T by

—128Hy 400 +1024H_y 4 100 —256H_; _; 900 +2956H_1 000 } + 2 {

—26432/75 +128/15 (3 + 1123 — 39416/45 ¢y — 2816/3 H_, (o

—T04H_, ¢ —32/3H_; (o — 31952/75 Hy + 1984/3 Hy (3 + 1712/5 Hy (o
—368/5H, —128/3H, (3 +592/3H, (> — 368/5 H, —4096/15 H,
—1600/3H, +512/3H 3, —1152/5H_,, + 2816/3H_,,

+2816/3H_; (2 —8656/9H_;, —1664/3H_, (2 +416/3H_, ,
+1408/3H_ 5 +6616/9 Hy o + 704 Hy (2 +448/3H, oo — 64H, 4
+1408/3H 500 +256H_; ;o —2816/3H_; |, —528H_ 4 +400H,
+512/3H, o0 +32/5H, 0 +64Hy 00 — 1408/3H_; 190 +256/3H_; 40,
—512/3Hy 00 — 256/3H, 00 +64H; | g9 } + a3 {192/25 (3 —1592/15 (3
44984/25 ¢y +256H_5Co +192H_; (3 4+ 1024/15H_; & — 160H, 3
—296/3HyCo +32H, (3 —152/5H, ¢ 4+ 304/5H; +672/5H, —128/5H 3
—224/15H 5, —256H 5, —256H_; ;¢ +4984/25 H_ | o +704/5H_, (o
—304/5H_,, —128H ;3 —4984/25Hy, — 160H, ¢ — 96/5H, o (o
+32/5H, 53 —128H 50 +224/15H_; ;4 +256H_; _;, +1544/15H_, o
—1544/15Hy g9 — 128/5H, 55 —32/5Hy00 +128H_; ;o

—64/5H 1500 +128/5Hy 000 +64/5H; 500 —32/5H; 10,0 } + 94336/225
—736/3 (3 +24824/45 (o, — T68H_; (3 — 128 H_; (» — 29152/225 H,,
—3248/15Hy ¢ — 272 H, — 352H, (o — 1040/3 H, + 896/5 H,

—T712/15H 5 + 1024H_; ;o —42496/45H_;, — 640H_; 1 (2
+1024/3H_ 5 +512H_; 5 — 2488/9Hy, — 256 H, o (2 + 128 H, 5
+1280/3H_; ;o —1024H_; ;5 —512H_ ;4 +112/3Hy o —256H; 5
+32/15H, g9 —512H | ;0 +128H_ 100 +128H, g0 — 128H; 1 9

18 (9 () — 60 (@) )
+Cp (Ca —2Cp) 0y < + 372 { —128/15H_ (o +256/15 H_, +4768/225 H_,

—256/15H_1 ;1 +128/5H_y 4 } a7t {6688/225 +128/15 (o

+64/3H_, ¢ —2848/225 Hy — 128/3H_, o — 2512/45H_, , — 128/5Hy,
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+128/3H_; ;o —64H_, } +a {13472/225 +128/5 (3 + 1408/9 (3
+6608/45 (; — 256/3H_5 ¢ —256/3H_; (3 — 1408/9H_, {;

— 28256/225 Hy + 128/3 Hy (5 + 32/3Hy (o + 128 H_5 + 1792/9H_,
+256/3H_; _y (o +3872/15H_y 5 —128/3H_, 1 — 11984/45H
—512/3H_5 1 +512/3H_50 —512/3H_; _,, —2816/9H_;
+2176/9H_ oo — 160/3Hy o0 +512/3H ) | 15 —256H_;
+128H_1 0,0 } +a? {1168/25 +256/3 (3 +6944/45 (; —128/3H_, G
+1168/25 Hy + 128/3 Hy (o +256/3H 5, +6368/45 H_ |, —5792/45 H
—256/3H_; ;1 +128H_; 4, — 128 Hy } +a° { —128/5 (3 — 848/25 (,
+64/5H_, ¢ —64/5H,( — 128/5H_,, — 848/25H_, o + 848/25H
+128/5H ;o —192/5H ;4 +192/5Hy g } — 3408/25 — 544/15 (3
—128/3H_, (; — 7216/225Hy + 256/3 H_, o + 6656/45 H_, o +224/5H

—256/3H_; _ + 128 HmO), (A.46)

Oc(x) =
+Cp(Cy—2CFr)Cr ((1 + )7t {11200/3 H 3¢ —104H,; +1120H; —1024H_,,

+224/3H 35 —2944H 3, —6048H _, | (o —480H 5, — 16096/3H_, 3
—6016H_; ¢ —800H_ ;3 —4192H ;, +16H,, —192H, 5 + 168 Hy
+256 Hy; +832/3Hy, +1952/3H,, +864H,, +4736/3H 5
—8960/3H 300 +1280H 5 o +224H 5, +5248H 5 ;5 —32H 5,
—1536H 550 —5824/3H 55, +5248/3H | 34 +240H |,
+5248H | 55 +8064H | | (o +T68H | ;, +24896/3H | 3
—384H ;50 —512H 5, —576H_; 55 —5600/3H_;3, —7232/3H_, 3,
+128/3Hy o —16Hy 5 —64/3Hy 5 +128/3Hy o + 1024/3 Hy
+192Hz, o +192H, , —1600H 5 | ;o +5024H 5 oo —3712H 544
—1536H_; 5 19 +15040/3H ;| 509 —1472H | | 50 —576H_; ;
—T296H_; | 45 +480H_; ;40 +7936/3H_; 1,0 +3328H_; 5,
+72H |00 —2432/3H_ 500 —1088/3H_; 5,0 —384H_; 5,
—1192/3Hg 00 — 128Hy 000 — 128Hy g9 +64/3Hy 1 1
+1536H ;10 —6848H_; | 100 +17440/3H_| 400
—2528H 00 +544Hp 0000 — 16 (4 —310¢3 —53¢)H_ ;o +32/3 (6
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+43¢o) Hyq +32/3 (6 +53Co) Hy — 64(8 + 149G H_y 5 —8/3 (24
—308¢; — 183C2) Hy —32/3 (31 +41C)H_15 — 8/3 (54 + 572¢3

