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Abstract

This thesis describes several calculations of quantities describing the deep-inelastic

scattering (DIS) of leptons and hadrons, within the framework of massless perturbative

quantum chromodynamics. The third order (NNNLO) contributions to the coefficient

functions C−2,ns, C
−
L,ns and C−3,ns, which describe charged-current (W±-exchange) DIS

in the linear combination W+−W− are presented. Complementing existing results for

the W+ + W− combination, these new results complete the third-order description of

charged-current DIS. The results are presented both as compact parametrizations and

exact expressions. The corrections are found to be small for experimentally relevant

values of the Bjorken-x variable.

The behaviour of the DIS structure functions in the small-x limit is considered.

By finding a suitable functional form with which to describe them, it is possible to use

the results of existing fixed-order perturbative calculations to resum the leading small-

x double logarithms of the coefficient functions and splitting functions to all orders

in the strong coupling constant αs. All-order descriptions of the leading three dou-

ble logarithms are discussed and presented for both coefficient functions and splitting

functions.

Finally, the results of recent advances in the fourth-order computation of the Mellin

moments of structure functions are used to reconstruct expressions for the general

Mellin-N dependence of the large-nf parts of the fourth-order contributions to the

splitting functions. The software package FORCER is able to compute a sufficient number

of Mellin moments to determine the N dependence of the n 2
f terms of the non-singlet

splitting functions, and the n 3
f terms of the singlet splitting functions. The resulting

expressions are in agreement with, and extend, various existing computations found in

the literature.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN is the highest energy particle collider

ever constructed. Like the high-energy colliders of the past it collides hadrons, which

are bound states of quarks, anti-quarks, and gluons. Being composite particles, the

interactions of hadrons are very complex. In order to accurately interpret data collected

by such experiments, we must have a good theoretical description of their interactions

with other particles. The framework of Quantum Chromodynamics (QCD) forms this

description and is used for the computations of this thesis. In particular we focus on

the high energy regime of QCD, which is perturbative. That is, quantities of interest

can be expanded as a series in some small parameter, the strong coupling constant αs.

The ever-increasing precision of experimental data demands that we compute more

and more perturbative corrections in order to provide sufficiently precise predictions

of measured quantities. A crucial theoretical input for hadron colliders is the Parton

Distribution Functions (PDFs). These functions describe the particle content of the

colliding hadrons and must be determined from experimental data. To perform an

accurate determination of the PDFs it is necessary to compute, as precisely as possible,

how external particles interact with the individual partons which form the hadron.

For this we rely on Deep-Inelastic Scattering (DIS), the high-energy interaction

of leptons and hadrons. Involving just a single hadron, this provides a “clean” (both

experimentally and theoretically) environment in which to study the effects of QCD.

Quantities that we are able to compute within the framework of DIS are universal to all

hadron reactions and are thus useful, in addition to their obvious application to lepton-

hadron colliders such as HERA, to proton-proton and proton-anti-proton machines such

as the LHC and Tevatron.

The structure of this thesis is as follows. In Chapter 2 we review the formalism of

QCD in the context of DIS, outlining the theoretical description of leptons scattering

from partons within a hadron by means of the exchange of a gauge boson. We describe

a prescription for the separation of the high-energy regime from the low-energy physics

of the hadronic bound state, which cannot be described by perturbation theory.
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Chapter 3 concerns a high-order calculation describing a particular type of DIS,

lepton-hadron scattering by the exchange of a charged electro-weak boson; a W+ or a

W−. Such an exchange allows one to consider the scattering of neutrinos from hadrons.

For these calculations one must consider the linear combinations of W+ + W− and

W+− W− scattering; only the W+ + W− combination is currently known at third

order in QCD. We complete the description of these interactions to the third order by

computing the W+−W− combination.

In Chapter 4 we turn to a different style of calculation; a resummation of quantities

describing DIS in certain kinematic limits. Despite being perturbative, there are regions

in which the convergence of QCD quantities can be spoiled by large logarithms of

kinematic parameters. The determination of these logarithms to all orders in the strong

coupling parameter αs aims to develop a better understanding of the behaviour of the

quantities in these regions. It also provides predictions which cross-check higher fixed-

order calculations.

Finally in Chapter 5, we begin a project to determine the so-called splitting func-

tions of perturbative QCD at the fourth order in αs. At the time of writing, very few

calculations have been performed to this order in QCD. So far we only have analytic

expressions for certain, structurally more simple, terms and aim to produce numeri-

cal approximations for the rest in the near future. However, the eventual complete

calculation of the splitting functions at fourth order will allow for a reduction of the

theoretical uncertainties of PDFs determined from experimental data.
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Chapter 2

Formalism

Deep-Inelastic Scattering (DIS) is the process in which a lepton scatters from a hadron,

l(k) + h(P )→ l′(k′) +X. (2.1)

This reaction is depicted in Fig. 2.1, to leading order in Quantum Electrodynamics

(QED). An incoming lepton of (four-)momentum k exchanges a boson of momentum

q = k − k′ with a hadronic state carrying momentum P . The hadronic state breaks

apart during the interaction, yielding an unspecified hadronic final state X; we consider

only inclusive DIS processes in this thesis, in which we sum over all possible states X.

l(k)
l′(k′)

q

X

h(P )

Figure 2.1: Deep-Inelastic Scattering. A lepton l scatters from a hadron h, via the exchange
of a virtual boson carrying momentum q. The hadron breaks apart into some hadronic system
X.

The exchanged boson may be a photon (γ), a Z-boson or a Higgs-boson (so called

Neutral Current (NC) reactions) or a W±-boson (Charged Current (CC) reactions).

Since the exchanged boson is space-like, q2 is negative. It is useful to define a positive

quantity Q2 = −q2. We also define the Bjorken-x parameter, which takes values

between 0 and 1 and is given by

x =
Q2

2P · q . (2.2)

For x = 1, the invariant mass of the hadronic final state X is equal to that of the

incoming hadron; this is elastic scattering. x → 1 is called the large-x or threshold
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limit. Small values of x correspond to large momentum transfer between the incoming

lepton and the hadronic final state. x→ 0 is the high-energy limit.

To leading order in the electromagnetic coupling (αem) the cross section for the

process can be written as the product of two tensors; one describing the lepton side of

the interaction (Lµν), and one describing the hadron side (Wµν),

dσ

dxdy
=

2πyα2
em

Q4
LµνWµν . (2.3)

where y = P · q/P · k and also takes values between 0 and 1. The lepton tensor is given

by

Lµν = 2
(
kµk′ν + kνk′µ − gµνk · k′

)
. (2.4)

We do not consider corrections that are higher order in αem here, on the grounds

that it is very small compared to the strong coupling, αs. We decompose the hadron

tensor in terms of scalar hadron structure functions, which are the coefficients of the

Lorentz-invariant structures built out of the available vectors P and q such that the

electromagnetic current is conserved (which requires that qµWµν = 0). The standard

definition is (see e.g. the PDG [6])

Wµν =

(
Pµ −

(P · q)qµ
q2

)(
Pν −

(P · q)qν
q2

)
1

P · qF2(x,Q2)

+

(
−gµν +

qµqν
q2

)
F1(x,Q2) + iεµνρσ

P ρqσ

2P · qF3(x,Q2), (2.5)

or alternatively in terms of the longitudinal structure function defined as FL = F2 −
2xF1,

Wµν =

(
−gµν − PµPν

4x2

q2
− (Pµqν + Pνqµ)

2x

q2

)
1

2x
F2(x,Q2)

+

(
gµν −

qµqν
q2

)
1

2x
FL(x,Q2) + iεµνρσ

P ρqσ

2P · qF3(x,Q2), (2.6)

This is the combination used throughout this thesis. The structure function F3(x,Q2)

is only present in the case of CC DIS (W± exchange) or NC DIS (for Z0 exchange

only), where we have axial terms in the vertex factors. It vanishes in the case of elec-

tromagnetic interactions since the ε-tensor is contracted with the (symmetric) lepton

tensor (Lµν) of Eq. (2.4).

2.1 The Parton Model

We now assume some further structure for the process. Let the hadron consist of non-

interacting partons. The probing boson scatters from one of these partons. The cross

section at the parton level is thus given by

dσ̂i
dxdy

∼ LµνŴi µν (2.7)
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where the lepton tensor is as defined in Eq. (2.4) and the “hatted” symbols refer to

parton-level quantities, which carry a label i that specifies the parton species under

consideration. We assume the struck parton to carry a fraction ξ ∈ (0, 1) of the hadron’s

momentum P ; thus it carries no transverse component, it is collinear with the hadron.

The parton-level tensor decomposition for Ŵi µν is the same as Eq. (2.6) but is written

in terms of hatted parton-level structure functions F̂i.

The hadron structure functions are related to their parton-level equivalents by

integrating over all possible values of the momentum fraction ξ and summing over all

parton species i. In the electromagnetic case,

Fa(x,Q
2) =

∑
i

e2
i

∫ 1

x

dξ

ξ
f̃i(ξ)F̂a,i

(
x

ξ
,Q2

)
=
∑
i

e2
i

[
f̃(ξ)⊗ F̂a,i(ξ,Q2)

]
(x). (2.8)

The parton-level structure functions have been weighted by PDFs f̃i(ξ) which describe

the momentum distribution of the parton species i within the hadron, as a function

of the momentum fraction ξ. This integral is the Mellin convolution of f̃i and F̂a,i,

as defined in Eq. (A.9), which we will denote by the symbol ⊗. The result of the

convolution is a function of x but we will suppress this in the following discussion, as

well as the dependence of each of the convoluted functions on the convolution variable

ξ.

The parton-level cross section can now be computed using the standard tools of

perturbation theory, since we have separated the long-distance behaviour of the hadron

from the hard interaction,

l(k) + p(ξP )→ l′(k′) + p′(ξP + q), (2.9)

as depicted in Fig. 2.2.

l(k)
l′(k′)

q

X

h(P )
p(ξP )

l(k)l(k)

Figure 2.2: Deep-Inelastic Scattering in the parton model. We assume that the lepton scatters
from some parton within the hadron, which carries a fraction ξ of the hadron’s momentum P .

2.2 QCD Corrections to the Parton Model

We now identify the partons of the previous discussion with the quarks and gluons of

QCD. Within the framework of perturbative QCD, we can compute corrections to the
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parton-level cross section as a series in the strong coupling constant as = αs/4π.

By making such corrections, we introduce divergences in the structure functions.

These may originate in loop integrals or from so-called mass singularities (or collinear

singularities), which occur when two particles become collinear. Consider Fig. 2.3,

for which the quark propagator will have (p − r)2 in its denominator (denoting the

quark momentum by p = ξP ). Since we assume that the quarks are massless (p2 = 0),

this is equal to −2|~p||~r |(1 − cosϑ). As ϑ → 0 this denominator → 0, producing

a singularity in the amplitude. Such singularities involving final-state particles and

infra-red singularities due to loop integrals cancel since we consider only inclusive DIS

and thus sum over all possible final states. That these singularities cancel is guaranteed

by the Kinoshita-Lee-Nauenberg (KLN) theorem [7,8].

q

p
r

p− r

Figure 2.3: QCD corrections to the boson-parton interaction produce singularities in the am-
plitude when particles become collinear with initial- or final-state particles.

The structure functions appear directly in the expression for the cross section;

they must therefore be finite, since the cross section is an experimentally measurable

quantity. The parton-level cross section must be renormalized in order to obtain phys-

ically meaningful predictions. We use the framework of dimensional regularization [9],

in which we work in D = 4 − 2ε dimensions. The divergences described above (from

initial-state mass singularities and ultraviolet singularities of loop integrals) manifest

as poles in ε in the limit ε → 0 (so D → 4). An arbitrary scale µ2 is introduced to

keep the strong coupling constant, αs,bare, dimensionless. From Eq. (2.8) we have that

(omitting the sum over j and the factors of e2
j )

Fa(x,Q
2) = F̂a,j

(
as,bare,

Q2

µ2
, ε

)
⊗ f̃j , (2.10)

where F̂a,i has picked up dependence on µ2 and ε, and as,bare denotes the un-renorma-

lized strong coupling.

The first step in our renormalization procedure is to renormalize the coupling

constant as,bare. This removes the ultraviolet divergences due to the loop integrals,

introducing a renormalization scale µ2
r . The relation between the bare and renormalized
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coupling is given by

as,bare = as − a2
s

β0

ε
+ a3

s

(
β2

0

ε2
− β1

ε

)
− a4

s

(
β3

0

ε3
− 7β0β1

6ε2
+
β2

3ε

)
+O(a5

s ), (2.11)

where the coefficients of the QCD beta-function are given to fourth order in as by [10,

11,12,13]

βQCD = −asε− a2
sβ0 − a3

sβ1 − a4
sβ2 +O(a5

s ),

β0 =
11

3
CA −

2

3
nf

β1 =
34

3
C 2
A − 2CFnf −

10

3
CAnf

β2 =
2857

54
C 3
A + C 2

F nf −
205

18
CFCAnf −

1415

54
C 2
Anf +

11

9
CFn

2
f +

79

54
CAn

2
f . (2.12)

The coefficients of the next two terms of this expansion, β3 and β4, have been computed

in [14, 15, 16] but they are not required by the calculations of this thesis. The SU(N)

fundamental and adjoint Casimirs CF and CA have the values 4/3 and 3 in QCD. nf

is the number of participating massless quark flavours. Setting the arbitrary scale µ2

of dimensional regularization to µ2
r , Eq. (2.10) becomes

Fa(x,Q
2) = F̂a,j

(
as(µ

2
r ),

Q2

µ2
r

, ε

)
⊗ f̃j . (2.13)

The only remaining divergences are due to the collinearity of initial state particles.

We deal with these using mass factorization. We assume that one can factorize F̂a,i

into two functions, one which is finite in the ε → 0 limit and one which contains the

poles. This is not a unique procedure; rather it depends on a factorization scheme

which specifies exactly what is to be included in each function. We have that

Fa(x,Q
2) = C scheme

a,i

(
as(µ

2
r ),

Q2

µ2
r

,
µ2

f

µ2
r

, ε

)
⊗ Z scheme

ij

(
as(µ

2
r ),

µ2
f

µ2
r

,
1

ε

)
⊗ f̃j , (2.14)

where C scheme
a,i is called a coefficient function (sometimes also a Wilson coefficient)

and Z scheme
ij a renormalization matrix (sometimes also a transition function). The

separation occurs at a scale µ2
f . The dependence of Zij on 1/ε is to denote that Zij

contains only pole terms in ε.

The simplest choice of factorization scheme is called Minimal Subtraction (MS)

[17], in which we absorb only the ε-pole terms of F̂a into the renormalization matrix.

Throughout this thesis, we use the Modified Minimal Subtraction scheme (MS) in which

we also absorb ubiquitous factors of ln 4π and γE (the Euler-Mascheroni constant) into

ZMS
ij . From here on we will not typeset the scheme tags on the coefficient functions

and renormalization matrices, but one should bear in mind that these functions always

depend on this choice. One should also bear in mind, then, that throughout this thesis

where we use the symbol ε we in fact mean some ε′(ε, ln 4π, γE) which → 0 as ε→ 0.

7



We are free to set (without loss of generality, in the sense that the scale depen-

dence can be restored in the results, see for e.g. [18]) the arbitrary renormalization and

factorization scales µ2
r and µ2

f to the energy scale Q2, yielding

Fa(x,Q
2) = Ca,i

(
as(Q

2), ε
)
⊗ Zij

(
as(Q

2),
1

ε

)
⊗ f̃j . (2.15)

We can now renormalize the “bare” PDFs f̃j in such a way that the renormalization

matrix is absorbed into their definition, leaving us with a finite expression for the

hadron structure functions as ε → 0. That is, we define the renormalized (finite, but

scheme-dependent) PDF

fi
(
as(Q

2)
)

= Zij

(
as(Q

2),
1

ε

)
⊗ f̃j (2.16)

and so

Fa(x,Q
2) = Ca,i

(
as(Q

2), ε
)
⊗ fi

(
as(Q

2)
)
. (2.17)

In the equations above Zij and by extension the renormalized PDF fi do not carry

the label “a” of the structure functions. This is an important point; although we are

describing DIS here, we claim that all interactions with hadrons should depend on

these universal PDFs. When we determine QCD corrections to Zij we are computing

quantities that are useful not just in DIS, but in all hadron interactions.

Comparing Eq. (2.10) and Eq. (2.17), we can see that this procedure has introduced

a dependence on as of the PDF fi, which the bare PDF f̃j did not have. We have said

that the PDF is non-perturbative and so cannot be computed, but we can describe the

dependence of fi on the energy scale Q2. Suppressing all function arguments, we have

that

dfi
d lnQ2

=
dZij

d lnQ2
⊗ f̃j =

dZik
d lnQ2

⊗
(
Z−1

kj ⊗ fj
)

=

[
dZik

d lnQ2
⊗ Z−1

kj

]
︸ ︷︷ ︸

Pij

⊗fj , (2.18)

where the evolution kernels Pij(as(Q
2)) are the Splitting Functions of QCD. Equa-

tion (2.18) is called the DGLAP evolution equation in the literature [19, 20, 21]. We

mentioned above that the PDFs are universal to all hadron interactions, so the split-

ting functions must be also. Using Eq. (2.18) one can take a PDF determined from the

experimental measurement of the structure functions at a particular energy scale, and

evolve it to a different energy scale for use with, say, a different experiment.

If we perform a Mellin transform of (any of) the above equations the convolutions

reduce to simple products, somewhat simplifying the notation. See Appendix A.3 for

a definition and discussion of the Mellin transform. In Mellin space, we define the

anomalous dimensions γij of the PDFs as (in line with the historic convention)

dfi(N)

d lnQ2
= Pij(N)fj(N) = −γij(N)fj(N), (2.19)
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and we will use the terms “splitting function” and “anomalous dimension” interchange-

ably throughout this thesis. The splitting functions/anomalous dimensions can be ex-

panded in the QCD coupling, with coefficients defined by

Pij(x, as) =

∞∑
n=1

ans P
(n−1)
ij (x) and γij(N, as) =

∞∑
n=1

ans γ
(n−1)
ij (N). (2.20)

The coefficient functions of Eq. (2.17) can also be expanded in as, and additionally in

positive powers of ε. We define the expansions of the coefficient functions as

Ca
(
x, as(Q

2)
)

=
∞∑
i=0

ais c
(i)
a (x) (2.21)

and

Ca
(
x, as(Q

2), ε
)

=
∞∑
i=0

∞∑
j=0

ais ε
j c(i,j)
a (x), (2.22)

where in Eq. (2.21) the dimensional regularization parameter ε has been set to 0. Note

that the arguments x in the expansions above are convoluted over, as in Eq. (2.8).

They are not the Bjorken-x variable, but we nonetheless call them x in line with the

literature.

From Eq. (2.18) and Eq. (2.19) it follows that

−γij =
dZik(N)

d lnQ2
Z−1(N)kj = β(as)

dZik(N)

das
Z−1(N)kj , (2.23)

where we have used that das/d lnQ2 = β(as). Equation (2.23) can be solved order-by-

order in as to determine Zij in terms of the expansion coefficients of γij . The result to

a4
s is as follows,

Z = 1 + as
1

ε
γ(0)

+ a2
s

{ 1

2ε2
(γ(0) − β0)γ(0) +

1

2ε
γ(1)

}
+ a3

s

{ 1

6ε3
(γ(0) − β0)(γ(0) − 2β0)γ(0)

+
1

6ε2

[
(γ(0) − 2β0)γ(1) + (γ(1) − β1)2γ(0)

]
+

1

3ε
γ(2)

}
+ a4

s

{ 1

24ε4
(γ(0) − β0)(γ(0) − 2β0)(γ(0) − 3β0)γ(0)

+
1

24ε3

[
(γ(0) − 2β0)(γ(0) − 3β0)γ(1) + (γ(0) − 3β0)(γ(1) − β1)2γ(0)

+ (γ(0) − β0)(γ(1) − 2β1)3γ(0)
]

+
1

24ε2

[
(γ(0) − 3β0)2γ(2)

+ (γ(1) − 2β1)3γ(1) + (γ(2) − β2)6γ(0)
]

+
1

4ε
γ(3)

}
+O(a5

s ), (2.24)

where the symbols are to be interpreted as matrices and the arguments (N) have

been suppressed. To perform the mass factorization, one equates an unfactorized

parton-level structure function F̂a(N, as, ε) (which contains poles in ε) with the product

Ca,i(N, as, ε)Zij(N, as,
1
ε ). Order-by-order in as, the anomalous dimension expansion
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coefficients are determined from the coefficients of the ε poles of F̂a(N, as, ε) and the

coefficient function expansion coefficients from the remaining finite terms. This matrix

equation forms a system of equations which must be mass factorized together.

In this way, high order corrections to the DIS-specific coefficient functions and the

universal anomalous dimensions/splitting functions are determined from the perturba-

tive computation of the parton-level structure functions of DIS.

2.3 Parton Distribution Functions

We now discuss what “parton species” are present in the hadron, i.e. what values the

sum over i in Eq. (2.17) should run over and what the PDFs fi are. In principle, the

hadron has PDFs associated with all quarks fi, anti-quarks f̄i and with the gluon g.

This makes the matrix equation of DGLAP evolution (Eq. (2.19)) a system of (2nf + 1)

coupled equations, where nf denotes the number of (massless) quarks considered. In

the CC case of Chapter 3 we take nf to be even due to the considerations of Section 2.4.

We can simplify the description somewhat by noting a few symmetries.

Quark-gluon and gluon-quark splittings are independent of the quark flavour. We

must have then, that Pqig = Pqjg = Pq̄ig = Pq̄jg and so define

Pqg = nfPqig = nfPq̄ig (2.25)

(i.e. a gluon splitting to one of nf quark-anti-quark pairs) and that

Pgq = Pgqi = Pgq̄i (2.26)

(any quark flavour radiates a gluon in the same way). By defining the singlet distribu-

tion

qs =

nf∑
i=1

fi + f̄i, (2.27)

the DGLAP evolution equation can be reduced to a system of just two coupled equa-

tions,

d

d lnQ2

(
qs
g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(
qs
g

)
. (2.28)

Differences in quark and anti-quark PDFs additionally must decouple from the

gluon PDF during evolution. We form three different so-called non-singlet combinations

which evolve independently,

qvns =

nf∑
i=1

fi − f̄i and q±ns,ij = fi ± f̄i − (fj ± f̄j), (2.29)

the valence and flavour-asymmetric distributions. Their evolution is governed by the

non-singlet splitting functions P
v
ns and P

±
ns.
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With the exception of qvns (called non-singlet to align with most of the literature),

the labels “singlet” and “non-singlet” refer to the transformation properties of the

PDFs under the SU(nf ) flavour symmetry of massless QCD. The PDFs qs and qvns are

invariant under the switching of up- and down-type quarks and anti-quarks. The PDFs

q±ns,ij rather pick up a (−) sign under such a switch and are thus called non-singlet.

The mass-factorized structure functions defined by Eq. (2.17) can be written in

terms of these PDFs. For example, considering just the u and d quarks in the electro-

magnetic case,

Fa = Ca,q

(
4
9(u+ ū) +

1
9(d+ d̄)

)
+ 〈e2〉Ca,g g (2.30)

which can be rearranged to give

Fa =
5
18Ca,q(u+ ū+ d+ d̄) +

1
6Ca,ns

(
u+ ū− (d+ d̄)

)
+

5
18Ca,g g

= 〈e2〉Ca,q qs +
1
6Ca,ns q

+
ns,ud + 〈e2〉Ca,g g, (2.31)

where 〈e2〉 denotes the average squared charge of the participating quarks. The coeffi-

cient function associated with q+
ns,ud has inherited the “ns” label, and is not equal to

C2,q at higher orders. The various structure functions that we consider later can be

written in terms of the four PDF combinations defined in Eq. (2.27) and Eq. (2.29).

2.4 The Optical Theorem and Forward Compton Ampli-
tudes

In the preceding sections, we have defined a framework which describes DIS processes.

It separates the non-perturbative physics of the hadronic bound state from the pertur-

bative hard scattering of the lepton and a constituent parton within the hadron. This

allows us to consider QCD corrections to the hard interaction, and we have discussed

how one can renormalize these parton-level hard scattering cross sections. We now

discuss how we will compute them in the framework of massless perturbative QCD.

We proceed, not by squaring amplitudes and computing phase-space integrals, but

via the optical theorem. This relates the squared amplitude to a forward Compton

amplitude, shown in Fig. 2.4. We define this forward Compton amplitude T̂µν (hatted

quantities still denote parton-level objects) such that

Ŵµν =
1

π
ImT̂µν . (2.32)
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2

∼ Im

Figure 2.4: The optical theorem relates a squared matrix element to the imaginary part of a
forward Compton amplitude.

Instead of the phase-space integrals of the usual description, we now must compute

loop integrals. T̂µν has the same tensor decomposition as Wµν (Eq. (2.6)),

T̂µν(z,Q2) =

(
−gµν − pµpν

4z2

q2
− (pµqν + pνqµ)

2z

q2

)
1

2z
T̂2(z,Q2)

+

(
gµν −

qµqν
q2

)
1

2z
T̂L(x,Q2) + iεµνρσ

pρqσ

2p · q T̂3(z,Q2), (2.33)

written in terms of the parton momentum p = ξP and the parton-level Bjorken variable

z = x/ξ. The (forward) structure functions can be projected out of this tensor using

the following projectors (in D = 4− 2ε dimensions),

1

2z
T̂2 = −

(
1

(2− 2ε)
gµν +

q2

(p · q)2

(3− 2ε)

(2− 2ε)
pµpν

)
T̂µν ,

1

2z
T̂L = − q2

(p · q)2
pµpν T̂µν ,

T̂3 =
i

(1− 2ε)(1− ε)
εµνρ

′σ′pρ′qσ′

p · q T̂µν . (2.34)

It is instructive to consider the tree-level Compton amplitudes. Suppose we aim to

compute the parton-level quark structure function 1
2z F̂2,q. There are two contributing

forward diagrams, shown in Fig. 2.5. Denoting the quark spinor as u(p) (which can be

p p

q q q q

p + q p− q
p p

−iγµ −iγν −iγν −iγµ

Figure 2.5: The leading-order foward diagrams contributing to photon-quark scattering.

any quark or anti-quark here), the contributions to the forward amplitude are

ū(p)(−iγν)
/p+ /q

(p+ q)2
(−iγµ)u(p) and ū(p)(−iγµ)

/p− /q
(p− q)2

(−iγν)u(p) (2.35)

for the left and right (crossed) diagrams. The projector for 1
2z T̂2,q in Eq. (2.34) has

two Lorentz structures. Contracting the second (pµpν) with Eq. (2.35) yields 0 since

we take the quark to be massless (p2 = 0) (this implies that 1
2z T̂L,q = 0 at tree level,
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see below). Contracting (in 4 dimensions) with −1
2g
µν , averaging over the quark spin

and tracing over the gamma matrices yields

1

2z
T̂2,q =

1

2

(
− 4p · q

(p+ q)2
+

4p · q
(p− q)2

)
. (2.36)

Assuming q2 is large, we may expand the propagators to get

1

2z
T̂2,q =

2p · q
q2

(
− 1

1 + 2p·q
q2

+
1

1− 2p·q
q2

)

=
∞∑
N=0

(
2p · q
q2

)N+1 [
− (−1)N + 1

]
, (2.37)

and using that the square-bracketed combination vanishes for even N ,

1

2z
T̂2,q = 2

∑
odd N

(
2p · q
q2

)N+1

= 2
∑

even N

(
2p · q
q2

)N
= 2

∑
even N

(
1

z

)N
. (2.38)

It now only remains to connect this expression with the parton-level structure

function 1
2z F̂2,q. In the kinematic region of DIS 0 < z < 1 but the sum in Eq. (2.38)

does not converge here. A dispersion relation in the complex z-plane allows us to

analytically continue this result to the physical region of DIS, and determine the even-

N Mellin moments of the structure function,

F̂2,q(N,Q
2) =

∫ 1

0
dzzN−1 1

2z
F̂2,q(z,Q

2), (2.39)

as the coefficients of 2(1/z)N in the sum of Eq. (2.38). See Appendix A.5 for a brief

explanation. We have, then, that F̂2,q(N,Q
2) = 1 at tree level, or δ(1− z) in z-space.

We find that 1
2z T̂L,q = 0 at tree level, since the projector produces only terms

proportional to p2 = 0 (this is the Callan-Gross relation). 1
2z T̂3,q = 0 at all orders in

as, since the antisymmetric ε-tensor of the projector (Eq. (2.34)) is contracted with a

Lorentz structure that is symmetric in its indices.

In the CC case, the situation is a little different. For any given incoming quark or

anti-quark, a crossed diagram (corresponding to the right-hand side of Fig. 2.5) must

have the oppositely-charged W boson due to charge conservation at the vertices. The

diagrams for an incoming d quark, for example, are shown in Fig. 2.6. The vertex factors

are (proportional to) −iγρPL = −iγρ(1 − γ5)/2 for initial state quarks or −iγρPR =

−iγρ(1 + γ5)/2 for initial state anti-quarks.

The contributions to the amplitudes of these two diagrams are proportional to

ū(p)(−iγνPL)
/p+ /q

(p+ q)2
(−iγµPL)u(p) and ū(p)(−iγµPL)

/p− /q
(p− q)2

(−iγνPL)u(p)

(2.40)

for initial state quarks and, for initial state anti-quarks,

v(p)(−iγνPR)
/p+ /q

(p+ q)2
(−iγµPR)v̄(p) and v(p)(−iγµPR)

/p− /q
(p− q)2

(−iγνPR)v̄(p).

(2.41)
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p p

W+ q W+ q W− q q W−

p+ q p− q
p p

−iγµPL −iγνPL −iγνPL −iγµPL

Figure 2.6: The leading-order foward diagrams contributing to W±-down-quark scattering.

If we sum the two diagrams (so we compute the linear combination W+ + W−

of W± scattering), contract with −1
2g
µν , average over quark spin and trace over the

gamma matrices we find (expanding the propagators as in Eq. (2.37))

1

2z
T̂W

++W−

2,q =
1

2

(
− 2p · q

(p+ q)2
+

2p · q
(p− q)2

)
=
∑

even N

(
1

z

)N
. (2.42)

Again we find that 1
2z T̂

W++W−

L,q = 0 but now, due to the presence of the γ5 matrix in

the vertex factors, there is a non vanishing contribution to T̂W
++W−

3,q given by

T̂W
++W−

3,q =
1

2

(
− 4p · q

(p+ q)2
− 4p · q

(p− q)2

)
= 2

∑
odd N

(
1

z

)N
, (2.43)

and the same expression with an overall (−) sign if we are considering an initial state

anti-quark (due to the PR in place of PL in the vertex factors). Unlike the expressions

for 1
2z T̂2,q and 1

2z T̂
W++W−

2,q above, in the expression for T̂W
++W−

3,q the sum runs over

odd values of N .

We can also form a linearly independent combination in which we subtract, rather

than add, diagrams involving a W− boson. Following the same steps as above, we have

1

2z
T̂W

+−W−
2,q =

1

2

(
− 2p · q

(p+ q)2
− 2p · q

(p− q)2

)
=
∑

odd N

(
1

z

)N
,

1

2z
T̂W

+−W−
L,q = 0,

T̂W
+−W−

3,q =
1

2

(
− 4p · q

(p+ q)2
+

4p · q
(p− q)2

)
= 2

∑
even N

(
1

z

)N
, (2.44)

where again, the expression for T̂W
+−W−

3,q picks up an overall (−) sign for an initial state

anti-quark. The sums run over different N values for this W+−W− combination. One

must consider these linear combinations W+±W− in order to map onto either even-N

or odd-N Mellin moments. We are interested in both combinations, since in principle

an experiment can determine which W boson was exchanged in an interaction, or be

set up to only exchange one of the bosons.

The above considerations apply also at higher orders, and to the structure functions

for interactions with a gluon inside the hadron. Although we do not discuss it here, one

may also refer to the Operator Product Expansion (OPE) of the currents interacting
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with the parton. This procedure yields the same conclusions regarding the computation

of even-N and odd-N Mellin moments for various structure functions. For a discussion

see, for example, [22, 23,24].

For the quark parton-level structure functions we define also the “non-singlet”(ns)

coefficient functions, as briefly discussed below Eq. (2.31). In the W+−W− case there

are only the ns parton-level structure functions, which are convoluted with the flavour-

asymmetric PDFs q±ns,ij of Eq. (2.29). These structure functions will carry an ns label

throughout Chapter 3.

In summary then,

• For Electromagnetic DIS, one computes even-N Mellin moments for the parton-

level structure functions F̂2,q, F̂2,g, F̂L,q, F̂L,g.

• For CC DIS in the W+ + W− combination, one computes even-N Mellin mo-

ments for the parton-level structure functions F̂W
++W−

2,q , F̂W
++W−

2,g , F̂W
++W−

L,q ,

F̂W
++W−

2,g and odd-N Mellin moments for F̂W
++W−

3,q .

• For CC DIS in the W+−W− combination, one computes odd-N Mellin moments

for the parton-level structure functions F̂W
+−W−

2,q , F̂W
+−W−

L,q and even-N Mellin

moments for F̂W
+−W−

3,q .

• For Higgs-exchange DIS, one computes even-N Mellin moments for the parton-

level structure functions F̂φ,q, F̂φ,g, which are a useful theoretical probe; one

considers the direct coupling of a scalar boson to the gluon. This allows the

determination of the “lower row” of the splitting function matrix, Pgq and Pgg of

Eq. (2.28).

The 3rd bullet point is the topic of Chapter 3, where we compute the third-order

corrections to these W+−W− CC parton-level structure functions. The 1st, 2nd and

4th points are the topic of Chapter 5, where we compute Mellin moments of the fourth-

order corrections to (parts of) these structure functions. Chapter Chapter 4 concerns

coefficient functions and splitting functions related to the structure functions of the

1st, 3rd and 4th bullet points.
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Chapter 3

Third-Order QCD Corrections to
Charged-Current Deep-Inelastic
Scattering

Full, analytic expressions for third-order QCD corrections to most quantities describing

massless DIS have already been computed. Here we provide a set of references for the

convenience of the reader. The non-singlet anomalous dimensions γ
(2),±
ns and γ

(2),v
ns

were computed in [25] and the whole singlet system γ
(2)
ij in [26]. The corrections to

the non-singlet and singlet coefficient functions c
(3)
2 and c

(3)
L were presented in [27] and

to the CC coefficient function c
(3),W++W−

3,ns in [28]. The third-order corrections to the

Higgs-exchange coefficient functions c
(3)
φ (which are useful only as a theoretical tool, as

explained in Section 2.4) were presented in [29].

In this chapter we consider third-order corrections to the other CC combination,

W+−W−, as discussed in Section 2.4. Some calculations of these functions exist in the

literature, in the form of numerical approximations. These are discussed in more detail

in Section 3.1.1. The analytic computation of these coefficient functions presented in

this chapter completes the third-order description of CC DIS in massless QCD. Some

results of this chapter have been published in [2] and will be published in [3].

3.1 Introduction

Here we repeat some of the formalism outlined in Chapter 2. We define the structure

functions for this “W+−W−” case as follows,

FW
+−W−

i,ns = CW
+−W−

i,ns ⊗ Z−ns ⊗ q̃−ns = CW
+−W−

i,ns ⊗ q−ns, (i = 2, L)

FW
+−W−

3,ns = CW
+−W−

3,ns ⊗ Z+
ns ⊗ q̃+

ns = CW
+−W−

3,ns ⊗ q+
ns. (3.1)

The anomalous dimensions γ
±
ns are defined in terms of the Z±ns matrices,

−γ±ns =
dZ±ns

d lnQ2

(
Z±ns
)−1

. (3.2)
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We define the short-hand C±i,ns = CW
+±W−

i,ns for use throughout this chapter. It should

be mentioned that this notation is different to some of the literature. For example, [28]

defines CW
++W−

3,ns = C3,−, where the (−) label is referring to the fact that the quantity

is based on odd-N Mellin moments. Throughout this thesis, the label rather refers to

whether the coefficient function is for the W+ + W− or W+−W− combination. The

anomalous dimensions γ
±
ns are both already known to third order in as [25] (the label of

γ
±
ns does not refer to the combination W+±W− but to their evolution of the PDFs q±ns,

see Eq. (3.1)). The calculation outlined here will reproduce them, providing a strong

check of the consistency of the results for the coefficient functions.

There are a few aspects of renormalization relevant here which were not discussed

in Chapter 2. The general procedure is much the same; we renormalize the strong

coupling as,bare and mass factorize the remaining (collinear) poles in ε into the bare

PDF, producing a physical result. The structure function FW
+−W−

3,ns , however, is slightly

more complicated (as would be FW
++W−

3,ns ). As discussed in Section 2.4, the vertices in

the diagrams for this structure function contain the projectors 1
2(1 − γ5) or 1

2(1 + γ5)

where the W± bosons couple to quarks or anti-quarks. One must consider carefully

how to treat the intrinsically 4-dimensional γ5 in D = 4−2ε dimensions. Here, as in for

e.g. [28,30,31,32], we use the “Larin scheme” [33] in which one makes the replacement

γµγ5 →
i

6
εµνρσγ

νγργσ. (3.3)

This can be contracted in the usual way with the ε-tensor of the projector of Eq. (2.34),

outside of the D-dimensional renormalization operation, yielding contractions of the

metric tensor which can be defined in D dimensions. The use of this scheme violates

the axial Ward identity, incurring the additional (MS) renormalization factors ZA and

Z5. These factors are computed to a3
s in [33,34] and are given by

ZA = 1 +
a2s
ε

(
22
3 CACF −

4
3nfCF

)
+ 64a3

s

(
CF

432ε2
[
44CAnf − 121C 2

A − 4n 2
f

]
+

CF

2592ε

[
1789C 2

A − 1386CFCA + 144CFnf
]
− 416CAnf + 4n 2

f

)
(3.4)

and

Z5 = 1− asCF (4 + 10ε+ [22− 2ζ2]ε2) + a2
sCF

(
22CF − 107

9 CA +
2
9nf

+ε
[
CF (132− 48ζ3) + CA(−7229

54 + 48ζ3) + nf
331
27

])
+ 64a3

s

(
C 3
F (−185

96 +
3
2ζ3) + C 2

FCA(
2917
864 −

5
2ζ3) + CFC

2
A(−2147

1728 +
7
8ζ3)

+C 2
F nf (− 31

864 −
1
6ζ3) + CFCAnf (

89
1296 +

1
6ζ3) +

13
1296CFn

2
f

)
. (3.5)

See [35] for discussion on the implementation of this scheme in a computationally

efficient manner. After multiplication by these factors, one may proceed with the mass

factorization of the parton-level structure functions.
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3.1.1 Existing Results

CC DIS in the W+− W− combination has been fully computed only to the second

order in as [23, 30]. First results on the third-order corrections were obtained in [36],

in the form the first five odd-N (even-N) Mellin moments of the third-order coefficient

function contributions c
(3),W+−W−
2,ns and c

(3),W+−W−
L,ns (c

(3),W+−W−
3,ns ). Of course, an inverse

Mellin transform to produce an x-space expression requires not just a few moments but

the analytic all-N dependence of the function.

However, given a few moments one can produce an approximation of the exact x-

space result by choosing a suitable functional ansatz and fitting coefficients to reproduce

the known moments. This procedure is performed in [37]. The sixth moments of the

W+− W− coefficient functions were presented in [38] and used as a verification of

the approximations. At large values of x, such approximations prove to be reasonably

accurate.

To second order, these coefficient functions and their opposite-sign (W+ + W−)

counterparts have the same large-x behaviour. It is helpful to define and consider

the differences between the W+ +W− and W+−W− coefficient functions, which are

therefore suppressed at large x. The approximations of [37] are made, not directly to

the W+−W− coefficient functions, but to these differences. We define

δCi = CW
++W−

i − CW+−W−
i (i = 2, L),

δC3 = CW
+−W−

3 − CW++W−

3 , (3.6)

where we always form the difference as the even-N minus the odd-N quantity. This

difference must be formed in x space after the appropriate inverse Mellin transform

of the even-N and odd-N parts. Additionally, these differences are formed with the

caveat that the so-called “fl02”-flavour-class diagrams (in which both bosons couple

to a closed, internal quark loop, see Fig. 3.1) of the CW
++W−

3,ns coefficient function

are removed. This flavour class does not contribute in the W+−W− case, which is

proportional only to the flavour asymmetric PDFs.

fl2 fl02

Figure 3.1: Representative three-loop diagrams for the diagram classes fl2 and fl02 of CC
DIS. In fl02 diagrams neither boson couples to the external quark line; they both couple to the
same internal quark loop.

These approximations are plotted in Figs. 3.2 and 3.3. They have been used in the
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analysis of [39] in which the N3LO corrections to the cross-section for Higgs production

via vector-boson fusion have been estimated. Although authors state that the additional

uncertainty in the cross-section incurred due to the use of these approximations is very

small, an exact result is always preferable if possible. There has also been a lot of

recent progress on the computation of massive quark corrections to DIS, see [40] for an

overview. These computations require knowledge of the massless coefficient functions,

motivating their complete calculation here.

3.2 Software and Calculation

We take a moment here to outline the software used in the computation of these third-

order corrections. Due to the large number of Feynman diagrams contributing at this

order, much automation is required. First the diagrams are generated by QGRAF [41],

which produces 3633 diagrams. These are further processed by a FORM [42] script known

as convdia, whose role is to simplify the QGRAF output and bring it into a form suitable

for further processing. (Throughout this thesis, references to FORM really mean scripts

run with the parallel implementation, TFORM [43], which provides large reductions in

wall-time when running on multi-core computers.) Where possible, diagrams are com-

bined into “meta-diagrams”; collections of diagrams of the same topology, colour factors

and flavour class, differing only in the particle type of various lines. This procedure

produces just 233 meta-diagrams for each of FW
+−W−

2,ns and FW
+−W−

L,ns and 198 meta-

diagrams for FW
+−W−

3,ns , greatly reducing the time required to complete computations.

These meta-diagrams are the input for further tools. MINCER [44, 45] is a package

which computes Mellin moments of the parton-level structure functions for fixed values

of N . The diagram database used here is much smaller than that of [36] due to a

greatly improved version of convdia. Between this and access to more significant

computational resources, we have extended the fixed-moment MINCER calculation from

the first 6 to the first 15 moments of each of the W+−W− structure functions. As

well as to verify this new, smaller, diagram database against the previous calculations,

these moments were used to attempt a reconstruction of the all-N expressions in the

style of Chapter 5. This approach was unsuccessful for the most difficult terms (those

proportional to n0
f ) and all discussion of this method is deferred until Chapter 5 where

it is used to reconstruct other quantities.

The diagram database was also used with an in-house “all-N” code, which can

compute an analytic result directly from the diagrams. This is the code which was

used in other third-order computations of DIS structure functions and is described

briefly in [27]. This code is what ultimately completed the calculations here, although

the colours factors that were successfully reconstructed from Mellin moments of course

agree with the full results. The MINOS database facility [46] handles the automation of

both these and the MINCER calculations of the diagram sets.
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3.3 Results

Here we present the results of the calculations outlined in the previous sections. To

reduce the length of the typeset expressions, we present only the even-N−odd-N dif-

ferences as defined in Eq. (3.6). The exact expressions are nonetheless rather lengthy

and are deferred until Appendix A.7, in which they are presented in x space in terms

of the harmonic polylogarithms defined in Appendix A.2.

The parametrizations presented here are accurate to within 0.1% of the exact

expressions for x ∈ (10−6, 1), to within 1% for x ∈ (10−8, 10−6) and to within 3%

for x ∈ (10−10, 10−8). They are not intended for use outside of this range. The nf

dependence is retained as a symbol and the colour factors CA and CF are set to their

SU(3) values of 3 and 4/3 respectively. We also define the following abbreviations,

X1 = (1− x),

L1 = logX1 = log(1− x),

L0 = log x, (3.7)

to make the typesetting a little more compact. These parametrizations are obtained

by choosing a suitable x-space functional form (small-x and large-x logarithms and

interpolating polynomial terms) and fitting the coefficients to the exact result using

MINUIT [47].

δc
(3)
2,ns = +

(
+ 273.59− 44.95x− 73.56x2 + 40.68x3 + 0.1356L5

0 + 8.483L4
0

+ 55.90L3
0 + 120.67L2

0 + 388.0L0 − 329.8L0L1 − xL0(316.2 + 71.63L0)

+ 46.30L1 + 5.447L2
1

)
X1

+
(
− 19.093 + 12.97x+ 36.44x2 − 29.256x3 − 0.76L4

0 − 5.317L3
0 − 19.82L2

0

− 38.958L0 − 13.395L0L1 + xL0(14.44 + 17.74L0) + 1.395L1

)
X1nf

+
(
− 0.0008 + 0.0001nf

)
δ(1− x), (3.8)

δc
(3)
L,ns = +

(
− 620.53− 394.5x+ 1609x2 − 596.2x3 + 0.217L3

0 + 62.18L2
0 + 208.47L0

− 482.5L0L1 − xL0(1751− 197.5L0) + 105.5L1 + 0.442L2
1

)
X2

1

+
(
− 6.500− 12.435x+ 23.66x2 + 0.914x3 + 0.015L3

0 − 6.627L2
0 − 31.91L0

− xL0(5.711 + 28.635L0)
)
X2

1nf , (3.9)

δc
(3)
3,ns = +

(
− 553.5 + 1412.5x− 990.3x2 + 361.1x3 + 0.1458L5

0 + 9.688L4
0

+ 90.62L3
0 + 83.684L2

0 − 602.32L0 − 382.5L0L1 − xL0(2.805 + 325.92L0)

+ 133.5L1 + 10.135L2
1

)
X1

+
(
− 16.777 + 77.78x− 24.81x2 − 28.89x3 − 0.7714L4

0 − 7.701L3
0

− 21.522L2
0 − 7.897L0 − 16.17L0L1 + xL0(43.21 + 67.04L0)

+ 1.519L1

)
X1nf

+
(
− 0.0029 + 0.00006nf

)
δ(1− x), (3.10)
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The delta-functions enhance the accuracy if these expressions are used to compute

approximate Mellin moments or convolutions, which require numerical integrations up

to the x = 1 endpoint.

The QCD corrections to the Paschos-Wolfenstein relation, which we will discuss

briefly in Section 3.4, require the second (N = 2) Mellin moment of these coefficient

function differences. As discussed in Section 2.4, the even-N moments of CW
+−W−

2,ns

and CW
+−W−

L,ns are not directly accessible to these N -space computations. Since we now

have the exact x-space expressions for these coefficient functions we are able to perform

an even-N Mellin transform and thus obtain the “unnatural” even-N moments. The

exact expressions at N = 2 are given by

δc
(3)
2,ns(N = 2) = + CF

(
− 1496939

43740 −
4958
243 ζ2 +

160852
405 ζ3 +

4520
9 ζ3ζ2 − 8

3ζ
2
3

− 309253
135 ζ4 + 48ζ4ζ2 +

15616
9 ζ5 − 7093

9 ζ6

)
+ CA

(
− 1482179

1944 +
358747

486 ζ2 − 910861
405 ζ3 − 11764

9 ζ3ζ2 +
368
3 ζ2

3

+
181501

45 ζ4 − 48ζ4ζ2 +
1028

9 ζ5 +
2161

9 ζ6

)
+ nf

(
552223
7290 −

23362
243 ζ2 +

155744
405 ζ3 +

704
9 ζ3ζ2 − 53594

135 ζ4 − 896
9 ζ5

)
(3.11)

and

δc
(3)
L,ns(N = 2) = + CF

(
45284
1215 −

1316
27 ζ2 +

12536
135 ζ3 + 32ζ3ζ2 − 1664

45 ζ4 − 224
3 ζ5

)
+ CA

(
8119
162 −

3046
27 ζ2 − 22028

135 ζ3 + 32ζ3ζ2 +
12644

45 ζ4 − 176
3 ζ5

)
+ nf

(
3374
405 +

136
27 ζ2 +

1232
135 ζ3 − 1072

45 ζ4

)
. (3.12)

In these expressions we retain the full dependence on the colour factors CA, CF and nf ,

and suppress an overall “non-planar” colour factor of CF (CA − 2CF ) in both expres-

sions. This overall factor is a prediction of [48, 49] and implies the vanishing of these

expressions in the large-Nc limit (Nc being the number of colours). Also of note is the

appearance of the irrational constants ζ2 and ζ6. These do not appear in the “natural”

moments of either c
(3),+
i,ns or c

(3),−
i,ns , for i = 2, L, 3.

The numerical values of these moments (which include the overall colour factor

combination of CF (CA − 2CF )) with CF and CA set to their QCD values of 4/3 and 3

respectively are

δc
(3)
2,ns(N = 2) = −20.40014403 + 0.7220159109nf (3.13)

and

δc
(3)
L,ns(N = 2) = −24.77551732 + 0.8013314149nf . (3.14)
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The approximate values of δc
(3)
2,ns(N = 2) and δc

(3)
L,ns(N = 2) computed in [37] prove

to be very accurate. They have errors of just 0.5% and 0.07% respectively, and the

exact values are within the quoted uncertainty. We thus expect that the conclusions

regarding the Paschos-Wolfenstein relation, i.e. that the third-order QCD corrections

are very small, will remain unchanged by the inclusion of the exact values of the second

Mellin moments.

The new exact results are plotted alongside the approximations of [37] in Figs. 3.2

and 3.3. While the new lines (labelled: s = − (ex.)) fall within the band formed by the

approximations (s = −(A,B)), we see that for small values of x the approximations are

rather unreliable. Indeed, they describe the exact results to within a 5% error only for

x values above 0.12, 0.14 and 0.16 for c
(3),−
i,ns , i = 2, L, 3 respectively. The (s = + (ex.))

lines are c
(3),+
i,ns and are plotted for comparison with the new results. The plots show the

common large-x behaviour of c
(3),+
i,ns and c

(3),−
i,ns , which will be discussed in more detail

below.

It is worth pointing out that the even-N function c
(3),−
3,ns is not approximated as

well as the odd-N c
(3),−
2,ns and c

(3),−
L,ns . This is because the small-x behaviour is governed

by the small-N behaviour, particularly for N values close to the pole at N = 0. Since

the odd-N moments N = 1, 3, . . . are closer to this pole than the even-N moments

N = 2, 4, . . . they are better able to constrain the small-x behaviour.

Despite these small-x inaccuracies, the approximations are more useful than they

first appear. It is not the coefficient functions themselves that are of experimental

relevance but the their convolution with a PDF. As can be seen from its definition

(Eq. (A.9)), in the Mellin convolution integrand when one function is evaluated at

small values the other is evaluated at large values. Thus, the inaccurate small-x region

of the coefficient function approximations are multiplied by the (small) large-x part of

the PDF. [37] deems the convolution of the approximations to be reliable for x values

as low as 10−3.

Note that in Fig. 3.3 as well as the plots of Sections 3.3.1 to 3.3.4, the curves for

C+
3,ns do not have their fl02 contributions. This allows a “like-for-like” comparison with

the C−3,ns curves. Fig. 3 of [28] shows C+
3,ns with and without the fl02 contribution and

the paper contains a discussion of its effects.
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Figure 3.2: The exact (labelled: (ex.)) third-order coefficient function contributions c
(3),+
2,ns ,

c
(3),−
2,ns and c

(3),+
L,ns , c

(3),−
L,ns , plotted with four massless flavours. The colour factors CA and CF take

their QCD values of 3 and 4/3. The curves labelled (A,B) are the previous approximations. An
overall factor of (1/2000) ≈ 1/(4π)3 is included to approximately convert the result to a series
in αs.
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Figure 3.3: As Fig. 3.2, for c
(3),+
3,ns , c

(3),−
3,ns .
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3.3.1 Perturbative Stability of the Coefficient Functions

In Fig. 3.4 (i = 2), Fig. 3.5 (i = L) and Fig. 3.6 (i = 3) we show the perturbative

expansions of both C+
i,ns(x) and C−i,ns(x). They allow us to assess the stability of the

perturbative expansion in the strong coupling constant as and investigate how this

stability depends on x.

As can been seen in all three pairs of plots, the second-order corrections (labelled as

“NNLO” in Figs. 3.4 and 3.6 and as “NLO” in Fig. 3.5) are rather large for small values

of x; the lines diverge significantly from the first-order expressions at x values as large

as 10−2. One cannot claim to have a good understanding of the coefficient functions

with these contributions alone. The third-order corrections (labelled as “N3LO” in

Figs. 3.4 and 3.6 and as “NNLO” in Fig. 3.5) do much to improve the situation. We

observe rather small corrections to the second-order lines over much of the x range

plotted.

More quantitatively, for C+
2,ns and C−2,ns the N3LO curves correct the NNLO curves

by less than 3% in the regions
(
2.1× 10−7 < x < 0.74

)
and

(
5.8× 10−8 < x < 0.75

)
respectively. C+

3,ns and C−3,ns display rather similar behaviour. The N3LO curves cor-

rect the NNLO curves by less than 3% in the regions
(
3.5× 10−8 < x < 0.74

)
and(

9.6× 10−8 < x < 0.74
)

respectively. C+
L,ns and C−L,ns converge less well by compari-

son. The NNLO curves correct the NLO curves by less than 5% only in the regions

(0.13 < x < 0.92) and (0.0072 < x < 0.92) respectively, and by less than 11% in the

regions
(
8.7× 10−5 < x < 0.97

)
and

(
1.0× 10−5 < x < 0.97

)
respectively. A 100% cor-

rection is reached at x values as “large” as 2.4× 10−7 and 8.3× 10−8. The reason for

this reduced convergence is the lack of a tree-level a0
s contribution, which adds 1 to the

value of C±2,ns and C±3,ns.

It should be stated that these plots demonstrate a rather ideal scenario, with a very

low αs value of 0.12. This is the value of αs around the scale of the W± mass, relevant

to high-energy neutrino scattering. A more typical αs value of, say, 0.2 would yield

somewhat less well-converging curves. Nonetheless, the new third-order corrections

provide the first opportunity to assess the convergence of these coefficient functions

and to assess the vales of x for which they can be considered reliable.
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2,ns to third
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3.3.2 Small-x Behaviour of the Coefficient Functions

We now consider the behaviour of the coefficient functions in the small-x limit. First, we

present expressions for the functions in this limit, which give the dominant behaviour

in terms of powers of small-x logarithms L0 = ln(x).

We find for c
(3),−
2,ns ,

c
(3),−
2,ns

∣∣∣
L 5
0

= +
2
5C

2
ACF +

53
30C

3
F − 29

15CAC
2
F ,

c
(3),−
2,ns

∣∣∣
L 4
0

= +
46
27CACFnf −

31
18C

2
Fnf +

23
12C

3
F +

247
36 CAC

2
F − 193

27 C
2
ACF ,

c
(3),−
2,ns

∣∣∣
L 3
0

= −92
81CFn

2
f +

(
13− 710

9 ζ2

)
C3
F − 1873

81 C2
Fnf +

652
27 CACFnf

+
(

14183
162 +

220
3 ζ2

)
CAC

2
F −

(
7117
81 +

64
9 ζ2

)
C2
ACF ,

c
(3),−
2,ns

∣∣∣
L 2
0

= −496
81 CFn

2
f −

(
2945
27 +

62
3 ζ2

)
C2
Fnf +

(
3652
27 −

112
9 ζ2

)
CACFnf

+
(

1307
6 − 1025

3 ζ2 − 318ζ3

)
C3
F +

(
14119

54 + 281ζ2 + 344ζ3

)
CAC

2
F

−
(

34115
81 − 352

9 ζ2 +
212
3 ζ3

)
C2
ACF ,

c
(3),−
2,ns

∣∣∣
L 1
0

= −
(

1204
81 −

16
3 ζ2

)
CFn

2
f −

(
43207
162 +

70
27ζ2 +

644
9 ζ3

)
C2
Fnf

+
(

31280
81 − 2752

27 ζ2 +
112
9 ζ3

)
CACFnf

+
(

182801
324 +

21349
27 ζ2 +

4862
9 ζ3 +

1636
3 ζ4

)
CAC

2
F
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+
(

3265
4 − 3028

3 ζ2 − 1666
3 ζ3 − 2230

3 ζ4

)
C3
F

−
(

101635
81 − 7930

27 ζ2 − 80
9 ζ3 + 208ζ4

)
C2
ACF

c
(3),−
2,ns

∣∣∣
L 0
0

= −
(

11170
729 −

232
27 ζ2 − 32

27ζ3

)
CFn

2
f

−
(

45371
108 −

7016
81 ζ2 − 434

27 ζ3 − 988
9 ζ4

)
C2
Fnf

+
(

374105
729 − 16832

81 ζ2 − 1756
27 ζ3 − 8ζ4

)
CACFnf

+
(

20147
24 − 4355

3 ζ2 − 1090
3 ζ3 +

2824
3 ζ3ζ2 − 4016

3 ζ4 − 1120ζ5

)
C3
F

+
(

358787
216 +

76246
81 ζ2 +

391
27 ζ3 − 1176ζ3ζ2 +

5240
9 ζ4 +

3158
3 ζ5

)
CAC

2
F

−
(

1496305
729 − 42629

81 ζ2 − 10784
27 ζ3 − 724

3 ζ3ζ2 + 178ζ4 +
560
3 ζ5

)
C2
ACF .

(3.15)

For c
(3),−
3,ns we find

c
(3),−
3,ns

∣∣∣
L 5
0

= −1
2C

3
F ,

c
(3),−
3,ns

∣∣∣
L 4
0

= +
91
54C

2
Fnf +

15
4 C

3
F − 1001

108 CAC
2
F ,

c
(3),−
3,ns

∣∣∣
L 3
0

= −92
81CFn

2
f +

143
27 C

2
Fnf +

1012
81 CACFnf +

(
71
3 +

262
3 ζ2

)
C3
F

−
(

2783
81 − 20ζ2

)
C2
ACF −

(
2353
54 + 64ζ2

)
CAC

2
F ,

c
(3),−
3,ns

∣∣∣
L 2
0

= −
(

47
6 −

719
3 ζ2 − 646

3 ζ3

)
C3
F − 712

81 CFn
2
f −

(
1909
81 +

266
9 ζ2

)
C2
Fnf

+
(

18989
162 −

1129
9 ζ2 − 64ζ3

)
CAC

2
F +

(
9572
81 − 8ζ2

)
CACFnf

−
(

29596
81 − 114ζ2

)
C2
ACF ,

c
(3),−
3,ns

∣∣∣
L 1
0

= −
(

109
12 +

340
3 ζ2 − 418ζ3 +

1654
3 ζ4

)
C3
F −

(
1684
81 −

16
3 ζ2

)
CFn

2
f

−
(

12047
162 +

794
9 ζ2 + 132ζ3

)
C2
Fnf +

(
9676
27 −

760
9 ζ2 +

128
3 ζ3

)
CACFnf

+
(

228649
324 +

5987
9 ζ2 +

130
3 ζ3 +

460
3 ζ4

)
CAC

2
F

−
(

104450
81 − 1996

9 ζ2 − 32ζ3 + 60ζ4

)
C2
ACF ,

c
(3),−
3,ns

∣∣∣
L 0
0

= −
(

8974
729 −

328
27 ζ2 − 32

27ζ3

)
CFn

2
f

+
(

5153
24 −

817
3 ζ2 +

1706
3 ζ3 − 904ζ3ζ2 − 1246

3 ζ4 − 832ζ5

)
C3
F

+
(

226739
729 − 4172

27 ζ2 +
2276
27 ζ3 +

88
3 ζ4

)
CACFnf

+
(

234227
648 +

83612
81 ζ2 +

18301
27 ζ3 + 520ζ3ζ2 − 2191

9 ζ4 +
1910

3 ζ5

)
CAC

2
F

−
(

1938467
1458 − 8614

27 ζ2 +
2392
27 ζ3 +

436
3 ζ3ζ2 + 43ζ4 +

152
3 ζ5

)
C2
ACF . (3.16)
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Finally, for c
(3),−
L,ns we find

c
(3),−
L,ns

∣∣∣
L 3
0

= +
92
3 C

3
F − 104

3 CAC
2
F + 8C2

ACF ,

c
(3),−
L,ns

∣∣∣
L 2
0

= +6CAC
2
F + 16CACFnf − 20C2

Fnf − 44C2
ACF + 64C3

F ,

c
(3),−
L,ns

∣∣∣
L 1
0

= −32
9 CFn

2
f +

368
3 CACFnf − 1280

9 C2
Fnf −

(
248 + 352ζ2

)
C3
F

−
(

3580
9 + 56ζ2

)
C2
ACF +

(
5264

9 + 352ζ2

)
CAC

2
F ,

c
(3),−
L,ns

∣∣∣
L 0
0

= −
(

3304
27 + 32ζ2

)
C2
Fnf +

(
5264
27 −

16
3 ζ2

)
CACFnf

+
(

6016
27 + 688ζ2 + 464ζ3

)
CAC

2
F −

(
6310
27 +

284
3 ζ2 + 160ζ3

)
C2
ACF

−
(

1016 + 544ζ2 + 192ζ3

)
C3
F . (3.17)

As is the case with the c
(3),+
i,ns coefficient functions, c

(3),−
L,ns has a maximum power of L0

that is two below that of c
(3),−
2,ns and c

(3),−
3,ns .

The convergence of these leading logarithms on the exact expressions is best

demonstrated with the plots Figs. 3.7 to 3.9. As above, we plot both the even-N

and odd-N coefficient functions. We show lines for the Leading Logarithmic (LL) ap-

proximation (labelled L5
0 for c

(3),±
2,ns and c

(3),±
3,ns , and L3

0 for c
(3),±
L,ns ), the Next-to-Leading

Logarithmic (NLL) approximation which is the sum of the two highest power logarithms

(labelled +L4
0 for c

(3),±
2,ns and c

(3),±
3,ns , and +L2

0 for c
(3),±
L,ns ) and so on.

It is clear that the first few logarithmic approximations do not provide a good

description of the exact expressions over the plotted range. For c
(3),±
2,ns and c

(3),±
3,ns we

appear to need a N3LL approximation, and for c
(3),±
L,ns a NNLL approximation, to achieve

reasonable accuracy.

In Chapter 4, we will discuss the all-order resummation of small-x leading log-

arithms for various DIS quantities, including C−3,ns. Looking at the results here, we

cannot hope that these resummations can have any direct phenomenological applica-

tions, since knowledge of just the highest few logarithmic contributions appears to be

insufficient to approximate the exact function, even for small values of x. Indeed, the

problem is worse at higher orders; the tower of logarithms grows ever higher with the

power of as. A fixed number of logarithms captures less and less of the behaviour. In

addition new flavour structures can appear, the behaviour of which cannot possibly

be predicted from lower-order information. For example, the fl02 diagrams discussed

below Eq. (3.6) have a large effect on c
(3),+
3,ns at small-x. Nonetheless, the resummations

of Chapter 4 will be useful for more theoretical reasons and these will be discussed in

detail later.
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3.3.3 Large-x Behaviour of the Coefficient Functions

Here we describe the large-x behaviour of the new results. This is done most com-

pactly by giving the large-x expressions for the even-N−odd-N differences as defined

in Eq. (3.6). As in Eqs. (3.11) and (3.12) we suppress the overall colour factor combi-

nation CF (CA − 2CF ) in the typesetting. We have for δc
(3)
2,ns,

δc
(3)
2,ns

∣∣∣
L 2
1

=

[(
12− 8ζ2

)
CF

]
(1− x) +O

(
(1− x)2

)
,

δc
(3)
2,ns

∣∣∣
L 1
1

=

[(
− 50− 48ζ3 + 68ζ2

)
CF +

(
−712

9
+ 64ζ3 −

16

3
ζ2

)
CA

+

(
16

9

)
nf

]
(1− x) +O

(
(1− x)2

)
,

δc
(3)
2,ns

∣∣∣
L 0
1

=

[(
−212

3
+

256

5
ζ2

2 − 12ζ3 −
104

3
ζ2

)
CF +

(
−856

27
+

32

3
ζ3 +

80

9
ζ2

)
nf

+

(
7780

27
− 112

5
ζ2

2 −
272

3
ζ3 −

464

9
ζ2

)
CA

]
(1− x) +O

(
(1− x)2

)
.

(3.18)

Similarly, for δc
(3)
3,ns,

δc
(3)
3,ns

∣∣∣
L 2
1

=

[(
− 20 + 8ζ2

)
CF

]
(1− x) +O

(
(1− x)2

)
,

δc
(3)
3,ns

∣∣∣
L 1
1

=

[(
158 + 48ζ3 − 100ζ2

)
CF +

(
152

9
− 64ζ3 +

80

3
ζ2

)
CA

+

(
16

9

)
nf

]
(1− x) +O

(
(1− x)2

)
,
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δc
(3)
3,ns

∣∣∣
L 0
1

=

[(
− 28− 96ζ2

2 + 88ζ3 + 172ζ2

)
CF +

(
608

9
− 64

3
ζ3 −

160

9
ζ2

)
nf

+

(
−5600

9
+

192

5
ζ2

2 +
496

3
ζ3 +

784

9
ζ2

)
CA

]
(1− x)2 +O

(
(1− x)3

)
.

(3.19)

Due to the longitudinal projection another factor (1 − x) relative to Eq. (3.18) and

Eq. (3.19) appears for δc
(3)
L,ns,

δc
(3)
L,ns

∣∣∣
L 2
1

=

[(
− 32 + 16ζ2

)
CF

]
(1− x)2 +O

(
(1− x)3

)
,

δc
(3)
L,ns

∣∣∣
L 1
1

=

[(
240 + 64ζ3 − 184ζ2

)
CF +

(
96− 96ζ3 + 32ζ2

)
CA

]
(1− x)2

+O
(
(1− x)3

)
,

δc
(3)
L,ns

∣∣∣
L 0
1

=

[(
− 28− 96ζ2

2 + 88ζ3 + 172ζ2

)
CF +

(
608

9
− 64

3
ζ3 −

160

9
ζ2

)
nf

+

(
−5600

9
+

192

5
ζ2

2 +
496

3
ζ3 +

784

9
ζ2

)
CA

]
(1− x)2 +O

(
(1− x)3

)
.

(3.20)

The coefficient functions C+
i,ns and C−i,ns display the usual large-x double-logarithmic

enhancement in their third order contributions. The differences δc
(3)
i,ns show much can-

cellation, however. They are suppressed by two powers of (1 − x) compared to the

functions that form them, and their maximum power of L1 is lower by 3. The leading

large-x behaviour of c
(3),−
i,ns is thus the same as that of c

(3),+
i,ns for i = 2, 3, L.

3.3.4 Perturbative Stability of the Structure Functions

We now investigate to what extent these new third-order corrections to the coefficient

functions affect structure functions. As explained in Section 2.1, the structure func-

tions are a convolution of the coefficient functions and non-perturbative PDFs. The

PDFs are determined by fitting (rather complicated) functions to experimental data.

This is a highly non-trivial procedure with many research groups adopting different

approaches and assumptions. Here we do not choose any particular PDF with which

to convolute our coefficient functions but rather use a simple but sufficiently realistic

function, intended to suitably represent the general shape of real PDFs. We use, as

in [25,27,37],

xf(x) =
√
x(1− x)3. (3.21)

This form is inspired at small-x and large-x by Regge theory and counting rules for

quark distributions. See for e.g. [50, 51] for a discussion.

We plot in Figs. 3.10 to 3.12 the following six structure functions,

FW
+±W−

i,ns = CW
+±W−

i,ns ⊗ f, (i = 2, L, 3), (3.22)
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normalized to the value of the PDF, i.e. we plot FW
+±W−

i,ns /f . Of course, each of

the PDFs in these equations should really be different, as discussed at the end of

Section 2.4. We use the same PDF everywhere here to facilitate an easy comparison

of the convolution of the different coefficient functions. There is a small technicality

in computing these convolutions. The coefficient functions contain plus distributions

and delta functions which must be handled carefully. The procedure is described in

Appendix A.4.
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Figure 3.10: The perturbative expansion of the structure functions FW+±W−

2,ns to third order,
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√
x(1 − x)3. The curves are plotted with four massless
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Successive contributions to the as expansion for these convolutions converge better

than the coefficient functions themselves. As pointed out near the end of Section 3.3,

the convolution with a PDF suppresses the effect of the small-x region of the coeffi-

cient functions. This is exactly the region in which the third-order corrections to the

coefficient functions diverge significantly from the second-order corrections. The N3LO

contributions to FW
+±W−

2,ns and FW
+±W−

3,ns thus correct the NNLO contributions by less

than 1% in the range (10−8 < x < 0.82). The NNLO contributions to FW
+±W−

L,ns , as

with the associated coefficient functions, converge less well. Even so they correct the

NLO contributions by less than 3% in the range (10−8 < x < 0.12). All six struc-

ture functions of CC DIS therefore appear to be stable for x values relevant to current

collider experiments [6], when a3
s corrections are included.
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3.4 Phenomenological Application: The Paschos-Wolfen-
stein Relation

The NuTeV experiment caused excitement some years ago due to a measurement of

the weak mixing angle, sin2 ϑW , which was 3σ above standard model predictions [52].

Dubbed the “NuTeV anomaly”, this measurement of sin2 ϑW was determined via

the Paschos-Wolfenstein relation [53], the ratio of neutral-current to charged-current

neutrino-nucleon scattering:

R−PW =
σ(νN → νX)− σ(ν̄N → ν̄X)

σ(νN → l−X)− σ(ν̄N → l+X)
. (3.23)

This discrepancy motivates, in [37], the consideration of the QCD corrections to this

ratio. Beyond leading order in QCD, Eq. (3.23) may be written as [37,54]

R−PW =
1

2
− sin2 ϑW +

u− − d− + c− − s−
u− + d−

{
1− 7

3
sin2 ϑW +

(
1

2
− sin2 ϑW

)
×

8

9

αs

π

[
1 + 1.689αs +

(
3.61792− 9

256π2
δc

(3)
2,ns(2) +

9

1024π2
δc

(3)
L,ns(2)

)
α2

s

]}
+O

(
1

(u− + d−)2

)
+O

(
α4

s

)
. (3.24)

The symbols q− =
∫ 1

0 dxx(q− q̄) are the second moments of the valence distributions of

the quark flavours, and we have expanded in inverse powers of the dominant combina-

tion (u−+ d−). The quantities δc
(3)
2,ns(2) and δc

(3)
L,ns(2) are known exactly from the new

results of this chapter, and were given in Eqs. (3.11) and (3.12). We mentioned that

the numerical values of these moments (given in Eqs. (3.13) and (3.14)) are very close

to the approximations of [37] and as such, our conclusions about R−PW do not change.

The coefficient of α3
s in Eq. (3.24) is given by 3.66109, compared to the previous ap-

proximation of 3.661± 0.002 (an error of just 0.009%). R−PW is thus stable under QCD

corrections. The third-order contribution increases the square-bracketed combination

by 16% and the curly-bracketed combination by just 1%.

3.5 Conclusions

In this chapter, we have computed the coefficient functions of CC DIS for the linear

combination W+−W−. Along with the existing results for the W+ +W− combination

(see [27,28]) we have completed the description of CC DIS at the third order in massless

QCD. The main results of this chapter have been provided in terms of the difference

between the W+ + W− and W+−W− coefficient functions. Compact, yet accurate,

parametrizations were given in Eqs. (3.8) to (3.10) and the exact results are given in

Appendix A.7. FORTRAN and FORM files for these parametrizations and exact results will

be included with the arXiv source of the article [3].

We have found that by including these third-order corrections, the perturbative

expansion of these coefficient functions appears to be stable for the experimentally
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relevant range of x. This was found to be especially true of the CC structure functions

F±i,ns, i = 2, L, 3, determined by convolution the new results of this chapter with a

reference distribution.

We also investigated the behaviour of the coefficient functions in the small-x and

large-x limits, paying particular attention to the extent to which the small-x double-

logarithmic approximations converge on the exact curves. The leading logarithms of

c
(3),−
3,ns given by Eq. (3.16) form the input for some of the computations of Chapter 4, in

which we consider the resummation of these double logarithms to all orders of pertur-

bation theory.

Knowledge of the exact x-space expression allowed us to evaluate the second Mellin

moment of the differences between the W+ +W− and W+−W− coefficient functions,

δc
(3)
2,ns and δc

(3)
L,ns, which contribute to the third-order QCD corrections to the Paschos-

Wolfenstein relation. We concluded that these corrections are of negligible effect.
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Chapter 4

Resummation of Small-x Double
Logarithms in Deep-Inelastic
Scattering

4.1 Introduction

While high-order corrections to the anomalous dimensions and coefficient functions,

such as those of Chapter 3 and Chapter 5, allow us to describe DIS with great precision,

they do not do so for the entire kinematic range. For large and small values of the

parameter x, (that is, in the limits x → 1 and x → 0) we find powers of logarithms

of (1 − x) and x which can spoil the convergence of the series. For any fixed value of

as, one can of course find a value of x for which ln(1 − x) or lnx dominates as raised

to any power, as demonstrated by the plots and discussion of Section 3.3.2 above. We

also showed that knowledge of just a few of the leading logarithmic contributions to

the coefficient functions does not give a good approximation of their true value.

However, a systematic study and all-as-order determination of the leading loga-

rithms is mathematically interesting and provides predictions for the limiting behaviour

of higher fixed-order corrections, allowing us to check future calculations. Indeed, quan-

tities computed here provide checks of the fourth-order contributions to the anomalous

dimensions computed in Chapter 5. Knowledge of the endpoint behaviour also provides

additional constraints when one attempts to approximate a function based on a small

number of Mellin moments.

The method of this chapter is related to that of [55], in which the leading three

large-x double logarithms were determined to all orders in as via the assumption of an

all-order form for un-mass-factorized DIS structure functions. Similar resummations of

both large-x [56] and small-x [57] double logarithms have also been performed in the

context of semi-inclusive annihilation. The procedure here is similar but applies to the

small-x limit of the DIS structure functions.
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4.1.1 Small-x Expansion

In this chapter we will be referring to the small-x limit of various quantities. Based

on the known fixed-order expressions, we summarize here the leading behaviour of the

anomalous dimensions and the DIS coefficient functions in x space. For the non-singlet

(even-N) anomalous dimension

γ(n),+
ns = + x0

(
ln2n x+ ln2n−1 x+ · · ·+ const

)
+ x1

(
ln2n x+ ln2n−1 x+ · · ·+ const

)
+O

(
x2
)
, (4.1)

and for the singlet system,

γ
(n)
ij = +

1
x

(
lnn−1 x+ lnn−2 x+ · · ·+ const

)
+ x0

(
ln2n x+ ln2n−1 x+ · · ·+ const

)
+ x1

(
ln2n x+ ln2n−1 x+ · · ·+ const

)
+O

(
x2
)
, (i, j = q, g). (4.2)

For the (even-N) coefficient functions,

C(n≥1)
a,ns = + x0

(
ln2n−1−δaL x+ ln2n−2−δaL x+ · · ·+ const

)
+ x1

(
ln2n−1−δaL x+ ln2n−2−δaL x+ · · ·+ const

)
+O

(
x2
)
, (a = 2, 3, L),

(4.3)

and

C
(n≥1)
a,i = +

1
x

(
lnn−2 x+ lnn−3 x+ · · ·+ const

)
+ x0

(
ln2n−1−δaL + ln2n−2−δaL + · · ·+ const

)
+O

(
x1
)
, (a = 2, 3, L, i = q, g)

(4.4)

where δaL = 1 if a = L and δaL = 0 otherwise. Finally for the scalar-exchange coefficient

functions,

C
(n≥1)
φ,i = +

1
x

(
ln2n−1 x+ ln2n−2 x+ · · ·+ const

)
+ x0

(
ln2n−3 + ln2n−4 + · · ·+ const

)
+O

(
x1
)
, (i = q, g). (4.5)

For the singlet functions the leading terms are single-logarithmically enhanced
1
x

(with the exception of Cφ,i which is double-logarithmically enhanced). These terms are

not considered here. They are resummed by the the BFKL formalism, see for e.g. [58,

59, 60, 61]. Rather, we consider here the sub-leading x0 double-logarithmic terms. It

is not inconceivable that for some intermediate values of x they in fact dominate the

formally leading
1
x terms due to their double, rather than single, logarithms.

All calculations here are performed in Mellin-N space, so we note that the Mellin

transform of the leading small-x terms has the form∫ 1

0
dx xN−1xm lnk x =

(−1)kk!

(N +m)k+1
. (4.6)
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The x0 lnk x terms of interest here are thus expressed as poles in N as N → 0. The

highest powers of 1/N are the leading terms – the “leading logarithms” in x-space –

which we label LL. The second-highest powers of 1/N are labelled NLL, and so on.

We find that for even-N based quantities, this method applies to the x0, x2, . . .

double logarithms only, and for odd-N based quantities it applies just to the x1, x3, . . .

double logarithms. We do not consider the odd-N based quantities in this chapter,

so the resummations here focus on the non-singlet parton-level structure functions

F̂a,ns (a = 2, L) and F̂−3,ns and the singlet parton-level structure functions F̂a,i where

a = 2, L, φ and i = q, g.

4.2 Method

We begin with the expression for an un-mass-factorized structure function, as discussed

above in Section 2.2. In particular, we deal with the quantity F̂a of Eq. (2.13) and

Eq. (2.14) (the “parton-level” structure function) given by

F̂a(N, as, ε) = Ca(N, as, ε) Z(N, as,
1
ε ), (4.7)

and recall that the coefficient function Ca contains only terms which are finite in the

limit ε → 0 and the renormalization matrix Z contains only poles in ε. In a typical

fixed-order calculation the next step is to absorb the renormalization matrix Z into the

bare PDF yielding a finite result for the structure function,

Fa(N, as, ε) = Ca(N, as, ε) Z(N, as, ε) f̃ = Ca(N, as, ε) f. (4.8)

Since the renormalization matrix Z is related to the anomalous dimension of the PDF

by

−γ =
dZ

d lnQ2
Z−1 = β(as)

dZ

das
Z−1 (4.9)

we can compute, order by order, a perturbative expansion of Z in terms of the expansion

coefficients of γ. Such an expansion is given to a4
s by Eq. (4.10). High-order corrections

to this matrix have been computed (to NNLL accuracy only, many non-contributing

terms are discarded during computation) using FORM, to a30
s for the 2×2 matrix case and

to a60
s for the scalar case. These calculations become very computationally demanding,

although they are not the bottleneck of the calculations of this chapter. The mass

factorization of the all-order expressions that we obtain for the parton-level structure

functions is more difficult and limits how deeply we can push the expansions here.
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For the convenience of the reader we repeat Eq. (2.24) here,

Z = 1 + as
1

ε
γ(0)

+ a2
s

{ 1

2ε2
(γ(0) − β0)γ(0) +

1

2ε
γ(1)

}
+ a3

s

{ 1

6ε3
(γ(0) − β0)(γ(0) − 2β0)γ(0)

+
1

6ε2

[
(γ(0) − 2β0)γ(1) + (γ(1) − β1)2γ(0)

]
+

1

3ε
γ(2)

}
+ a4

s

{ 1

24ε4
(γ(0) − β0)(γ(0) − 2β0)(γ(0) − 3β0)γ(0)

+
1

24ε3

[
(γ(0) − 2β0)(γ(0) − 3β0)γ(1) + (γ(0) − 3β0)(γ(1) − β1)2γ(0)

+ (γ(0) − β0)(γ(1) − 2β1)3γ(0)
]

+
1

24ε2

[
(γ(0) − 3β0)2γ(2)

+ (γ(1) − 2β1)3γ(1) + (γ(2) − β2)6γ(0)
]

+
1

4ε
γ(3)

}
+O(a5

s ). (4.10)

Note that the highest order ε-poles at each power of as always have coefficients which

depend on the lowest order contributions to the anomalous dimension and beta func-

tion. This is a very important point; it means that given the nth-as-order contributions

to γ and β we can determine the highest n poles of Z to all orders in as. The multipli-

cation of Z by Ca (as in Eq. (4.7)) of course introduces expansion coefficients of Ca into

the coefficients of the ε poles, but we can make the same observation; Nn−1LO knowl-

edge of the coefficient functions and anomalous dimensions determines the highest n

poles of F̂a to all orders in as.