—107¢) Hyg + 16/3 (61 + 164 (o) Hy +16/3 (79 +894 () H_y g + 16/3 (85
+1184Co) H 5 — 4/3 (239 + 904 o) Hy g9 — 4/15 (1225 — 360¢4 — 103
+555Cy +916¢2) Hy — 8/15 (2480 Cs + 753 — 60 Co — 3660 (o (3 4 408(3)
—96(85¢; +11¢)H_y _; +16/3 (1100¢; + 111¢) H_y + 8/15 (20553

+140¢ — 4763 H_, } + (1/z 4 %) { —432H_; ;¢ +336H_1 (2

—560/3H_ 5 —288H_y 5 +32H_ oo +2224/9H_ o +416H_|
—1952/9H_ 00 —32H 150 —32H_ 15, —32H_; 1 14 +288H_; 10

—128H_; 0,0 +8/9 (396 Cs + 349 o) H_, } +(1/z - 2?) {176/3 H, oG
+16H, ¢ —32/3H, 3 +64H; 50 —32H, 900 +32/3H; 100 +56/3 (2¢3
+5¢)H; } +(1—2x) { —5728/3H_5 (o —2476/3 H, — 1928/3 Hy
+2176/3H_; o + 1040/3 H_ +4480/3 H_5, + 7648/3H_, 1 (o

+336H _yy +2528H_y 5 + 2400H_; (o +4624/3H_, 5 + 1744 H_,
+856/3H, 4 +64H, 3 — 472/3Hyy +32Hy 5 — 1912/3 Hyy — 2624/3 Hy,
— 128 Hy, — 1072/3H, o —464H,; —832H_5 1 +5056/3 H_4,,
—608H_y_po — 1904/3H_, 1o — 6592/3H_y ;5 +2192/3H_,
+2368/3H_p0 +3008/3H_py, —2144/3H_, 50 —560/3H_; 5,
—2112H_,_,, —3040H_, _, (o —576H_, _,, — 10624/3H_, _, ,
+2240/3H_ 50 + 1024 H_, 5, +288H_, 5, +2704/3H_, 5
+3520/3H_, 5, — T04/3H, _p o +592/3H, g + 184H, o + 192H, , ,
—32/3H, ., +64/3H, 5 +128/3Hy_u —992/3 Hy g — 232/3Hy,
—96H,,, +32/3H,,, —64/3Hy50 — 160 H; g0 —320/3H; ;4 —96Hs,
+FT0AH_y_y 0 —6944/3H_y 400 + 1968 H 5000 +576H_; 5 ;4
—6080/3H_y 500 +544H 1 1 50 +368H_ 1 10 +2752H_ 1 | 4,
—228/3H_y 10 —3776/3H_; _1 50 — 1600H_; 51 +2552/3H_ 4,
+1408/3 H_y 500 +544/3H_ 510 +192H_; 51, — 1604/3Hy g0

+64H, 900 —224H, 100 +32/3H; 110 +32Hy 000 +128Hy, 00
—32/3Hy, 10 —57T6H_y y 4 10 +2624H 400 —7568/3H_; 1000
+1104H 1 5000 — 408Hg 000 — 8/3 (11 —15006)H_y 1 + 16/3 (31
—363Co) H_y 09 — 8/3 (37 +64C2) Hy g — 8/3 (83 +80(s) Hy; — 8/3 (163

— 265 (o) Hy g +8/3 (169 + 70 Co) H_1 5 +8/3 (255 — 26 (o) H, o — 4/3 (359

122



+2216C) H o +8/3 (387 +62(2) Hy; —4/3 (617 + 324 (3) Hy —2/3 (743
—568C3 +60C) Hy +4/9 (1531 — 4824 (3 — 3432 () H_y 5 +2/3 (2431
—640C3 + 60 (o) Hy +2/9 (4379 + 4464 3 + 3594 () Hy o — 2/45 (23995
+1080¢s — 27900 (3 — 18990 ¢ — 3804 ¢3) Hyy + 2/45 (34520 + 26970 (5
+1080 ¢y + 17205 ¢3 — 25900 ¢ — 23160 (2 (3 — 1329¢3) + 8 (408 (3
+95G)H_y _; —8/3(971¢s +245C)H_, —4/15 (4485 (3 + 1745 ¢,
—122¢3)H_, } —400H 3¢ +96H 45 +224H 3, +1248H 5, (o
+672H 55 +1216H_; ¢ —6704/3H_; 4 + 704H_, 4 + 288H,,
+128Hy5 —352H_5 1 +352H_ 500 —320H_5 oo — 1024H_,
+64H 500 +64H 5oy —320H_, 5 —32/3H_; _,, —1024H_; ,,
—1984H_; ;¢ +288H_; 1, —1216H_; ;5 —3328/3H_, 5

— 1536 H_; 5, +64H_ |40 +64H_; 5, —128H, ¢ +544/3Hy
+192H,y ) +448H 5 ;10 —992H 5 g0 +448H 5,0