In the phase-space integrals of the second-order calculations of [30, 62], one can

see that the 2- and 3-particle phase spaces behave as xε and x2ε in the small-x limit.

A second order calculation would have, in addition to diagrams with 3-particle final

states, diagrams with a 2-particle final state and a virtual correction. At small-x, we

thus have behaviour of the form xε + x2ε. We take inspiration from this, and also

from the large-x resummations of DIS quantities [63] as well as large-x [56] and small-

x [57] resummations in the context of semi-inclusive e+e− annihilation. We assume the

un-mass-factorized structure functions to have a small-x structure of the form

F̂a(x)

∣∣∣∣
ans

=
1

ε2ñ−1

ñ−1∑
l=0

x(ñ−l)ε
(
A(n,l)
a + εB(n,l)

a + ε2C(n,l)
a + · · ·

)
, (4.11)

where ñ = (n− 1) when considering F̂L,ns and ñ = n when considering F̂2,ns and F̂−3,ns.

The sum over l provides terms proportional to xnε, . . . , xε. The coefficients A
(n,l)
a , B

(n,l)
a

and C
(n,l)
a correspond to the LL, NLL and NNLL small-x contributions to F̂a. Taking

the Mellin transform of Eq. (4.11) we find

F̂a(N)

∣∣∣∣
ans

=
1

ε2ñ−1

ñ−1∑
l=0

1

N + (ñ− l)ε
(
A(n,l)
a + εB(n,l)

a + ε2C(n,l)
a + · · ·

)
, (4.12)

which is the form used throughout the computations of this chapter; the small-x limit

becomes the small-N limit in Mellin space.
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This structure contains double poles in ε, of the form ans ε
−2ñ+1. In Section 2.2

we briefly discussed how the KLN theorem guarantees the cancellation of infra-red and

final-state collinear poles in the structure function, leaving just the initial state collinear

poles (these are the poles we remove using the mass factorization procedure). This

implies that the double-pole terms of Eq. (4.11) and Eq. (4.12) must have coefficients of

zero. This requirement constrains the possible values of the unknown coefficients A
(n,l)
a ,

B
(n,l)
a and C

(n,l)
a . Along with our all-as-order knowledge of the highest n single poles of

F̂a, we have enough relations to determine the unknown coefficients at arbitrarily high

values of n. Since Eq. (4.12) describes F̂a to all orders in ε for any particular n, we can

claim to know the LL, NLL and NNLL contributions to F̂a to all orders in both as and

ε.

4.2.1 An Example: The LL Resummation of F̂2,ns

In this section, we discuss the resummation of the leading (LL) behaviour of F̂2,ns in

detail. We then describe how one can deduce all-as-order expressions for the anomalous

dimension γ
+
ns and coefficient function C2,ns by mass factorizing F̂2,ns at very high as

orders. In section Section 4.3, all-as-order expressions for the LL, NLL and NNLL

contributions to the anomalous dimension γ
+
ns and coefficient functions C2,ns, CL,ns

and C−3,ns will be given.

We begin by considering the product of the expansions of the coefficient function

and renormalization matrix. By inserting the expansions Eqs. (2.22) and (4.10) into

Eq. (4.7) we have (noting that some terms which do not contribute at the NNLL level

have already been discarded in this expression; specifically those proportional to β3
0 or

β1, β2, . . .)

F̂2,ns = + 1

+ as

{
+ ε−1γ

(0)
ns + ε0c

(1,0)
2,ns + ε1c

(1,1)
2,ns + ε2c

(1,2)
2,ns + · · ·

}
+ a2

s

{
− 1

2
ε−2
(
γ

(0)
ns β0 − γ(0)

ns

2)
+

1

2
ε−1
(

2c
(1,0)
2,ns γ

(0)
ns + γ

(1)
ns

)
+ ε0

(
c

(1,1)
2,ns γ

(0)
ns + c

(2,0)
2,ns

)
+ ε1

(
c

(1,2)
2,ns γ

(0)
ns + c

(2,1)
2,ns

)
+ · · ·

}
+ a3

s

{
+

1

6
ε−3
(

2γ
(0)
ns β

2
0 − 3γ

(0)
ns

2
β0 + γ

(0)
ns

3)
− 1

6
ε−2
(

3c
(1,0)
2,ns γ

(0)
ns β0 − 3c

(1,0)
2,ns γ

(0)
ns

2
− 3γ

(0)
ns γ

(1)
ns + 2γ

(1)
ns β0

)
+

1

6
ε−1
(

3c
(1,0)
2,ns γ

(1)
ns − 3c

(1,1)
2,ns γ

(0)
ns β0 + 3c

(1,1)
2,ns γ

(0)
ns

2
+ 6c

(2,0)
2,ns γ

(0)
ns + 2γ

(2)
ns

)
+

1

2
ε0
(
c

(1,1)
2,ns γ

(1)
ns − c

(1,2)
2,ns γ

(0)
ns β0 + c

(1,2)
2,ns γ

(0)
ns

2
+ 2c

(2,1)
2,ns γ

(0)
ns + 2c

(3,0)
2,ns

)
+ · · ·

}
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+ a4
s

{
+

1

24
ε−4
(

11γ
(0)
ns

2
β2

0 − 6γ
(0)
ns

3
β0 + γ

(0)
ns

4)
+

1

12
ε−3
(

4c
(1,0)
2,ns γ

(0)
ns β

2
0 − 6c

(1,0)
2,ns γ

(0)
ns

2
β0 + 2c

(1,0)
2,ns γ

(0)
ns

3
+ 3γ

(0)
ns

2
γ

(1)
ns

− 7γ
(0)
ns γ

(1)
ns β0 + 3γ

(1)
ns β

2
0

)
+

1

24
ε−2
(

12c
(1,0)
2,ns γ

(0)
ns γ

(1)
ns − 8c

(1,0)
2,ns γ

(1)
ns β0 + 8c

(1,1)
2,ns γ

(0)
ns β

2
0 − 12c

(1,1)
2,ns γ

(0)
ns

2
β0

+ 4c
(1,1)
2,ns γ

(0)
ns

3
− 12c

(2,0)
2,ns γ

(0)
ns β0 + 12c

(2,0)
2,ns γ

(0)
ns

2
+ 8γ

(0)
ns γ

(2)
ns

+ 3γ
(1)
ns

2
− 6γ

(2)
ns β0

)
+

1

12
ε−1
(

4c
(1,0)
2,ns γ

(2)
ns + 6c

(1,1)
2,ns γ

(0)
ns γ

(1)
ns − 4c

(1,1)
2,ns γ

(1)
ns β0 + 4c

(1,2)
2,ns γ

(0)
ns β

2
0

− 6c
(1,2)
2,ns γ

(0)
ns

2
β0 + 2c

(1,2)
2,ns γ

(0)
ns

3
+ 6c

(2,0)
2,ns γ

(1)
ns − 6c

(2,1)
2,ns γ

(0)
ns β0

+ 6c
(2,1)
2,ns γ

(0)
ns

2
+ 12c

(3,0)
2,ns γ

(0)
ns + 3γ

(3)
ns

)
+ · · ·

}
+O(a5

s ). (4.13)

Only the first four ε terms at each order have been typeset here. With the exception

of γ
(3)
ns (appearing on the last line), the quantities appearing in this expansion are all

known from existing fixed-order calculations to third order in as. Their three leading

small-N terms are as follows,

c
(1,0)
2,ns = + 2N−2 + 3N−1 − [5 + 2ζ2]

c
(1,1)
2,ns =− 2N−3 − 3N−2 + [5 + 3ζ2]N−1

c
(1,2)
2,ns = + 2N−4 + 3N−3 − [5 + 3ζ2]N−2

c
(2,0)
2,ns = + 10CFN

−4 + (18CF − 5β0)N−3 + (10CA + 6β0 − [17 + 24ζ2]CF )N−2

c
(2,1)
2,ns =− 26CFN

−5 − (50CF − 13β0)N−4 −
(

70
3 CA +

32
3 β0 − [47 + 68ζ2]CF

)
N−3

c
(3,0)
2,ns = + 60C 2

FN
−6 +

(
134C 2

F − 182
3 β0CF

)
N−5 −

(
120C 2

Aζ2 − 5
3β0CF − 46

3 β
2
0

+ [30 + 524ζ2]C 2
F −

[
260
3 + 384ζ2

]
CACF

)
N−4, (4.14)

γ(0)
ns =− 2N−1 − 1− [2− 4ζ2]N

γ(1)
ns =− 4CFN

−3 − (4CF − 2β0)N−2 +
(

20
3 CA +

22
3 β0 − (4 + 8ζ2)CF

)
N−1

γ(2)
ns =− 16C 2

FN
−5 − (24C 2

F − 12β0CF )N−4 +
(

60C 2
Aζ2 − 64

3 β0CF − 2β2
0

−
[

80
3 + 192ζ2

]
CACF − (8− 208ζ2)C 2

F

)
N−3, (4.15)

where an overall factor of CF has been omitted in both Eq. (4.14) and Eq. (4.15).

Inserting these into Eq. (4.13) we find the leading three ε-terms of F̂2,ns at each order,
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to LL accuracy, to be

F̂2,ns = + 1

+ asCF

(
−2

N−1

ε
+ 2N−2 − 2εN−3

)
+ a2

sC
2
F

(
2
N−2

ε2
− 6

N−3

ε
+ 14N−4

)
+ a3

sC
3
F

(
−4

3

N−3

ε3
+ 8

N−4

ε2
− 100

3

N−5

ε

)
+ a4

sC
4
F

(
2

3

N−4

ε4
− 20

3

N−5

ε3
+

130

3

N−6

ε2

)
+O(a5

s ). (4.16)

We of course know these three highest poles to “all” orders in as, but we do not display

beyond a4
s here. Assuming the LL N -space structure to be (based on Eq. (4.12))

F̂2,ns(N)

∣∣∣∣
ans

=
1

ε2n−1

n−1∑
l=0

1

N + (n− l)εA
(n,l)
2,ns , (4.17)

one can expand the fraction as

1

N + (n− l)ε =
1

N

(
1

1 + (n− l)ε/N

)
=

1

N

∞∑
i=0

(−(n− l)ε
N

)i
(4.18)

to obtain

F̂2,ns = + 1

+ as

(
A

(1,0)
2,ns

N−1

ε −A(1,0)
2,nsN

−2 +A
(1,0)
2,ns εN

−3 −A(1,0)
2,ns ε

2N−4 + · · ·
)

+ a2
s

(
[A

(2,0)
2,ns +A

(2,1)
2,ns ]

N−1

ε3 + [−2A
(2,0)
2,ns −A

(2,1)
2,ns ]

N−2

ε2 + [4A
(2,0)
2,ns +A

(2,1)
2,ns ]

N−3

ε

+ [−8A
(2,0)
2,ns −A

(2,1)
2,ns ]N−4 + · · ·

)
+ a3

s

(
[A

(3,0)
2,ns +A

(3,1)
2,ns +A

(3,2)
2,ns ]

N−1

ε5 + [−3A
(3,0)
2,ns − 2A

(3,1)
2,ns −A

(3,2)
2,ns ]

N−2

ε4

+ [9A
(3,0)
2,ns + 4A

(3,1)
2,ns +A

(3,2)
2,ns ]

N−3

ε3

+ [−27A
(3,0)
2,ns − 8A

(3,1)
2,ns −A

(3,2)
2,ns ]

N−4

ε2 + · · ·
)

+O(a4
s ). (4.19)

Now we can determine the coefficients A
(i,j)
2,ns. By comparing our two expressions for

F̂2,ns (Eqs. (4.16) and (4.19)), we can form systems of equations for the coefficients

A
(i,j)
2,ns. These can easily be solved to yield

A
(1,0)
2,ns = −2CF ,

A
(2,0)
2,ns = −2C 2

F A
(2,1)
2,ns = 2C 2

F ,

A
(3,0)
2,ns = −2

3
C 3
F A

(3,1)
2,ns =

4

3
C 3
F A

(3,2)
2,ns = −2

3
C 3
F ,

... (4.20)
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where we only show the coefficients to third order in as.

The remaining terms of Eq. (4.16) (two terms per as power were not used to

determine the coefficients) provide a non-trivial verification of the solutions. For each

extra power of as we have one additional coefficient to determine, but there are two

additional double poles in the expansion of Eq. (4.17) which must vanish. The LL

coefficients A
(i,j)
2,ns are over-constrained to all orders in as.

We can now claim to know the leading small-x behaviour of F̂2,ns to all orders in ε

(we can expand the fraction in Eq. (4.17) as deeply as we please) and also to all orders

in as (we can carry out this procedure as far as we please in the as expansion). We

are limited only by how deeply in the as expansion we know Z (Eq. (4.10)). Using this

all-order (effectively, “very high order”) knowledge of F̂2,ns, we can now mass factor-

ize to determine high-as-order corrections to the coefficient functions and anomalous

dimensions.

4.2.2 All-Order LL Results for C2,ns and γ+
ns in the Small-x Limit

The leading logarithmic “all-as” contributions to γ
+
ns and C2,ns are found to be

γ+
ns =− 2CFas

1

N
− 4C 2

F a
2
s

1

N3
− 16C 3

F a
3
s

1

N5
− 80C 4

F a
4
s

1

N7
− 448C 5

F a
5
s

1

N9

− 2688C 6
F a

6
s

1

N11
− 16896C 7

F a
7
s

1

N13
− 109824C 8

F a
8
s

1

N15
− 732160C 9

F a
9
s

1

N17

− 4978688C 10
F a10

s

1

N19
+O(a11

s ) (4.21)

and

C2,ns = 1 + 2CFas
1

N2
+ 10C 2

F a
2
s

1

N4
+ 60C 3

F a
3
s

1

N6
+ 390C 4

F a
4
s

1

N8
+ 2652C 5

F a
5
s

1

N10

+ 18564C 6
F a

6
s

1

N12
+ 132600C 7

F a
7
s

1

N14
+ 961350C 8

F a
8
s

1

N16

+ 7049900C 9
F a

9
s

1

N18
+ 52169260C 10

F a10
s

1

N20
+O(a11

s ). (4.22)

The contributions from a11
s to a40

s have been computed but are not printed here. It was

not possible to perform the mass factorization of F̂2,ns to higher order than this with

the available computational resources.

The integer coefficients of Eq. (4.21) are given by sequence A025225 of the Online

Encyclopedia of Integer Sequences (OEIS) [64]; 2nC(n−1), where C(n) are the Catalan

numbers defined by

C(n) =
1

n+ 1

(
2n

n

)
, n ≥ 0. (4.23)

Thus one can write an all-as-order expression for γ
+
ns in terms of these coefficients,

γ+
ns = −N

∞∑
i=1

2iC(i− 1)

(
CFas

N2

)i
, (4.24)
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or noting that the generating function of the coefficients is c(x) = (1−
√

1− 8x)/2 we

can write a closed-form expression

γ+
ns = −N c(CFas/N

2) = −N

1−
√

1− 8CF as
N2

2

 . (4.25)

Alternatively, defining the function (which proves to be slightly more convenient for

the NLL and NNLL contributions later)

S(ξ) =
√

1− 4ξ, (4.26)

we can write γ
+
ns in the form

γ+
ns =

N

2
(S(ξ)− 1) , ξ =

2CFas

N2
. (4.27)

This is in agreement with [65]. The integer coefficients of Eq. (4.22) are given by

sequence A004981 of the OEIS,

2n

n!

n−1∏
k=0

(4k + 1), (4.28)

which have the generating function f(x) = (1− 8x)−1/4 or alternatively

F (ξ) = (1− 4ξ)−1/4 = S(ξ)−1/2, (4.29)

with which we can write that

C2,ns = F (ξ), ξ =
2CFas

N2
. (4.30)

Expanding Eqs. (4.27) and (4.30) about ξ = 0 recovers the explicit series of Eqs. (4.21)

and (4.22).

4.3 NNLL All-Order Results for C2,ns, CL,ns, C
−
3,ns and γ+

ns

in the Small-x Limit

With the fixed-order knowledge available (coefficient functions and anomalous dimen-

sions to a3
s ), the above procedure is readily extended to the leading three logarithmic

contributions to the coefficient functions and anomalous dimension for the parton-level

structure functions F̂2,ns, F̂L,ns and F̂−3,ns. We include the coefficients for the next-to-

leading (B
(n,l)
a ) and next-to-next-to-leading (C

(n,l)
a ) terms in Eq. (4.12) and assume the

following all-order forms,

F̂a(N)

∣∣∣∣
ans

=
1

ε2n−1

n−1∑
l=0

1

N + (n− l)ε
(
A(n,l)
a + εB(n,l)

a + ε2C(n,l)
a

)
, (a = 2, 3),

(4.31)

F̂L(N)

∣∣∣∣
ans

=
1

ε2n−3

n−2∑
l=0

1

N + (n− 1− l)ε
(
A

(n,l)
L + εB

(n,l)
L + ε2C

(n,l)
L

)
. (4.32)
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The small-x limits of the coefficient functions used to determine F̂L,ns and F̂−3,ns are

given, in the style of Eq. (4.14) and Eq. (4.15), in Appendix A.8.1.

Table 4.1 shows, at each as order, the requirements to determine the all-order

coefficients A
(n,l)
a , B

(n,l)
a and C

(n,l)
a (a = 2, 3). The cells are filled as follows:

• 0: a double pole produced by the expansion of Eq. (4.31) which must vanish. The

coefficients must combine to give zero.

• R: a single pole whose coefficient is known from the results of fixed-order pertur-

bative calculations. It is required to determine the all-order coefficients.

• V: a single pole whose coefficient is known from the results of fixed-order pertur-

bative calculations. It is not required to determine the all-order coefficients, and

thus verifies that the all-order coefficients produce the correct numbers.

• P: a previously unknown coefficient, predicted by the all-order coefficients. These

predictions extend to all powers of ε.

We see that for the LL coefficients, the double-pole zeroes and one single-pole term are

sufficient to determine the all-order coefficients. We thus have two further terms as

verification. At NLL, everything is shifted upwards by one power of ε (c.f. Eq. (4.31)).

We thus only have a single term which verifies the all-order coefficients. At the NNLL

level, everything is shifted by two powers of ε with respect to the LL and so we have no

verification that the all-order coefficients are correct, based on knowledge from fixed-

order calculations.

This may seem a little unsatisfactory, but in fact the constraints on these coeffi-

cients are a lot stronger than they first appear. Consider the a4
sε
−1 term at the NNLL

level which, according to Table 4.1, is an unverified prediction of our all-order structure.

Looking at Eq. (4.13) we can see that its prediction determines the NNLL contribu-

tion of γ
(3),+
ns . γ

(3),+
ns appears again in the a5

sε
−2, a5

sε
−1, . . . terms, the a6

sε
−3, a6

sε
−2, . . .

terms, the a7
sε
−4, a7

sε
−3, . . . terms and so on. The coefficients of each of these terms has

been independently predicted by the all-ε-order expressions at each of a5
s , a6

s , a7
s , . . ..

This “unverified” coefficient in fact satisfies an infinite number of additional equations

(of course, in practice we can only demonstrate this for some finite, computer-limited,

value of n).

The crucial point is this: the “clean” mass factorization of a structure function to

order ans requires the mutual consistency of the first n coefficients of the ε expansion of

every power of as up to ans . Any errors in the determination of lower-as-power higher-

ε-power coefficients will break the mass factorization of the poles at higher powers of

as.
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LL ε−9 ε−8 ε−7 ε−6 ε−5 ε−4 ε−3 ε−2 ε−1 ε0 ε1 ε2

a1
s R V V P

a2
s 0 R V V P P

a3
s 0 0 R V V P P P

a4
s 0 0 0 R V V P P P P

a5
s 0 0 0 0 R V V P P P P P

NLL ε−9 ε−8 ε−7 ε−6 ε−5 ε−4 ε−3 ε−2 ε−1 ε0 ε1 ε2

a1
s R V P

a2
s R R V P P

a3
s 0 R R V P P P

a4
s 0 0 R R V P P P P

a5
s 0 0 0 R R V P P P P P

NNLL ε−9 ε−8 ε−7 ε−6 ε−5 ε−4 ε−3 ε−2 ε−1 ε0 ε1 ε2

a1
s R P

a2
s R R P P

a3
s R R R P P P

a4
s 0 R R R P P P P

a5
s 0 0 R R R P P P P P

Table 4.1: A graphical representation of the expansion of Eq. (4.31). The cells marked “0”
and “R” are required to determine the all-order coefficients. Cells marked “V” are known from
fixed-order perturbative calculations and verify the all-order coefficients. Cells marked “P” are
previously unknown coefficients which are predicted by this resummation procedure, and extend
to all powers of ε.
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After mass factorization we find that we can write the anomalous dimensions and

coefficient functions to all orders in as in terms of powers of the functions S(ξ) and

F (ξ) defined above in Eq. (4.26) and Eq. (4.29). The method here is to choose a basis

of powers of these functions, with arbitrary coefficients, and solve for them by Gaussian

elimination. We also determine, but do not present here, all-as forms for the first five

ε-power contributions to the coefficient functions.

Omitting the argument of S and F , ξ = 2CF as
N2 (as above), we have

γ+
ns = +

[
N

2
(S − 1)

]
LL

+

[
as

2

(
(S−1 − 1)β0 − 2CFS

−1
)]

NLL

−
[
asN

96CF

(
12(S−3 + 2S−1 + 13S − 96ζ2S

−1 + 144ζ2 − 80ζ2S)C 2
F

+ 16(5S−1 − 5S + 72ζ2S
−1 − 144ζ2 + 72ζ2S)CACF

− 360(ζ2S
−1 − 2ζ2 + ζ2S)C 2

A − 4(3S−3 − 28S−1 + 25S)β0CF

+ 3(S−3 − 2S−1 + S)β2
0

)]
NNLL

(4.33)

and for the coefficient functions,

C2,ns = +

[
F

]
LL

−
[
N

8

(
4F−1 − 3F − F 5

)
+

N

192CF

(
− 44F − 6F 3 + 12F 5 + 5F 7 + 33F−1

)
β0

]
NLL

+

[
as

16

(
8F 3 + 3[3− 64ζ2]F 5 + 5F 9 − 2[37− 152ζ2](F−3 − F−1)ξ−1

− 2[125− 384ζ2]F
)
CF +

as

192

(
340F − 15F 3 + 216F 5 + 18F 7 − 60F 9

− 35F 11 + 232(F−3 − F−1)ξ−1
)
β0 +

as

6

(
5[1− 72ζ2]F + [5 + 72ζ2]F 5

+ [5− 144ζ2](F−3 − F−1)ξ−1
)
CA +

as

9216CF

(
5111F − 632F 3 − 2093F 5

− 1232F 7 + 181F 9 + 840F 11 + 385F 13 + 1280(F−3 − F−1)ξ−1
)
β2

0

+
15as

4CF

(
5F − F 5 + 2(F−3 − F−1)ξ−1

)
ζ2C

2
A

]
NNLL

, (4.34)

CL,ns = +

[
4asCFF

]
LL

−
[
asN

2

(
8F−1 + F − F 5

)
CF

− asN

48

(
15F−1 − 4F + 6F 3 − 12F 5 − 5F 7

)
β0

]
NLL

+

[
a2

s

4

(
− 2[193− 64ζ2]F + 16F 3 + [1− 192ζ2]F 5 + 5F 9 − 2[25 + 8ζ2]F−3ξ−1

+ 2[41 + 8ζ2]F−1ξ−1
)
C 2
F +

2a2
s

3

(
[25− 72ζ2]F + [5 + 72ζ2]F 5
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+ 5(F−3 − F−1)ξ−1
)
CACF +

a2
s

48

(
+ 960F − 115F 3 + 188F 5 + 38F 7

− 60F 9 − 35F 11 + 184(F−3 − F−1)ξ−1
)
β0CF −

a2
s

2304

(
1321F − 424F 3

+ 269F 5 + 752F 7 − 181F 9 − 840F 11 − 385F 13 + 256(F−3 − F−1)ξ−1
)
β2

0

+ 15a2
s (F − F 5)ζ2C

2
A

]
NNLL

, (4.35)

C−3,ns = +

[
F

]
LL

−
[
N

8

(
F − F 5

)
+

N

192CF

(
− 44F − 6F 3 + 12F 5 + 5F 7 + 33F−1

)
β0

]
NLL

+

[
as

16

(
− 2[157− 384ζ2]F + [1− 192ζ2]F 5 + 5F 9

− 2[49− 152ζ2](F−3 − F−1)ξ−1
)
CF +

as

6

(
5[1− 72ζ2]F + [5 + 72ζ2]F 5

+ [5− 144ζ2](F−3 − F−1)ξ−1
)
CA +

as

192

(
72F + 29F 3 + 292F 5 + 38F 7

− 60F 9 − 35F 11 + 168(F−3 − F−1)ξ−1
)
β0 +

as

9216CF

(
5111F − 632F 3

− 2093F 5 − 1232F 7 + 181F 9 + 840F 11 + 385F 13 +
1280
ξ (F−3 − F−1)

)
β2

0

+
15as

4CF

(
5F − F 5 + 2(F−3 − F−1)ξ−1

)
ζ2C

2
A

]
NNLL

. (4.36)

As in the previous section, expanding the S and F functions about ξ = 0 recovers

the expansion coefficients for these expressions to any order in as. We now show the a4
s

contribution to γ+
ns explicitly, since it contains a term which features in the calculations

of Chapter 5. We have that

γ(3),+
ns (N) =− 80C 4

F N
−7 − C 3

F (160CF − 80β0)N −6 − C 2
F

(
[128− 1600 ζ2]C 2

F

+ 80CFβ0 + [160 + 1536 ζ2]CFCA +24β2
0 − 480 ζ2C

2
A

)
N −5 +O(N −4),

(4.37)

where the β2
0 term is of interest (and has been highlighted ) as it contains the n 2

f

dependent term of γ
(3),+
ns ,

−32

3
C 2
F n

2
f . (4.38)

The a4
s predictions for the coefficient functions are

c
(4)
2,ns(N) = + 390C 4

FN
−8 +

(
1052C 4

F − 1822/3β0C
3
F

)
N −7 +

(
− 1560C 2

AC
2
F ζ2

− 448β0C
3
F + 1951/6β2

0C
2
F + [336− 5872ζ2]C 4

F

+ [2180/3 + 4992ζ2]CAC
3
F

)
N −6 +O(N −5), (4.39)

c
(4)
L,ns(N) = + 240C 4

FN
−6 +

(
472C 4

F − 992/3β0C
3
F

)
N −5 +

(
− 1200C 2

AC
2
F ζ2

+ 56β0C
3
F + 460/3β2

0C
2
F − [644 + 4016ζ2]C 4

F

+ [480 + 3840ζ2]CAC
3
F

)
N −4 +O(N −3), (4.40)
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c
(4),−
3,ns (N) = + 390C 4

FN
−8 +

(
780C 4

F − 1822/3β0C
3
F

)
N −7 +

(
− 1560C 2

AC
2
F ζ2

− 8/3β0C
3
F + 1951/6β2

0C
2
F − [496 + 5872ζ2]C 4

F

+ [2180/3 + 4992ζ2]CAC
3
F

)
N −6 +O(N −5). (4.41)

The a5
s predictions for both the anomalous dimension and coefficient functions are

presented explicitly in Appendix A.9 for future reference.

To compare the numerical size of these logarithmic corrections with the fixed order

results, we plot the functions in Figs. 4.1 to 4.4. In the left panel of the figures we

show the fixed order corrections, to a3
s , to the splitting function P

+
ns = −γ+

ns and the

coefficient functions C2,ns, CL,ns and C−3,ns. In the right panel, we show the sum of the

fixed order corrections and the all-as resummation of the leading logarithms. We show

the logarithmic approximation achievable with each fixed order, for e.g. LO knowledge

allows for a LL resummation, NLO knowledge allows for a NLL resummation, etc.

We see, for all functions plotted, that the logarithmic corrections are large and do

not converge. Based on these results, one cannot claim to know any form of “all-order

endpoint behaviour”, since the leading three logarithms alone are not indicative of any

particular behaviour. Despite being of no direct phenomenological use, the corrections

are mathematically interesting. The highlighted term of Eq. (4.37) provides a cross-

check of the results of Chapter 5, and the other terms will provide cross-checks of future

fixed-order calculations.
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Figure 4.1: The left panel shows the known fixed-order perturbative corrections to the splitting

function P
+
ns. The right panel shows the three leading logarithmic corrections to all orders in

as. The curves are plotted with the colour factors CA and CF taking their QCD values of 3 and
4/3, and with 4 massless flavours.
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Figure 4.2: As Fig. 4.1, for the coefficient function C2,ns.
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Figure 4.3: As Fig. 4.1, for the coefficient function CL,ns.
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Figure 4.4: As Fig. 4.1, for the coefficient function C−
3,ns.

4.4 Resummation of the Singlet Structure Functions

We now turn to the discussion of the singlet structure functions F2,q, F2,g, FL,q, FL,g,

Fφ,q and Fφ,g. Here we have at the parton level

F̂2,q = C2,qZqq + C2,gZgq

F̂2,g = C2,qZqg + C2,gZgg

F̂L,q = CL,qZqq + CL,gZgq

F̂L,g = CL,qZqg + CL,gZgg

F̂φ,q = Cφ,qZqq + Cφ,gZgq

F̂φ,g = Cφ,qZqg + Cφ,gZgg (4.42)

where Zij satisfies the matrix equation

−
(
γqq γqg
γgq γgg

)
= β(as)

d

das

[(
Zqq Zqg
Zgq Zgg

)](
Zqq Zqg
Zgq Zgg

)−1

. (4.43)

As in the non-singlet case, the entries of Z can be determined order-by-order in their

as expansion in terms of the expansion coefficients of the anomalous dimensions. In

this case, each entry of Z will depend on the expansion coefficients of all of the entries

of the anomalous dimension matrix. For this reason, computing the expansion of Z

for the singlet system is significantly more difficult and it is only known (at the NNLL

level) to a30
s .
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We assume the same small-x structure for these singlet structure functions as in

the non-singlet case, given by Eqs. (4.31) and (4.32). In particular, F̂2,i and F̂φ,i have

the same form as F̂2,ns and F̂L,i has the same form as F̂L,ns, (where i = q, g).

In exactly the same way as in Section 4.2.1, we determine the structure functions

to all orders in as and all orders in ε. Mass factorizing the result gives us all-as-order

contributions to the singlet anomalous dimensions and all-as- all-ε-order contributions

to the corresponding coefficient functions.

4.4.1 Results

Defining

γqq = γ+
ns + γqq,ps

γgg = γ+
ns,gg + γgg,ps, (4.44)

where γ+
gg,ns is a “non-singlet like” quantity describing the pure-CA terms of “Quantum

Gluo-dynamics”, from diagrams with an unbroken external gluon line reaching the

(scalar) boson. γ
+
ns was given in Eq. (4.33), and we find that

γ+
ns,gg =

N

2
(S(ξ′)− 1), ξ′ = −4CAas

N2
. (4.45)

For the remaining singlet contributions, a closed-form expression has not been found

at the time of writing. The LL terms can be reproduced with the series of Eq. (4.46),

but such series have not been found beyond the LL contributions. The NLL and NNLL

contributions to high powers of as will be tabulated in [4].

γ(n)
qq,ps(N) = −Cn

2n+1

N2n+1

bn−1
2
c∑

i=0

n−1−2i∑
k=0

(−2)i+1+k(nfCF )i+1C k
AC

ρ
F

(
k + i

k

)(
ρ+ i+ 1

ρ

)
,

γ(n)
gg,ps(N) = −Cn

2n+1

N2n+1

bn−1
2
c∑

i=0

n−1−2i∑
k=0

(−2)i+1+k(nfCF )i+1C k
AC

ρ
F

(
k + i+ 1

k

)(
ρ+ i

ρ

)
,

γ(n)
qg (N) = −nfCn

2n+1

N2n+1

bn
2
c∑

i=0

n−2i∑
k=0

(−2)i+k(nfCF )iC k
AC

δ
F

(
k + i

k

)(
δ + i

δ

)
,

γ(n)
gq (N) = −2CF

nf
γ(n)
qg (N). (4.46)

The presence of the Catalan numbers and factors of 2n+1 suggests that these could

be written by some generalization of the S function of the non-singlet results, but we

have not been able to find a closed form. For the next-to- and next-to-next-to-leading

contributions we cannot even find a series representation in the form of Eq. (4.46),

although of course we can produce the expansion coefficients to “arbitrarily many”

orders in as. It should be noted here that the relation between γ
(n)
qg and γ

(n)
gq holds only

at the leading-logarithmic level.
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We present explicit predictions for the NNLL behaviour of the singlet anomalous

dimensions at fourth order, since some terms feature in the calculations of Chapter 5.

These terms of interest are highlighted . It should be noted here that linear combina-

tions of these terms were computed in [66, 67], see Section 5.6.1 for more details. We

have that

γ(3)
qq (N) = γ(3),+

ns (N) + nf CF

{
N−7

(
640C 2

A − 640CF CA + 480C 2
F − 320nf CF

)
+N−6

(
2176

3 C 2
A − 3424

3 CF CA +
1024

3 C 2
F + 256nf CF

)
+N−5

(
288nf CA − 15232

9 nf CF +
32
9 n 2

f +
8
3 [519− 524 ζ2]C 2

F

− 8
9 [541− 1332 ζ2]CF CA +

8
9 [1709− 192 ζ2]C 2

A

)}
+O(N−4) , (4.47)

γ(3)
qg (N) = nf

{
N−7

(
640C 3

A − 320CF C
2
A + 160C 2

F CA − 80C 3
F − 640nf CF CA

+ 320nf C
2
F

)
+N−6

(
416
3 C 3

A − 192CF C
2
A +

632
3 C 2

F CA +
32
3 C 3

F

+
320
3 nf C

2
A +

1408
3 nf CF CA − 432nf C

2
F

)
+N−5

(
32
9 n 2

f CA

−2224
27 n 2

f CF +
32
27 [148 + 81 ζ2]nf C

2
A − 2

3 [557− 1448 ζ2]C 3
F

+
40
27 [1711 + 108 ζ2]C 3

A − 8
9 [2951 + 300 ζ2]nf CF CA

− 8
27 [6427− 3960 ζ2]CF C

2
A +

2
27 [6707− 19368 ζ2]C 2

F CA

+
4
27 [13583− 3600 ζ2]nf C

2
F

)}
+O(N−4) , (4.48)

γ(3)
gq (N) = CF

{
N−7

(
− 1280C 3

A + 640CF C
2
A − 320C 2

F CA + 160C 3
F

+ 1280nf CF CA − 640nf C
2
F

)
+N−6

(
− 4160

3 C 3
A + 1280CF C

2
A

− 2800
3 C 2

F CA + 320C 3
F − 640

3 nf C
2
A + 640nf CF CA − 800

3 nf C
2
F

)
+N−5

(
− 64

9 n 2
f CA +

12256
27 n 2

f CF +
4
3 [25− 1248 ζ2]C 3

F

− 64
27 [542 + 81 ζ2]nf C

2
A +

16
3 [817 + 164 ζ2]nf CF CA

− 16
27 [1969 + 936 ζ2]CF C

2
A − 16

27 [3871 + 2340 ζ2]C 3
A

− 8
27 [7747− 2448 ζ2]nf C

2
F +

4
27 [8633 + 12672 ζ2]C 2

F CA

)}
+O(N−4) , (4.49)

γ(3)
gg (N) = N−7

(
− 1280C 4

A + 1920nf CF C
2
A − 640nf C

2
F CA + 160nf C

3
F

− 320n 2
f C

2
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3 nf CF C
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f C
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(
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3 n 2
f C
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9 n 2

f CF CA − 19904
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9 n 3

f CF
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A − 32 [137 + 64 ζ2]C 4
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F
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2
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8
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2
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(4.50)
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Similarly, we can describe the leading-logarithmic contributions to the coefficient

functions with a series but not with a closed-form expression. Defining

C2,q = C2,ns + C2,ps,

CL,q = CL,ns + CL,ps,

Cφ,g = C+
φ,g,ns + Cφ,g,ps, (4.51)

we have for the “non-singlet-like” part of Cφ,g

Cφ,g,ns(N) = F (ξ′), (4.52)

and for the remaining singlet contributions

c
(n)
2,ps(N) = Dn
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(4.53)

where ρ′ = n− k − 2i− 2, δ′ = n− k − 2i− 1 and the symbol Dn is defined as

Dn =
1

n!

n−1∏
k=0

(1 + 4k) . (4.54)

2nDn are the expansion coefficients of the function F (ξ) defined in Eq. (4.29), again

hinting at some deeper structure which is worth further investigation in the future.

The explicit predictions for the NNLL behaviour of the a4
s contributions to the

coefficient functions C2,q, C2,g, CL,q and CL,g are as follows,

c
(4)
2,q(N) = c

(4)
2,ns(N) + nf CF
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N−8
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− 3120C 2
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c
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Explicit expressions for the a5
s small-x contributions are given in Appendix A.9 for

future reference.

4.5 Conclusions

In this chapter, we have computed x0 double logarithmic small-x contributions to

coefficient functions and anomalous dimensions to all orders in the strong coupling

constant as. By inspecting the D-dimensional structure of the phase space of existing

fixed-order perturbative calculations, we were able to make an assumption for the all-

order structure of un-mass-factorized parton-level structure functions which allowed

their computation, in the small-x limit, not just to all orders in as but also to all orders
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in the dimensional regularization parameter ε. Such knowledge allows for the mass

factorization of the structure function to arbitrary order in as, yielding the all-order

expressions for the coefficient functions and anomalous dimensions.

In the non-singlet sector we were able to compute the leading three logarithmic

contributions to the coefficient functions C2,ns, CL,ns and C−3,ns and to the anomalous

dimension γ
+
ns. We constructed closed all-as-order expressions for these functions, first

by inspecting the coefficients with the help of online resources and then by making

suitable guesses of the functional bases required to describe the coefficients.

In the singlet sector we were not able to determine closed-form expressions for the

logarithmic corrections to either the coefficient functions or the anomalous dimensions.

The LL terms are described by means of series, the overall coefficients of which are

related to the expansion coefficients of the functions used for the non-singlet expressions.

There are tantalizing hints that a “nice” closed-form expression should be achievable

but at the time of writing it has not been found. This will be the topic of future

research.