,—

+384H | 5 19 —960H | 500 +384H | | 5, +128/3H_; | g
+1792H |y, +T84H | 0 —128H | 150 —128H | 5,
—5152/3H_1 500 —128H_; 500 +64Hy000 — 128Hy; g

—384H 1 4 3 10 +1600H_; 4 100 —768H_ 1 1000 +320H 10000
+16/3 (1227 +65 +62°)H_y ;o —16/3 (1227 +157 + 782*)H_,,
—16/3 (122" +211 +542°)H 540 —4/9 (2312~" 42948 4+ 932” + 1512(3
—4872C)H_ o +32(17 +48C)H_| ;1 +32/3 (41 —2®)Hy g + 16 (53
—2()Hyy +16(61 +102)Hy 00 — 16/3 (85 +182%)H_ 5, — 8(93
+112¢)H g +32/3 (107 +32%)Hy; — 16/3 (107 —12¢)H_; 5

+32/3 (151 +282%) Hy +16/3 (157 + 62°) Hy, — 16/9 (159 + 139 2>
+504C) H o +8/3 (191 — 84 () Hy g +8/3 (435 + 702% — 42 (5) Hy
—4/3(1033 —24(3 —24 ¢! +238¢ +12¢2?) Hy —4/9 (1169 — 93 22
—72(3 +4008(y +888Cax?) Hyy +4/9 (1785 + 488 %) Hy g +2/9 (9043
— 8016 (3 — 17523 2% — 6384y — 1816 G 4 36 C3) Hy — 4/45 (5760 s

+ 14400 Gz + 5930 (3 2% — 7780 Cy + 465 (o &2 + 2700 (o €3 — 2988 (3

— 582¢5 2”) +32/3 (153(¢s —25¢2)H_; | —8/3(390(s —36 (22" — 379,
— 1626 x*)H_, +8/15(2105¢3 +1580¢, +354¢3)H_,

+ (6P (@) + g (2) — 69 (=) — 6§ () { - 2/3} (1—a) {4/3 s })

+Cp(Ca—2CF)Ca <(1 +)t { — 4096/3H_5 ¢y +3296/9 H, — 320 H,
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+320/3 H_y o — T840/9 H_y0 + 1408 H_yp + 2624H_, | ¢y — T04/9 H_y,
+6944/3 H _y 5 +2592H_| 5 Cy — T04/9H_, 5 + 1536 H_, 4 — 1024/3 Hy o G
— 256H,, Gy +448/3 Hyy — 704/9 Hy, — 128/3 Hy, — 128, — 640/3 H,
+256/3H_y o +2240/3H_y 00 +128/3H_y o + TT44/9H_, 1,
—2624H_y 5 —12256/9 H_y oo + 1856/3 H 550 + 2560/3 H 55,
—956/3H_, y0 + TTA4JOH_| oo —2624H_, ,, —3840H_, | G
—B9GST_, ;4 + 1408/9H_ 5, +320/3H_, 45 + 1568/3 H_, 4,
+2560/3H_, 5, — 128/3Hy oo +32Hy g, +64/3 Hy, 5 — 128/3 Hy

— 320/3 Hy 0 +128/3 Hy o —4256/3H_y | o + 2848/3 H_00

“6AH_, o — 1408 H_| ,o0 — 128H_, oo —7T040/9H_, 4

+ B840,y +11968/9H_, 1 oo — 3584/3F_, 5,

~5120/3H_y 4, — 11824/9H_, 00 +896/3 H_; 500 — 320/3H_, 514
+5944/9 Hy .0 + 256/3 Hy g0 + 256/3 Hy 1 o — 64/3Hyy g

+2176H 100 —4864/3H_y 1900 +1856/3H_; 9000 —128Hg 00,00
+32/27 (17 — 396 Cy) Hy — 64/27 (17 — 144 G) H_ 5 +32/3 (21 — 46 Gy
—27Co) Hy +128/9 (67 +312C) H_, _, o +32/27 (463 + 288 () Hy o0

— 32/27 (679 + 2277 o) H_yo — 32/27 (973 + 1548 Co) H_, o0 — 16/81 (2129
+8964Cy — 1305 C) H_ o + 8/81 (6125 + 3888 Gy — 5229 Co) Hy

4 4/135 (17805 — 3240 ¢4 — 16620 (3 — 5440 (o + 4176 ¢2) H,

4 4/81 (6372 C5 — 10260 (3 — 8TI4 (o — 14040 G G + 1107 C2) + 64/9 (543 C

—55C)H_y_y —32/9 (687Cs — 143 (o) H_, + 16/135 (2640 C3 + 4360 (o
+423¢3)H_, } + (1) + 2?) {256 H_y_ 1 ¢ —160H_; ¢ +152/3H_;,
+128H_;5 —80/9H_; 14 —256H_; 1, —788/9H_, 0 — 128H_; 10

+16/3Hy 5 —64H; o +32H; 09 —16/3H; ;190 —4/3(20¢3 +19¢2) Hy }

+(1-x) {728 H_3¢o +464/9H, +496/3 Hy —208/3H_, o +3776/9 H_5,
—2144/3H_5, — 3328/3H_,_; (> +2176/9H_y, — 1048H_,
~1040H_; (> —4832/9H_ 5 —608H_,, — 128/3H,, — 16/3H, 4
+32H,, —128/3H, 4 +616/3 Hy o +3232/9 Hy ) + 16Hy, + 64 H,
+320/3H,; +80/3H_g ;4 —1288/3H_ g0 +16H_, 5o —992/9H_,
+3248/3H_, 15 +5024/9H_ 500 —304H_,0 —1280/3H_5,,

124



—64/3H ) 3, —2576/9H | ,( +1056H_; o, +1408H ; | ;(
+128H_) 5 +1728H_; ;45 —896/3H_ 50 —4544/9H_, 5,
—160/3H_; 5, —784/3H_; 450 —1280/3H_, 5, +704/3H, ,, — 16H, 4
+128/3H, 1 +32/3H, 15 —64/3H, 50 — 128/3Hy_,, + 128 Hy
—32Hy,9 —32/3Hy, 5 +64/3Hy50 +160/3Hs g — 16 Hy

—160/3H 5 1 10 +1976/3H_ 5 ;0 —480H 4000 +32H_| 5
+576H_ ) 500 +64H | 50 +2128/9H ;| | ;5 —1408H ; ;
—2360/9H_, 0 +1792/3H_; 150 +2560/3H_; 4,

+2720/9H g0 — 544/3H_1 500 +160/3H_ 5 —2600/9 Hy g0
—256/3H, 900 +368/3H; 300 —32/3H; 10 —32/3Hy000 —224/3Hy1 0
+32/3Hy 10 —832H_ 1 1 100 +2240/3H 1 1000 —736/3H 10000
+80Hg 0000 +160/3 (3 +2¢2)Hy g —56/3 (13 —2(2) Hy o — 64/9 (71
+18Co)Hy ) +32/9(71 +36(2) Hyy —8/27 (235 +576 (o) H |, — 8/9 (461
+2136 ) H_; ;o — 28/81 (605 + 702(3 — 126 (3) Hyy — 4/27 (644
+1332¢3 + 891 C) Hy +16/27 (793 + 405 (o) Hy + 16/27 (961

+1170 () H 1 g9 — 8/27 (1250 + 603 (2) Hy g9 + 16/27 (1270

+2061 () H_ 5o —8/81 (1822 — 486 (4 + 153 (3 + 3072 (2 + 459 (3) H,,

— 8/27 (2227 — 828 (3 + 27 (2) Hy + 4/81 (9655 + 140403 + 8406 (2) H_
— 2/405 (185225 + 36180 (5 + 9720 (4 + 42840 (3 — 114350 (o — 62100 (2 (3
— 13446 (3) +8/9 (1215(¢3 —334(2)H_, —8/9 (1740¢s +11¢)H_;
+4/135 (8850 (3 — 4565 (o — 1062 ¢5) H_, } —512H 5 {2 —256H_, 3
—512H_ | ,( +1616/9H_,, +1152H_, 3 —320H_, , —4544/9 H, ,
—160/3H,, — 64Hy 4 — 808/3 Hy — 1280/3 Hy; — 1168/3H_,

+512H 5 15 +128H | 30 —304H_; 5, +512H_; ,,

+1024H ;¢ —256H_; ;5 +512H | ;5 +1792/3H_,,,
+2560/3H 15, +128Hy 5o +160/3Hy ;o +256H 5 ;0 —64H 500
+256H | 500 +944/3H | | ;o —1024H | | 5, —2504/3H_;
+2176/3H 1 900 +64H 1500 —64Hy 00 +64Hy ;00 —512H_; ;09
+128H ;1900 — 128H ;000 —8/9 (132271 +113 — 102
—360C)H_5, —4/27 (1317271 + 3544 + 13712 —2592(3 +7362() H_y
—320/3(1+6G)H_y 1 +56/9 (1+72¢)H_ 00 —32(7 +22%) Hy g0
+16(29 +162°)H 55 —16/3 (31 —a*)Hy g — 4/9 (47 — 4572 — 1464 ¢,
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— 444G a*)Hyy +16/3 (61 +122°)H_ 5 +32/3 (67 + 122°)H 5
—8/3(107 —48(2) Hyy — 16/3 (109 + 252%) H, —8/3 (216 + 192°) H,
+4/9 (624 +1972°)Hy o + 8/27 (1061 + 306 (2) Hy — 4/81 (16481

— 14742 (3 — 4428 (3% — 9450 & — 1629 (o %) Hy + 4/45 (1260 C5 + 5405 (3
+ 955 (3% — 6445 (o — 2285 Cp 2® + 1620 (2 (3 — 396 C5 + 3123 2?)

+8/3 (144 (3 —247¢ — 96 (aa®) H_, —8/3(288¢s — 155G)H_; _,

8/45 (4725.G +1310G, — T2V H_y + (97(x) + 9% (x) — 0(x) — 6§ (x) {

1/3}+5(1—x){—2/3§3}>

+Cr (Cy—2Crp)ny ( +(1+x)! { —832/9H_, ¢ — 640/27 H; — 128/9 H,
+1600/9H_5 +3200/27H_5 +128/9H 5, +640/9H_; ;G
+1280/27H_;, +128/9H_; 5 + 128/9Hs; — 1408/9H_,
+2176/9H_5 00 — 1408/9H_; 5, —1280/9H_; _;, +5120/27H_, ¢
—256/9H_; 5, —1328/27H o +1280/9H_; ;15 —2176/9H_; 1
+2176/9H_ 500 — 736/9Hy g0 + 64/81 (83 —63(2)H ;o — 16/27 (87
— 66 (3 —23C) Hy —32/81 (191 — 45(3) Hy g — 128/27 (12(3 +25¢) H_,