We showed by plotting the non-singlet results that knowledge of just the three

leading contributions is insufficient to describe the functions at any reasonable values

of x; the leading three all-order corrections do not converge. However this knowledge

is nonetheless useful in a more mathematical context. The a4
s terms of the expressions

for the anomalous dimensions computed here provide a cross-check of the results of

Chapter 5, increasing our confidence that they are correct.
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Chapter 5

Large-nf Contributions to the
Four-Loop QCD Splitting
Functions

The first approximations to the third-order contributions to the splitting functions

and DIS coefficient functions were determined from a small number of Mellin moments

computed [24,68,69,70] with the MINCER package [44,45]. These approximations became

available some 5 years before a full analytic result was computed, see for e.g. [18, 37,

71,72].

With the recent development of the FORCER package [73, 74] for FORM, we are now

in a similar position at the four-loop level. FORCER is able to compute Mellin moments

of the DIS parton-level structure functions to fourth order in as. Like MINCER it imple-

ments a parametric reduction of the integrals, yielding results in terms of known master

integrals. The usual mass factorization procedure, as described in Chapter 2, yields

Mellin moments of the splitting functions (or, anomalous dimensions) and coefficient

functions to this order. As might be expected, the calculations of these moments is

much more computationally demanding than their third-order counterparts.

At the time of writing, the Mellin moments (N = 1, 2, . . . , 6) have been computed

in full [1] for the non-singlet structure functions and moments (N = 2, 4) for the

singlet structure functions. These moments alone are not sufficient to produce x-space

approximations, but more will be available in the near future. Some Mellin moments

(N = 2, 3, 4) of the non-singlet anomalous dimension have also been computed by other

methods (see [75,76,77]) as well as the first moment of c
(4),+
3,ns [78]. The results of FORCER

are in agreement.

The topic of this chapter is not the x-space splitting function approximations

or even the computation of the Mellin moments of the structure functions (i.e. the

internal workings of FORCER), but rather the reconstruction of analytic all-N formulae

for particular parts of the fourth-order contributions. Further discussions of the results

of this chapter will be published in [5].
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To third order, the anomalous dimensions can be written in terms of harmonic

sums (defined in Appendix A.1) and powers of simple “denominator functions” in N ,

for which we define the notation

Di =
1

N + i
. (5.1)

The harmonic weight of a harmonic sum is defined to be the sum of the absolute values

of its indices. We define the overall weight of a term to be the sum of its harmonic

weight and the power of its denominator function, if present.

To third order, the anomalous dimensions γ
(n)
ij contain terms of maximum overall

weight 2n+ 1. One would expect, then, that the fourth-order contributions γ
(3)
ij can be

written in terms of overall weight 7 combinations. The subsets of diagrams with colour

factors proportional to powers of nf contain only terms with harmonic sums of reduced

harmonic weight and so have a much smaller potential functional basis than their n 0
f

counterparts. These “large-nf” diagram subsets are also (by far) the easiest for FORCER

to compute; they consist of simpler topologies and many 2 and 3 loop diagrams with

gluon propagator loop insertions.

Equipped with some number of Mellin moments for the large-nf terms of the

fourth-order anomalous dimensions and “educated guesses” of their functional bases,

we aim to compute the analytic all-N expressions for these Mellin moments. This

technique was used in the evaluation of the third-order corrections to the polarized

(helicity dependent) splitting functions [79]. We will see that some of the expressions

below are rather more difficult to solve, but the method is very similar. Another

work which has used related techniques to reconstruct analytic formulae from Mellin

moments is [80].

For the non-singlet anomalous dimensions γ
(3),±
ns , the n 3

f contribution is already

known [81]. Here we aim to compute the n 2
f contributions, for which we have 57

contributing (meta-)diagrams. In the singlet sector we aim to compute the n 3
f con-

tributions, which are currently unknown except for the linear combinations of [66, 67].

For the singlet structure functions F2,q, F2,g, Fφ,q and Fφ,g we have just 6, 36, 6 and 70

contributing (meta-)diagrams to fourth-order in as. Additionally for F2,g and Fφ,g we

must compute 8 and 6 (meta-)diagrams with external ghosts, due to the un-physical

gluon helicity projection used by FORCER. One may use a physical projection, removing

the need for these external ghosts, but this is much more demanding to compute (as

demonstrated at three loops in [24]).

These large-nf diagram sets being small and “easy” to compute makes such ana-

lytic reconstructions viable. We will see that nonetheless, these “easy” diagrams become

very computationally demanding for high values of N . The remaining diagrams (with

fewer nf powers than what we consider here) are sufficiently difficult to compute that

finding analytic expressions with the methods of this chapter is impossible, even with

a large supercomputer.
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The reconstruction procedure, then, is as follows,

• Compute Mellin moments of the large-nf contributions to the structure functions

using FORCER. Renormalize and mass factorize the resulting expressions, yielding

Mellin moments of the large-nf terms of the anomalous dimensions.

• Determine bases of functions that should describe them in Mellin space, taking

inspiration from the known lower order quantities.

• The moments and these bases form systems of equations, with an unknown coef-

ficient for each basis function. Solve this system (using that they are Diophantine

systems, see the following discussion), yielding analytical Mellin space expressions

for the anomalous dimensions.

5.1 Defining a Basis

Here we introduce some notation to facilitate the description of the functional structure

of lower-order anomalous dimensions and the bases used to determine analytic expres-

sions for the moments of fourth-order anomalous dimensions. We define the following

sets of harmonic sums,

SW0 = {1},
SW1 = {S1},
SW2 = {S2,S−2,S1,1},
SW3 = {S3,S−3,S2,1, S1,2, S−2,1,S1,−2, S1,1,1}, (5.2)

where we skip harmonic sums containing indices −1; these are not present in any

coefficient function or anomalous dimension to third order. The generalization to a set

SWN , i.e. “harmonic sums of harmonic weight N”, should be clear. In addition we

define sets which skip not just sums containing indices −1, but sums containing any

negative index. We denote these

SW2+ = {S2, S1,1},
SW3+ = {S3, S2,1, S1,2, S1,1,1}. (5.3)

Again the generalization to SWN+, “all-positive index harmonic sums of harmonic

weight N”, should be clear.

We will describe the functional structure of the third-order anomalous dimensions,

as well as define bases for the reconstruction of new fourth-order quantities, with tables

in the format of Table 5.1.
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Harmonic Sums Denominators

SW2 1, D1,...,a
i

SW1 1, D1,...,b
i

SW0 1, D1,...,c
i

Table 5.1: The format in which we will define bases of functions for the reconstruction of
analytic expressions for the Mellin moments of anomalous dimensions.

For each entry of the specified harmonic sum set, we include products with the objects

in the Denominators column. An entry of 1 is to be interpreted as one might expect –

we include the bare sums. A D1,...,a
i is to mean that we include products of the sums

with each of D1
i , D

2
i , . . . , D

a−1
i , Da

i . Each element of a basis has its own coefficient, to

be determined by the reconstruction procedure.

We must pull some factors out of these coefficients since the algorithm used to fix

them requires them to be integers (see the discussion in Section 5.2). We will assign

these factors based on the overall weight of the term, and refer to them as coefficient

factors. They will be specified in a second table, in the format of Table 5.2. The

required values of these factors will be discussed in Section 5.3.1.

Overall Weight 3 2 1

Coeff. Factors d e f

Table 5.2: The format in which we will define coefficient factors for bases.

5.2 Solving Diophantine Equation Systems

In Section 5.1 we briefly alluded to the requirement that the unknown coefficients of

our basis should be integer coefficients. This is an important point; in general we

will not be able to compute a sufficient number of Mellin moments to determine the

coefficients in full generality (solution by, say, Gaussian elimination which would allow

the coefficients to take rational values). As we will see in Section 5.3.1, the denominators

of the coefficients of the third-order anomalous dimensions appear in a structured and

predictable way. Arranging our basis to make the unknown coefficients integers proves

to be quite powerful.

Rather than a general system of linear equations for the coefficients (one equation

per computed Mellin moment) we thus have a Diophantine system of linear equations;

a system of equations with integer solutions. One can find solutions to such a system

using fewer equations than the number of unknown coefficients to be determined. Of

course, these solutions will not necessarily be be unique. We discuss later how we can

convince ourselves that a particular solution of a system is the “correct” solution.
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A method based on the Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm

[82] is used here. Given a basis describing some lattice, the algorithm finds a short (in

the sense that the vectors have a small norm), nearly orthogonal, basis for the same

lattice in polynomial time.

The number-theory calculator program CALC [83] includes a routine called AXB [84]

(summarized in [85]), intended to provide short integer solutions to matrix equations

A ~X = ~B using LLL lattice reduction. We provide it with a matrix of our basis elements

evaluated at the appropriate N values and a vector of the Mellin moments we wish to

reproduce with that basis. Each row is suitably normalized such that the entries are

integers. This is the solver used throughout this chapter. If there are few enough

coefficients to determine, it perform a Gaussian elimination. We now show an explicit

example of the reconstruction of a low-order quantity using this method.

5.2.1 An Example Reconstruction

As a simple, yet demonstrative, example of the method outlined in Section 5.2, consider

the determination of the analytic form of the CAnf part of γ
(1)
qg from its Mellin moments.

It is given by

γ(1)
qg

∣∣∣∣
CAnf

= +

[
8(2D2 − 2D1 +D0)S−2 + 8(2D2 − 2D1 +D0)S1,1 + 16(D2

2 −D2
1)S1

+ 8(4D3
2 + 2D3

1 +D3
0)

]
OW3

+

[
4

3
(44D2

2 + 12D2
1 + 3D2

0)

]
OW2

+

[
− 4

9
(20D−1 − 146D2 + 153D1 − 18D0)

]
OW1

(5.4)

where the square brackets collect together terms of the same overall weight. Note that

the harmonic weight 2 sums come with the same combination of denominator functions,

D0 − 2D1 + 2D2. This is proportional to the the leading order contribution γ
(0)
qg . That

this combination appears with the highest weight harmonic sums will be used later to

assist in the reconstructions.

Suppose we choose the basis (in the notation of Section 5.1) given in Table 5.3.

With the coefficient factors given, the coefficients that we must determine are all inte-

gers and we can use AXB to attempt a solution.
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Harmonic Sums Denominators

SW2 D0 , D1 , D2

SW1 D1,2
0 , D1,2

1 , D1,2
2

SW0 D1,2,3
0 , D1,2,3

1 , D1,2,3
2 , D−1

Overall Weight 3 2 1

Coeff. Factors 4 2
3

1
9

Table 5.3: A basis for the reconstruction of the CAnf terms of γ
(1)
qg .

This basis has 25 unknown integer coefficients. We attempt to determine them from

some number of Mellin moments of the function. The first 11 are given below,

γ(1)
qg

∣∣∣∣
CAnf

(N = 2) =− 35

33

γ(1)
qg

∣∣∣∣
CAnf

(N = 4) =
16387

23 32 53

γ(1)
qg

∣∣∣∣
CAnf

(N = 6) =
867311

23 33 51 73

γ(1)
qg

∣∣∣∣
CAnf

(N = 8) =
100911011

26 36 53 71

γ(1)
qg

∣∣∣∣
CAnf

(N = 10) =
373810079

23 34 52 71 113

γ(1)
qg

∣∣∣∣
CAnf

(N = 12) =
653436358741

24 34 52 73 111 133

γ(1)
qg

∣∣∣∣
CAnf

(N = 14) =
386324173

26 33 52 73 111

γ(1)
qg

∣∣∣∣
CAnf

(N = 16) =
56849473253143

29 36 52 72 111 173

γ(1)
qg

∣∣∣∣
CAnf

(N = 18) =
106266207488029

24 36 51 72 111 131 171 193

γ(1)
qg

∣∣∣∣
CAnf

(N = 20) =
1006804883130941

23 35 53 73 113 131 171 191

γ(1)
qg

∣∣∣∣
CAnf

(N = 22) =
108581251285561567

26 35 72 113 131 171 191 233
. (5.5)

The denominators have been prime factorized, since we will make some observations

and arguments based on the prime structure of the denominators in later sections.

We thus have a system of equations like Eq. (5.6) (for (N = 2)), where Ci denotes

the coefficient of basis element i. We have multiplied by appropriate factors to remove
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all denominators from the equation,

−560 = 720CS2D1 + 540CS2D2 + 1080CS2D0 − 432CS−2D1 − 324CS−2D2 − 648CS−2D0

+ 1008CS1,1D1 + 756CS1,1D2 + 1512CS1,1D0 + 144CS1D1 + 288CS1D
2
1

+ 108CS1D2 + 162CS1D
2
2

+ 216CS1D0 + 648CS1D
2
0

+ 48CD−1 + 16CD1

+ 32CD2
1

+ 64CD3
1

+ 12CD2 + 18CD2
2

+ 27CD3
2

+ 24CD0 + 72CD2
0

+ 216CD3
0
.

(5.6)

AXB correctly determines the 25 basis coefficients here using Mellin moments N = 2

to N = 18, i.e. by solving just 9 equations. This shows the power of the method; a

solution by Gaussian elimination would require Mellin moments to N = 50. While it

is possible to compute moments this high for anomalous dimensions at second order,

it will not be possible to compute enough moments at fourth order for a solution by

Gaussian elimination. The vector of coefficients returned by AXB is

(2, 6, 72, 8, 88, 584, 4, 24,−612,−80︸ ︷︷ ︸
SW0

, 0, 0, 4, 0,−4, 0︸ ︷︷ ︸
SW1

, 2, 4,−4, 2, 4,−4, 0, 0, 0︸ ︷︷ ︸
SW2

). (5.7)

Suppose we make an incorrect choice of basis to determine this function, for example,

we neglect to include the D−1 with SW0. Again with Mellin moments N = 2 to

N = 18, AXB returns the coefficients

(− 43, 423, 123, 1492,−102, 1332, 4, 24,−612,−15, 437, 102,−2399, 80, 1700,

− 146, 180,−26,−1065, 670, 579,−919, 490, 605). (5.8)

Using more Mellin moments the coefficients start to look even worse, as the solver forces

a solution using the inadequate basis. With N = 2 to N = 20 we find

(− 178, 4391,−25712, 412,−10348,−6476, 4, 24,−612,−572, 25401,−2178,−5642,

− 3526,−20152,−3302,−3161, 6474,−4011, 5092, 3775,−3283,−4617, 11029). (5.9)

We claim that it should be “obvious” that such a solution is incorrect. The correct

coefficients should be small (especially since we pull some factors of 2 into the coefficient

factors). This should be particularly be the case for the higher weight harmonic sum

sets (the right-hand end of the vector in Eq. (5.7)) where also many coefficients should

be zero; we typically do not need the full set of higher weight sums.

With the larger systems that we will consider later, bad solutions might be less

clear. In particular, solutions where the basis is correct but the number of Mellin mo-

ments used is insufficient to determine the correct solution can be harder to distinguish.

For this reason we must have a way to satisfactorily verify a potential solution. We will

always require a potential solution to correctly reproduce one (or ideally, more than

one) Mellin moment beyond those used for its determination.
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5.3 Bases for Large-nf Singlet Anomalous Dimensions

In this section, we choose bases with which we can determine the analytic all-N forms

of the large-nf (n 3
f ) contributions to the fourth-order singlet anomalous dimensions.

We begin by making a careful investigation of the structure of the large-nf (n 2
f ) con-

tributions to the third-order anomalous dimensions, which will motivate our choices of

elements for the fourth-order bases for each entry of the anomalous dimension matrix.

We will then discuss the bases used in detail, as well as any additional assumptions

made, for each reconstruction. We give in each case the number of Mellin moments

required for the successful solution of the Diophantine equation system as well as how

many moments were used as verification of the result. In Section 5.6 we will discuss

where the results determined here overlap with other calculations in the literature and

show that they agree.

5.3.1 Third Order Structures

We now turn to our investigation of the structures of the large-nf contributions to the

third-order singlet anomalous dimensions, γ
(2)
qq,ps, γ

(2)
qg , γ

(2)
gq and γ

(2)
gg . These are terms

with the colour factors CFn
2
f and CAn

2
f . We introduce the following symbols,

η = D0 −D1, (5.10)

η′ = −D2 +D−1, (5.11)

ρ = D0 − 2D1 + 2D2, (5.12)

which are combinations of denominator function which commonly appear with the

highest weight harmonic sums in some of the anomalous dimensions. They are related to

the leading order anomalous dimensions γ
(0)
qq , γ

(0)
gg and γ

(0)
qg . The third-order functional

structures are presented below, in Tables 5.4 to 5.9, and some discussion follows the

table for each quantity.

Harmonic Sums Denominators

SW2+ D1,2
0 , D1,2

1 , D2 , D−1

SW1 D1,2,3
0 , D1,2,3

1 , D1,2
2 , D−1

SW0 D1,2,3,4
0 , D1,2,3,4

1 , D1,2,3
2 , D−1

Overall Weight 4 3 2 1

Coeff. Factors 16
3

8
9

8
27

8
27

Table 5.4: The structure of the CFn
2
f terms of γ

(2)
qq,ps.

γ
(2)
qq,ps contains overall weight 4 objects, but with positive-index harmonic sums of no

more than harmonic weight 2. D−1 never appears to more than the first power. The

maximum power of D2 is reduced by 1, compared to that of D0 and D1.
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Harmonic Sums Denominators

SW3+ ρ

SW2+ D1,2
0 , D1 , D2

SW1 D1,2
0 , D1,2

1 , D2

SW0 D1,2,3,4,5
0 , D1,2,3,4,5

1 , D1,2,3,4
2 , D−1

Overall Weight 5 4 3 2 1

Coeff. Factors 32 8
3

2
9

2
27

1
2·81

Table 5.5: The structure of the CFn
2
f terms of γ

(2)
qg .

Harmonic Sums Denominators

SW3 ρ

SW2 D0 , D1,2
1 , D1,2

2

SW1 D0 , D1,2,3
1 , D1,2,3

2

SW0 D1,2,3,4
0 , D1,2,3,4

1 , D1,2,3,4
2 , D−1

Overall Weight 4 3 2 1

Coeff. Factors 8
3

8
9

8
27

2
81

Table 5.6: The structure of the CAn
2
f terms of γ

(2)
qg .

γ
(2)
qg has overall weight 4 elements, except for some pure-denominator-function elements

for the CFn
2
f terms which have an overall weight of 5 (just D5

0 and D5
1). D−1 appears

only without harmonic sums and only to the first power. The highest weight harmonic

sums appear only with the denominator function combination ρ, defined in Eq. (5.12).

Unlike the CAn
2
f terms, the CFn

2
f terms appear only with positive-index harmonic

sums. These structures have the largest number of elements of all of the third-order

non-singlet anomalous dimensions, so we anticipate that the CFn
3
f and CAn

3
f terms of

γ
(3)
qg will be the most difficult to reconstruct at fourth order.

Harmonic Sums Denominators

SW2+ D0, D1 , D−1

SW1 D0, D1,2
1 , D−1

SW0 D0, D1,2,3
1 , D−1

Overall Weight 3 2 1

Coeff. Factors 8
3

64
9

64
9

Table 5.7: The structure of the CFn
2
f terms of γ

(2)
gq .

γ
(2)
gq has elements of overall weight 3, with positive-index harmonic sums to harmonic

weight 2. D0 and D−1 appear to first power only, with all harmonic sum weights.
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Harmonic Sums Denominators

SW2+ η1,2, η′

SW1 D1,2,3
0 , D1,2,3

1 , D2, D−1

SW0 1, D1,2,3,4
0 , D1,2,3,4

1 , D2, D−1

Overall Weight 4 3 2 1 0

Coeff. Factors 16
3

8
9

8
27

8
81

1
9

Table 5.8: The structure of the CFn
2
f terms of γ

(2)
gg .

Harmonic Sums Denominators

SW1 1, D1,2
0 , D1,2

1 , D2, D−1

SW0 1, D1,2,3
0 , D1,2,3

1 , D2, D−1

Overall Weight 3 2 1 0

Coeff. Factors 16
9

2
27

2
81

1
2·9

Table 5.9: The structure of the CAn
2
f terms of γ

(2)
gg .

Unlike the above, γ
(2)
gg contains harmonic sums which are not multiplied by denominator

functions. The CFn
2
f and CAn

2
f contributions have terms of overall weight 4 and 3,

respectively. D2 and D−1 appear to no more than the first power.

We now make some general observations about the structure of these third-order

singlet anomalous dimensions. We will assume that these observations will apply also

at fourth order.

• Coefficient Factors: We can take factors of two out of most of the coefficients,

particularly at high overall weight. It depends which function we are considering,

but in general it seems safe to take out an additional factor of two for each increase

in overall weight, starting from some minimal factor (which is 2−1, in some cases).

Taking these factors out of the coefficients makes them smaller which should help

AXB, but if too many powers of two are taken out of the coefficients they will no

longer be integers.

• Coefficient Factors: We must take factors of a third out of almost all of the

coefficients. Again, it depends which function we are considering, but we must

take an additional factor of a third per reduction in overall weight, starting from

some minimal factor at maximal overall weight. Occasionally moving from overall

weight 2 to 1, or 1 to 0, does not incur and extra factor of a third. If too few

factors of a third are taken out of the coefficients, they will not be integers.

• Denominator Functions: For some anomalous dimensions, the highest weight

sums appear only with particular combinations of denominator functions (this is

also true below third order). These are the η, η′ and ρ defined in Eqs. (5.10)
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to (5.12). Including just these combinations with the high-weight sums greatly

reduces the size of a basis. The denominator function D−1 never appears to more

than the first power. No denominator functions other than D0, D1, D2, D−1 ever

appear (this is the case also for the other colour factors).

• Harmonic Sums: For some functions, no negative-index harmonic sums appear.

Sums with an index of −1 never appear (not even with the other colour factors,

or at lower orders, or in any of the coefficient functions). Hence the definitions

of the sets SWN in Eq. (5.2) do not contain sums with an index of −1; we will

assume these sums do not appear at fourth order either.

We now discuss the bases for reconstruction of fourth-order singlet anomalous

dimensions. We begin with the lower row of the anomalous dimension matrix, γ
(3)
gq and

γ
(3)
gg , as it appears that these will require a lower weight basis and thus be easier to

solve. We must increase the maximum allowed overall weight by 1 for the fourth-order

anomalous dimensions; an extra 2 for the increase in order, but a reduction of 1 for the

increase in power of nf .

For all of the singlet anomalous dimensions considered above there are terms pro-

portional to ζ3. The overall weight of these terms is reduced by 3 or equivalently, ζ

symbols contribute to the harmonic weight of the term (after all, the zeta numbers are

just single-index harmonic sums at infinity, ζi = Si(∞) for i > 1). We can use the

same bases for the reconstruction of these ζ3 terms, but with the highest three weights

of basis elements discarded.

5.3.2 A Basis for γ
(3)
gq

We assume a basis with a similar structure to Table 5.7, with (positive index) harmonic

sums of weight 3 and a maximum overall weight of 4. We allow denominator functions

D0 and D1 up to to the maximum overall weight, and D−1 to a single power only. As

in γ
(2)
gq , we assume D2 does not appear. We make a rather relaxed choice of coefficient

factors; a generous factor of (1/3)6 is taken from the overall weight 1 coefficients.

Harmonic Sums Denominators

SW3+ D0 , D1 , D−1

SW2+ D1,2
0 , D1,2

1 , D−1

SW1 D1,2,3
0 , D1,2,3

1 , D−1

SW0 D1,2,3,4
0 , D1,2,3,4

1 , D−1

Overall Weight 4 3 2 1

Coeff. Factors 8
27

4
81

2
243

1
729

Table 5.10: The basis for the reconstruction of the CFn
3
f terms of γ

(3)
gq .
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This is a basis with 38 unknown coefficients. Mellin moments N = 2 to N = 18

reconstruct the all-N result, with moments N = 20 to N = 28 serving as verification

of the result. For the ζ3 terms we reduce the basis overall weight by 3, leaving just

D0, D1 and D−1. The coefficients can be determined by Gaussian elimination using

moments N = 2 to N = 6, leaving N = 8 to N = 28 as verification of the solution.

The solution is Eq. (5.31). It proves not to require powers of D0 above the first

in combination with harmonic sums, as observed in γ
(2)
gq .

5.3.3 A Basis for γ
(3)
gg

γ
(3)
gg has contributions from both CFn

3
f and CAn

3
f terms. The third-order structures

(Tables 5.8 and 5.9) are rather similar in their lower overall weight contributions. We

choose a basis suitable for both, but remove the overall weight 5 terms when solving for

the CAn
3
f moments. For CFn

3
f we assume the same denominator function structure at

harmonic sum weight 3 as the γ
(2)
gg had at sum weight 2; just the combinations η, η2 and

η′. We assume that D2 and D−1 appear only to the first power, and that sub-maximal

weight harmonic sums may appear alone.

Further evidence for the reduced overall weight of the CAn
3
f basis compared to

that of CFn
3
f can be seen by analysing the prime structure of the denominators of the

Mellin moments. Consider the (N = 18) Mellin moment of both functions,

γ(3)
gg

∣∣∣∣
CFn

3
f

(N = 18) =− 1204343230800942414809786168123

25 312 54 73 113 133 174 195
, (5.13)

γ(3)
gg

∣∣∣∣
CAn

3
f

(N = 18) =− 2522300408158699916579371

27 311 53 72 112 132 173 194
. (5.14)

The reduced power of 1/19 in Eq. (5.14) contribution suggests that D1 = 1/(18 + 1)

does not appear to the fifth power, unlike in Eq. (5.13). This could of course be an

“accidental” cancellation with the numerator, but we observe the same pattern in many

other Mellin moments (any for which (N + 1) is prime). This is highly suggestive that

this is a structural feature and not an “accident”.

Harmonic Sums Denominators

SW3+ η1,2, η′

SW2+ 1, D1,2,3
0 , D1,2,3

1 , D2, D−1

SW1 1, D1,2,3,4
0 , D1,2,3,4

1 , D2, D−1

SW0 1, D1,2,3,4,5
0 , D1,2,3,4,5

1 , D2, D−1

Overall Weight 5 4 3 2 1 0

Coeff. Factors 16
9

8
27

4
81

2
243

1
729

1
2·729

Table 5.11: The basis for the reconstruction of the CFn
3
f terms of γ

(3)
gg . For the CAn

3
f terms

we use the same basis, but remove elements of overall weight 5.
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This is a basis with 54 unknown coefficients. The CFn
3
f solution is found using moments

N = 2 to N = 26, with N = 28 to N = 32 verifying the solution. The CFn
3
f ζ3 terms

are determined with moments N = 2 to N = 16, or by Gaussian elimination using

moments N = 2 to N = 28, after reducing the maximal overall weight of the basis by

3.

Removing the overall weight 5 terms leaves a basis of 34 unknown coefficients. The

CAn
3
f solution is found using moments N = 2 to N = 20, with N = 22 to N = 28

verifying the solution, and the CAn
3
f ζ3 terms are determined with moments N = 2 to

N = 14, or by Gaussian elimination with moments N = 2 to N = 28.

The result is given in Eq. (5.32).

5.3.4 A Basis for γ
(3)
qq,ps

For γ
(3)
qq,ps we extend the structure of γ

(2)
qq,ps by one in overall weight; we allow positive-

index harmonic sums to harmonic weight 3, in combination with denominator functions

to overall weight 5. We maintain the assumption that D−1 appears only to the first

power, and that D2 appears with its maximum power reduced by 1 compared to that

of D0 or D1.

Harmonic Sums Denominators

SW3+ D1,2
0 , D1,2

1 , D2 , D−1

SW2+ D1,2,3
0 , D1,2,3

1 , D1,2
2 , D−1

SW1 D1,2,3,4
0 , D1,2,3,4

1 , D1,2,3
2 , D−1

SW0 D1,2,3,4,5
0 , D1,2,3,4,5

1 , D1,2,3,4
2 , D−1

Overall Weight 5 4 3 2 1

Coeff. Factors 8
9

4
27

2
81

1
243

1
2·243

Table 5.12: The basis for the reconstruction of the CFn
3
f terms of γ

(3)
qq,ps.

This basis of 69 unknown coefficients can be determined using moments N = 2 to

N = 30, with N = 32 to N = 44 verifying the solution. The CFn
3
f ζ3 terms are solved

by moments N = 2 to N = 14, or by Gaussian elimination using moments N = 2 to

N = 22. The result is Eq. (5.29).

5.3.5 A Basis for γ
(3)
qg

The leading-nf terms of γ
(2)
qg have higher weight harmonic sums than those of the other

singlet anomalous dimensions, so we anticipate the same for γ
(3)
qg . This will mean it has

by far the largest basis and thus require many more Mellin moments to solve.
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Based on the structure of the CFn
2
f terms of γ

(2)
qg (Table 5.5) we might anticipate

positive index harmonic sum and denominator function combinations to overall weight

5 (with harmonic sums to harmonic weight 4), and denominator functions without sums

to overall weight 6. We make some observations based on the prime structure of a few

Mellin moments of the CFn
3
f terms of γ

(3)
qg which force us to extend our assumptions a

little further.

γ(3)
qg

∣∣∣∣
CFn

3
f

(N = 12) = −16722425084730244813603

28 312 5 74 114 136
, (5.15)

γ(3)
qg

∣∣∣∣
CFn

3
f

(N = 26) = +
11320026610047050844587941595233751575201420001

29 320 58 75 113 136 174 194 234
,

(5.16)

γ(3)
qg

∣∣∣∣
CFn

3
f

(N = 54) = +
13999172809221499390869930459984204201885706755632 · · ·

216 320 59 79 116 134 174 194 234 294 314 374 414 434 474 534
.

(5.17)

The · · · signifies that some numerator digits have been truncated. They are unimpor-

tant for the present discussion. We observe that:

• The 136 of (N = 12) (and also any other N value for which (N + 1) is prime)

requires that we include D6
1 in the basis.

• Assuming the above, the 320 of (N = 26) suggests that we require a coefficient

factor of 1/9 for basis elements of overall weight 6. It can be formed by D6
1/9 =

1/(276)/9 = 1/(318)/9.

• If one pushes the moment calculation to a high enough N value, one finds a 1/320

at (N = 54). This requires overall weight 6 basis elements which contain powers

of D0 and a coefficient factor of 1/9. It can be formed by D6
0/9 = 1/(2 · 27)6/9 =

1/(26 · 318)/9, but we also include weight 6 elements with powers of D0 with all

sub-maximal weight harmonic sum sets.

Although the CFn
2
f terms of γ

(2)
qg contain D−1 only without harmonic sums, all of

the other singlet anomalous dimensions at third order include it in combination with

them. We include it with the sub-maximal weight harmonic sums here. We choose for

a basis, then,
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Harmonic Sums Denominators

SW4+ ρ

SW3+ D1,2,3
0 , D1,2,3

1 , D1,2
2 , D−1

SW2+ D1,2,3,4
0 , D1,2,3,4

1 , D1,2,3
2 , D−1

SW1 D1,2,3,4,5
0 , D1,2,3,4,5

1 , D1,2,3,4
2 , D−1

SW0 D1,2,3,4,5,6
0 , D1,2,3,4,5,6

1 , D1,2,3,4,5
2 , D−1

Overall Weight 6 5 4 3 2 1

Coeff. Factors 16
9

8
27

4
81

2
243

1
729

1
2·2187

Table 5.13: The basis for the reconstruction of the CFn
3
f terms of γ

(3)
qg .

This basis has 101 unknown coefficients. The Mellin moments N = 2 to N = 40 yield a

solution, with N = 42 to N = 54 providing verification. The CFn
3
f ζ3 terms are solved

by moments N = 2 to N = 22, or by N = 2 to N = 50 using Gaussian elimination,

after reducing the maximal overall weight by 3.

The CAn
2
f terms in γ

(2)
qg include harmonic sums with negative indices, but have a

lower maximum overall weight than the CFn
3
f terms. Assuming the same here increases

the size of the CAn
3
f basis relative to that of CFn

3
f . As above, we begin by analysing

the denominator prime structure of the moments to confirm our suspicions.

γ(3)
qg

∣∣∣∣
CAn

3
f

(N = 8) =
886247558029

313 55 73
, (5.18)

γ(3)
qg

∣∣∣∣
CAn

3
f

(N = 12) =
894866035734231246739

23 310 54 75 113 135
, (5.19)

γ(3)
qg

∣∣∣∣
CAn

3
f

(N = 26) =
40994144768200972412968695803347793

27 318 56 75 113 135 172 192 232
, (5.20)

γ(3)
qg

∣∣∣∣
CAn

3
f

(N = 36) =
3123386103177626727641706638841518149311266992097833

213 315 55 74 114 134 174 195 232 292 31 375
,

(5.21)

γ(3)
qg

∣∣∣∣
CAn

3
f

(N = 40) =
1797755132271365059843818791211211654597884477736773 · · ·

213 313 57 74 114 134 174 194 232 292 312 372 415
,

(5.22)

γ(3)
qg

∣∣∣∣
CAn

3
f

(N = 42) =
2156203019702514918906754705545711116911842662408012 · · ·

211 313 55 75 115 134 174 194 232 292 312 37 413 435
.

(5.23)

• The 135 of (N = 12), along with other N values for which (N + 1) is prime,

require D5
1.

• The 313 of (N = 8) and 318 of (N = 26) suggest that, since we assume no more

than D5
1, we must have a coefficient factor of 1/27 on the overall weight 5 basis

elements. This is also what the CFn
3
f basis required at overall weight 5.
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The prime structures at N = 36, 40, 42 serve to demonstrate an (unexplained) curiosity,

observed also at lower orders. Primes P in the range N/2 < P < N − 1, appear with

lower (here, at least 2 lower) powers in the CA terms compared to the CF terms.

Compare these with Eq. (5.17) above, for which the high primes all appear to the 4th

power (since we have harmonic weight 4 sums). It is not that the individual CA terms

lack the ability to produce these primes, but rather that they all cancel among each

other when evaluated at a particular N and summed. A systematic way to explain this

behaviour would presumably yield some powerful constraints on the basis coefficients

we are trying to determine here.

For the CAn
3
f terms we choose a basis of the form

Harmonic Sums Denominators

SW4 ρ

SW3 D1,2
0 , D1,2

1 , D1,2
2 , D−1

SW2 D1,2,3
0 , D1,2,3

1 , D1,2,3
2 , D−1

SW1 D1,2,3,4
0 , D1,2,3,4

1 , D1,2,3,4
2 , D−1

SW0 D1,2,3,4,5
0 , D1,2,3,4,5

1 , D1,2,3,4,5
2 , D−1

Overall Weight 5 4 3 2 1

Coeff. Factors 8
27

4
81

2
243

1
729

1
2·2187

Table 5.14: The basis for the reconstruction of the CAn
3
f terms of γ

(3)
qg .

It has 125 unknowns. This is too large to yield a solution with the Mellin moments we

have been able to compute. We must therefore try some additional assumptions:

• Upon making a large-x expansion of the basis (after inverse Mellin transformation

to x space) we note the appearance of terms proportional to the irrational numbers

ln 2 and Li4(1/2)1. These do not appear in the large-x expansion of any anomalous

dimension computed to date, and we assume the same here. We can therefore

form some relations between the coefficients of some of the basis elements such

that these irrational terms cancel. We require that

2CS−3,1
− 2CS1,−3

+ 4CS2,−2
− 4CS−2,2

+ CS1,1,−2
− CS−2,1,1

= 0, (5.24)

removing one coefficient from the basis.

• We often observe a relationship between the coefficients of S1,2 and S2,1. In

the CAn
2
f terms of γ

(2)
qg we have that CS1,2

= −CS2,1
(in combination with any

denominator function), so we assume the same for the fourth-order basis. This

removes 7 coefficients. (Such a relationship, where CS1,2
= ±CS2,1

, is also visible

in other third- and fourth-order expressions).

1The constants ln 2 = S−1(∞) and Li4(1/2) = S−1,1,1,1(∞).
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These assumptions fix 8 coefficients in total, leaving a basis with 117 coefficients to

determine. The Mellin moments N = 2 to N = 44 yield a solution, with N = 46

providing verification. The CAn
3
f ζ3 terms are solved by moments N = 2 to N = 24

after reducing the maximal overall weight by 3.

The full result for the n 3
f terms of γ

(3)
qg is given by Eq. (5.30).

5.4 A Basis for the Large-nf Non-Singlet Anomalous Di-
mensions

In the non-singlet sector, the leading-nf contribution to γ
(3),±
ns is already known [81],

it is given by Eq. (5.28). By computing Mellin moments with FORCER we are able to

verify this result and also to extend this result to the next-to-leading-nf terms, i.e. terms

proportional to the colour factors C 2
F n

2
f and CFCAn

2
f . For γ

(3),±
ns the computation with

FORCER is sufficiently easy that such a next-to-leading-nf reconstruction is possible; this

was not the case for the singlet anomalous dimensions discussed above. Even so, the

reconstruction is only possible here if one considers some very particular combinations

of the colour factors. Rather than writing

γ(3),±
ns

∣∣∣
n 2
f

= C 2
F γ

(3),±
ns

∣∣∣
C 2

F n
2
f

+ CFCAγ
(3),±
ns

∣∣∣
CFCAn

2
f

, (5.25)

we can form alternative linear combinations of the colour factors,

γ(3),±
ns

∣∣∣
n 2
f

= 2C 2
FA+ CF (CA − 2CF )B±, (5.26)

= 2C 2
F

(
A−B±

)
+ CFCAB

±. (5.27)

In the large-Nc limit, the combination (CA − 2CF ) vanishes. The remaining terms,

given by 2C 2
FA, should be common to both the even-N γ

(3),+
ns and the odd-N γ

(3),−
ns ,

which we observe at lower orders. By computing even-N moments of γ
(3),+
ns and odd-N

moments of γ
(3),−
ns for each of the colour factors C 2

F n
2
f and CFCAn

2
f we can form the

combination of Eq. (5.26) and discard terms proportional to (CA − 2CF ) to obtain both

even-N and odd-N moments for 2C 2
FA. This provides a sufficient number of moments

to reconstruct A without the value of N becoming too high to compute.

To reconstruct B+ (B−) we can only use even-N (odd-N) moments. However, the

a4
s diagrams proportional to C 2

F n
2
f are 2-loop diagrams with 2-loop gluon propagator

insertions. These are comparatively easy for FORCER to compute. By computing the

moments for just the C 2
F n

2
f diagrams, we can compute even-N moments for (A−B+)

and odd-N moments for (A − B−) to sufficiently high N values to reconstruct these

linear combinations of A and B±. Knowing both linear combinations, along with A

alone, we can determine both B±.
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5.4.1 Third-Order Structures

We now consider the functional structure of the same colour factor combinations at

third order, the only difference being that we have an overall factor of nf rather than

n 2
f . For the third-order A part and C 2

F nf terms of γ
(2),±
ns we observe the following

structures:

Harmonic Sums Denominators

SW4+ 1

SW3+ 1, η

SW2+ 1, η1,2 , D2
1

SW1 1, η1,2,3 , D2
1

SW0 1, η1,2,3,4, D2,3
1

Overall Weight 4 3 2 1 0

Coeff. Factors 4
3

8
9

2
27

1
2·27

1
2

Table 5.15: The structure of the A part of γ
(2),±
ns .

Harmonic Sums Denominators

SW4 1

SW3 1, η

SW2 1, η1,2 , D2
1

SW1 1, η1,2,3

SW0 1, η1,2,3, D2
1

Overall Weight 4 3 2 1 0

Coeff. Factors 8
3

8
9

4
27

2
27 1

Table 5.16: The structure of the C 2
F nf terms of γ

(2),+
ns .
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Harmonic Sums Denominators

SW4 1

SW3 1, η

SW2 1, η1,2 , D2
1

SW1 1, η1,2,3 , D3
1

SW0 1, η1,2,3,4, D2,3,4
1

Overall Weight 4 3 2 1 0

Coeff. Factors 8
3

8
9

4
27

2
27 1

Table 5.17: The structure of the C 2
F nf terms of γ

(2),−
ns .