+32/405 (1350 (3 + 415 ¢ + 513¢3) } + (1/z + 2?) { —32/3H_,(

+64/3H o0 +376/9H_ 5 —64/3H_; 5 +32H_, } +(1—x) {
224/9H_, (, —976/27 Hy + 656/27 Hy + 608/27 Hy + 64/9H, — 512/9H_4,
—1120/27H_5, — 64/9H_5, —128/9H_; _, & — 1024/27H_,,
—64/9H_y 5 +128/9H,, —64/9H,, —64/9Hs, +320/9H_,

—T04/9H 500 +320/9H_| 5o +256/9H_; ;o —2944/27TH_,
+128/9H_ 5, +1456/27Hy oo —256/9H_; ;1 +512/9H_; 1
—800/9H ;00 +368/9H 00 + 16/81 (119 — 45(3) Hyy — 8/81 (341
+90C3 + 96 (o) Hy — 8/81 (857 — 144 (o) H_y 5 + 8/405 (3350 — 9003
—2315¢ — 702(3) +64/27 (3¢ +22¢)H_, } +128/3H 5 ¢
—1312/27TH, — 64/3Hy — 64H_35, —128/9H_5, —128/3H_; , (&
+256/9H_ ;5 +128/9H,; +256/3H_, ;o —256/3H 5,
+256/3H_; 50 +256/3H_; 1, +256/9H ;5 —256/3H_; 1
+128H 100 —64H 100 —16/3(19 +62°)Hygo —8/9 (63 +472%) Hy

"y

+16/27 (175 +36 ) H_ o +16/81 (458 — 108¢3 + 135Co + 54 (2 2?) H
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+128/9 (3¢3 + () H_| —8/45 (1603 — 120 (3 2* — 565 (o — 235 (o 22

+ 72 g§)> . (A.47)

A.8 Input Quantities for Small-r Resummation of Struc-
ture Functions

Here we give the input used for the structure function resummations, in addition to

the functions already given in Egs. (4.14) and (4.15).

A.8.1 Non-Singlet Input: FLm and F&m

The input quantities for the resummation of F ns and Fgms read:

M0 = 44— AN +aN?

M) = 44— [4—4GIN
chim =+ [8 - 26]

40 38
o) =+ 8CRN"2 + (12Ck — 45N~ + (5Ca + 5By — [14+3GICr )

Lns

40 50
i) == 8CRN™ = (4Ck — 4Po)N 2 — (- Ca + - — [10+ 20G2]C ) N~

112
&0 = £ 40CENT + (6402 — 365Cr)N 2 + (—/BOCF — 1200 3¢, + 863
200
— [168 + 416(5]C 2 + {7 + 384@} C’AC’F> (A.48)
O = 4 aNT2 4 N7 - (74 2]
) T == 2N TP = N2 [1 4 3GN
AT = 4N L NP - [1 43¢ N2
20T = 4 100N + (100K — 580) N3 + (1004 + 10,@’0 (33 424G Cp)N 2
)T =~ 260N — (260K — 136) N4 — (70 Catd ﬁo —[71+ 68(2]C’F>
(3.0),— P 182
chne” =+O0CEN™ + (90CF — ==BoCr)N ™"+ <?500F 120036 + 5 B3
260 »
142 + 524G CE + [? + 384@] CACF)N (A.49)

An overall factor of Cr has been omitted.

A.8.2 Singlet Input: ngq, ngg, FL’q, Fng, F(b,q and Fqg’g

Here we show the input for the resummation of the singlet structure functions. In
all cases we state beneath the functions if an overall colour factor has been omitted
in the typesetting. The functions labelled ps should be added to the corresponding
non-singlet parts of Eq. (4.14), Eq. (4.15), Eq. (A.48) to form the full singlet quantity.
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(1) =4+ 8N 3 +4N"248N"!

fquvas
_ 16 232 _ 232
Vogps =+ (64Cr — 64CA)N > + (gnf +24Cp — TCA)N 4 (Tnf
404
+ [7 + 8(2:| Ca — [160 — 96(2]0}7) N3 (A'50)

Here an overall factor of Crny has been omitted.

0) __ -1
W) = —oN"t 423N

W = — (4Cp — 8CA)N T3 + (6Cp + 4CA)N 2 + (8C4 — [28 — 8(]Cp)N

_ 152 16
W2 = 4 (320pny — 1602 + 32C4Cp — 64C N> — (?anf — 1202 + — Cany
44 1 4
— gCACF + 5736012>N74 + (37700}?71]0 — %C’Anf —[89 — 56{2]0},2
1171 1724 N s
+ [T . 9642} CaCp — [T _ 12@] CA)N (A.51)

Here an overall factor of ny has been omitted.

WO = 44N 424+ 6N

128
Y = 4+ (8Cr — 16CA)N 3 + (8Cp — 16C4)N 2 — (71” + 1405
332 .
52 ucea)y
16 32
W2 = — (64Cpny — 3207 + 64CACp — 128C N5 + (chnf +48CE + 5 Cany
376 400 o\ 4 (2380 992 2446
= %5 CaCr + = CHIN ! = (Sg=Cmy = =5°Cany = =52CaCr
280
- [7 +104G| CF + [42 + 48G]CF ) N (A.52)
Here and overall factor of Cr has been omitted.
0) 14 (2,20
) = +4CANT + (Sny = 2Ca) + (T +4GICAIN
8 4
Y1) = 4 (8Cpny — 16CFN — (120an + S Canj + gcj) N2
76 74 D\ g
+ (82Ckns — 5 Cany — |5 +166|CF)N
16
72 = 4 (32Cns — 128C4Cpny + 128C N5 — <§CF”12 +24CEn;
232 ) Noaoa (184 0 5 16,
— -CaCrny = 32Cfn; — 1603 )N~ = (=Crn — 5 Can
2 2612
— [g + 2452] Cing — [120 — 32(]Cpny — [GT + 160¢2| C 3
3548
+ [T + 96{2} CACFTLf) N3 (A.53)
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0 = — 20N~ — 2N — [56 — 16¢o] N 2

2D = 1 52N "5 + 2N 4 [160 — 56(5] N 3

Cy S
368 440 3416 1784
0 — — (240Ck — 240C4)N 6 — (? ny+—-Cr = —-C AN+ (- n
1328 16984 320 .
~[572 - cz] Cr + [T? - —@} CA)N (A.54)

Here an overall factor of C'rny has been omitted.