We observe that

• The A part has positive-index harmonic sums only.

• Using the combination η, rather than D0, we never see D1
1. This reduces the size

of the basis.

• We may have to relax the coefficient factors to reconstruct the A piece, compared

to those suitable for the C 2
F n

2
f pieces.

• There are no terms with an overall weight greater than 4. Harmonic sums of

weight 4 appear without denominator functions.

5.4.2 A Basis for γ
(3),±
ns

It is not possible to make any conclusive statements based on the prime structure of

the denominators of the moments, other than that we should have weight 5 objects

present and that they should have a coefficient factor of at least 1/3. We assume

slightly more generous coefficient factors than the primes suggest, along the lines of the

reconstruction of the singlet anomalous dimensions, i.e. allowing 1/9 at overall weight

5. Based on the third order structure, it seems we may get away with not adding an

extra factor of 1/3 between the overall weight 2 and 1 basis elements, and perhaps even

between the overall weight 3 and 2 basis elements. The constant term (SW0 · 1) also

seems not to require such a generous coefficient factor.

We try the following basis, then, to first reconstruct the C 2
F n

2
f terms of γ

(3),+
ns :
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Harmonic Sums Denominators

SW5 1

SW4 1, η

SW3 1, η1,2 , D2
1

SW2 1, η1,2,3 , D2,3
1

SW1 1, η1,2,3,4 , D2,3,4
1

SW0 1, η1,2,3,4,5, D2,3,4,5
1

Overall Weight 5 4 3 2 1 0

Coeff. Factors 16
9

8
27

4
81

2
243

1
243

1
2·81

Table 5.18: The basis for the reconstruction of the C 2
F n

2
f terms of γ

(3),+
ns .

Without further assumptions, this basis contains 139 unknowns. At this point this is

the largest basis of any reconstruction described here, largely due to the inclusion of

the harmonic sums of weight 5 (of which there are 41). The Mellin moments computed

are insufficient to solve the system. As in the reconstruction of the leading-nf terms of

γ
(3)
qg (Section 5.3.5), some additional constraints are required. We assume:

• In the large-N limit, the non-singlet anomalous dimensions should behave as

lnN [86] in the MS scheme. This can be enforced by killing off combinations of

basis elements which contribute higher powers of lnN in the large-N expansion

of the basis. Additionally, γ
(2),+
ns and γ

(2),−
ns have the sub-leading behaviour of

lnN2

N2 (and only with the colour factor C 3
F ). We assume that we can allow such

behaviour in the C 2
F n

2
f terms of γ

(3),±
ns , but kill off combinations of basis elements

which go as lnN3, to all powers in 1/N . These assumptions reduce the number

of unknown coefficients to 123.

• In the large-N limit, there should be no terms proportional to the irrational

numbers ln 2, Li4(1/2), and Li5(1/2)2. Enforcing the that their coefficients are

zero leaves 119 coefficients to determine.

• As with γ
(2)
qg , we use the relationship between the coefficients of S1,2 and S2,1 in

γ
(2),±
ns . We set CS1,2

= CS2,1
in combination with any denominator function. This

leaves 115 coefficients to determine.

With these additional assumptions, the equation system can be solved with Mellin

momentsN = 2 toN = 40, withN = 42 serving as a check. After reducing the maximal

overall weight of the basis by 3, the C 2
F n

2
f ζ3 terms can be solved using moments N = 2

to N = 10 or by Gaussian elimination using moments N = 2 to N = 18. After reducing

the maximal overall weight by a further 1, the C 2
F n

2
f ζ4 terms (which do not exist in

the n 3
f reconstructions) can be solved by Gaussian elimination with moments N = 2

to N = 6.

2The constant Li5(1/2) = S−1,1,1,1,1(∞).
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Inspired by this result, we adjust the coefficient factors of the basis; it appears we

can tighten them such that the coefficients to be determined are significantly smaller.

Choosing

Overall Weight 5 4 3 2 1 0

Coeff. Factors 32
9

16
27

8
81

4
81

2
81

1
27

Table 5.19: Coefficient factors for the reconstruction of the C 2
F n

2
f terms of γ

(3),−
ns .

with the same basis and assumptions as above, we are able to solve the system for the

C 2
F n

2
f terms of γ

(3),−
ns using Mellin moments N = 3 to N = 37, with N = 39 serving as

a check of the result. Similarly, the C 2
F n

2
f ζ3 terms can be solved with moments N = 3

to N = 11 or by Gaussian elimination with N = 2 to N = 19 and the C 2
F n

2
f ζ4 terms

by Gaussian elimination with N = 3 to N = 7. (Just for information, these tighter

coefficient factors allow for a re-solution of the C 2
F n

2
f terms of γ

(3),+
ns with two Mellin

moments fewer: with N = 2 to N = 36.)

For the A piece, we keep the same assumptions made above but also remove all

harmonic sums which contain negative indices. This vastly reduces the number of

unknowns, to just 65. To find a solution, however, we must assume some further

structure still. Based on the third-order counterpart to this function, we assume that

particular high-weight harmonic sums should not appear in the result:

• At harmonic weight 5, we assume that the sums S1,1,1,2, S1,1,2,1, S1,2,1,1 and S2,1,1,1

do not appear. Also we assume that the sums S1,2,2, S2,1,2 and S2,2,1 do not appear.

• At harmonic weight 4, we assume that the sums S1,1,2, S1,2,1 and S2,1,1 do not

appear.

These assumptions reduce the basis to just 54 unknowns. Relaxing the coefficient

factors to

Overall Weight 5 4 3 2 1 0

Coeff. Factors 16
9

8
27

4
81

2
81

1
81

1
27

Table 5.20: Coefficient factors for the reconstruction of the A piece of γ
(3),±
ns .

allows for a solution using Mellin moments (both even-N and odd-N) N = 2 to N = 17,

with N = 18, 19, 20 and N = 22 serving as a checks of the result. The ζ3 terms are

then solved with moments N = 2 to N = 7 or by Gaussian elimination with N = 2

to N = 10. The ζ4 terms are solved by Gaussian elimination with moments N = 2 to

N = 4.
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5.5 Results

Having discussed the bases and assumptions used for the reconstruction of the analytic

N dependence of various quantities in the previous section, we now present the results.

They are not especially lengthy so are reproduced in full here. Further verification that

they are correct (beyond their reproduction of higher Mellin moments) is discussed in

Section 5.6.

It should be noted that these Mellin moment calculations with FORCER really push

the limits of what is possible, computationally. The hardest diagrams at the highest

moment computed of the CAn
3
f terms of γ

(3)
qg each took around 2 weeks to complete

on rather fast machines, and produce some 10TB of intermediate expressions (around

130 billion terms) during the calculation. This also demonstrates the power of FORM;

no other Computer Algebra System can perform manipulations at this scale.

The wall-time and disk space required increase approximately exponentially with

N so to reconstruct, say, the O(n 2
f ) colour factors of the singlet anomalous dimensions

is out of the question with current resources. The combined effects of (very much)

more computationally demanding moment calculations and larger reconstruction bases

requiring yet more moments for solution increase the resource requirements far beyond

what could be provided by even a large supercomputer.

There is one remaining viable target for reconstruction; the n 2
f terms of fl02 dia-

grams which contribute to the evolution of the valence PDF qvns, defined in Eq. (2.29).

The computations would be approximately of the difficulty of the A part of γ
(3),±
ns but

without the benefit of being able to use both even-N and odd-N moments. A solution

is thus estimated to require odd moments of these diagrams to some N value in the

40s. Such a computation would be significantly harder than anything required by the

results of this chapter and would certainly require improvements of the efficiency of

FORCER or some very tight constraints on the basis.

5.5.1 Results for the Singlet Anomalous Dimensions

Here we present the leading contributions to the singlet anomalous dimensions in the

large-nf limit. That is, terms proportional to CAn
3
f and CFn

3
f . These are the results

of the discussions of Sections 5.3.2 to 5.3.5. We display the results in both Mellin-N

space and Bjorken-x space and plot the functions in both spaces. Eq. (5.28), necessary

to define Eq. (5.29), has been taken from [81].

γ(3),±
ns

∣∣∣∣
n 3
f

=

+ CF

[
+ 32/27 S4 − 160/81 S3 − 32/81 S2 − 32/81 S1 [1− 6 ζ3] − 1/81 (192D2

0
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− 176D3
0 + 48D4

0 − 192D2
1 + 176D3

1 − 48D4
1 − 32 [2− 3 ζ3]D0

+ 32 [2− 3 ζ3]D1 − [131− 144 ζ3])

]
(5.28)

γ(3)
qq

∣∣∣∣
n 3
f

= γ(3),±
ns

∣∣∣∣
n 3
f

+ γ(3)
qq,ps

∣∣∣∣
n 3
f

= γ(3),±
ns

∣∣∣∣
n 3
f

+

+ CF

[
− 64/27 S1,1,1 (3D0 − 6D2

0 − 3D1 − 6D2
1 − 4D2 + 4D−1)

+ 64/27 S1,1 (11D0 − 13D2
0 + 6D3

0 − 17D1 − 4D2
1 + 12D3

1 + 2D2 + 8D2
2

+ 4D−1) − 32/81 S1 (94D0 − 98D2
0 + 87D3

0 − 18D4
0 − 226D1 + 100D2

1

+ 111D3
1 − 90D4

1 + 128D2 + 88D2
2 − 48D3

2 + 4D−1) + 16/81 (146D3
0 − 87D4

0

+ 18D5
0 − 54D3

1 − 309D4
1 + 198D5

1 + 72D2
2 − 176D3

2 + 96D4
2

− 4 [1− 18 ζ3]D−1 + 2 [26 + 27 ζ3]D0 − 2 [59 + 54 ζ3]D2
0 + 4 [91− 18 ζ3]D2

− 2 [206 + 27 ζ3]D1 + 2 [215− 54 ζ3]D2
1)

]
(5.29)

γ(3)
qg

∣∣∣∣
n 3
f

=

+ CF

[
− 32/27 S1,1,1,1 ρ + 32/9 S4 ρ − 32/81 S1,1,1 (71D0 − 30D2

0

+ 18D3
0 − 115D1 − 36D3

1 + 42D2 + 24D2
2 − 8D−1) + 32/81 S3 (71D0 − 27D2

0

+ 18D3
0 − 109D1 − 36D3

1 + 36D2 + 24D2
2 − 8D−1) + 32/81 [S1,2 + S2,1] (81D0

− 27D2
0 + 18D3

0 − 135D1 − 36D3
1 + 62D2 + 24D2

2 − 8D−1)

− 16/243 S1,1 (416D0 − 102D2
0 − 72D3

0 − 1633D1 + 90D2
1 − 288D3

1 − 216D4
1

+ 1174D2 + 648D2
2 + 288D3

2 + 72D−1) − 32/243 S2 (976D0 − 891D2
0

+ 360D3
0 − 216D4

0 + 88D1 − 459D2
1 − 72D3

1 + 540D4
1 − 1101D2 − 852D2

2

− 432D3
2 + 68D−1) − 16/729 S1 (8634D2

0 − 6822D3
0 + 2430D4

0 − 1620D5
0

+ 1125D2
1 − 2070D3

1 − 3456D4
1 + 3240D5

1 − 1812D2
2 − 2448D3

2 − 1728D4
2

+ 352D−1 + 24 [427 + 27 ζ3]D1 − [763 + 648 ζ3]D2 − 12 [802 + 27 ζ3]D0)

+ 4/729 (17370D4
0 − 15012D5

0 − 25992D4
1 + 49464D5

1 − 28512D6
1 − 5280D3

2

− 3456D4
2 + 13824D5

2 + 128 [31 + 27 ζ3]D−1 − 6 [281− 9936 ζ3]D1

+ 72 [635− 18 ζ3]D2
1 − 54 [835 + 144 ζ3]D3

0 + 24 [959− 432 ζ3]D2
2

− 6 [1621− 2592 ζ3]D3
1 + 24 [1988 + 459 ζ3]D2

0 − 9 [7037 + 3852 ζ3]D0

+ 2 [31649− 14688 ζ3]D2)

]
+ CA

[
32/27 ρ

(
S1,1,1,1 − S1,1,2 + S1,2,1 + S2,1,1 − S1,3 − S2,2 + S3,1 + 4 S−4

+ 3 S4

)
− 128/81 S−3 (5D0 − 7D1 + 7D2) − 64/81 S3 (5D0 − 4D1 − 3D2

1

+ 4D2 + 3D2
2) + 64/81 [S1,2 − S2,1 − S1,1,1] (5D0 − 10D1 + 3D2

1 + 10D2
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− 3D2
2) − 4/243 S1,1 (316D0 − 45D2

0 + 144D3
0 − 641D1 − 354D2

1 + 349D2

+ 792D2
2 − 288D3

2 − 104D−1) + 16/243 S−2 (38D0 − 10D1 + 9D2
1 + 28D2)

− 4/243 S2 (468D0 − 45D2
0 + 144D3

0 − 1659D1 + 912D2
1 − 576D3

1 + 1277D2

− 168D2
2 + 288D3

2 − 104D−1) − 2/729 S1 (6354D2
0 − 3258D3

0 + 3456D4
0

+ 5298D2
1 + 648D3

1 − 5184D4
1 + 15408D2

2 + 16992D3
2 − 3456D4

2 − 128D−1

− 6 [1895 + 864 ζ3]D1 − 3 [2863− 864 ζ3]D0 + [17447 + 5184 ζ3]D2)

+ 2/243 (554D3
0 + 696D4

0 + 432D5
0 + 8508D3

1 − 6816D4
1 + 3168D5

1 + 2720D3
2

− 4608D4
2 + 2304D5

2 − 192 [2− 3 ζ3]D−1 + 6 [125 + 288 ζ3]D1

− 3 [269 + 912 ζ3]D2 + 2 [643− 432 ζ3]D2
0 + 8 [653− 216 ζ3]D2

2

− [655− 432 ζ3]D0 − 2 [2399 + 864 ζ3]D2
1)

]
(5.30)

γ(3)
gq

∣∣∣∣
n 3
f

=

+ CF

[
64/27 S1,1,1 (2D0 −D1 − 2D−1) − 64/81 S1,1 (16D0 − 8D1 + 3D2

1

− 16D−1) + 64/81 S1 (8D0 − 4D1 + 8D2
1 − 3D3

1 − 8D−1) − 64/81 (4D2
1

− 8D3
1 + 3D4

1 − 12 ζ3D0 + 6 ζ3D1 + 12 ζ3D−1)

]
(5.31)

γ(3)
gg

∣∣∣∣
n 3
f

=

+ CF

[
64/27 (3D0 − 6D2

0 − 3D1 − 6D2
1 − 4D2 + 4D−1) [S1,1,1 − S1,2 − S2,1

+ S3/2] + 64/81 S1,1 (57D0 + 21D2
0 + 18D3

0 − 39D1 + 12D2
1 + 20D2

− 38D−1) − 32/81 S2 (42D0 + 69D2
0 + 18D3

0 − 42D1 + 69D2
1 − 18D3

1 + 70D2

− 70D−1) − 32/243 S1 (429D0 + 276D2
0 + 207D3

0 + 54D4
0 − 33D1 − 30D2

1

+ 135D3
1 − 54D4

1 − 26D2 − 370D−1) − 2/243 (77 − 3360D3
0 − 1656D4

0

− 432D5
0 − 3840D3

1 + 3816D4
1 − 1296D5

1 − 1296 [3 + ζ3]D1

− 432 [11− 3 ζ3]D0 + 96 [43− 18 ζ3]D2 + 96 [47 + 18 ζ3]D−1

− 24 [179 + 108 ζ3]D2
0 + 24 [193− 108 ζ3]D2

1)

]
+ CA

[
4/81 [S2 − 2 S1,1] (33D0 + 48D2

0 − 33D1 + 48D2
1 + 52D2 − 52D−1)

+ 4/243 S1 (480D0 + 456D2
0 + 144D3

0 − 480D1 + 456D2
1 − 144D3

1 + 527D2

− 527D−1 − 24 [1− 6 ζ3]) − 1/243 (5 + 1380D2
0 + 912D3

0 + 288D4
0 + 1380D2

1

− 912D3
1 + 288D4

1 + 6 [229− 96 ζ3]D0 − 6 [229− 96 ζ3]D1

+ 4 [331− 144 ζ3]D2 − 4 [331− 144 ζ3]D−1)

]
(5.32)

Figures 5.1 and 5.2 show plots of these N -space expressions for the coefficients of n 3
f .
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The solid points show the function values for integer Mellin moments. The smooth

curves through them are the result of an inverse Mellin transform of the results to x

space followed by a numerical evaluation of the Mellin transform integral for non-integer

N .
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Figure 5.1: The coefficients of the n 3
f terms of γ

(3)
qq and γ

(3)
qg , plotted in Mellin-N space. The

colour factors CA and CF have been set to their QCD values of 3 and 4/3 respectively. The
solid points shows the values of the (integer) Mellin moments computed by FORCER.

83



-6

-4

-2

0

0 10 20 30 40

N

 γ
gq

 γ
 (3)

(N)

coeff. of n
f

coeff. of n
3

N

 γ
gg

 γ
 (3)

(N)

coeff. of n
f

coeff. of n
3

0

5

10

15

20

25

30

35

0 10 20 30 40

Figure 5.2: As Fig. 5.1, for the coefficients of the n 3
f terms of γ

(3)
gq and γ

(3)
gg .

Defining the functions

pqq(x) = 2(1− x)−1 − 1− x
pqg(x) = 1− 2x+ 2x2

pgq(x) = 2x−1 − 2 + x

pgg(x) = (1− x)−1 + x−1 − 2 + x− x2, (5.33)

we have the same quantities in x-space, presented as splitting functions (i.e. with a

relative (−) compared to Eq. (5.28) to (5.32), as defined in Eq. (2.19)).

P (3),±
ns

∣∣∣∣
n 3
f

=

+ CF

[
pqq(x)

(
− 16

81 +
32
27 ζ3 − 16

27 H0,0,0 − 80
81 H0,0 +

16
81 H0

)
+ x

(
16
27 +

32
27 H0,0

+
208
81 H0

)
+

(
− 16

27 −
32
27 H0,0 − 208

81 H0

)
+ δ(1− x)

(
− 131

81 +
32
81 ζ2 +

304
81 ζ3

− 32
27 ζ4

)]
(5.34)

P (3)
qq

∣∣∣∣
n 3
f

= P (3),±
ns

∣∣∣∣
n 3
f

+ P (3)
qq,ps

∣∣∣∣
n 3
f

= P (3),±
ns

∣∣∣∣
n 3
f

+

+ CF

[
1
x

(
64
27 −

128
9 ζ3 +

256
27 H1,1,1 +

128
81 H1

)
+ (1 + x)

(
− 160

9 ζ4 +
64
9 H4

− 128
9 H3,1 +

128
9 H2,1,1 − 32

9 H0,0,0,0 +
928
27 H3 − 464

27 H0,0,0 − 2336
81 H0,0

− 64
9 H0,0 ζ2 − 928

27 H0 ζ2 − 128
9 H0 ζ3

)
+ x2

(
− 448

81 +
2432
81 ζ2 +

128
27 ζ3
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+
256
27 H2,1 − 256

27 H1,1,1 − 2432
81 H2 − 128

9 H1,1 +
2048
81 H0 +

2176
81 H1

)
+

(
− 320

27 −
3136
81 ζ2 − 128

9 ζ3 − 832
27 H2,1 +

64
9 H1,1,1 +

3136
81 H2 − 320

9 H1,1

− 1888
81 H0 +

3008
81 H1

)
+ x

(
1216
81 −

64
81 ζ2 − 64

9 ζ3 − 448
27 H2,1 − 64

9 H1,1,1

+
64
81 H2 +

448
9 H1,1 − 352

81 H0 − 5312
81 H1

)]
(5.35)

P (3)
qg

∣∣∣∣
n 3
f

=

+ CF

[
1
x

(
4352
729 −

512
27 ζ3 − 256

81 H1,2 +
256
81 H1,0,0 − 256

81 H1,1,0 − 256
81 H1,1,1

− 2944
243 H1,0 +

128
81 H1,1 +

9088
729 H1 +

256
81 H1 ζ2

)
+ (1− 2x)

(
− 64

9 ζ3 ζ2

− 64
9 ζ5 − 320

9 H5 +
64
9 H3,2 − 256

9 H4,0 − 64
9 H3,0,0 +

64
9 H3,1,0 +

64
9 H3,1,1

+
32
9 H1,0,0,0 +

32
27 H1,1,1,1 − 64

9 H3 ζ2 +
320
9 H0,0,0 ζ2 +

64
3 H0,0 ζ3 − 128

9 H0 ζ4

− 64
9 H1 ζ3

)
+ x

(
− 253016

729 +
40384
243 ζ2 − 31136

81 ζ3 − 64
3 ζ4 +

512
9 H4

+
256
27 H3,0 − 512

27 H3,1 − 64
27 H2,1,1 − 5216

27 H0,0,0,0 − 8480
81 H3 − 160

3 H1,2

− 1024
9 H2,0 − 4160

81 H2,1 − 17216
81 H0,0,0 +

3488
81 H1,0,0 − 160

3 H1,1,0

− 3872
81 H1,1,1 − 40384

243 H2 +
2728
81 H0,0 − 512

9 H0,0 ζ2 − 11072
243 H1,0 − 32464

243 H1,1

+
45632
243 H0 +

8480
81 H0 ζ2 − 320

27 H0 ζ3 +
10336
243 H1 +

160
3 H1 ζ2

)
+ x2

(
6568
729 −

17504
243 ζ2 +

3904
81 ζ3 +

128
3 ζ4 +

1280
27 H4 − 256

27 H2,2 +
1280
27 H3,0

+
256
27 H3,1 +

256
27 H2,0,0 − 256

27 H2,1,0 − 64
9 H2,1,1 +

320
9 H0,0,0,0 +

64
9 H1,0,0,0

+
64
27 H1,1,1,1 − 5056

81 H3 +
1984
81 H1,2 − 2624

27 H2,0 − 896
27 H2,1 − 4096

27 H0,0,0

− 128
9 H1,0,0 +

1984
81 H1,1,0 +

512
27 H1,1,1 +

17504
243 H2 +

256
27 H2 ζ2 +

11488
81 H0,0

− 1280
27 H0,0 ζ2 +

4832
27 H1,0 +

25120
243 H1,1 +

150800
729 H0 +

5056
81 H0 ζ2

− 896
27 H0 ζ3 +

120752
729 H1 − 1984

81 H1 ζ2 − 128
9 H1 ζ3

)
+

(
233108

729 +
45280
243 ζ2

+
7984
81 ζ3 − 320

9 ζ4 − 160
3 H4 +

32
3 H2,2 − 1280

27 H3,0 − 128
27 H3,1 − 32

3 H2,0,0

+
32
3 H2,1,0 +

320
27 H2,1,1 +

2224
27 H0,0,0,0 − 12128

81 H3 + 32 H1,2 − 352
3 H2,0

+
544
81 H2,1 +

7720
81 H0,0,0 − 2272

81 H1,0,0 + 32 H1,1,0 +
2272
81 H1,1,1 − 45280

243 H2

− 32
3 H2 ζ2 +

19784
81 H0,0 +

160
3 H0,0 ζ2 − 30464

243 H1,0 +
7424
243 H1,1 +

67328
243 H0

+
12128

81 H0 ζ2 +
640
27 H0 ζ3 − 52480

243 H1 − 32 H1 ζ2

)]
+ CA

[
1
x

(
− 448

729 −
128
27 ζ3 +

416
243 H1,0 − 416

243 H1,1 − 1504
729 H1

)
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+ (1− 2x)

(
− 256

27 H4 − 32
27 H1,3 − 64

27 H3,0 +
64
27 H3,1 +

32
27 H1,1,2 +

32
27 H1,2,0

+
32
27 H1,2,1 +

32
9 H1,0,0,0 +

32
27 H1,1,0,0 − 32

27 H1,1,1,0 − 32
27 H1,1,1,1 − 724

81 H3

+
256
27 H0,0 ζ2 +

32
27 H1,0 ζ2 − 32

27 H1,1 ζ2 +
256
27 H1 ζ3

)
+ x

(
− 71974

729 +
4016
243 ζ2

− 1352
81 ζ3 − 544

27 ζ4 − 256
27 H−1,0,0,0 +

64
27 H0,0,0,0 − 16

27 H−2,0 +
448
81 H1,2

+
128
27 H2,0 − 40

9 H2,1 − 896
81 H−1,0,0 − 256

9 H0,0,0 − 448
81 H1,0,0 − 448

81 H1,1,0

− 448
81 H1,1,1 − 464

27 H2 − 160
243 H−1,0 − 3944

81 H0,0 +
524
27 H1,0 − 4484

243 H1,1

− 9796
243 H0 − 1496

81 H0 ζ2 − 896
27 H0 ζ3 − 1072

27 H1 − 448
81 H1 ζ2

)
+ x2

(
72316
729 +

9548
243 ζ2 +

2144
81 ζ3 − 64

27 H1,3 +
64
27 H1,1,2 +

64
27 H1,2,0 +

64
27 H1,2,1

− 256
27 H−1,0,0,0 +

64
9 H1,0,0,0 +

64
27 H1,1,0,0 − 64

27 H1,1,1,0 − 64
27 H1,1,1,1 +

2080
81 H3

− 448
81 H1,2 +

416
81 H2,0 − 416

81 H2,1 − 896
81 H−1,0,0 +

800
27 H0,0,0 +

448
81 H1,0,0

+
448
81 H1,1,0 +

448
81 H1,1,1 − 9548

243 H2 − 448
243 H−1,0 − 13172

243 H0,0 − 3188
243 H1,0

+
64
27 H1,0 ζ2 +

3316
243 H1,1 − 64

27 H1,1 ζ2 +
17722
729 H0 − 2080

81 H0 ζ2 +
41098
729 H1

+
448
81 H1 ζ2 +

512
27 H1 ζ3

)
+

(
6682
729 +

1412
81 ζ2 +

256
81 ζ3 +

16
9 ζ4 − 128

27 H−1,0,0,0

− 32
9 H0,0,0,0 − 320

81 H1,2 − 20
27 H2,0 +

20
27 H2,1 − 640

81 H−1,0,0 +
464
81 H0,0,0

+
320
81 H1,0,0 +

320
81 H1,1,0 +

320
81 H1,1,1 − 1412

81 H2 − 608
243 H−1,0 − 1108

243 H0,0

− 208
27 H1,0 +

1264
243 H1,1 +

2156
243 H0 +

724
81 H0 ζ2 − 128

27 H0 ζ3 − 590
27 H1

+
320
81 H1 ζ2

)]
(5.36)

P (3)
gq

∣∣∣∣
n 3
f

=

+ CF

[
1
x

(
− 128

81 +
256
27 ζ3 +

128
27 H1,1,1 − 640

81 H1,1 − 128
81 H1

)
+ x

(
128
27 ζ3 +

64
27 H1,1,1 − 512

81 H1,1 +
256
81 H1

)
+

(
128
81 −

256
27 ζ3 − 128

27 H1,1,1

+
640
81 H1,1 +

128
81 H1

)]
(5.37)

P (3)
gg

∣∣∣∣
n 3
f

=

+ CF

[
(

1
x − x

2)

(
128
9 ζ3 − 256

27 H1,2 − 128
27 H1,0,0 − 256

27 H1,1,0 − 256
27 H1,1,1

+
1472
81 H1,0 +

256
27 H1 ζ2

)
+

1
x

(
− 1088

243 +
1664
81 H1,1 − 4544

243 H1

)
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+ (1− x)

(
− 64

9 H1,2 − 32
9 H1,0,0 − 64

9 H1,1,0 − 64
9 H1,1,1 − 64

9 H1,0 +
64
9 H1 ζ2

)
+ (1 + x)

(
− 160

9 ζ4 − 64
9 H4 − 128

9 H2,2 − 64
9 H3,0 − 128

9 H3,1 − 64
9 H2,0,0

− 128
9 H2,1,0 − 128

9 H2,1,1 − 32
9 H0,0,0,0 +

448
27 H2,1 +

128
9 H2 ζ2 +

64
9 H0,0 ζ2

+
256
9 H0 ζ3

)
+ x

(
− 1376

243 −
2048
81 ζ2 +

64
9 ζ3 +

928
27 H3 +

928
27 H2,0 +

464
27 H0,0,0

+
2048
81 H2 − 1280

81 H0,0 +
64
3 H1,1 − 176

9 H0 − 928
27 H0 ζ2 +

160
81 H1

)
+ x2

(
1856
243 +

512
81 ζ2 +

256
27 H3 +

256
27 H2,0 +

256
27 H2,1 +

128
27 H0,0,0 − 512

81 H2

− 1472
81 H0,0 − 512

81 H1,1 − 2368
243 H0 − 256

27 H0 ζ2 − 2368
243 H1

)
+

(
608
243 +

2176
81 ζ2

+
64
3 ζ3 +

736
27 H3 +

736
27 H2,0 +

368
27 H0,0,0 − 2176

81 H2 − 1856
81 H0,0 − 320

9 H1,1

+
112
9 H0 − 736

27 H0 ζ2 +
2144
81 H1

)
+ δ(1− x)

(
154
243

)]
+ CA

[
pgg(x)

(
− 32

81 +
64
27 ζ3

)
+ (

1
x − x

2)

(
− 208

81 H1,0 − 416
81 H1,1 +

860
243 H1

)
+

1
x

(
256
243

)
+ (1− x)

(
44
27 H1,0 +

88
27 H1,1 − 224

81 H1

)
+ (1 + x)

(
− 64

27 H3

− 64
27 H2,0 − 128

27 H2,1 − 32
27 H0,0,0 +

64
27 H0 ζ2

)
+ x

(
206
243 −

344
81 ζ2 +

64
27 ζ3

+
344
81 H2 +

172
81 H0,0 − 28

81 H0

)
+ x2

(
− 256

243 −
416
81 ζ2 +

416
81 H2 +

208
81 H0,0

− 860
243 H0

)
+

(
− 206

243 −
608
81 ζ2 +

64
27 ζ3 +

608
81 H2 +

304
81 H0,0 − 28

9 H0

)
+ δ(1− x)

(
5

243

)]
(5.38)

Figures 5.3 to 5.6 show these expressions plotted x-space. In each figure, the right-hand

panel shows the small-x behaviour of the same curves, including their leading small-x

term (1/x). In all cases the curves have been multiplied by x for plotting purposes,

to suppress the large divergence in the small-x limit. The diagonal splitting functions

have additionally been multiplied by (1 − x) to suppress a divergence in the large-x

limit. In each case, the 1/x term becomes a reasonable approximation at the lower end

of the plotted x range. The small-x expressions for these functions are presented in

full in Appendix A.10. Figure 5.3 clearly shows the end-point dominance of either the

pure-singlet (small-x) or non-singlet (large-x) parts of P
(3)
qq .
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Figure 5.3: The coefficients of the n 3
f terms of P

(3)
qq , plotted in x-space. The colour factors

CA and CF have been set to their QCD values of 3 and 4/3 respectively. The right-hand panel

shows the small-x behaviour of the same curves, including the leading small-x term of P
(3)
qq,ps.

The multiplication by x(1 − x) is for display purposes, and suppresses the diverging behaviour
of the splitting function at each endpoint.
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the small-x behaviour of the same curve, including the leading small-x term. The multiplication
by x is for display purposes, and suppresses the diverging behaviour of the splitting function
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f terms of P
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f terms of P
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5.5.2 Results for the Non-Singlet Anomalous Dimension

Here we present the next-to-leading contributions to the non-singlet anomalous dimen-

sions γ
(3),±
ns in the large-nf limit. The terms proportional to CFn

3
f are given in N -space

by Eq. (5.28) and in x-space by Eq. (5.34). The new results, proportional to CFCAn
2
f

and C 2
F n

2
f , are given below. As defined in Eq. (5.27) we present the A and B± parts

of γ
(3)
ns . We also show the (rather compact) difference δB = B+ −B−.

2A =

32/27

[
− 38/3 S1,2 + 20 S1,3 + 6 S1,4 − 38/3 S2,1 + 40 S2,2 − 12 S2,3 + 6 S3,1 (10

+ η) − 24 S3,2 − 30 S4,1 + 1/48 S1 (3392 η − 3656 η2 + 432 η3 + 720 η4

− 3392D2
1 − 576D3

1 − 1728D4
1 + [2119 + 2880 ζ3 − 1296 ζ4]) − 1/12 S2 (416 η

− 12 η2 − 144 η3 − 768D2
1 + [1259 + 216 ζ3]) + 1/3 S3 (287 − 12 η + 18 η2

− 36D2
1) − 3/2 S4 (53 + 2 η) + 36 S5 + 1/96 (944 η3 − 864 η5 − 7088D3

1

− 2736D4
1 − 1728D5

1 + 9 [127− 264 ζ3 + 216 ζ4] − 24 [1705 + 72 ζ3]D2
1

− 2 [2275− 432 ζ3] η2 + [20681− 2880 ζ3 + 1296 ζ4] η) − 12 S1,3,1

]
(5.39)

B+ =

32/27

[
− 12 S−4,1 − 6 S−3,−2 + 2 S−3,1 (10 − 3 η) − 6 S−2,−2 η + 2 S−2,1 (10 η

− 3 η2 + 6D2
1) + 6 S1,−4 − 20 S1,−3 + 38/3 S1,−2 + 6 S1,1 (2 η2 + η3) − 30 S1,3

+ 24 S1,4 + 6 S2,−3 − 20 S2,−2 + 9 S2,3 + 6 S3,−2 + S3,1 (10 + 3 η) − 3 S3,2

− 6 S4,1 − 9 S−5 + S−4 (20 − 3 η) − 1/3 S−3 (19 − 30 η + 9 η2 − 18D2
1)

+ 1/3 S−2 (8 η + 39 η2 − 96D2
1) + 1/96 S1 (1584 η − 3672 η2 + 720 η3 + 864 η4

− 1728D2
1 − 1728D3

1 − 2592D4
1 + [923 + 5760 ζ3 − 2592 ζ4]) + 1/48 S2 (144 η2

+ 72 η3 − [1585 + 864 ζ3]) + 1/12 S3 (619 + 180 η − 54 η2 + 108D2
1)

− 1/2 S4 (73 + 24 η) + 9 S5 − 1/192 (1392 η3 − 1584 η4 + 3168D4
1

− 3 [193− 1584 ζ3 + 1296 ζ4] + 2 [2447− 864 ζ3] η2 + 4 [7561 + 864 ζ3]D2
1

− [15077− 5760 ζ3 + 2592 ζ4] η) − 12 S−3,1,1 − 12 S−2,1,1 η + 12 S1,−3,1

+ 12 S1,−2,−2 − 40 S1,−2,1 − 6 S1,3,1 + 12 S2,−2,1 + 24 S1,−2,1,1

]
(5.40)

B− =

32/27

[
− 12 S−4,1 − 6 S−3,−2 + 2 S−3,1 (10 − 3 η) − 6 S−2,−2 η + 2 S−2,1 (10 η

− 3 η2 + 6D2
1) + 6 S1,−4 − 20 S1,−3 + 38/3 S1,−2 − 6 S1,1 (2 η2 + η3) − 30 S1,3

+ 24 S1,4 + 6 S2,−3 − 20 S2,−2 + 9 S2,3 + 6 S3,−2 + S3,1 (10 + 3 η) − 3 S3,2

− 6 S4,1 − 9 S−5 + S−4 (20 − 3 η) − 1/3 S−3 (19 − 30 η + 9 η2 − 18D2
1)

+ 1/3 S−2 (8 η + 3 η2 − 18 η3 − 96D2
1) − 1/96 S1 (432 η − 1032 η2 + 240 η3
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+ 288 η4 − 576D2
1 − 576D3

1 − 864D4
1 − [923 + 5760 ζ3 − 2592 ζ4])

+ 1/48 S2 (144 η2 + 72 η3 − [1585 + 864 ζ3]) + 1/12 S3 (619 + 180 η − 54 η2

+ 108D2
1) − 1/2 S4 (73 + 24 η) + 9 S5 + 1/192 (7280 η3 − 336 η4 − 1728 η5

− 11136D3
1 − 18144D4

1 + 4608D5
1 + 3 [193− 1584 ζ3 + 1296 ζ4]

− 18 [583− 96 ζ3] η2 − 4 [10489 + 864 ζ3]D2
1 + [25541− 5760 ζ3 + 2592 ζ4] η)

− 12 S−3,1,1 − 12 S−2,1,1 η + 12 S1,−3,1 + 12 S1,−2,−2 − 40 S1,−2,1 − 6 S1,3,1

+ 12 S2,−2,1 + 24 S1,−2,1,1

]
(5.41)

δB =

32/27

[
− 12 S1,1 (2 η2 + η3) − 6 S−2 (2 η2 + η3) − S1 (21 η − 49 η2 + 10 η3

+ 12 η4 − 24D2
1 − 24D3

1 − 36D4
1) + 1/6 (327 η − 175 η2 + 271 η3 − 60 η4

− 54 η5 − 366D2
1 − 348D3

1 − 468D4
1 + 144D5

1)

]
(5.42)

These N -space expressions are plotted in Fig. 5.7. Note that the curves for the n 2
f

terms of γ
(3),+
ns and γ

(3),−
ns lie almost exactly on top of each other in the right-hand

panel. The closed points show the function values of the n 2
f coefficients of γ

(3),+
ns for

even integer N , the open points the function values of the n 2
f coefficients of γ

(3),−
ns for

odd integer N .
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Figure 5.7: The coefficients of the n 3
f (left-hand panel) and n 2

f (right-hand panel) terms of

γ
(3),+
ns and γ

(3),−
ns . The colour factors CA and CF have been set to their QCD values of 3 and

4/3 respectively. The solid points show the values of the even-integer Mellin moments of γ
(3),+
ns .