9 = 4 2N"2 — 2N 4 [6 - 2]
ol

cglgl) — N3 42N "2 — [6— 3¢|N !
1 = 4 Nt~ N3 4 [6 — 3¢ N2
cg2g°> =+ (10CF — 20C4) N~ — (3Cp + 2C4) N3 + ([16 — 16¢]Cp
— [58 — 8(2]CA)N 2
&Y = — (26Cp — 5204)N "5 + (3CF +2C4) N~ — (120 — 44¢]C
— [166 — 32¢2]CA)N 3

1636 44
0 — — (120Ckns — 60C2 + 120C4Cr — 240C3)N 5 + (—Cpnf ~CF
8 1636 1436 178 524
— §Cany = S CaC 4 SR CRIN T 4 (G Cany + [ - 260
4589 656 17782 27338 »
i C2} CaCF — [727 - 88(2} Crny + [727 — 56@} CA>N
(A.55)
Here an overall factor of ny has been omitted.
00 = —ANT2 —ANTU 4[5+ 40y
Y = AN+ ANT2 4 [1 - 6N
0 = —ANTH—ANT3 — [1 - 6¢] N2
(B0 = — (20CF — 40C4)N™* + (120 + [16 — 16(2]C.a + [21 + 32(] Cp) N2
32 344 L
196
BV = 1 (520F — 104CA)N 2 + (320 + T6Cp — 328C4)N 4 — (?nf
1196
425 4 104G]Cp + [T —80G| €4 )N
440
cf;j’qo) =+ (240CFn; — 120C2 + 240C4Cr — 480C ;)N —° (—Cpnf + 224C2
1072 8960 13960 o\ . s 6592
~ 9 Cany — 9 CaCp + 9 CA)N - (32 T —7 Cang
2338 1120 308 17456
- [T 3G euce - [T amsaf o - [T - 1766 Crny
69928 208
i - A.
{ 27 3 @} CA)N (A.56)
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Here an overall factor of Cr has been omitted.

T Topy e (gnf ~Bo N (16nf = [ 18 +46|Ca)

2 3 3 > 9 9
(1,1) -3 2 . § -2 ﬁ 674 1
) =+ 4CAN T = (Sng = DCa)N2 4 ((ng = [+ 66| Ca )N
(1,2) _ 2 23 3 (16 64 9
) = —4CaNT + (Sny = TCa)NT = (Fng — [ +6G]Ca) N
2,0 _ _ 8
20 — _ (20CEny —40C3)N " + (14Cpns — 4Cang + T8CIN " + <§n]?
22
= Cany + @cA 34— 1642]0an)1\r—2
2D = 4 (520 104C3) N~ — (30C 1o 098 p2\ v _ (8,2
Chy =+ (62Cpns — 5 ( F”f_ 5 Gany 5= A) (gnf
142 2857 .
— —5-Cany = [94 = 56G|Crny + [ =5 - 32@] CiN?
30 s (536
B0 (12002n; — 480CACrny + 480C3)N~6 — ( Crn? — 7(1an
3140 352 10000 3508
— S—CaCrny = ==Clins + CA)N 54 (—CF - 328 0 n?
560 16622 256
+b7‘mﬁﬂw—ﬁm‘§**%W+Pﬁf‘3<V%@W
59902 .
- [7 + 224@} c A)N (A.57)
(PO = 16N "2 4 [16 + 16(2]

(P = 4 16N 2 — 32N 2 4 [72 — 40G]N !

4 12
P9 = — (160CF — 160C4) N~ — (%nf +16CK — ﬁC ) =3 (5—nf

9

4
— [80 — 256(2]C + {% - 112@] OA> N2 (A.58)
Here an overall factor of Crny has been omitted.
M9 = 14— 6N+ 7N?
c(ngl) +8—[12—4GIN
(1 2 = 4 [16 — 20,
c(f;) =+ (8CF — 16C4) N2 = 8CpN " — ([4 + 8] Cr — [16 + 16(2]C.a)
(P = — (8Cp — 16CA)N ™ + (16CF — 32CA)N 2 — ([12 - 20¢]Cp
— [72 = 40¢]Ca)N !
464
PO = (800an — 40C2 + 80C4Cr — 160C 3N~ + (%Cpnf — 20C2
152 56 80
+ mm——awF—£©N&%—mm—m+ww¥
308 3416 3640
+ [7 n 144@} CaCp — [T _ 64(2} Crns + [T - 120@} CA>
(A.59)
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Here an overall factor of ny has been omitted.

A.9 a Predictions from the Small-z Resummation of DIS
Structure Functions

We present here the explicit a predictions of the all-as-order expressions computed in

Chapter 4. For the non-singlet anomalous dimension,

A DF(N) = — 448C2N 2 + ( — 112002 + 560600F4>N_8 + (3600@%05’@
— 640/360C 2 — 24062C 2 4 [—1280 + 11840¢]C2
+[~3200/3 — 11520@]@,0;&) N=T 1+ O(N ). (A.60)

For the non-singlet coefficient functions,

) (N) = +2652CEN 10 + (84186’1::’ - 17012/3ﬁ00§)N*9 + ( 158400 2C2¢
— 23546/3B0C 4 + 14363 /38202 + [6040 4 50688(2]CAC
+[6438 — 56508@]@5) N8+ 0N (A.61)

&) (N) =+ 1560C2N % + (373605’ - 8920/3ﬁocﬁ)N*7 + ( 108000 2C 3¢
— 150480C4 4 6574/3B2C 2 — [2064 + 35648(5]C 2
1 [11120/3 + 34560(2]CAC§*>N’6 +ON) (A.62)

&7 (N) = +2652CEN 10 4 (663001::’ - 17012/350051)N*9 + ( 158400 2C2¢
— 11374/3B0C# + 14363/382C2 + [66 — 56508(]C2
+ [6040 + 50688C2]CAC§~>N’8 +ONT (A.63)

For the singlet splitting functions,

Y (N) = AT (N) +npCr {N9 ( _T168C3 + 7168 Cp C2 — 5376 C2 O

+3584CF + 71681y Cp Ca — 5376 CI?) + N8 ( 7936 C3

i 38720 Cp CA _ 41984 CF C, + 12272 12272 C}g, _ 1792 ny CA
656 896 256
+1()88nfCFCA+ fCF— 3 nfCF>+N (—Tn}%CA
20480

+ 280 20, 32 [442 +105¢)ng CF — 22 [7054 + 243 (2] CF

+ 3 (9109 — 19668 (2] CF — 3 [9211 72108 C] O O
+ 4 [16829 + 1602 (o] g Cp Ca + 5 [24337 — 22320 (o] Cp O
% (33715 — 9216 (o] g CF> } + O(N~°), (A.64)
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VD(N) = ny {N‘9< —T7168C 4 +3584Cr C3 —1792C2C2 +896C2Cy —448C A
+10752n; Cp C§ — 7168 ny C2 Ca +2688np C2 — 17920} CFQ)

N (-2t v aesorel - B cgei + S ey

- CF - 1792nf cp - 4736nf Cr CA + 822, C’F CA e
52672 427424 128
+ 282 27 ]?chAf 5 2CF+ nfCr
2 [2015 — 13216 (o] O — 32 [5216 + 3375 (o] ny C
[20293 — 244260 Go] C2 Ca — 52 [59326 + 8199 (2] C'4
(73415 — 115992 ] C2C2 + = 27 81626 — 37539 (5] Cp C3
[114685 — 57816 Ca] np Cf — = [118813 — 41067 Ca] ny C2 Ca

nyg CF

+

+ o+
ST l:%l»u SR

2_7
[181400 + 18351 Co] ny Cp €2 ) } (A.65)

WO(N) = Cp {N—9 (14336 Ci —T168CrCJ3 +3584C2CE —1792C2Cy + 896 C

— 215040, Cp C3 + 14336 n; C2Ca — 5376m; C2 —|—3584nf201?)

+ N8 (161280;,l B oot + B ozei —euacios
+224OCF +3584TLfCA —@ fCFCA +@ fCFCA

B nzopoy — 0B} CF) +NT (256nf o,
750464 256
2 CF - 9 CF
12 149 437¢) Of + 12172 [191 11017 ¢] Cp O3
[8005 — 5517 Co] ny CF + = 27 [13313 + 104940 (o] CF Ca
[14392 + 3375 Co] ny O3 — 2— (17711 + 77652 o] CE O 2

(37616 + 17019 (5] C.4 + 52 27 0 (63557 — 20547 G ny C2 Ca

318208 n?2
— 27 CFC +

Iw

+ o+
qla SRS SIE e

52 [149746 + 32031 (o] ny Cp OF ) } +O(NY), (A.66)
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YO(N) = N7 (14336C;;’ — 286720y Cp C} +10752n; CF CF —3584n; C2 Cy
+896ny Cft + 1075207 CA Ca — 3584n7 Cg) +N—8<8960 o

4 17920 17920 fCA + 14848 n CFCA 4 15040 15040 fclg 0142 B M nfCF Cu
+ 11368 nyCfp — 5376nf CrC2 - 10048nf CRCy + 11264 11264 n}Cp
N 826 3CF) (2560 20} —256m} Cp Oy 4 100 14080 niC3

+ 80 (164 4 81 o)y O + 630 907 + 396 (5] %

= [2171 — 7692 () ny Cp — % [3274 +495 (o] nf Cp C}

224 [5438 + 1431 Co] ny C C’A — 5 (18349 — 39132 (o] ny CF O

% 126605 — 5184 (o] n? CF + 10 [38371 +3978 ) n? C2Ca

+ 2 (43463 — 14940 Go] ny CE CF ) +O(N7F), (A.67)

and for the singlet coefficient functions,

NY = &) (N) +npCp {N—lo (42432 C3 —42432Cp C2 + 31824 CE Oy

s - CQ,ns
—21216CF — 424320y Cp Ca + 318240, CF ) + N9 (B8 o
_TIO%8  op | 20812 oay,  SLIGAS g 81248

- ny CA
1361056 243376 72448
nf CrCy ng CF + = }‘.) Cr )

+N- (@ n}Ca — % n?Cr — 2 (74593 — 180392 2] O
[102961 — 37125 o] ny CF — 12 429100 — 30021 o] ny Cp Ca
- 1300214 — 523683 (2] ny C2 + 15 [3063709 — 69039 (2] C.§