The open points show the values of the odd-integer Mellin moments of γ
(3),−
ns .
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In x-space, these expressions are given by

2A =

pqq(x)

(
2119
81 − 608

81 ζ2 +
1280
27 ζ3 − 112

9 ζ4 +
160
9 H4 − 64

9 H1,3 +
128
9 H3,0

+
64
9 H2,0,0 +

64
3 H0,0,0,0 − 32

9 H1,0,0,0 +
320
9 H3 +

640
27 H2,0 +

424
9 H0,0,0

+
320
27 H1,0,0 +

608
81 H2 +

4592
81 H0,0 − 160

9 H0,0 ζ2 +
608
81 H1,0 +

64
9 H1,0 ζ2

+
5036
81 H0 − 320

9 H0 ζ2 +
64
3 H0 ζ3 +

64
9 H1 ζ3

)
+ (1− x)

(
22916

81 + 32 ζ3

+
64
9 H1,0,0 +

928
27 H1,0 +

736
27 H1

)
+ x

(
560
27 ζ2 − 32

3 H0,0,0,0 − 32
3 H3 − 32

3 H2,0

− 296
9 H0,0,0 − 560

27 H2 − 6016
81 H0,0 − 5078

27 H0 +
32
3 H0 ζ2

)
− 48 ζ2 − 32

3 H0,0,0,0

+
224
9 H3 +

160
9 H2,0 +

56
9 H0,0,0 + 48 H2 +

7424
81 H0,0 +

17822
81 H0 − 224

9 H0 ζ2

+ δ(1− x)

(
− 127

9 +
10072

81 ζ2 − 1864
27 ζ3 +

320
9 ζ3 ζ2 − 2584

27 ζ4 +
64
3 ζ5

)
(5.43)

B+ =

pqq(x)

(
923
162 −

304
81 ζ2 +

160
3 ζ3 − 64

3 ζ4 +
32
9 H4 − 32

9 H−3,0 − 32
9 H1,3 +

16
9 H3,0

− 64
9 H1,−2,0 − 16

3 H2,0,0 +
16
3 H0,0,0,0 − 128

9 H1,0,0,0 +
160
27 H3 +

584
27 H0,0,0

− 160
9 H1,0,0 +

2476
81 H0,0 − 64

9 H0,0 ζ2 +
1585
81 H0 − 320

27 H0 ζ2 +
112
9 H0 ζ3

− 64
9 H1 ζ3

)
+

(
1

(1+x) −
1
2(1− x)

)(
608
81 ζ2 − 320

9 ζ3 +
16
9 ζ4 +

128
9 H4

+
64
9 H−3,0 − 128

9 H−2,2 − 128
9 H−1,3 − 128

9 H3,1 +
64
9 H−2,0,0 +

256
9 H−1,2,1

+
64
9 H−1,0,0,0 − 32

3 H0,0,0,0 +
640
27 H3 +

640
27 H−2,0 − 1280

27 H−1,2 +
640
27 H−1,0,0

− 640
27 H0,0,0 +

128
9 H−2 ζ2 +

1216
81 H−1,0 +

64
9 H−1,0 ζ2 − 608

81 H0,0 − 64
9 H0,0 ζ2

+
1280
27 H−1 ζ2 − 128

9 H−1 ζ3 − 320
27 H0 ζ2 − 32

9 H0 ζ3

)
+ (1− x)

(
2374
27

− 32
3 H1,0,0 +

32
9 H1,0 − 128

9 H1,1 +
448
9 H1

)
+ (1 + x)

(
− 128

9 H−1,2 +
16
9 H2,0

− 64
9 H2,1 +

64
9 H−1,0,0 +

544
27 H−1,0 +

128
9 H−1 ζ2

)
+ x

(
− 200

27 ζ2 − 320
9 ζ3

+
112
9 H3 +

32
3 H−2,0 +

248
9 H2 − 844

27 H0,0 − 1112
9 H0 − 16

9 H0 ζ2

)
− 104

3 ζ2

+
64
3 ζ3 + 16 H3 +

32
9 H−2,0 +

104
3 H2 +

188
9 H0,0 +

664
9 H0 − 16 H0 ζ2

+ δ(1− x)

(
− 193

54 +
3170
81 ζ2 − 320

9 ζ3 +
80
3 ζ3 ζ2 − 80

9 ζ4 − 88
9 ζ5

)
(5.44)

B− =

pqq(x)

(
923
162 −

304
81 ζ2 +

160
3 ζ3 − 64

3 ζ4 +
32
9 H4 − 32

9 H−3,0 − 32
9 H1,3 +

16
9 H3,0
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− 64
9 H1,−2,0 − 16

3 H2,0,0 +
16
3 H0,0,0,0 − 128

9 H1,0,0,0 +
160
27 H3 +

584
27 H0,0,0

− 160
9 H1,0,0 +

2476
81 H0,0 − 64

9 H0,0 ζ2 +
1585
81 H0 − 320

27 H0 ζ2 +
112
9 H0 ζ3

− 64
9 H1 ζ3

)
+

(
1

(1+x) −
1
2(1− x)

)(
608
81 ζ2 − 320

9 ζ3 +
16
9 ζ4 +

128
9 H4

+
64
9 H−3,0 − 128

9 H−2,2 − 128
9 H−1,3 − 128

9 H3,1 +
64
9 H−2,0,0 +

256
9 H−1,2,1

+
64
9 H−1,0,0,0 − 32

3 H0,0,0,0 +
640
27 H3 +

640
27 H−2,0 − 1280

27 H−1,2 +
640
27 H−1,0,0

− 640
27 H0,0,0 +

128
9 H−2 ζ2 +

1216
81 H−1,0 +

64
9 H−1,0 ζ2 − 608

81 H0,0 − 64
9 H0,0 ζ2

+
1280
27 H−1 ζ2 − 128

9 H−1 ζ3 − 320
27 H0 ζ2 − 32

9 H0 ζ3

)
+ (1− x)

(
11554

81

− 128
9 H4 +

128
9 H3,1 − 32

3 H1,0,0 +
32
9 H1,0 +

128
9 H1,1 − 608

27 H1

)
+ (1 + x)

(
64
9 H−3,0 − 128

9 H−1,2 +
16
9 H2,0 +

64
9 H2,1 +

64
9 H−1,0,0 +

928
27 H−1,0

+
128
9 H−1 ζ2 +

32
3 H0 ζ3

)
+ x

(
1496
27 ζ2 − 2464

27 ζ3 + 8 ζ4 − 160
9 H0,0,0,0

+
1168
27 H3 +

32
9 H−2,0 − 736

27 H0,0,0 − 568
27 H2 − 4532

81 H0,0 − 64
9 H0,0 ζ2

− 5176
81 H0 − 1072

27 H0 ζ2

)
+

376
27 ζ2 +

1696
27 ζ3 +

88
3 ζ4 +

32
3 H0,0,0,0 − 784

27 H3

+
32
3 H−2,0 +

1120
27 H0,0,0 − 376

27 H2 +
6476
81 H0,0 +

128
9 H0,0 ζ2 +

10808
81 H0

+
784
27 H0 ζ2 + δ(1− x)

(
− 193

54 +
3170
81 ζ2 − 320

9 ζ3 +
80
3 ζ3 ζ2 − 80

9 ζ4 − 88
9 ζ5

)
(5.45)

δB =

(1− x)

(
4432
81 − 128

9 H4 +
128
9 H3,1 +

64
9 H−2,0 +

256
9 H1,1 − 1952

27 H1

)
+ (1 + x)

(
64
9 H−3,0 +

128
9 H2,1 − 1312

27 H2 +
128
9 H−1,0 +

4832
81 H0 +

32
3 H0 ζ3

)
+ x

(
1696
27 ζ2 − 1504

27 ζ3 + 8 ζ4 − 160
9 H0,0,0,0 +

832
27 H3 − 736

27 H0,0,0 − 2000
81 H0,0

− 64
9 H0,0 ζ2 − 1024

27 H0 ζ2

)
+

1312
27 ζ2 +

1120
27 ζ3 +

88
3 ζ4 +

32
3 H0,0,0,0

− 1216
27 H3 +

1120
27 H0,0,0 +

4784
81 H0,0 +

128
9 H0,0 ζ2 +

1216
27 H0 ζ2 (5.46)

The x-space curves for the coefficients of the n 2
f terms of P

(3),+
ns and P

(3),−
ns are

plotted in Fig. 5.8. The n 3
f coefficients have already been plotted in Fig. 5.3. In x-

space one starts to see the difference between P
(3),+
ns and P

(3),−
ns and this is made clear

in the right-hand panel, which shows the small-x behaviour. The two best logarithmic

approximations to the curves are also plotted. Here, unlike the singlet functions, there is

no 1/x term. These leading logarithmic approximations are the terms L0 +L2
0 +L3

0 +L4
0

(N3LL) and L2
0 + L3

0 + L4
0 (NNLL). The small-x expressions for these functions are

presented in full in Appendix A.10.
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Figure 5.8: The coefficients of the n 2
f terms of P

(3),+
ns and P

(3),−
ns . The colour factors CA and

CF have been set to their QCD values of 3 and 4/3 respectively. The right-hand panel shows
the small-x behaviour of the same curves, alongside their two best logarithmic approximations.

5.6 Verification

There are some existing results in the literature which overlap with the results presented

above. We briefly review it here, to further convince ourselves of the validity of the

reconstructed expressions.

5.6.1 Linear Combinations of Large-nf Singlet Anomalous Dimen-
sions

The papers [66,67] present large-nf contributions to linear combinations of the singlet

anomalous dimensions computed above. Introducing the notation

γqq = a1as + (a21nf + a22) a2
s +

(
a31n

2
f + a32nf + a33

)
a3

s +O(a4
s )

γqg = c1nfas + c2nfa
2
s +

(
c31n

2
f + c32nf + c33

)
a3

s +O(a4
s )

γgq = b1as + (b21nf + b22) a2
s +

(
b31n

2
f + b32nf + b33

)
a3

s +O(a4
s )

γgg = (d11nf + d12) as + (d21nf + d22) a2
s +

(
d31n

2
f + d32nf + d33

)
a3

s +O(a4
s ) (5.47)

the following diagonalized anomalous dimensions are computed at leading nf to all

orders in as,

λ± =
1

2
(γqq + γgg)±

1

2

√
(γqq − γgg)2 + 4γqgγgq. (5.48)

In terms of the coefficients of Eq. (5.47) (and their obvious fourth-order extension),

λ− =

(
a1 −

b1c1

d11

)
as +

(
a21 −

b21c1

d11

)
nfa

2
s +

(
a31 −

b31c1

d11

)
n 2
f a

3
s
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+

(
a41 −

b41c1

d11

)
n 3
f a

4
s +O

(
n 4
f a

5
s

)
,

λ+ =

(
d11nfd12 +

b1c1

d11

)
as +

(
d21 +

b21c1

d11

)
nfa

2
s +

(
d31 +

b31c1

d11

)
n 2
f a

3
s

+

(
d41 +

b41c1

d11

)
n 3
f a

4
s +O

(
n 4
f a

5
s

)
. (5.49)

By computing the same combinations of coefficients,
(
a41 − b41c1

d11

)
and

(
d41 + b41c1

d11

)
,

we find that the results of this chapter agree. Unfortunately these combinations do

not include the fourth-order corrections to γ
(3)
qg (Eq. (5.30)), which were the hardest to

determine and least verified by further Mellin moments.

5.6.2 Fourth-Order Cusp Anomalous Dimension

There have been recent computations of the so-called cusp anomalous dimension. The

large-N limit of our results for the non-singlet anomalous dimension (with the n 3
f terms

coming from [81]) yield

γ(3)
cusp =CFn

3
f

(
−32

81
+

64

27
ζ3

)
+ C 2

F n
2
f

(
2392

81
− 640

9
ζ3 + 32ζ4

)
+ CACFn

2
f

(
923

81
− 608

81
ζ2 +

2240

27
ζ3 −

112

3
ζ4

)
+O (nf ) . (5.50)

After taking the large-Nc limit and some conversion of notation, this expression agrees

with the n 3
f and n 2

f contributions to the results of both [87] and [88].

5.6.3 Large-N Behaviour of Diagonal Anomalous Dimensions

In [89], the large-N structure of the diagonal anomalous dimensions γqq and γgg is

studied and some predictions of higher order contributions are made, based on lower

order coefficients. In the notation (where a = q, g)

γ(i)
aa = −Aia lnN +Bi

a − Cia
(

lnN

N

)
+O

(
1

N

)
, (5.51)

it is determined that

C1
a = 0,

C2
a =

(
A1
a

)2
,

C3
a = 2A1

aA
2
a,

C4
a =

(
A2
a

)2
+ 2A1

aA
3
a (5.52)

in MS. That the higher-order C coefficients can be written in terms of the lower-order

A coefficients had been previously observed at three loops in [25], i.e. up to C3
a . The

relation for C4
a is thus a prediction that we are now able to (partially) verify. We should

have that

C4
q =

1216

81
C 2
F n

2
f +O(nf ) (5.53)
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and

C4
g = 0 +O(n 2

f ). (5.54)

The previously known n 3
f terms of γ

(3)
qq already satisfy Eq. (5.53), in that they give a

contribution of zero. The new n 3
f terms of γ

(3)
gg satisfy Eq. (5.54); they also contribute

zero. The new n 2
f terms of γ

(3)
qq provide the first “non-trivial” verification of this

conjecture.

5.6.4 Small-x Double Logarithms of Anomalous Dimensions

In Chapter 4, we computed the leading three small-x logarithms of the anomalous

dimensions and coefficient functions of DIS to all orders in their as expansions. We

thus have existing calculations of the small-x logarithms which serve as a verification

of the new fourth-order results. The large-nf terms of the results in Section 4.3 and

Section 4.4.1 are as follows (in N space),

γ(3)
qq =

(
32

9
CFn

3
f −

32

3
C 2
F n

2
f

)
N−5 +O(N−4),

γ(3)
qg =

(
32

9
CAn

3
f −

2224

27
CFn

3
f

)
N−5 +O(N−4),

γ(3)
gq = 0 +O(N−4),

γ(3)
gg =

(
32

9
CFn

3
f

)
N−5 +O(N−4), (5.55)

in agreement with the new fixed-order results of this chapter. For future reference, we

provide the complete small-x behaviour of the large-nf terms of the splitting functions

in Appendix A.10.

5.6.5 Large-x Double Logarithms of Anomalous Dimensions

The leading logarithms of the fourth-order anomalous dimensions in the x→ 1 limit are

also the result of various resummation efforts. In [29], the large-x structure of physical

kernels is used to predict the leading logarithms of the anomalous dimensions to all

orders of the expansion in powers of (1−x). Just as the splitting functions/anomalous

dimensions determine the energy-scale evolution of the PDFs, the physical kernels

determine the energy scale evolution of the structure functions themselves. They are

defined as K where

d

d lnQ2
F =

d

d lnQ2

(
Cq

)
=

(
β

dC

das
− Cγ

)
q =

[(
β

dC

das
− Cγ

)
C−1

]
︸ ︷︷ ︸

K

F. (5.56)

To third order the physical kernels are observed to have single logarithmic enhancement,

that is, in the large-x limit they have logarithms which go as ans ln(1 − x)n. This is

a non-trivial property since the quantities that form them, the anomalous dimensions
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and coefficient functions of DIS, largely display double logarithmic enhancement; they

go as ans ln(1−x)2n. These double logarithms cancel when combined to form a physical

kernel.

The conjecture that this property should hold to all orders in as allows one to

determine the double-logarithmic contributions to fourth-order anomalous dimensions

and coefficient functions. It is predicted that

γ(3)
qq,ps = CFn

3
f L

3
1

(
128

81x
+

32

27
(1− x)− 128

81
x2 +

64

27
(1 + x)H0

)
+O

(
L2

1

)
γ(3)
qg = (CA − CF )n 3

f L
4
1

(
− 4

81
pqg(x)

)
+O

(
L3

1

)
γ(3)
gq = 0 +O

(
L3

1

)
γ(3)
gg = −γ(3)

qq,ps, (5.57)

in agreement with the new results of this chapter.

5.7 Conclusions

The recently developed FORCER package has been able to compute low-N Mellin mo-

ments of the structure functions of DIS at fourth-order in massless QCD. It has verified

and extended previous calculations of some moments of the non-singlet QCD splitting

functions, and computed moments of the singlet splitting functions for the first time.

Once some additional moments are available it will be possible to produce the first

numerical approximations to the fourth-order QCD splitting functions.

In this chapter, we have used FORCER to compute a sufficient number of Mellin

moments of very particular sets of diagrams (those leading in the colour factor nf ) to

perform reconstructions of the analytic N -dependent expressions for the large-nf a
4
s

contributions to the splitting functions. These results are the first analytic calculations

of the n 2
f terms of the non-singlet splitting functions and the n 3

f terms of the singlet

splitting functions. Where they coincide, we have shown the expressions to be in agree-

ment with existing results in the literature. These expressions can be combined with

low-N moments of the remaining colour factors to produce numerical approximations

to the fourth-order splitting functions. Such approximations will be the topic of a

future publication.

The computations of this chapter exhaust the opportunities to reconstruct analytic

expressions for anomalous dimensions from a fixed number of Mellin moments, with the

possible exception of the n 2
f terms of the fl02 diagrams contributing to the evolution

of the valence PDF qvns, defined in Eq. (2.29). The computations involved would be

more computationally demanding than anything computed for the reconstructions of

this chapter, but may be possible with further optimization of the FORCER package.
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Chapter 6

Summary and Outlook

The research presented in this thesis concerns QCD corrections to the deep-inelastic

scattering of leptons and hadrons. The framework in which we performed our cal-

culations allows the extraction of the coefficient functions, which are specific to DIS

processes, as well as the splitting functions of QCD which are universal to all inter-

actions with hadrons. As such, they are crucial theoretical input for data analysis at

current and future collider experiments, such as the LHC and its potential upgrades.

This motivates the computation of high-order QCD corrections to these quantities.

In Chapter 3, we considered the scattering of leptons and hadrons via the exchange

of a charged boson. As determined in Section 2.4, we must compute parton-level

structure functions for the linear combinations of W+ + W− exchange and W+−
W− exchange. The third-order QCD corrections to the structure functions FW

++W−

i

were computed and presented in [27, 28]. For the W+− W− combination, only a

numerical approximation based on the first five Mellin moments was available [36, 37].

The main result of Chapter 3 was the computation of the exact expression for these

third-order coefficient function contributions, c
(3),−
2,ns , c

(3),−
L,ns and c

(3),−
3,ns . We investigated

how these exact corrections compare to the existing approximations and how they affect

the convergence of the perturbative expansions of the coefficient functions themselves

and also of the structure functions after convolution with a PDF. We found both the

coefficient functions and structure functions to be reasonably well-converging for x

values as small as around 10−7 for c
(3),−
2,ns and c

(3),−
3,ns , and around 10−4 for c

(3),−
L,ns . We

also provided an exact version of the discussion of [37] regarding QCD corrections to

the Paschos-Wolfenstein relation. The approximations of the required second Mellin

moment proved to be very accurate and the conclusions here were unchanged.

In Chapter 4 we studied the small-x behaviour of both non-singlet and singlet

parton-level structure functions. In this limit, the coefficient functions and splitting

functions exhibit diverging logarithms which spoil the convergence of the perturbative

series. We saw the effects of such logarithms in Chapter 3. Our focus was on the x0

double logarithmic contributions which give the leading behaviour in the non-singlet
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cases. In the singlet cases these terms are sub-leading to the
1
x single logarithms. We

chose a functional form for the parton-level structure functions in this small-x limit,

inspired by the terms that appear in the 2 and 3 particle phase-space integrals which

were computed for calculation of the second-order coefficient functions [30, 62]. Using

the results of fixed-order N2LO calculations, we were able to determine the highest 3 ε-

poles of the parton-level structure functions to all orders in as. These poles completely

determined our functional form and thus allowed us to express the leading small-x

double logarithms (to the NNLL level) at all orders in both as and ε.

The subsequent mass factorization of the parton-level structure functions allowed

us to determine the small-x expansion coefficients of the DIS coefficient functions and

splitting functions to all orders in as. In the non-singlet cases we were able to provide

closed-form expressions which give the double logarithms to all orders in as. In the

singlet case this was not achieved but we noted some features that suggest that this

should be possible with some further investigation. We also noted that the procedure

should apply to the sub-leading x2, x4, . . . double logarithms of even-N quantities, and

to x1, x3, . . . double logarithms of odd-N quantities. While not directly phenomenolog-

ically relevant, the resummation of such contributions would provide additional checks

of reconstructions, such as those of Chapter 5, by predicting the coefficients of fur-

ther sub-leading double logarithms. Such resummations will also be the topic of future

research.

Finally in Chapter 5 we used a recently developed software package, FORCER, to

compute a large number of Mellin moments of diagrams contributing to both the non-

singlet and singlet structure functions in the large-nf limit. By investigating the func-

tional structure of the QCD splitting functions at lower orders, we were able to form

bases of functions that we assumed to be sufficient to describe the fourth-order contri-

butions. By equating these bases with the computed Mellin moments, we were able to

form systems of Diophantine equations for the unknown coefficients of these bases.

By making use of a specialized software package, we were able to solve these

Diophantine systems and thus reconstruct analytic expressions for the N dependence

of the large-nf terms of the fourth-order splitting functions. The results given in

Section 5.5 are the first analytic expressions for the n 2
f terms of the non-singlet splitting

functions and the n 3
f terms of the singlet splitting functions at fourth order. In the

near future, these reconstructions will be combined with numerical approximations

of the remaining colour factors to produce the first numerical approximations of the

fourth-order splitting functions.
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Appendix

A.1 Harmonic Sums

The harmonic sums [90] are used extensively in this thesis when discussing results

and computations in Mellin space (see the below discussion of the Mellin transform,

Appendix A.3). A harmonic sum is defined by a vector of integers ~m. For negative

integers we have an alternating sign in the numerator of the sum. For a vector of length

one, m, we define

Sm (n) =

n∑
i=1

1

im
(A.1)

and

S−m (n) =

n∑
i=1

(−1)i

im
. (A.2)

The single-positive-index harmonic sums correspond, if we let n = ∞, to positive

integer values of the Riemann zeta function ζs. Indeed, we find that fixed values of the

Riemann zeta function appear in our results.

For a vector of length l the harmonic sums are defined recursively;

Sm1,m2,...,ml
(n) =

n∑
i=1

1

im1
Sm2,...,ml

(n) (A.3)

and as above

S−m1,m2,...,ml
(n) =

n∑
i=1

(−1)i

im1
Sm2,...,ml

(n) . (A.4)

The harmonic weight of such a sum is defined as
∑l

i=1 |mi|.

We will often suppress the argument N in typesetting, to reduce the length of

expressions.

A.2 Harmonic Polylogarithms

The harmonic polylogarithms [91] are another useful set of functions with which we

can describe the results of calculations in perturbation theory. They are related to the

harmonic sums (Appendix A.1) via the Mellin transform (Appendix A.3).
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As with the harmonic sums, a harmonic polylogarithm is defined by a vector, here

with entries ∈ {−1, 0, 1}. Defining the three rational functions

f−1(x) =
1

1 + x
,

f0(x) =
1

x
,

f1(x) =
1

1− x, (A.5)

we have for a vector of length l the recursive definition

Hm1,m2,...,ml
(x) =

∫ x

0
dyfm1(y)Hm2,...,ml

(y). (A.6)

There is a caveat to this definition; for an all-zero vector of length l, we define

H01,...,0l(x) =
1

l!
lnl x. (A.7)

We introduce the “shorthand” notation that zero entries in the vector (with the

exception of in the last position) are removed and the absolute value of the following

entry is increased by one. That is,

H0,...,0︸︷︷︸
m

,±1,0,...,0︸︷︷︸
n

,±1,...(x) = H±(m+1),±(n+1),...(x). (A.8)

We will often suppress the argument x in typesetting, to reduce the length of expres-

sions.

With the above “shorthand” definition, we can define the weight of a harmonic

sum as either the number of indices in the full vector, or the sum of the absolute values

of “shorthand” indices.

A.3 The Mellin Transform and its Inverse

When performing calculations of various quantities of DIS, we often encounter Mellin

convolutions of the form

(f ⊗ g) (x) =

∫ 1

x

dy

y
f
(
x
y

)
g (y) . (A.9)

As with other types of convolution, the appropriate integral transform of the functions

reduces the convolution to a simple product. In this case, the Mellin transform has

this property and is defined by

M [f(x)] (N) =

∫ 1

0
dxxN−1f(x). (A.10)

The x-space harmonic polylogarithms described above in Appendix A.2 can be written

in terms of harmonic sums (Appendix A.1) in Mellin N -space; this is why these classes

of functions are particularly useful to us.
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The inverse transform is in general rather complicated. It is defined by an integral

over N in the complex plane,

f(x) =
1

2πi

∫ c+i∞

c−i∞
dN x−Nf(N). (A.11)

Here, since we only deal with fairly restricted classes of functions (the harmonic sums

and harmonic polylogarithms) it is possible to construct a database of the inverse

transforms of the harmonic sums by forming suitable linear combinations of harmonic

polylogarithms such that the forward Mellin transform produces the harmonic sum

desired.

The routines to perform these transforms are all included within the FORM packages

summer [90] and harmpol.

A.4 The Mellin Convolution of Plus-Distributions

In Section 3.3.4 we discussed convolutions between coefficient functions and a PDF. We

noted that one must take care to properly convolute terms of the coefficient functions

involving plus-distributions, defined by a+(x) such that∫ 1

0
dx a+(x)f(x) =

∫ 1

0
dx a(x) [f(x)− f(1)] (A.12)

where f is a regular (analytic) function of x.

To convolute such a plus-distribution with a PDF xf(x) we must compute (see

Eq. (A.9))

x [a+ ⊗ f ] (x) =

∫ 1

x

dy

y
a+(y)xf

(
x

y

)
. (A.13)

Extending the range and subtracting the “extra” part,

=

∫ 1

0
dy a+(y)

x

y
f

(
x

y

)
−
∫ x

0
dy a(y)

x

y
f

(
x

y

)
, (A.14)

we can insert the definition of the integral of a plus-distribution into the first term,

yielding

=

∫ 1

0
dy a(y)

[
x

y
f

(
x

y

)
− xf(x)

]
−
∫ x

0
dy a(y)

x

y
f

(
x

y

)
. (A.15)

Splitting the range of the first integral, the second integral cancels a term in the lower

part of the range,

=

∫ 1

x
dy a(y)

[
x

y
f

(
x

y

)
− xf(x)

]
+

∫ x

0
dy a(y)

[
�

�
�

��x

y
f

(
x

y

)
− xf(x)

]

−
∫ x

0
dy a(y)

�
�

�
��x

y
f

(
x

y

)
, (A.16)

=

∫ 1

x
dy a(y)

[
x

y
f

(
x

y

)
− xf(x)

]
−
∫ x

0
dy a(y)xf(x) . (A.17)
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In Section 3.3.4 we have that

a+(x) =

[
ln(1− x)k

1− x

]
+

, (A.18)

so the second integral can easily be evaluated by substitution as

xf(x)

∫ x

0
dy

ln(1− y)k

1− y = −xf(x)
ln(1− x)k+1

k + 1
. (A.19)

In the coefficient functions, we also have terms containing δ(1− x). For these the

convolution integral is trivial,∫ 1

x
dy δ(1− y)

x

y
f

(
x

y

)
= xf(x). (A.20)

Similar to the notation of [92], we decompose the coefficient functions into regular

and singular pieces. Let Ci,A be the regular piece and Ci,B be the plus-distribution

piece. Let Ci,C be the integrated plus-distribution and delta-function piece, that is, the

sum of the results of integrals Eq. (A.19) and Eq. (A.20). We have then, that

x [Ci ⊗ f ] (x) = +

∫ 1

x

dy

y
Ci,A(y)xf

(
x

y

)
+

∫ 1

x
dy Ci,B(y)

[
x

y
f

(
x

y

)
− xf(x)

]
+ Ci,C(x)xf(x). (A.21)

In the third line of Eq. (A.21) we must be careful to consistently handle the

(−) signs between the second integral in Eq. (A.17) and the results of Eqs. (A.19)

and (A.20).

A.5 Dispersion Relations

Here we discuss the dispersion relation required to connect Eq. (2.38), an expression for

the forward amplitude 1
2z T̂2,q, to the parton-level structure function 1

2z F̂2,q. We found

that
1

2z
T̂2,q = 2

∑
even N

(
1

z

)N
. (A.22)

The problem is that this sum converges for z > 1, but the physical kinematic region for

DIS is the range 0 < z < 1. Here we follow the reasoning of [93, 94] and Appendix B

of [36]. Writing z as ν
Q2 , we consider 1

2z T̂2,q as a complex function of ν. It has a branch

cut for ν > Q2 and, since it is an even function of ν, another for ν < −Q2. Consider

the integral

In =

∫
dν

2πi

1

νn+1

1

2z
T̂2,q = 2

∫
dν

2πi

1

νn+1

∑
even N

(
ν

Q2

)N
(A.23)
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around a closed contour around the origin (avoiding the branch cuts starting at ±Q2).

By Cauchy’s residue theorem, it is given by the residue of the pole at ν = 0; the

coefficient of the νn term of the sum. Thus,

In = 2

(
1

Q2

)n
. (A.24)

v

Q2−Q2

Figure A.1: The two integration contours of the dispersion integral.

Alternatively we may consider a deformation of the contour, pushing it out to

infinity (but avoiding the branch cuts) as depicted in Fig. A.1. The integral around

the curves at infinity and the curves around the poles vanish, leaving us with just the

integrals along the straight lines above and below the branch cuts. Each cut gives an

equal contribution, given by the discontinuity of 1
2z T̂2,q across the cut,

In = 2

∫ ∞
Q2

dν

2πi

1

νn+1
Disc

[
1

2z
T̂2,q

]
= 2

∫ ∞
Q2

dν

2πi

1

νn+1
2i Im

[
1

2z
T̂2,q

]
. (A.25)

Making a change of integration variable ν → z = Q2/ν, we find that

In = 2

(
1

Q2

)n ∫ 1

0
dzzn−1 1

π
Im

[
1

2z
T̂2,q

]
, (A.26)

and thus by equating Eq. (A.24) and Eq. (A.26) that

1 =

∫ 1

0
dzzn−1 1

π
Im

[
1

2z
T̂2,q

]
. (A.27)

Comparing Eq. (A.27) with our statement of the optical theorem (Eq. (2.32)) we see

that this is nothing but the Mellin transform of the parton-level structure function
1
2z F̂2,q. The Nth Mellin moment of 1

2z F̂2,q is thus simply given by the coefficient of

2(1/z)N in the forward Compton amplitude.

A.6 The g-Functions

Splitting functions and coefficient functions in DIS can generally be written using (in

Mellin-space) the harmonic sums, possibly multiplied by simple denominators in the
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Mellin variable N , such as 1
N , 1

N+1 etc.

This is not always the case, however. Starting at 3 loops (a3
s ) we find terms which

must be written with numerator N dependence. This numerator N dependence appears

with very particular combinations of harmonic sums and Riemann zeta values which

we call the g-functions. These were first documented in [27]. We extend the definition

a little here, to make clear whether we are discussing even- or odd-N functions.

With

f(N) = 5ζ5 − 2S−5 + 4S−2ζ3 − 4S−2,−3 + 8S−2,−2,1 + 4S3,−2 − 4S4,1 + 2S5 (A.28)

and

hE(N) = ζ3 − S−3 − S−2 + 2S−2,1 ,

hO(N) = ζ3 − S−3 + S−2 + 2S−2,1 , (A.29)

we define

g1(N) = Nf(N),

g2(N) = N2f(N),

gE3 (N) = N3f(N)− 2NhE(N),

gO3 (N) = N3f(N) + 2NhO(N). (A.30)

The forms of g1(N) and g2(N) differ in x-space after inverse Mellin transformation,

so in the x-space expressions below we define gEi (x) and gOi (x) (for i = 1, 2, 3) as the

inverse transforms for even- and odd-N . The x-space expressions are as follows, where

the odd-N functions are typeset as the even-N functions plus the odd-N−even-N

difference for compactness.

gE1 (x) = 2 (1− x)−2
[
− ζ4 + 4 H−2 ζ2 − 3 H0 ζ3 + 2 H4 + H0,0,0,0 − 2 H−2,0,0

− 4 H−2,2 − 3 H0,0 ζ2

]
+ 2 (1− x)−1

[
− 4 H−2 ζ2 + 4 H−1 ζ2 + 2 H3

− 2 H4 −H0,0,0,0 + 2 H−2,0,0 − 2 H−1,0,0 + H0,0,0 + 4 H−2,2 − 4 H−1,2

+ 3 H0,0 ζ2 − 3 (ζ2 − ζ3) H0 − (3 ζ3 − ζ4)
]

+ 2 (1 + x)−2
[

21
4 ζ4 + 2 H0 ζ3

−H0,0,0,0 + 2 H−3,0 + H0,0 ζ2

]
+ 2 (1 + x)−1

[
H0,0,0,0 −H0,0,0 − 2 H−3,0

+ 2 H−2,0 −H0,0 ζ2 + (ζ2 − 2 ζ3) H0 +
1
4 (8 ζ3 − 21 ζ4)

]
+ 2 ζ3 − 8 H−1 ζ2

+ 4 H0 ζ2 − 4 H3 + 4 H−1,0,0 − 4 H−2,0 + 8 H−1,2 (A.31)

gE2 (x) = 4 (1− x)−3
[
ζ4 − 4 H−2 ζ2 + 3 H0 ζ3 − 2 H4 −H0,0,0,0 + 2 H−2,0,0

+ 4 H−2,2 + 3 H0,0 ζ2

]
+ 4 (1− x)−2

[
6 H−2 ζ2 − 4 H−1 ζ2 − 2 H3 + 3 H4

+
3
2 H0,0,0,0 − 3 H−2,0,0 + 2 H−1,0,0 −H0,0,0 − 6 H−2,2 + 4 H−1,2
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− 9
2 H0,0 ζ2 +

3
2 (2 ζ2 − 3 ζ3) H0 +

3
2 (2 ζ3 − ζ4)

]
+ 4 (1− x)−1

[
− 2 H−2 ζ2 + 4 H−1 ζ2 + 2 H3 −H4 − 1

2 H0,0,0,0 + H−2,0,0

− 2 H−1,0,0 + H0,0,0 + 2 H−2,2 − 4 H−1,2 +
3
2 H0,0 ζ2 +

1
2 (ζ2 − 6 ζ3 + ζ4)

− 3
2 (2 ζ2 − ζ3) H0

]
+ 4 (1 + x)−3

[
− 21

4 ζ4 − 2 H0 ζ3 + H0,0,0,0 − 2 H−3,0

−H0,0 ζ2

]
+ 4 (1 + x)−2

[
− 3

2 H0,0,0,0 + H0,0,0 + 3 H−3,0 − 2 H−2,0

+
3
2 H0,0 ζ2 − (ζ2 − 3 ζ3) H0 − 1

8 (16 ζ3 − 63 ζ4)
]

+ 4 (1 + x)−1
[

H2

+
1
2 H0,0,0,0 −H0,0,0 −H−3,0 + 2 H−2,0 −H−1,0 +

1
2 (2− ζ2) H0,0

+ (ζ2 − ζ3) H0 − 1
8 (12 ζ2 − 16 ζ3 + 21 ζ4)

]
+ δ(1− x)

[
(ζ2 + ζ3)

]
+ 4 ζ2

− 4 H2 + 4 H−1,0 − 4 H0,0 (A.32)

gE3 (x) = 12 (1− x)−4
[
− ζ4 + 4 H−2 ζ2 − 3 H0 ζ3 + 2 H4 + H0,0,0,0 − 2 H−2,0,0

− 4 H−2,2 − 3 H0,0 ζ2

]
+ 12 (1− x)−3

[
− 8 H−2 ζ2 + 4 H−1 ζ2 + 2 H3

− 4 H4 − 2 H0,0,0,0 + 4 H−2,0,0 − 2 H−1,0,0 + H0,0,0 + 8 H−2,2 − 4 H−1,2

+ 6 H0,0 ζ2 − 3 (ζ2 − 2 ζ3) H0 − (3 ζ3 − 2 ζ4)
]

+ 2 (1− x)−2
[

28 H−2 ζ2

− 36 H−1 ζ2 − 18 H3 + 14 H4 + 7 H0,0,0,0 − 14 H−2,0,0 + 18 H−1,0,0

− 9 H0,0,0 − 28 H−2,2 + 36 H−1,2 − 21 H0,0 ζ2 − (3 ζ2 − 27 ζ3 + 7 ζ4)

+ 3 (9 ζ2 − 7 ζ3) H0

]
+ 2 (1− x)−1

[
− 4 H−2 ζ2 + 12 H−1 ζ2 + 2 H2 + 6 H3

− 2 H4 −H0,0,0,0 + 2 H−2,0,0 − 6 H−1,0,0 + 3 H0,0,0 + 4 H−2,2 − 12 H−1,2

+ (1 + 3 ζ2) H0,0 + (ζ2 − 9 ζ3 + ζ4) − 3 (3 ζ2 − ζ3) H0

]
+ 12 (1 + x)−4

[
21
4 ζ4 + 2 H0 ζ3 −H0,0,0,0 + 2 H−3,0 + H0,0 ζ2

]
+ 12 (1 + x)−3

[
2 H0,0,0,0 −H0,0,0 − 4 H−3,0 + 2 H−2,0 − 2 H0,0 ζ2

+ (ζ2 − 4 ζ3) H0 +
1
2 (4 ζ3 − 21 ζ4)

]
+ 2 (1 + x)−2

[
− 7 H0,0,0,0 + 9 H0,0,0

+ 14 H−3,0 − 18 H−2,0 + 6 H−1,0 − (3− 7 ζ2) H0,0 − (3 + 9 ζ2 − 14 ζ3) H0

+
3
4 (4 ζ2 − 24 ζ3 + 49 ζ4)

]
+ 2 (1 + x)−1

[
− 2 H2 + H0,0,0,0 − 3 H0,0,0

− 2 H−3,0 + 6 H−2,0 − 6 H−1,0 + (2− ζ2) H0,0 + (4 + 3 ζ2 − 2 ζ3) H0

− 1
4 (4 + 4 ζ2 − 24 ζ3 + 21 ζ4)

]
+ δ(1− x)

[
− (ζ2 + ζ3)

]
+ 2 − 2 H0 (A.33)

gO1 (x) = gE1 (x) + 2 (1 + x)−2
[
− 21

2 ζ4 − 4 H0 ζ3 + 2 H0,0,0,0 − 4 H−3,0 − 2 H0,0 ζ2

]
+ 2 (1 + x)−1

[
− 2 H0,0,0,0 + 2 H0,0,0 + 4 H−3,0 − 4 H−2,0 + 2 H0,0 ζ2

− 2 (ζ2 − 2 ζ3) H0 − 1
2 (8 ζ3 − 21 ζ4)

]
+ 8 ζ3 + 4 H0 ζ2 − 4 H0,0,0

+ 8 H−2,0 (A.34)
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gO2 (x) = gE2 (x) + 4 (1 + x)−3
[

21
2 ζ4 + 4 H0 ζ3 − 2 H0,0,0,0 + 4 H−3,0 + 2 H0,0 ζ2

]
+ 4 (1 + x)−2

[
3 H0,0,0,0 − 2 H0,0,0 − 6 H−3,0 + 4 H−2,0 − 3 H0,0 ζ2

+ 2 (ζ2 − 3 ζ3) H0 +
1
4 (16 ζ3 − 63 ζ4)

]
+ 4 (1 + x)−1

[
−H0,0,0,0

+ 2 H0,0,0 + 2 H−3,0 − 4 H−2,0 + 2 H−1,0 − (1− ζ2) H0,0 − 2 (ζ2 − ζ3) H0

+
1
4 (4 ζ2 − 16 ζ3 + 21 ζ4)

]
+ δ(1− x)

[
− 2 ζ3

]
− 4 ζ2 − 8 H−1,0 + 4 H0,0

(A.35)

gO3 (x) = gE3 (x) + 12 (1 + x)−4
[
− 21

2 ζ4 − 4 H0 ζ3 + 2 H0,0,0,0 − 4 H−3,0 − 2 H0,0 ζ2

]
+ 12 (1 + x)−3

[
− 4 H0,0,0,0 + 2 H0,0,0 + 8 H−3,0 − 4 H−2,0 + 4 H0,0 ζ2

− 2 (ζ2 − 4 ζ3) H0 − (4 ζ3 − 21 ζ4)
]

+ 2 (1 + x)−2
[

14 H0,0,0,0 − 18 H0,0,0

− 28 H−3,0 + 36 H−2,0 − 12 H−1,0 + 2 (3− 7 ζ2) H0,0

+ 2 (3 + 9 ζ2 − 14 ζ3) H0 − 3
2 (4 ζ2 − 24 ζ3 + 49 ζ4)

]
+ 2 (1 + x)−1

[
− 2 H0,0,0,0 + 6 H0,0,0 + 4 H−3,0 − 12 H−2,0 + 12 H−1,0

− 2 (3− ζ2) H0,0 − 2 (4 + 3 ζ2 − 2 ζ3) H0 +
1
2 (4 + 12 ζ2 − 24 ζ3 + 21 ζ4)

]
+ δ(1− x)

[
2 ζ3

]
− 4 + 4 H0 (A.36)

Despite containing these positive powers of N the expressions are nonetheless finite

as N → ∞ or equivalently, x → 1. In the large-x limit they go as powers of ln(1 − x)

suppressed by powers of (1− x),

gE1 (x)→ [ζ2 + ζ3]− (1− x)[ζ2 + ζ3] + (1− x)2
[

5
8 −

1
4ζ2 − 1

2ζ3 − 1
2 ln(1− x)

]
+O

(
(1− x)3

)
,

gE2 (x)→ δ(1− x)[ζ2 + ζ3]− [ζ2 + ζ3] + (1− x)
[

3
4 +

1
2ζ2 − ln(1− x)

]
+ (1− x)2

[
−9

8 +
1
2ζ3 +

1
4ζ2 +

1
2 ln(1− x)

]
+O

(
(1− x)3

)
,

gE3 (x)→− δ(1− x)[ζ2 + ζ3] +
[

3
4 +

1
2ζ2 + ln(1− x)

]
+ (1− x)

[
−1

2 + ζ3

]
+ (1− x)2

[
− 7

24 −
1
12ζ2 +

1
2ζ3 − 1

2 ln(1− x)
]

+O
(
(1− x)3

)
, (A.37)

gO1 (x)→ [ζ2 − ζ3]− (1− x)[ζ2 − ζ3] + (1− x)2
[

5
8 −

1
4ζ2 +

1
2ζ3 − 1

2 ln(1− x)
]

+O
(
(1− x)3

)
,

gO2 (x)→ δ(1− x)(ζ2 − ζ3)− [ζ2 − ζ3] + (1− x)
[

3
4 +

1
2ζ2 − ln(1− x)

]
+ (1− x)2

[
−9

8 +
1
4ζ2 − 1

2ζ3 +
1
2 ln(1− x)

]
+O

(
(1− x)3

)
,

gO3 (x)→− δ(1− x)(ζ2 − ζ3)−
[

5
4 −

1
2ζ2 − ln(1− x)

]
+ (1− x)

[
3
2 − ζ3

]
+ (1− x)2

[
41
24 −

1
12ζ2 − 1

2ζ3 − 1
2 ln(1− x)

]
+O

(
(1− x)3

)
. (A.38)
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It is worth taking the time to describe how an inverse Mellin transform of these

quantities can be performed. The numerator N adds an additional complication and

the transform cannot be automatically performed by the procedures we usually use to

produce x-space expressions, which use routines from the FORM package summer [90].

We seek a function g1(x) (this argument applies to both even- and odd-N functions)

such that

g1(N) =

∫ 1

0
dxxN−1[g1(x)] = N

∫ 1

0
dxxN−1[f(x)]. (A.39)

Proceeding by parts

g1(N) = ��N

[
xN

��N
f(x)

]1

0

−��N

∫ 1

0
dxxN−1

[ x
��N
f ′(x)

]
, (A.40)

and bringing the boundary term inside the integral

g1(N) =

∫ 1

0
dxxN−1

[
δ(1− x)f(1)− xf ′(x)

]
, (A.41)

we have in the square brackets an x-space expression for g1(N).

We can use our x-space expression for g1(N) to compute the inverse Mellin trans-

form of g2(N) in the same way,

g2(N) =

∫ 1

0
dxxN−1

[
δ(1− x)g1(1)− xg′1(x)

]
. (A.42)

Since it turns out that f(1) = 0, we sidestep the issues of evaluating the delta function

at 0 and of taking its derivative.

Similarly for gE,O3 (N) we have

gE,O3 (N) =

∫ 1

0
dxxN−1

[
δ(1− x)

(
g2(1)∓ hE,O(1)

)
− x

(
g′2(x)∓ hE,O(x)

)]
. (A.43)

Here, delta functions at 0 and delta function derivatives from g2(x) are exactly cancelled

by contributions from hE,O(x) and again we do not have to consider how to treat these.

A.7 Third-Order Coefficient Functions in Charged-Cur-
rent Deep-Inelastic Scattering

We show here the full x-space results for the coefficient functions discussed in Sec-

tion 3.3. We typeset only the differences between the even-N and odd-N coefficient

functions to save space; the full expressions can be reconstructed by combining these

expressions and those presented in [27] and [28]. We repeat the definition of the even-

N−odd-N differences here for convenience. See Eq. (3.6) for a more detailed discussion.

Let

δCa = CW
++W−

a,ns − CW+−W−
a,ns , a = 2, L,

δC3 = CW
+−W−

3,ns − CW++W−

3,ns . (A.44)
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In terms of the harmonic polylogarithms defined in Appendix A.2 and the g-functions

defined in Appendix A.6, the third-order contributions to these coefficient function

differences are given by

δc
(3)
2,ns(x) =

CF (CA − 2CF )CF

(
x2

{
2464 H−2 ζ2 + 832 H3 + 1856 H4 − 448 H−3,0

− 1184/5 H−2,0 − 2368 H−2,2 − 2464 H−1,−1 ζ2 − 160 H−1,2 − 1664 H−1,3

− 416 H1,0 ζ2 − 96 H1,1 ζ2 + 192 H1,3 − 576/5 H2,0 − 576/5 H2,1 + 192 H3,0

+ 192 H3,1 + 192 H−2,−1,0 − 1664 H−2,0,0 + 192 H−1,−2,0 − 256/5 H−1,−1,0

+ 2368 H−1,−1,2 + 176 H−1,0,0 − 192 H−1,2,0 − 192 H−1,2,1 + 688 H0,0,0

− 256 H1,−2,0 − 192 H2,0,0 − 192 H−1,−1,−1,0 + 1664 H−1,−1,0,0 − 704 H−1,0,0,0

+ 832 H0,0,0,0 + 128 H1,0,0,0 − 192 H1,1,0,0 − 16/5 (12 − 20 ζ3 + 325 ζ2) H1

− 96/25 (52 + 25 ζ2) H2 + 8/25 (185 − 5900 ζ3 + 1876 ζ2 + 1610 ζ2
2 )

+ 16/25 (293 − 3050 ζ3 − 2825 ζ2) H0 + 32/25 (586 + 1475 ζ2) H−1,0

− 16/25 (827 + 3600 ζ2) H0,0 + 672/5 (15 ζ3 + ζ2) H−1

}
+ x3

{
− 4368/5 H−2 ζ2 + 96/5 H1 ζ2 − 144/5 H2 ζ2 − 10416/25 H3 − 2496/5 H4

+ 96 H−3,0 + 10416/25 H−2,0 + 3936/5 H−2,2 + 7008/5 H−1,−1 ζ2

+ 19872/25 H−1,2 + 960 H−1,3 − 288/5 H3,0 − 288/5 H3,1 − 864/5 H−2,−1,0

+ 2976/5 H−2,0,0 − 576/5 H−1,−2,0 − 16032/25 H−1,−1,0 − 1344 H−1,−1,2

+ 21792/25 H−1,0,0 + 576/5 H−1,2,0 + 576/5 H−1,2,1 − 11376/25 H0,0,0

+ 96/5 H2,0,0 + 576/5 H−1,−1,−1,0 − 960 H−1,−1,0,0 + 384 H−1,0,0,0

− 1056/5 H0,0,0,0 + 32/25 (314 − 825 ζ2) H−1,0 − 12/25 (337 − 1240 ζ2) H0,0

+ 144/25 (95 ζ3 + 138 ζ2) H0 − 48/25 (600 ζ3 + 581 ζ2) H−1 + 12/25 (2010 ζ3

+ 337 ζ2 − 322 ζ2
2 )

}
+
(
1/x2 + 9x3

) {
96/5 H−2 ζ2 + 32/5 H2 ζ2

− 128/15 H−2,0 − 64/5 H−2,2 − 1168/15 H−1,−1 ζ2 − 3152/75 H−1,2

− 160/3 H−1,3 + 112/15 H1,0 ζ2 + 16/5 H1,1 ζ2 − 32/15 H1,3 + 64/5 H−2,−1,0

− 64/5 H−2,0,0 + 32/5 H−1,−2,0 + 2512/75 H−1,−1,0 + 224/3 H−1,−1,2

− 3472/75 H−1,0,0 − 32/5 H−1,2,0 − 32/5 H−1,2,1 + 64/15 H1,−2,0

− 32/5 H−1,−1,−1,0 + 160/3 H−1,−1,0,0 − 64/3 H−1,0,0,0 − 32/15 H1,0,0,0

+ 32/15 H1,1,0,0 − 4/225 (1501 − 3300 ζ2) H−1,0 − 8/75 (30 ζ3 − 197 ζ2) H1

+ 8/75 (600 ζ3 + 551 ζ2) H−1

}
+
(
1/x+ 9x2

) {
1888/15 H−1 ζ2 − 16/25 H2

+ 832/15 H3 − 32/3 H−2,0 − 1024/25 H−1,0 − 320/3 H−1,2 + 2672/75 H0,0

− 32/5 H1,0 − 32/5 H1,1 + 32/5 H2,0 + 32/5 H2,1 + 192/5 H−1,−1,0
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− 256/3 H−1,0,0 + 352/15 H0,0,0 − 32/15 H1,0,0 − 16/25 (19 − 20 ζ2) H1

− 4/225 (743 + 3720 ζ2) H0 + 4/225 (983 − 3420 ζ3 − 2208 ζ2)

}
+ (1− x)

{
− 3728/3 H−3 ζ2 − 1912 H4 − 248/3 H5 + 1504/3 H−4,0 + 3728/3 H−3,0

+ 2080/3 H−3,2 + 9808/3 H−2,−1 ζ2 + 10544/3 H−2,2 + 5584/3 H−2,3

+ 3040 H−1,−2 ζ2 + 13136/3 H−1,3 + 1760 H−1,4 + 856/3 H1,2 − 448/3 H1,3

− 448/3 H2,2 + 320 H2,3 − 1948/3 H3,0 − 2528/3 H3,1 + 32/3 H3,2 − 32 H4,0

− 32 H4,1 − 3296/3 H−3,−1,0 + 1248 H−3,0,0 − 928 H−2,−2,0 − 4880/3 H−2,−1,0

− 7936/3 H−2,−1,2 + 3168 H−2,0,0 + 640/3 H−2,2,0 + 224 H−2,2,1 − 800 H−1,−3,0

− 2408/3 H−1,−2,0 − 2560 H−1,−2,2 − 4960 H−1,−1,−1 ζ2 − 18080/3 H−1,−1,2

− 3040 H−1,−1,3 + 2048/3 H−1,2,0 + 896 H−1,2,1 + 160 H−1,3,0 + 160 H−1,3,1

− 64 H1,−2,0 + 1808/5 H1,0,0 + 184 H1,1,0 + 192 H1,1,1 − 32/3 H1,1,2

+ 64/3 H1,2,0 − 320 H2,−2,0 − 256/3 H2,0,0 − 256/3 H2,1,0 − 96 H2,1,1

+ 32/3 H3,0,0 − 32/3 H3,1,0 + 1248 H−2,−1,−1,0 − 8336/3 H−2,−1,0,0

+ 1456 H−2,0,0,0 + 960 H−1,−2,−1,0 − 2400 H−1,−2,0,0 + 960 H−1,−1,−2,0

+ 1424 H−1,−1,−1,0 + 4480 H−1,−1,−1,2 − 13064/3 H−1,−1,0,0 − 320 H−1,−1,2,0

− 320 H−1,−1,2,1 + 2380 H−1,0,0,0 − 320 H−1,2,0,0 − 1184 H0,0,0,0 − 64/3 H1,0,0,0

− 32/3 H1,1,0,0 + 32/3 H1,1,1,0 + 160 H2,0,0,0 − 320 H2,1,0,0 − 960 H−1,−1,−1,−1,0

+ 4000 H−1,−1,−1,0,0 − 1920 H−1,−1,0,0,0 + 800 H−1,0,0,0,0 − 136 H0,0,0,0,0

− 4/3 (189 + 1864 ζ2) H−2,0 + 40/3 (209 − 168 ζ2) H−1,0,0 − 8/15 (569

+ 1050 ζ2) H2,0 + 8 (607 + 20 ζ2) H−1,2 − 8/15 (799 + 150 ζ2) H2,1 + 8/15 (971

+ 7200 ζ2) H−1,−1,0 + 8/15 (1623 + 490 ζ2) H1,0 + 8/15 (2283 + 370 ζ2) H1,1

− 4/15 (16091 + 1240 ζ2) H3 + 2/75 (17569 + 11800 ζ3 + 21440 ζ2) H1

− 2/15 (18767 − 780 ζ2) H0,0,0 + 2/75 (32084 + 101450 ζ3 + 210835 ζ2

+ 2660 ζ2
2 ) H0 + 4/225 (46153 − 94500 ζ3 − 309150 ζ2) H−1,0 + 2/75 (47983

+ 3000 ζ3 − 31050 ζ2) H2 + 2/225 (63894 − 112350 ζ5 + 5400 ζ4 + 574155 ζ3

− 98758 ζ2 − 87000 ζ2 ζ3 + 17775 ζ2
2 ) + 2/225 (103519 + 36600 ζ3

+ 252300 ζ2) H0,0 − 8 (347 ζ3 + 541 ζ2) H−2 + 8/3 (1530 ζ3 + 2527 ζ2) H−1,−1

− 4/15 (21720 ζ3 + 17239 ζ2 − 1770 ζ2
2 ) H−1

}
+ pqq(−x)

{
5600/3 H−3 ζ2

− 52 H4 + 560 H5 − 512 H−4,0 + 112/3 H−3,0 − 1472 H−3,2 − 3024 H−2,−1 ζ2

− 240 H−2,2 − 8048/3 H−2,3 − 3008 H−1,−2 ζ2 − 400 H−1,3 − 2096 H−1,4

+ 8 H2,2 − 96 H2,3 + 84 H3,0 + 128 H3,1 + 416/3 H3,2 + 976/3 H4,0 + 432 H4,1

+ 2368/3 H−3,−1,0 − 4480/3 H−3,0,0 + 640 H−2,−2,0 + 112 H−2,−1,0
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+ 2624 H−2,−1,2 − 16 H−2,0,0 − 768 H−2,2,0 − 2912/3 H−2,2,1 + 2624/3 H−1,−3,0

+ 120 H−1,−2,0 + 2624 H−1,−2,2 + 4032 H−1,−1,−1 ζ2 + 384 H−1,−1,2

+ 12448/3 H−1,−1,3 − 192 H−1,2,0 − 256 H−1,2,1 − 288 H−1,2,2 − 2800/3 H−1,3,0

− 3616/3 H−1,3,1 + 64/3 H2,−2,0 − 8 H2,1,0 − 32/3 H2,1,2 + 64/3 H2,2,0

+ 512/3 H3,0,0 + 96 H3,1,0 + 96 H3,1,1 − 800 H−2,−1,−1,0 + 2512 H−2,−1,0,0

− 1856 H−2,0,0,0 − 768 H−1,−2,−1,0 + 7520/3 H−1,−2,0,0 − 736 H−1,−1,−2,0

− 288 H−1,−1,−1,0 − 3648 H−1,−1,−1,2 + 240 H−1,−1,0,0 + 3968/3 H−1,−1,2,0

+ 1664 H−1,−1,2,1 + 36 H−1,0,0,0 − 1216/3 H−1,2,0,0 − 544/3 H−1,2,1,0

− 192 H−1,2,1,1 − 596/3 H0,0,0,0 − 64 H2,0,0,0 − 64 H2,1,0,0 + 32/3 H2,1,1,0

+ 768 H−1,−1,−1,−1,0 − 3424 H−1,−1,−1,0,0 + 8720/3 H−1,−1,0,0,0

− 1264 H−1,0,0,0,0 + 272 H0,0,0,0,0 − 8 (4 − 310 ζ3 − 53 ζ2) H−1,0 + 16/3 (6

+ 43 ζ2) H2,1 + 16/3 (6 + 53 ζ2) H2,0 − 32 (8 + 149 ζ2) H−1,−1,0 − 4/3 (24

− 308 ζ3 − 183 ζ2) H2 − 16/3 (31 + 41 ζ2) H−1,2 − 4/3 (54 + 572 ζ3

− 107 ζ2) H0,0 + 8/3 (61 + 164 ζ2) H3 + 8/3 (79 + 894 ζ2) H−1,0,0 + 8/3 (85

+ 1184 ζ2) H−2,0 − 2/3 (239 + 904 ζ2) H0,0,0 − 2/15 (1205 − 360 ζ4 − 10 ζ3

+ 555 ζ2 + 916 ζ2
2 ) H0 − 4/15 (2480 ζ5 + 75 ζ3 − 60 ζ2 − 3660 ζ2 ζ3 + 408 ζ2

2 )

− 48 (85 ζ3 + 11 ζ2) H−1,−1 + 8/3 (1100 ζ3 + 111 ζ2) H−2 + 4/15 (2055 ζ3

+ 140 ζ2 − 476 ζ2
2 ) H−1

}
+ 1200 H−3 ζ2 + 7264/3 H4 − 288 H−4,0

− 1424 H−3,0 − 672 H−3,2 − 3744 H−2,−1 ζ2 − 5232 H−2,2 − 2016 H−2,3

− 3648 H−1,−2 ζ2 − 7696 H−1,3 − 2112 H−1,4 − 512/3 H1,3 + 288 H2,2

− 384 H2,3 + 2704/3 H3,0 + 3616/3 H3,1 + 1056 H−3,−1,0 − 1056 H−3,0,0

+ 960 H−2,−2,0 + 5648/3 H−2,−1,0 + 3072 H−2,−1,2 − 13040/3 H−2,0,0

− 192 H−2,2,0 − 192 H−2,2,1 + 960 H−1,−3,0 + 3808/3 H−1,−2,0 + 3072 H−1,−2,2

+ 5952 H−1,−1,−1 ζ2 + 29792/3 H−1,−1,2 + 3648 H−1,−1,3 − 4096/3 H−1,2,0

− 1792 H−1,2,1 − 192 H−1,3,0 − 192 H−1,3,1 + 2676 H0,0,0 + 640/3 H1,−2,0

+ 64/3 H1,0,0 + 384 H2,−2,0 + 224 H2,0,0 + 544/3 H2,1,0 + 192 H2,1,1

− 1344 H−2,−1,−1,0 + 2976 H−2,−1,0,0 − 1344 H−2,0,0,0 − 1152 H−1,−2,−1,0

+ 2880 H−1,−2,0,0 − 1152 H−1,−1,−2,0 − 6016/3 H−1,−1,−1,0 − 5376 H−1,−1,−1,2

+ 22192/3 H−1,−1,0,0 + 384 H−1,−1,2,0 + 384 H−1,−1,2,1 − 13184/3 H−1,0,0,0

+ 384 H−1,2,0,0 + 4016/3 H0,0,0,0 − 320/3 H1,0,0,0 + 512/3 H1,1,0,0 − 192 H2,0,0,0

+ 384 H2,1,0,0 + 1152 H−1,−1,−1,−1,0 − 4800 H−1,−1,−1,0,0 + 2304 H−1,−1,0,0,0

− 960 H−1,0,0,0,0 + 64 (1 + ζ2) H1,1 + 64/3 (3 + 16 ζ2) H1,0 + 32/3 (15 − 3 ζ3

+ 64 ζ2) H1 + 16/5 (17 + 840 ζ2) H−2,0 + 16/5 (353 + 30 ζ2) H2,1 − 32/15 (373
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+ 2160 ζ2) H−1,−1,0 − 16 (487 + 12 ζ2) H−1,2 + 8/15 (1483 + 1260 ζ2) H2,0

− 8/3 (1649 − 1008 ζ2) H−1,0,0 + 8/3 (1789 + 126 ζ2) H3 − 16/225 (3290

− 21600 ζ5 + 77625 ζ3 + 631 ζ2 − 10125 ζ2 ζ3 + 4695 ζ2
2 ) − 4/75 (6793

+ 1800 ζ3 − 26450 ζ2) H2 − 8/225 (27083 − 56700 ζ3 − 268200 ζ2) H−1,0

− 4/225 (32249 + 5400 ζ3 + 159000 ζ2) H0,0 − 2/225 (42037 + 344400 ζ3

+ 692400 ζ2 + 2700 ζ2
2 ) H0 + 40/3 (234 ζ3 + 463 ζ2) H−2 − 32/3 (459 ζ3

+ 1025 ζ2) H−1,−1 + 8/15 (17945 ζ3 + 13864 ζ2 − 1062 ζ2
2 ) H−1

+ 2/3
(
gE2 (x)− gO2 (x)

)
− 46/3

(
gE1 (x)− gO1 (x)

)
− 4/3 ζ3 δ(1− x)

)
+ CF (CA − 2CF )CA

(
x2

{
− 1408 H−2 ζ2 − 1104/5 H2 − 208 H3 − 800 H4

+ 256 H−3,0 − 384 H−2,0 + 1408 H−2,2 + 1408 H−1,−1 ζ2 − 176 H−1,2

+ 704 H−1,3 + 224 H1,0 ζ2 − 96 H1,3 + 704 H−2,0,0 + 384 H−1,−1,0

− 1408 H−1,−1,2 − 984 H−1,0,0 + 3192/5 H0,0,0 + 256 H1,−2,0 + 96 H2,0,0

− 704 H−1,−1,0,0 + 128 H−1,0,0,0 − 256 H0,0,0,0 − 128 H1,0,0,0 + 96 H1,1,0,0

− 416/3 (7 + 6 ζ2) H−1,0 − 8/15 (132 + 135 ζ3 + 2291 ζ2 − 24 ζ2
2 )

+ 16/15 (853 + 990 ζ2) H0,0 − 8/25 (2769 − 3100 ζ3 − 855 ζ2) H0 − 8 (8 ζ3

− 37 ζ2) H1 − 16 (66 ζ3 − 23 ζ2) H−1

}
+ x3

{
384 H−2 ζ2 + 456/5 H3

+ 1008/5 H4 − 192/5 H−3,0 + 944/5 H−2,0 − 384 H−2,2 − 768 H−1,−1 ζ2

− 912/5 H−1,2 − 384 H−1,3 − 192 H−2,0,0 + 224/5 H−1,−1,0 + 768 H−1,−1,2

+ 1544/5 H−1,0,0 − 772/5 H0,0,0 − 48/5 H2,0,0 + 384 H−1,−1,0,0

− 192/5 H−1,0,0,0 + 192/5 H0,0,0,0 − 12/25 (623 + 500 ζ2) H0,0 + 8/25 (1649

+ 1320 ζ2) H−1,0 + 64/5 (45 ζ3 + 16 ζ2) H−1 − 4 (60 ζ3 + 37 ζ2) H0

− 4/25 (995 ζ3 − 1869 ζ2 − 72 ζ2
2 )

}
+
(
1/x2 + 9x3

) {
− 352/15 H−2,0

+ 128/3 H−1,−1 ζ2 + 152/15 H−1,2 + 64/3 H−1,3 − 16/5 H1,0 ζ2 + 16/15 H1,3

− 112/45 H−1,−1,0 − 128/3 H−1,−1,2 − 772/45 H−1,0,0 − 64/15 H1,−2,0

− 64/3 H−1,−1,0,0 + 32/15 H−1,0,0,0 + 32/15 H1,0,0,0 − 16/15 H1,1,0,0

− 4/225 (1429 + 1320 ζ2) H−1,0 + 4/15 (20 ζ3 − 19 ζ2) H1 − 32/45 (45 ζ3

+ 16 ζ2) H−1

}
+
(
1/x+ 9x2

) {
− 128/3 H−1 ζ2 − 184/15 H1 + 184/15 H2

− 112/5 H3 + 64/15 H−2,0 − 472/9 H−1,0 + 128/3 H−1,2 + 964/45 H0,0

+ 64/3 H−1,0,0 − 64/15 H0,0,0 + 16/15 H1,0,0 + 16/225 (386 + 375 ζ2) H0

− 4/225 (2864 − 1500 ζ3 + 575 ζ2)

}
+ (1− x)

{
136/3 H−3 ζ2 + 2048/3 H4

+ 16/3 H5 − 16 H−4,0 + 768 H−3,0 − 32/3 H−3,2 − 4000/3 H−2,−1 ζ2
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− 1504 H−2,2 − 1976/3 H−2,3 − 1280 H−1,−2 ζ2 − 22744/9 H−1,2

− 6016/3 H−1,3 − 800 H−1,4 − 128/3 H1,2 + 304/3 H1,3 + 2272/9 H2,1

+ 32 H2,2 − 160 H2,3 + 616/3 H3,0 + 320 H3,1 − 16/3 H3,2 + 208/3 H−3,−1,0

− 56 H−3,0,0 + 112/3 H−2,−2,0 − 2336/3 H−2,−1,0 + 3920/3 H−2,−1,2

+ 832/3 H−2,0,0 + 16/3 H−2,2,0 + 320 H−1,−3,0 − 1040 H−1,−2,0 + 1280 H−1,−2,2

+ 2560 H−1,−1,−1 ζ2 + 8960/3 H−1,−1,2 + 1280 H−1,−1,3 − 896/3 H−1,2,0

− 1280/3 H−1,2,1 + 64 H1,−2,0 − 1472/15 H1,0,0 + 128/3 H1,1,0 + 32/3 H1,1,2

− 64/3 H1,2,0 + 320 H2,−2,0 + 64/3 H2,0,0 − 32 H2,1,0 + 16/3 H3,1,0

− 160/3 H−2,−1,−1,0 + 2152/3 H−2,−1,0,0 − 592/3 H−2,0,0,0 + 640 H−1,−2,0,0

+ 2416/3 H−1,−1,−1,0 − 2560 H−1,−1,−1,2 − 56 H−1,−1,0,0 + 8 H−1,0,0,0

+ 160 H−1,2,0,0 + 644/3 H0,0,0,0 + 16 H1,1,0,0 − 32/3 H1,1,1,0 − 160 H2,0,0,0

+ 160 H2,1,0,0 − 1280 H−1,−1,−1,0,0 + 320 H−1,−1,0,0,0 − 320 H−1,0,0,0,0

+ 16 H0,0,0,0,0 + 160 (1 + 2 ζ2) H2,0 − 64/9 (71 + 18 ζ2) H1,1 − 8/3 (91

+ 58 ζ2) H1,0 + 32/9 (158 + 315 ζ2) H−1,0,0 + 64/15 (418 + 195 ζ2) H−2,0

+ 4/45 (491 − 90 ζ2) H0,0,0 − 4/27 (626 + 1404 ζ3 + 2799 ζ2) H1 − 8/9 (2891

+ 1800 ζ2) H−1,−1,0 − 8/27 (2920 − 1269 ζ2) H2 + 8/15 (3869 + 10 ζ2) H3

− 4/15 (7844 + 190 ζ3 + 3135 ζ2) H0,0 + 4/135 (54673 + 32400 ζ3

+ 78120 ζ2) H−1,0 + 2/2025 (217793 + 318600 ζ5 − 48600 ζ4 − 1320750 ζ3

+ 1831500 ζ2 + 396900 ζ2 ζ3 + 174825 ζ2
2 ) − 2/2025 (1192459 + 507600 ζ3

+ 2489850 ζ2 − 16740 ζ2
2 ) H0 − 8 (240 ζ3 + 323 ζ2) H−1,−1 + 8/3 (379 ζ3

+ 418 ζ2) H−2 + 4/9 (4686 ζ3 + 2795 ζ2 + 72 ζ2
2 ) H−1

}
+ pqq(−x)

{
− 2048/3 H−3 ζ2 + 1648/9 H4 − 160 H5 + 160/3 H−4,0 − 3920/9 H−3,0

+ 704 H−3,2 + 1312 H−2,−1 ζ2 − 352/9 H−2,2 + 3472/3 H−2,3 + 1296 H−1,−2 ζ2

− 352/9 H−1,3 + 768 H−1,4 − 512/3 H2,0 ζ2 − 128 H2,1 ζ2 + 224/3 H2,3

− 352/9 H3,1 − 64/3 H3,2 − 64 H4,0 − 320/3 H4,1 + 128/3 H−3,−1,0

+ 1120/3 H−3,0,0 + 64/3 H−2,−2,0 + 3872/9 H−2,−1,0 − 1312 H−2,−1,2

− 6128/9 H−2,0,0 + 928/3 H−2,2,0 + 1280/3 H−2,2,1 − 128/3 H−1,−3,0

+ 3872/9 H−1,−2,0 − 1312 H−1,−2,2 − 1920 H−1,−1,−1 ζ2 − 1984 H−1,−1,3

+ 704/9 H−1,2,1 + 160/3 H−1,2,2 + 784/3 H−1,3,0 + 1280/3 H−1,3,1

− 64/3 H2,−2,0 + 16 H2,0,0 + 32/3 H2,1,2 − 64/3 H2,2,0 − 160/3 H3,0,0

+ 64/3 H3,1,0 − 2128/3 H−2,−1,0,0 + 1424/3 H−2,0,0,0 − 32 H−1,−2,−1,0

− 704 H−1,−2,0,0 − 64 H−1,−1,−2,0 − 3520/9 H−1,−1,−1,0 + 1920 H−1,−1,−1,2
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+ 5984/9 H−1,−1,0,0 − 1792/3 H−1,−1,2,0 − 2560/3 H−1,−1,2,1

− 5912/9 H−1,0,0,0 + 448/3 H−1,2,0,0 − 160/3 H−1,2,1,0 + 2972/9 H0,0,0,0

+ 128/3 H2,0,0,0 + 128/3 H2,1,0,0 − 32/3 H2,1,1,0 + 1088 H−1,−1,−1,0,0

− 2432/3 H−1,−1,0,0,0 + 928/3 H−1,0,0,0,0 − 64 H0,0,0,0,0 + 16/27 (17

− 396 ζ2) H3 − 32/27 (17 − 144 ζ2) H−1,2 + 16/3 (21 − 46 ζ3 − 27 ζ2) H2

+ 64/9 (67 + 312 ζ2) H−1,−1,0 + 16/27 (463 + 288 ζ2) H0,0,0 − 16/27 (679

+ 2277 ζ2) H−2,0 − 16/27 (973 + 1548 ζ2) H−1,0,0 − 8/81 (2129 + 8964 ζ3

− 1305 ζ2) H−1,0 + 4/81 (6125 + 3888 ζ3 − 5229 ζ2) H0,0 + 2/135 (17715

− 3240 ζ4 − 16620 ζ3 − 5440 ζ2 + 4176 ζ2
2 ) H0 + 2/81 (6372 ζ5 − 10260 ζ3

− 8794 ζ2 − 14040 ζ2 ζ3 + 1107 ζ2
2 ) + 32/9 (543 ζ3 − 55 ζ2) H−1,−1

− 16/9 (687 ζ3 − 143 ζ2) H−2 + 8/135 (2640 ζ3 + 4360 ζ2 + 423 ζ2
2 ) H−1

}
− 2176 H3 − 2896/3 H4 − 2480/3 H−3,0 + 1536 H−2,−1 ζ2 + 7280/3 H−2,2

+ 768 H−2,3 + 1536 H−1,−2 ζ2 + 35024/9 H−1,2 + 10816/3 H−1,3 + 960 H−1,4

− 192 H1,0 ζ2 + 256/3 H1,3 − 4544/9 H2,1 − 160/3 H2,2 + 192 H2,3 − 808/3 H3,0

− 1280/3 H3,1 + 3248/3 H−2,−1,0 − 1536 H−2,−1,2 + 64/3 H−2,0,0

− 384 H−1,−3,0 + 3760/3 H−1,−2,0 − 1536 H−1,−2,2 − 3072 H−1,−1,−1 ζ2

− 15488/3 H−1,−1,2 − 1536 H−1,−1,3 + 1792/3 H−1,2,0 + 2560/3 H−1,2,1

+ 136/45 H0,0,0 − 640/3 H1,−2,0 − 32/3 H1,0,0 − 384 H2,−2,0 − 176/3 H2,0,0

+ 160/3 H2,1,0 − 768 H−2,−1,0,0 + 192 H−2,0,0,0 − 768 H−1,−2,0,0

− 2768/3 H−1,−1,−1,0 + 3072 H−1,−1,−1,2 − 792 H−1,−1,0,0 + 1184/3 H−1,0,0,0

− 192 H−1,2,0,0 − 1120/3 H0,0,0,0 + 320/3 H1,0,0,0 − 256/3 H1,1,0,0 + 192 H2,0,0,0

− 192 H2,1,0,0 + 1536 H−1,−1,−1,0,0 − 384 H−1,−1,0,0,0 + 384 H−1,0,0,0,0

+ 16/3 (23 + 2 ζ3 − 46 ζ2) H1 + 148/5 (69 + 40 ζ2) H0,0 − 8/3 (107

+ 144 ζ2) H2,0 + 128/9 (277 + 135 ζ2) H−1,−1,0 − 40/9 (607 + 216 ζ2) H−2,0

− 8/9 (1237 + 1512 ζ2) H−1,0,0 + 8/27 (1781 − 2070 ζ2) H2 + 4/45 (6520

− 3780 ζ5 + 12005 ζ3 − 17351 ζ2 − 4860 ζ2 ζ3 − 1788 ζ2
2 ) − 8/135 (51538

+ 19440 ζ3 + 70065 ζ2) H−1,0 + 4/2025 (630679 + 390150 ζ3 + 1303920 ζ2) H0

− 8/3 (432 ζ3 + 707 ζ2) H−2 + 8/3 (864 ζ3 + 1763 ζ2) H−1,−1 − 8/45 (21945 ζ3

+ 10810 ζ2 + 216 ζ2
2 ) H−1 − 1/3

(
gE2 (x)− gO2 (x)

)
+ 23/3

(
gE1 (x)− gO1 (x)

)
+ 2/3 ζ3 δ(1− x)

)
+ CF (CA − 2CF )nf

(
x2

{
− 64 H−1 ζ2 + 128 H−2,0 + 1168/15 H−1,0

− 2032/15 H0,0 − 128 H−1,−1,0 + 192 H−1,0,0 − 192 H0,0,0 + 16/15 (12 + 120 ζ3
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+ 199 ζ2) + 16/25 (139 + 100 ζ2) H0

}
+ x3

{
192/5 H−1 ζ2 − 96/5 H0 ζ2

− 384/5 H−2,0 − 2224/25 H−1,0 + 1272/25 H0,0 + 384/5 H−1,−1,0

− 576/5 H−1,0,0 + 288/5 H0,0,0 − 24/25 (40 ζ3 + 53 ζ2)

}
+
(
1/x2 + 9x3

) {
− 32/15 H−1 ζ2 + 64/15 H−2,0 + 952/225 H−1,0 − 64/15 H−1,−1,0

+ 32/5 H−1,0,0

}
+
(
1/x+ 9x2

) {
− 472/225 H0 + 224/15 H−1,0 − 32/5 H0,0

+ 8/225 (179 + 60 ζ2)

}
+ (1− x)

{
320/3 H−2 ζ2 − 976/27 H1 + 656/27 H2

+ 32/3 H3 − 160 H−3,0 − 2336/9 H−2,0 − 320/3 H−1,−1 ζ2 − 128/9 H−1,2

+ 5192/15 H0,0 + 128/9 H1,1 − 64/9 H2,1 + 640/3 H−2,−1,0 − 640/3 H−2,0,0

+ 640/3 H−1,−2,0 + 1280/3 H−1,−1,0 − 3008/9 H−1,0,0 + 120 H0,0,0

− 640/3 H−1,−1,−1,0 + 320 H−1,−1,0,0 − 160 H−1,0,0,0 − 8/135 (5969

− 900 ζ2) H−1,0 − 8/2025 (30059 + 55800 ζ3 + 58680 ζ2 + 8100 ζ2
2 )

+ 8/2025 (30157 − 13500 ζ3 − 7425 ζ2) H0 + 64/9 (15 ζ3 + 32 ζ2) H−1

}
+ pqq(−x)

{
− 416/9 H−2 ζ2 − 320/27 H3 − 64/9 H4 + 800/9 H−3,0

+ 1600/27 H−2,0 + 64/9 H−2,2 + 320/9 H−1,−1 ζ2 + 640/27 H−1,2 + 64/9 H−1,3

+ 64/9 H3,1 − 704/9 H−2,−1,0 + 1088/9 H−2,0,0 − 704/9 H−1,−2,0

− 640/9 H−1,−1,0 + 2560/27 H−1,0,0 − 128/9 H−1,2,1 − 664/27 H0,0,0

+ 640/9 H−1,−1,−1,0 − 1088/9 H−1,−1,0,0 + 1088/9 H−1,0,0,0 − 368/9 H0,0,0,0

+ 32/81 (83 − 63 ζ2) H−1,0 − 8/27 (87 − 66 ζ3 − 23 ζ2) H0 − 16/81 (191

− 45 ζ2) H0,0 − 64/27 (12 ζ3 + 25 ζ2) H−1 + 16/405 (1350 ζ3 + 415 ζ2

+ 513 ζ2
2 )

}
− 128 H−2 ζ2 − 1312/27 H2 − 64/3 H3 + 192 H−3,0

+ 1280/3 H−2,0 + 128 H−1,−1 ζ2 + 256/9 H−1,2 − 17912/45 H0,0 + 128/9 H2,1

− 256 H−2,−1,0 + 256 H−2,0,0 − 256 H−1,−2,0 − 5632/9 H−1,−1,0

+ 1664/3 H−1,0,0 − 496/3 H0,0,0 + 256 H−1,−1,−1,0 − 384 H−1,−1,0,0

+ 192 H−1,0,0,0 − 8/45 (430 − 1600 ζ3 − 1433 ζ2 − 216 ζ2
2 ) + 16/135 (5039

− 540 ζ2) H−1,0 − 16/2025 (28942 − 8100 ζ3 − 6075 ζ2) H0 − 128/3 (3 ζ3

+ 8 ζ2) H−1

)
, (A.45)

δc
(3)
L,ns(x) =

CF (CA − 2CF )CF

(
x−2

{
384/5 H−2 ζ2 + 256 H−1 ζ3 + 19072/75 H−1 ζ2
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− 64/5 H1 ζ3 + 6784/75 H1 ζ2 + 128/5 H2 ζ2 − 512/15 H−2,0 − 256/5 H−2,2