£ [3126887 — 924570 (o Cr CF
5 |

7465355 — 11586096 Go] C2 Ca ) } + O(N™T), (A.68)

:
ezl 2 =

NN = ny {N*lo (42432 Cd —21216Cp C3 + 10608 C2C2 —5304C3 Cy
+2652Ct — 63648 n; Cp C3 +42432n; CECy — 159120 OF

1 10608 n]? C}g) L N9 < 3616288 CA _ 2668904 Crp CA

1762432 CF CA _ 1089206 CF Cu + 50356 CF _ 17600 nfCS

4 1702432 o 3
_ 186485624 Cp CA 4 1566016 1566016 ny CF CA + 334184 n CF3
| 81248 81248 n? Cr i 123495104 2CF> +N <% 20
- % n}CpCa — 580} CF + T4 (30757 4 61020 (] ny CF
+ 2 [59357 — 673108 (o] Cff — 1o [365911 3205476 (] C O
— 1648203 — 174498 (o] C Cf + 2 [1977587 — 1966200 Co] C2 O3
+ 1o [2407760 — 1256427 (o] np CF Ca
+ T3 [3500111 — 241380 Co] n? O
— 2= [4630465 — 3452868 (o] np O + 3= (11350279 + 666720 (2] C4
— T (12081717 + 12510 Co] ny Cp CF ) } +ONTY, (A.69)
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PHNY = &) (N) +ny Op {N*g (24960 C3 —24960Cp C} +18720C2 Cy

~12480C — 24960, Cp Ca +18720m; C2 ) + N7 (22 ¢

602368 Cp CA + 198248 CI%C B 33904 CF _ 30400 fCA

27328 56272 33920 n2 CF) 4+ N6 < 6208 n2Cy

TLfCFCA—— fCF+ 9 f
303‘;’36 205 + 2991978 + 513 ¢ nf CA — 29350 — 4436 2] O
2 118590 — 2271 <2] npCpCy — s [52207 + 341604 o] C2 Cg

50 (180227 — 109944 (o] Cp C3 + 52 [218827 — 20610 (o €

2 278473 — 110304 &) ny OF ) } +O(NT?), (A.70)

160
al

OVNY = nyp {NT8 (24960 C 4 — 12480 Cp C'3 + 6240 CEC2 — 3120 C3 Cy
L,g f
+ 1560 Cjp — 37440n; Cr C3 +24960n; CZCy — 93600, C2

462400 Cﬁ) N ( 20212 (4 U320 o 130120 0 o
93860 CF Cu + 21340 CF + 70510 CA 4 22528 22528 ny Cp CA
1856 ngCECa + 202 np ot + 3000, 20 Ca - G npCR)
—I—N (3424 QCA _20(2)(7372 QCFCA _%nf Cp
— 211261 + 42056 ¢o] Ot + 22 [4967 +4212G)ny CF
4 4[5905 — 13404 ) CRC2 + 16 27 6 111939 + 102024 (] CF O
— 8 22553 — 9334 (o) O O — 2 [46153 — 35208 o] ny OF
+ 38 (101897 — 7344 &y n P CF + 2 27 (191519 — 130122 (o] ny C2 Cig
+ 2 (458999 + 12744 ) Cf — 2 (542135 — 18342 (o) ny O Cj) }
+O(N9). (A.71)

A.10 The Small-r Behaviour of the Fourth-Order QCD
Splitting Functions at Large-n;

In Chapter 5 we computed fourth-order contributions to the n ]‘? terms of the singlet
anomalous dimensions and the n f2 terms of the non-singlet anomalous dimensions. For
future reference, the leading small-z behaviour of the associated splitting functions is

presented here.

P,ﬁ,‘n? = ln3a:< —%CF> +ln2w( —%CF> +lna:< —g—7CF), (A.72)

4 152
gcg) +1n3gc( CP+ 5 CFC’A>
+1n2x(§—f 1344+ 9G)CF + 5 [161—36C2]CFCA)
+ln:13< + o7 (967 +72o] C2 + g [7561 — 2736 2 + 864 (3] CFCA),

(A.73)
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Prfs‘m:ln“x(éCpCA—% I%) +Ind2 (6920FCA_664CF>
f
+ln2x<8—[1081—36(2]CFC’A—2—7[55+9C2]CF>

+lnz (% (4131 — 304Gy + 384 (3] Or Ca — o [241 + 384G + 723) Cﬁ) :
(A.74)

qu,ps\nng%(g—%[l—M:s]CF) +ln4x<—%CF> +1n390( == CF)

1 32
+ln2x< . [73+18(2]C’F) +1n:c( —8—1[59+8742+36<3]CF),

(A.75)
1 278 4
Piglys =5 (B§ 17~ 54GI Cr - 735 [T+54G) Ca ) +In'a (3T Cr - 57 Ca)
232 20
+ (243 O +m[193+72g2]0F)
+In?z (i (835 + 180 Cz + 72 (3] Cr — 525 [277 — 576 (o] OA)
flnz ( (643 + 543 Co — 288 (3] Ca
—2 1988 + 1137 Co + 180 G5 — 108 4] O (A.76)
243
1 128
qu‘nfzg(_g_l[l_GC?)]CF)v (A.77)
1 4
Pagl s :5<24 5+ 185 Ca — 2o 17— 54C3]CF> +ln4x< —ﬁCF>
+1n’z 1884CF g@x) +1n2x<152 Ca — Q[ 5*9C2]C'F)
tlng (8—6 (179 — 138Gz + 144(3] Cp — g7 [115 — 48y CA) . (A.78)
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