− 4672/15 H−1,−1 ζ2 − 25936/225 H−1,0 + 704/3 H−1,0 ζ2 − 13568/75 H−1,2

− 640/3 H−1,3 + 448/15 H1,0 ζ2 + 64/5 H1,1 ζ2 − 128/15 H1,3 + 256/5 H−2,−1,0

− 256/5 H−2,0,0 + 128/5 H−1,−2,0 + 11008/75 H−1,−1,0 + 896/3 H−1,−1,2

− 14848/75 H−1,0,0 − 128/5 H−1,2,0 − 128/5 H−1,2,1 + 256/15 H1,−2,0

− 128/5 H−1,−1,−1,0 + 640/3 H−1,−1,0,0 − 256/3 H−1,0,0,0 − 128/15 H1,0,0,0

+ 128/15 H1,1,0,0

}
+ x−1

{
16688/225 − 1216/5 ζ3 − 13696/75 ζ2

− 192 H−2 ζ2 − 672 H−1 ζ3 − 4448/15 H−1 ζ2 − 12848/225 H0 − 3968/15 H0 ζ2

− 1536/25 H1 + 64/3 H1 ζ3 − 4432/15 H1 ζ2 + 256/25 H2 − 64 H2 ζ2

+ 3328/15 H3 − 128/3 H−2,0 + 128 H−2,2 + 2464/3 H−1,−1 ζ2 − 5248/75 H−1,0

− 1888/3 H−1,0 ζ2 + 800/3 H−1,2 + 1664/3 H−1,3 + 11648/75 H0,0

− 128/5 H1,0 − 416/3 H1,0 ζ2 − 128/5 H1,1 − 32 H1,1 ζ2 + 64 H1,3 + 128/5 H2,0

+ 128/5 H2,1 − 128 H−2,−1,0 + 128 H−2,0,0 − 64 H−1,−2,0 − 896/15 H−1,−1,0

− 2368/3 H−1,−1,2 + 112 H−1,0,0 + 64 H−1,2,0 + 64 H−1,2,1 + 1408/15 H0,0,0

− 256/3 H1,−2,0 − 128/15 H1,0,0 + 64 H−1,−1,−1,0 − 1664/3 H−1,−1,0,0

+ 704/3 H−1,0,0,0 + 128/3 H1,0,0,0 − 64 H1,1,0,0

}
+ x

{
46136/75 − 3256/15 ζ2

2

+ 1024 ζ5 − 15112/5 ζ3 − 155656/225 ζ2 + 480 ζ2 ζ3 + 800 H−3 ζ2

+ 2080 H−2 ζ3 + 7664/3 H−2 ζ2 − 1888/5 H−1 ζ
2
2 + 3472 H−1 ζ3

+ 15008/5 H−1 ζ2 − 54904/25 H0 − 16 H0 ζ
2
2 − 880 H0 ζ3 − 14112/5 H0 ζ2

− 89792/75 H1 + 32 H1 ζ3 − 2864/15 H1 ζ2 + 43456/75 H2 − 64 H2 ζ3

+ 752 H2 ζ2 + 10752/5 H3 + 224 H3 ζ2 + 1664/3 H4 − 192 H−4,0

− 1760/3 H−3,0 − 448 H−3,2 − 2496 H−2,−1 ζ2 − 848/3 H−2,0 + 1792 H−2,0 ζ2

− 6176/3 H−2,2 − 1344 H−2,3 − 2432 H−1,−2 ζ2 − 3264 H−1,−1 ζ3

− 12992/3 H−1,−1 ζ2 − 44008/225 H−1,0 + 1344 H−1,0 ζ3 + 8864/3 H−1,0 ζ2

− 9184/3 H−1,2 − 128 H−1,2 ζ2 − 6688/3 H−1,3 − 1408 H−1,4

+ 131608/225 H0,0 − 64 H0,0 ζ3 − 1984/3 H0,0 ζ2 − 512/5 H1,0 − 320/3 H1,0 ζ2

− 512/5 H1,1 + 256/3 H1,3 + 896/5 H2,0 + 448 H2,0 ζ2 + 896/5 H2,1 + 64 H2,1 ζ2

− 256 H2,3 + 64 H3,0 + 64 H3,1 + 704 H−3,−1,0 − 704 H−3,0,0 + 640 H−2,−2,0

+ 992 H−2,−1,0 + 2048 H−2,−1,2 − 4960/3 H−2,0,0 − 128 H−2,2,0 − 128 H−2,2,1

+ 640 H−1,−3,0 + 576 H−1,−2,0 + 2048 H−1,−2,2 + 3968 H−1,−1,−1 ζ2

− 1792/15 H−1,−1,0 − 3072 H−1,−1,0 ζ2 + 11456/3 H−1,−1,2 + 2432 H−1,−1,3

− 5744/3 H−1,0,0 + 1792 H−1,0,0 ζ2 − 128 H−1,2,0 − 128 H−1,2,1 − 128 H−1,3,0
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− 128 H−1,3,1 + 18896/15 H0,0,0 − 128/3 H1,−2,0 + 128/5 H1,0,0 + 256 H2,−2,0

− 448/3 H2,0,0 − 896 H−2,−1,−1,0 + 1984 H−2,−1,0,0 − 896 H−2,0,0,0

− 768 H−1,−2,−1,0 + 1920 H−1,−2,0,0 − 768 H−1,−1,−2,0 − 1024 H−1,−1,−1,0

− 3584 H−1,−1,−1,2 + 8032/3 H−1,−1,0,0 + 256 H−1,−1,2,0 + 256 H−1,−1,2,1

− 3232/3 H−1,0,0,0 + 256 H−1,2,0,0 + 656/3 H0,0,0,0 + 64/3 H1,0,0,0

− 256/3 H1,1,0,0 − 128 H2,0,0,0 + 256 H2,1,0,0 + 768 H−1,−1,−1,−1,0

− 3200 H−1,−1,−1,0,0 + 1536 H−1,−1,0,0,0 − 640 H−1,0,0,0,0

}
+ x2

{
3608/25

+ 5152/15 ζ2
2 − 24352/15 ζ3 + 12352/75 ζ2 + 4928/3 H−2 ζ2 + 1344 H−1 ζ3

+ 4224/5 H−1 ζ2 + 1144/25 H0 − 3904/3 H0 ζ3 − 24032/15 H0 ζ2

− 2464/25 H1 + 128/3 H1 ζ3 − 9248/15 H1 ζ2 − 3424/25 H2 − 64 H2 ζ2

+ 13312/15 H3 + 3712/3 H4 − 896/3 H−3,0 − 3328/15 H−2,0 − 4736/3 H−2,2

− 4928/3 H−1,−1 ζ2 + 19072/75 H−1,0 + 3776/3 H−1,0 ζ2 − 2240/3 H−1,2

− 3328/3 H−1,3 − 10432/75 H0,0 − 1536 H0,0 ζ2 − 192/5 H1,0 − 832/3 H1,0 ζ2

− 192/5 H1,1 − 64 H1,1 ζ2 + 128 H1,3 − 192/5 H2,0 − 192/5 H2,1 + 128 H3,0

+ 128 H3,1 + 128 H−2,−1,0 − 3328/3 H−2,0,0 + 128 H−1,−2,0 + 2944/15 H−1,−1,0

+ 4736/3 H−1,−1,2 − 1184/3 H−1,0,0 − 128 H−1,2,0 − 128 H−1,2,1

+ 8992/15 H0,0,0 − 512/3 H1,−2,0 − 64/5 H1,0,0 − 128 H2,0,0 − 128 H−1,−1,−1,0

+ 3328/3 H−1,−1,0,0 − 1408/3 H−1,0,0,0 + 1664/3 H0,0,0,0 + 256/3 H1,0,0,0

− 128 H1,1,0,0

}
+ x3

{
− 2576/25 ζ2

2 + 3216/5 ζ3 + 2696/25 ζ2

− 2336/5 H−2 ζ2 − 384 H−1 ζ3 − 9776/25 H−1 ζ2 + 1824/5 H0 ζ3

+ 13248/25 H0 ζ2 − 96/5 H1 ζ3 + 3472/25 H1 ζ2 + 96/5 H2 ζ2 − 6944/25 H3

− 1664/5 H4 + 64 H−3,0 + 5664/25 H−2,0 + 448 H−2,2 + 2336/5 H−1,−1 ζ2

+ 2696/25 H−1,0 − 352 H−1,0 ζ2 + 6944/25 H−1,2 + 320 H−1,3 − 2696/25 H0,0

+ 1984/5 H0,0 ζ2 + 224/5 H1,0 ζ2 + 96/5 H1,1 ζ2 − 64/5 H1,3 − 192/5 H3,0

− 192/5 H3,1 − 192/5 H−2,−1,0 + 320 H−2,0,0 − 192/5 H−1,−2,0

− 5664/25 H−1,−1,0 − 448 H−1,−1,2 + 7584/25 H−1,0,0 + 192/5 H−1,2,0

+ 192/5 H−1,2,1 − 7584/25 H0,0,0 + 128/5 H1,−2,0 + 64/5 H2,0,0

+ 192/5 H−1,−1,−1,0 − 320 H−1,−1,0,0 + 128 H−1,0,0,0 − 704/5 H0,0,0,0

− 64/5 H1,0,0,0 + 64/5 H1,1,0,0

}
− 187568/225 + 8176/15 ζ3 − 22736/75 ζ2

+ 544 H−2 ζ2 + 1632 H−1 ζ3 + 18224/15 H−1 ζ2 + 2024/45 H0 + 2432/5 H0 ζ2

+ 101792/75 H1 − 64 H1 ζ3 + 4368/5 H1 ζ2 + 54496/75 H2 + 160 H2 ζ2

− 5056/15 H3 − 128 H−3,0 + 128/5 H−2,0 − 320 H−2,2 − 1984 H−1,−1 ζ2
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+ 42544/75 H−1,0 + 1536 H−1,0 ζ2 − 3424/3 H−1,2 − 1216 H−1,3

− 9424/75 H0,0 + 832/5 H1,0 + 448 H1,0 ζ2 + 832/5 H1,1 + 64 H1,1 ζ2 − 256 H1,3

− 64/5 H2,0 − 64/5 H2,1 + 448 H−2,−1,0 − 512 H−2,0,0 + 384 H−1,−2,0

+ 736/5 H−1,−1,0 + 1792 H−1,−1,2 − 2240/3 H−1,0,0 − 128 H−1,2,0 − 128 H−1,2,1

− 3056/15 H0,0,0 + 256 H1,−2,0 − 64/15 H1,0,0 − 384 H−1,−1,−1,0

+ 1600 H−1,−1,0,0 − 768 H−1,0,0,0 − 128 H1,0,0,0 + 256 H1,1,0,0

− 16
(
gE1 (x)− gO1 (x)

))
+ CF (CA − 2CF )CA

(
+ x−2

{
− 128 H−1 ζ3 − 2048/45 H−1 ζ2 + 64/3 H1 ζ3

− 304/15 H1 ζ2 − 1408/15 H−2,0 + 512/3 H−1,−1 ζ2 − 28144/225 H−1,0

− 1408/15 H−1,0 ζ2 + 608/15 H−1,2 + 256/3 H−1,3 − 64/5 H1,0 ζ2 + 64/15 H1,3

− 448/45 H−1,−1,0 − 512/3 H−1,−1,2 − 3088/45 H−1,0,0 − 256/15 H1,−2,0

− 256/3 H−1,−1,0,0 + 128/15 H−1,0,0,0 + 128/15 H1,0,0,0 − 64/15 H1,1,0,0

}
+ x−1

{
− 51104/225 + 320/3 ζ3 − 368/9 ζ2 + 352 H−1 ζ3 − 112/3 H−1 ζ2

+ 29984/225 H0 + 320/3 H0 ζ2 − 736/15 H1 − 64/3 H1 ζ3 + 296/3 H1 ζ2

+ 736/15 H2 − 448/5 H3 + 3776/15 H−2,0 − 1408/3 H−1,−1 ζ2 + 3784/9 H−1,0

+ 832/3 H−1,0 ζ2 − 80/3 H−1,2 − 704/3 H−1,3 + 3856/45 H0,0 + 224/3 H1,0 ζ2

− 32 H1,3 − 128 H−1,−1,0 + 1408/3 H−1,−1,2 + 856/3 H−1,0,0 − 256/15 H0,0,0

+ 256/3 H1,−2,0 + 64/15 H1,0,0 + 704/3 H−1,−1,0,0 − 128/3 H−1,0,0,0

− 128/3 H1,0,0,0 + 32 H1,1,0,0

}
+ x

{
36064/225 − 704/15 ζ2

2 − 224 ζ5

+ 3736/9 ζ3 − 7240/9 ζ2 − 288 ζ2 ζ3 − 768 H−2 ζ3 − 576 H−2 ζ2

− 128/5 H−1 ζ
2
2 − 3104/3 H−1 ζ3 − 2032/3 H−1 ζ2 + 233168/225 H0

+ 160/3 H0 ζ3 + 9592/9 H0 ζ2 + 1184/3 H1 + 32/3 H1 ζ3 + 320/3 H1 ζ2

+ 224/3 H2 − 352 H2 ζ2 − 12688/15 H3 − 192 H4 − 544 H−3,0 + 1024 H−2,−1 ζ2

− 49504/45 H−2,0 − 640 H−2,0 ζ2 + 2816/3 H−2,2 + 512 H−2,3 + 1024 H−1,−2 ζ2

+ 1536 H−1,−1 ζ3 + 4480/3 H−1,−1 ζ2 − 16832/15 H−1,0 − 768 H−1,0 ζ3

− 1120 H−1,0 ζ2 + 1504 H−1,2 + 2752/3 H−1,3 + 640 H−1,4 + 64952/45 H0,0

+ 784/3 H0,0 ζ2 + 64 H1,0 ζ2 − 128/3 H1,3 − 256 H2,0 ζ2 + 128 H2,3

+ 2176/3 H−2,−1,0 − 1024 H−2,−1,2 − 1088/3 H−2,0,0 − 256 H−1,−3,0

+ 2432/3 H−1,−2,0 − 1024 H−1,−2,2 − 2048 H−1,−1,−1 ζ2 + 4960/3 H−1,−1,0

+ 1280 H−1,−1,0 ζ2 − 5504/3 H−1,−1,2 − 1024 H−1,−1,3 − 544 H−1,0,0

− 896 H−1,0,0 ζ2 + 664/45 H0,0,0 + 128/3 H1,−2,0 − 64/5 H1,0,0 − 256 H2,−2,0
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+ 224/3 H2,0,0 − 512 H−2,−1,0,0 + 128 H−2,0,0,0 − 512 H−1,−2,0,0

− 2048/3 H−1,−1,−1,0 + 2048 H−1,−1,−1,2 + 1088/3 H−1,−1,0,0 − 800/3 H−1,0,0,0

− 128 H−1,2,0,0 − 208/3 H0,0,0,0 − 64/3 H1,0,0,0 + 128/3 H1,1,0,0 + 128 H2,0,0,0

− 128 H2,1,0,0 + 1024 H−1,−1,−1,0,0 − 256 H−1,−1,0,0,0 + 256 H−1,0,0,0,0

}
+ x2

{
− 26432/75 + 128/15 ζ2

2 + 112 ζ3 − 39416/45 ζ2 − 2816/3 H−2 ζ2

− 704 H−1 ζ3 − 32/3 H−1 ζ2 − 31952/75 H0 + 1984/3 H0 ζ3 + 1712/5 H0 ζ2

− 368/5 H1 − 128/3 H1 ζ3 + 592/3 H1 ζ2 − 368/5 H2 − 4096/15 H3

− 1600/3 H4 + 512/3 H−3,0 − 1152/5 H−2,0 + 2816/3 H−2,2

+ 2816/3 H−1,−1 ζ2 − 8656/9 H−1,0 − 1664/3 H−1,0 ζ2 + 416/3 H−1,2

+ 1408/3 H−1,3 + 6616/9 H0,0 + 704 H0,0 ζ2 + 448/3 H1,0 ζ2 − 64 H1,3

+ 1408/3 H−2,0,0 + 256 H−1,−1,0 − 2816/3 H−1,−1,2 − 528 H−1,0,0 + 400 H0,0,0

+ 512/3 H1,−2,0 + 32/5 H1,0,0 + 64 H2,0,0 − 1408/3 H−1,−1,0,0 + 256/3 H−1,0,0,0

− 512/3 H0,0,0,0 − 256/3 H1,0,0,0 + 64 H1,1,0,0

}
+ x3

{
192/25 ζ2

2 − 1592/15 ζ3

+ 4984/25 ζ2 + 256 H−2 ζ2 + 192 H−1 ζ3 + 1024/15 H−1 ζ2 − 160 H0 ζ3

− 296/3 H0 ζ2 + 32 H1 ζ3 − 152/5 H1 ζ2 + 304/5 H3 + 672/5 H4 − 128/5 H−3,0

− 224/15 H−2,0 − 256 H−2,2 − 256 H−1,−1 ζ2 + 4984/25 H−1,0 + 704/5 H−1,0 ζ2

− 304/5 H−1,2 − 128 H−1,3 − 4984/25 H0,0 − 160 H0,0 ζ2 − 96/5 H1,0 ζ2

+ 32/5 H1,3 − 128 H−2,0,0 + 224/15 H−1,−1,0 + 256 H−1,−1,2 + 1544/15 H−1,0,0

− 1544/15 H0,0,0 − 128/5 H1,−2,0 − 32/5 H2,0,0 + 128 H−1,−1,0,0

− 64/5 H−1,0,0,0 + 128/5 H0,0,0,0 + 64/5 H1,0,0,0 − 32/5 H1,1,0,0

}
+ 94336/225

− 736/3 ζ3 + 24824/45 ζ2 − 768 H−1 ζ3 − 128 H−1 ζ2 − 29152/225 H0

− 3248/15 H0 ζ2 − 272 H1 − 352 H1 ζ2 − 1040/3 H2 + 896/5 H3

− 7712/15 H−2,0 + 1024 H−1,−1 ζ2 − 42496/45 H−1,0 − 640 H−1,0 ζ2

+ 1024/3 H−1,2 + 512 H−1,3 − 2488/9 H0,0 − 256 H1,0 ζ2 + 128 H1,3

+ 1280/3 H−1,−1,0 − 1024 H−1,−1,2 − 512 H−1,0,0 + 112/3 H0,0,0 − 256 H1,−2,0

+ 32/15 H1,0,0 − 512 H−1,−1,0,0 + 128 H−1,0,0,0 + 128 H1,0,0,0 − 128 H1,1,0,0

+ 8
(
gE1 (x)− gO1 (x)

))
+ CF (CA − 2CF )nf

(
+ x−2

{
− 128/15 H−1 ζ2 + 256/15 H−2,0 + 4768/225 H−1,0

− 256/15 H−1,−1,0 + 128/5 H−1,0,0

}
+ x−1

{
6688/225 + 128/15 ζ2

+ 64/3 H−1 ζ2 − 2848/225 H0 − 128/3 H−2,0 − 2512/45 H−1,0 − 128/5 H0,0
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+ 128/3 H−1,−1,0 − 64 H−1,0,0

}
+ x

{
13472/225 + 128/5 ζ2

2 + 1408/9 ζ3

+ 6608/45 ζ2 − 256/3 H−2 ζ2 − 256/3 H−1 ζ3 − 1408/9 H−1 ζ2

− 28256/225 H0 + 128/3 H0 ζ3 + 32/3 H0 ζ2 + 128 H−3,0 + 1792/9 H−2,0

+ 256/3 H−1,−1 ζ2 + 3872/15 H−1,0 − 128/3 H−1,0 ζ2 − 11984/45 H0,0

− 512/3 H−2,−1,0 + 512/3 H−2,0,0 − 512/3 H−1,−2,0 − 2816/9 H−1,−1,0

+ 2176/9 H−1,0,0 − 160/3 H0,0,0 + 512/3 H−1,−1,−1,0 − 256 H−1,−1,0,0

+ 128 H−1,0,0,0

}
+ x2

{
1168/25 + 256/3 ζ3 + 6944/45 ζ2 − 128/3 H−1 ζ2

+ 1168/25 H0 + 128/3 H0 ζ2 + 256/3 H−2,0 + 6368/45 H−1,0 − 5792/45 H0,0

− 256/3 H−1,−1,0 + 128 H−1,0,0 − 128 H0,0,0

}
+ x3

{
− 128/5 ζ3 − 848/25 ζ2

+ 64/5 H−1 ζ2 − 64/5 H0 ζ2 − 128/5 H−2,0 − 848/25 H−1,0 + 848/25 H0,0

+ 128/5 H−1,−1,0 − 192/5 H−1,0,0 + 192/5 H0,0,0

}
− 3408/25 − 544/15 ζ2

− 128/3 H−1 ζ2 − 7216/225 H0 + 256/3 H−2,0 + 6656/45 H−1,0 + 224/5 H0,0

− 256/3 H−1,−1,0 + 128 H−1,0,0

)
, (A.46)

δc
(3)
3,ns(x) =

+ CF (CA − 2CF )CF

(
(1 + x)−1

{
11200/3 H−3 ζ2 − 104 H4 + 1120 H5 − 1024 H−4,0

+ 224/3 H−3,0 − 2944 H−3,2 − 6048 H−2,−1 ζ2 − 480 H−2,2 − 16096/3 H−2,3

− 6016 H−1,−2 ζ2 − 800 H−1,3 − 4192 H−1,4 + 16 H2,2 − 192 H2,3 + 168 H3,0

+ 256 H3,1 + 832/3 H3,2 + 1952/3 H4,0 + 864 H4,1 + 4736/3 H−3,−1,0

− 8960/3 H−3,0,0 + 1280 H−2,−2,0 + 224 H−2,−1,0 + 5248 H−2,−1,2 − 32 H−2,0,0

− 1536 H−2,2,0 − 5824/3 H−2,2,1 + 5248/3 H−1,−3,0 + 240 H−1,−2,0

+ 5248 H−1,−2,2 + 8064 H−1,−1,−1 ζ2 + 768 H−1,−1,2 + 24896/3 H−1,−1,3

− 384 H−1,2,0 − 512 H−1,2,1 − 576 H−1,2,2 − 5600/3 H−1,3,0 − 7232/3 H−1,3,1

+ 128/3 H2,−2,0 − 16 H2,1,0 − 64/3 H2,1,2 + 128/3 H2,2,0 + 1024/3 H3,0,0

+ 192 H3,1,0 + 192 H3,1,1 − 1600 H−2,−1,−1,0 + 5024 H−2,−1,0,0 − 3712 H−2,0,0,0

− 1536 H−1,−2,−1,0 + 15040/3 H−1,−2,0,0 − 1472 H−1,−1,−2,0 − 576 H−1,−1,−1,0

− 7296 H−1,−1,−1,2 + 480 H−1,−1,0,0 + 7936/3 H−1,−1,2,0 + 3328 H−1,−1,2,1

+ 72 H−1,0,0,0 − 2432/3 H−1,2,0,0 − 1088/3 H−1,2,1,0 − 384 H−1,2,1,1

− 1192/3 H0,0,0,0 − 128 H2,0,0,0 − 128 H2,1,0,0 + 64/3 H2,1,1,0

+ 1536 H−1,−1,−1,−1,0 − 6848 H−1,−1,−1,0,0 + 17440/3 H−1,−1,0,0,0

− 2528 H−1,0,0,0,0 + 544 H0,0,0,0,0 − 16 (4 − 310 ζ3 − 53 ζ2) H−1,0 + 32/3 (6
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+ 43 ζ2) H2,1 + 32/3 (6 + 53 ζ2) H2,0 − 64 (8 + 149 ζ2) H−1,−1,0 − 8/3 (24

− 308 ζ3 − 183 ζ2) H2 − 32/3 (31 + 41 ζ2) H−1,2 − 8/3 (54 + 572 ζ3

− 107 ζ2) H0,0 + 16/3 (61 + 164 ζ2) H3 + 16/3 (79 + 894 ζ2) H−1,0,0 + 16/3 (85

+ 1184 ζ2) H−2,0 − 4/3 (239 + 904 ζ2) H0,0,0 − 4/15 (1225 − 360 ζ4 − 10 ζ3

+ 555 ζ2 + 916 ζ2
2 ) H0 − 8/15 (2480 ζ5 + 75 ζ3 − 60 ζ2 − 3660 ζ2 ζ3 + 408 ζ2

2 )

− 96 (85 ζ3 + 11 ζ2) H−1,−1 + 16/3 (1100 ζ3 + 111 ζ2) H−2 + 8/15 (2055 ζ3

+ 140 ζ2 − 476 ζ2
2 ) H−1

}
+ (1/x+ x2)

{
− 432 H−1,−1 ζ2 + 336 H−1,0 ζ2

− 560/3 H−1,2 − 288 H−1,3 + 32 H−1,−2,0 + 2224/9 H−1,−1,0 + 416 H−1,−1,2

− 1952/9 H−1,0,0 − 32 H−1,2,0 − 32 H−1,2,1 − 32 H−1,−1,−1,0 + 288 H−1,−1,0,0

− 128 H−1,0,0,0 + 8/9 (396 ζ3 + 349 ζ2) H−1

}
+ (1/x− x2)

{
176/3 H1,0 ζ2

+ 16 H1,1 ζ2 − 32/3 H1,3 + 64 H1,−2,0 − 32 H1,0,0,0 + 32/3 H1,1,0,0 + 56/3 (2 ζ3

+ 5 ζ2) H1

}
+ (1− x)

{
− 5728/3 H−3 ζ2 − 2476/3 H4 − 1928/3 H5

+ 2176/3 H−4,0 + 1040/3 H−3,0 + 4480/3 H−3,2 + 7648/3 H−2,−1 ζ2

+ 336 H−2,2 + 2528 H−2,3 + 2400 H−1,−2 ζ2 + 4624/3 H−1,3 + 1744 H−1,4

+ 856/3 H1,2 + 64 H1,3 − 472/3 H2,2 + 32 H2,3 − 1912/3 H3,0 − 2624/3 H3,1

− 128 H3,2 − 1072/3 H4,0 − 464 H4,1 − 832 H−3,−1,0 + 5056/3 H−3,0,0

− 608 H−2,−2,0 − 1904/3 H−2,−1,0 − 6592/3 H−2,−1,2 + 2192/3 H−2,0,0

+ 2368/3 H−2,2,0 + 3008/3 H−2,2,1 − 2144/3 H−1,−3,0 − 560/3 H−1,−2,0

− 2112 H−1,−2,2 − 3040 H−1,−1,−1 ζ2 − 576 H−1,−1,2 − 10624/3 H−1,−1,3

+ 2240/3 H−1,2,0 + 1024 H−1,2,1 + 288 H−1,2,2 + 2704/3 H−1,3,0

+ 3520/3 H−1,3,1 − 704/3 H1,−2,0 + 592/3 H1,0,0 + 184 H1,1,0 + 192 H1,1,1

− 32/3 H1,1,2 + 64/3 H1,2,0 + 128/3 H2,−2,0 − 992/3 H2,0,0 − 232/3 H2,1,0

− 96 H2,1,1 + 32/3 H2,1,2 − 64/3 H2,2,0 − 160 H3,0,0 − 320/3 H3,1,0 − 96 H3,1,1

+ 704 H−2,−1,−1,0 − 6944/3 H−2,−1,0,0 + 1968 H−2,0,0,0 + 576 H−1,−2,−1,0

− 6080/3 H−1,−2,0,0 + 544 H−1,−1,−2,0 + 368 H−1,−1,−1,0 + 2752 H−1,−1,−1,2

− 2248/3 H−1,−1,0,0 − 3776/3 H−1,−1,2,0 − 1600 H−1,−1,2,1 + 2552/3 H−1,0,0,0

+ 1408/3 H−1,2,0,0 + 544/3 H−1,2,1,0 + 192 H−1,2,1,1 − 1604/3 H0,0,0,0

+ 64 H1,0,0,0 − 224 H1,1,0,0 + 32/3 H1,1,1,0 + 32 H2,0,0,0 + 128 H2,1,0,0

− 32/3 H2,1,1,0 − 576 H−1,−1,−1,−1,0 + 2624 H−1,−1,−1,0,0 − 7568/3 H−1,−1,0,0,0

+ 1104 H−1,0,0,0,0 − 408 H0,0,0,0,0 − 8/3 (11 − 1500 ζ2) H−1,−1,0 + 16/3 (31

− 363 ζ2) H−1,0,0 − 8/3 (37 + 64 ζ2) H2,0 − 8/3 (83 + 80 ζ2) H2,1 − 8/3 (163

− 265 ζ2) H0,0,0 + 8/3 (169 + 70 ζ2) H−1,2 + 8/3 (255 − 26 ζ2) H1,0 − 4/3 (359
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+ 2216 ζ2) H−2,0 + 8/3 (387 + 62 ζ2) H1,1 − 4/3 (617 + 324 ζ2) H3 − 2/3 (743

− 568 ζ3 + 60 ζ2) H1 + 4/9 (1531 − 4824 ζ3 − 3432 ζ2) H−1,0 + 2/3 (2431

− 640 ζ3 + 60 ζ2) H2 + 2/9 (4379 + 4464 ζ3 + 3594 ζ2) H0,0 − 2/45 (23995

+ 1080 ζ4 − 27900 ζ3 − 18990 ζ2 − 3804 ζ2
2 ) H0 + 2/45 (34520 + 26970 ζ5

+ 1080 ζ4 + 17205 ζ3 − 25900 ζ2 − 23160 ζ2 ζ3 − 1329 ζ2
2 ) + 8 (408 ζ3

+ 95 ζ2) H−1,−1 − 8/3 (971 ζ3 + 245 ζ2) H−2 − 4/15 (4485 ζ3 + 1745 ζ2

− 122 ζ2
2 ) H−1

}
− 400 H−3 ζ2 + 96 H−4,0 + 224 H−3,2 + 1248 H−2,−1 ζ2

+ 672 H−2,3 + 1216 H−1,−2 ζ2 − 6704/3 H−1,3 + 704 H−1,4 + 288 H2,2

+ 128 H2,3 − 352 H−3,−1,0 + 352 H−3,0,0 − 320 H−2,−2,0 − 1024 H−2,−1,2

+ 64 H−2,2,0 + 64 H−2,2,1 − 320 H−1,−3,0 − 32/3 H−1,−2,0 − 1024 H−1,−2,2

− 1984 H−1,−1,−1 ζ2 + 288 H−1,−1,2 − 1216 H−1,−1,3 − 3328/3 H−1,2,0

− 1536 H−1,2,1 + 64 H−1,3,0 + 64 H−1,3,1 − 128 H2,−2,0 + 544/3 H2,1,0

+ 192 H2,1,1 + 448 H−2,−1,−1,0 − 992 H−2,−1,0,0 + 448 H−2,0,0,0

+ 384 H−1,−2,−1,0 − 960 H−1,−2,0,0 + 384 H−1,−1,−2,0 + 128/3 H−1,−1,−1,0

+ 1792 H−1,−1,−1,2 + 784 H−1,−1,0,0 − 128 H−1,−1,2,0 − 128 H−1,−1,2,1

− 5152/3 H−1,0,0,0 − 128 H−1,2,0,0 + 64 H2,0,0,0 − 128 H2,1,0,0

− 384 H−1,−1,−1,−1,0 + 1600 H−1,−1,−1,0,0 − 768 H−1,−1,0,0,0 + 320 H−1,0,0,0,0

+ 16/3 (12x−1 + 65 + 6x2) H−2,−1,0 − 16/3 (12x−1 + 157 + 78x2) H−2,2

− 16/3 (12x−1 + 211 + 54x2) H−2,0,0 − 4/9 (231x−1 + 2948 + 93x2 + 1512 ζ3

− 4872 ζ2) H−1,0 + 32 (17 + 48 ζ2) H−1,−1,0 + 32/3 (41 − x2) H2,0,0 + 16 (53

− 2 ζ2) H2,1 + 16 (61 + 10x2) H0,0,0,0 − 16/3 (85 + 18x2) H−3,0 − 8 (93

+ 112 ζ2) H−1,0,0 + 32/3 (107 + 3x2) H3,1 − 16/3 (107 − 12 ζ2) H−1,2

+ 32/3 (151 + 28x2) H4 + 16/3 (157 + 6x2) H3,0 − 16/9 (159 + 139x2

+ 504 ζ2) H−2,0 + 8/3 (191 − 84 ζ2) H2,0 + 8/3 (435 + 70x2 − 42 ζ2) H3

− 4/3 (1033 − 24 ζ3 − 24 ζ2 x
−1 + 238 ζ2 + 12 ζ2 x

2) H2 − 4/9 (1169 − 93x2

− 72 ζ3 + 4008 ζ2 + 888 ζ2 x
2) H0,0 + 4/9 (1785 + 488x2) H0,0,0 + 2/9 (9043

− 8016 ζ3 − 1752 ζ3 x
2 − 6384 ζ2 − 1816 ζ2 x

2 + 36 ζ2
2 ) H0 − 4/45 (5760 ζ5

+ 14400 ζ3 + 5930 ζ3 x
2 − 7780 ζ2 + 465 ζ2 x

2 + 2700 ζ2 ζ3 − 2988 ζ2
2

− 582 ζ2
2 x

2) + 32/3 (153 ζ3 − 25 ζ2) H−1,−1 − 8/3 (390 ζ3 − 36 ζ2 x
−1 − 379 ζ2

− 162 ζ2 x
2) H−2 + 8/15 (2105 ζ3 + 1580 ζ2 + 354 ζ2

2 ) H−1

+
(
gE1 (x) + gE2 (x)− gO1 (x)− gO2 (x)

) {
− 2/3

}
+ δ(1− x)

{
4/3 ζ3

})
+ CF (CA − 2CF )CA

(
(1 + x)−1

{
− 4096/3 H−3 ζ2 + 3296/9 H4 − 320 H5
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+ 320/3 H−4,0 − 7840/9 H−3,0 + 1408 H−3,2 + 2624 H−2,−1 ζ2 − 704/9 H−2,2

+ 6944/3 H−2,3 + 2592 H−1,−2 ζ2 − 704/9 H−1,3 + 1536 H−1,4 − 1024/3 H2,0 ζ2

− 256 H2,1 ζ2 + 448/3 H2,3 − 704/9 H3,1 − 128/3 H3,2 − 128 H4,0 − 640/3 H4,1

+ 256/3 H−3,−1,0 + 2240/3 H−3,0,0 + 128/3 H−2,−2,0 + 7744/9 H−2,−1,0

− 2624 H−2,−1,2 − 12256/9 H−2,0,0 + 1856/3 H−2,2,0 + 2560/3 H−2,2,1

− 256/3 H−1,−3,0 + 7744/9 H−1,−2,0 − 2624 H−1,−2,2 − 3840 H−1,−1,−1 ζ2

− 3968 H−1,−1,3 + 1408/9 H−1,2,1 + 320/3 H−1,2,2 + 1568/3 H−1,3,0

+ 2560/3 H−1,3,1 − 128/3 H2,−2,0 + 32 H2,0,0 + 64/3 H2,1,2 − 128/3 H2,2,0

− 320/3 H3,0,0 + 128/3 H3,1,0 − 4256/3 H−2,−1,0,0 + 2848/3 H−2,0,0,0

− 64 H−1,−2,−1,0 − 1408 H−1,−2,0,0 − 128 H−1,−1,−2,0 − 7040/9 H−1,−1,−1,0

+ 3840 H−1,−1,−1,2 + 11968/9 H−1,−1,0,0 − 3584/3 H−1,−1,2,0

− 5120/3 H−1,−1,2,1 − 11824/9 H−1,0,0,0 + 896/3 H−1,2,0,0 − 320/3 H−1,2,1,0

+ 5944/9 H0,0,0,0 + 256/3 H2,0,0,0 + 256/3 H2,1,0,0 − 64/3 H2,1,1,0

+ 2176 H−1,−1,−1,0,0 − 4864/3 H−1,−1,0,0,0 + 1856/3 H−1,0,0,0,0 − 128 H0,0,0,0,0

+ 32/27 (17 − 396 ζ2) H3 − 64/27 (17 − 144 ζ2) H−1,2 + 32/3 (21 − 46 ζ3

− 27 ζ2) H2 + 128/9 (67 + 312 ζ2) H−1,−1,0 + 32/27 (463 + 288 ζ2) H0,0,0

− 32/27 (679 + 2277 ζ2) H−2,0 − 32/27 (973 + 1548 ζ2) H−1,0,0 − 16/81 (2129

+ 8964 ζ3 − 1305 ζ2) H−1,0 + 8/81 (6125 + 3888 ζ3 − 5229 ζ2) H0,0

+ 4/135 (17805 − 3240 ζ4 − 16620 ζ3 − 5440 ζ2 + 4176 ζ2
2 ) H0

+ 4/81 (6372 ζ5 − 10260 ζ3 − 8794 ζ2 − 14040 ζ2 ζ3 + 1107 ζ2
2 ) + 64/9 (543 ζ3

− 55 ζ2) H−1,−1 − 32/9 (687 ζ3 − 143 ζ2) H−2 + 16/135 (2640 ζ3 + 4360 ζ2

+ 423 ζ2
2 ) H−1

}
+ (1/x+ x2)

{
256 H−1,−1 ζ2 − 160 H−1,0 ζ2 + 152/3 H−1,2

+ 128 H−1,3 − 80/9 H−1,−1,0 − 256 H−1,−1,2 − 788/9 H−1,0,0 − 128 H−1,−1,0,0

+ 32 H−1,0,0,0 − 16/9 (108 ζ3 + 31 ζ2) H−1

}
+ (1/x− x2)

{
− 112/3 H1,0 ζ2

+ 16/3 H1,3 − 64 H1,−2,0 + 32 H1,0,0,0 − 16/3 H1,1,0,0 − 4/3 (20 ζ3 + 19 ζ2) H1

}
+ (1− x)

{
728 H−3 ζ2 + 464/9 H4 + 496/3 H5 − 208/3 H−4,0 + 3776/9 H−3,0

− 2144/3 H−3,2 − 3328/3 H−2,−1 ζ2 + 2176/9 H−2,2 − 1048 H−2,3

− 1040 H−1,−2 ζ2 − 4832/9 H−1,3 − 608 H−1,4 − 128/3 H1,2 − 16/3 H1,3

+ 32 H2,2 − 128/3 H2,3 + 616/3 H3,0 + 3232/9 H3,1 + 16 H3,2 + 64 H4,0

+ 320/3 H4,1 + 80/3 H−3,−1,0 − 1288/3 H−3,0,0 + 16 H−2,−2,0 − 992/9 H−2,−1,0

+ 3248/3 H−2,−1,2 + 5024/9 H−2,0,0 − 304 H−2,2,0 − 1280/3 H−2,2,1
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− 64/3 H−1,−3,0 − 2576/9 H−1,−2,0 + 1056 H−1,−2,2 + 1408 H−1,−1,−1 ζ2

+ 128 H−1,−1,2 + 1728 H−1,−1,3 − 896/3 H−1,2,0 − 4544/9 H−1,2,1

− 160/3 H−1,2,2 − 784/3 H−1,3,0 − 1280/3 H−1,3,1 + 704/3 H1,−2,0 − 16 H1,0,0

+ 128/3 H1,1,0 + 32/3 H1,1,2 − 64/3 H1,2,0 − 128/3 H2,−2,0 + 128 H2,0,0

− 32 H2,1,0 − 32/3 H2,1,2 + 64/3 H2,2,0 + 160/3 H3,0,0 − 16 H3,1,0

− 160/3 H−2,−1,−1,0 + 1976/3 H−2,−1,0,0 − 480 H−2,0,0,0 + 32 H−1,−2,−1,0

+ 576 H−1,−2,0,0 + 64 H−1,−1,−2,0 + 2128/9 H−1,−1,−1,0 − 1408 H−1,−1,−1,2

− 2360/9 H−1,−1,0,0 + 1792/3 H−1,−1,2,0 + 2560/3 H−1,−1,2,1

+ 2720/9 H−1,0,0,0 − 544/3 H−1,2,0,0 + 160/3 H−1,2,1,0 − 2600/9 H0,0,0,0

− 256/3 H1,0,0,0 + 368/3 H1,1,0,0 − 32/3 H1,1,1,0 − 32/3 H2,0,0,0 − 224/3 H2,1,0,0

+ 32/3 H2,1,1,0 − 832 H−1,−1,−1,0,0 + 2240/3 H−1,−1,0,0,0 − 736/3 H−1,0,0,0,0

+ 80 H0,0,0,0,0 + 160/3 (3 + 2 ζ2) H2,0 − 56/3 (13 − 2 ζ2) H1,0 − 64/9 (71

+ 18 ζ2) H1,1 + 32/9 (71 + 36 ζ2) H2,1 − 8/27 (235 + 576 ζ2) H−1,2 − 8/9 (461

+ 2136 ζ2) H−1,−1,0 − 28/81 (605 + 702 ζ3 − 126 ζ2) H0,0 − 4/27 (644

+ 1332 ζ3 + 891 ζ2) H1 + 16/27 (793 + 405 ζ2) H3 + 16/27 (961

+ 1170 ζ2) H−1,0,0 − 8/27 (1250 + 603 ζ2) H0,0,0 + 16/27 (1270

+ 2061 ζ2) H−2,0 − 8/81 (1822 − 486 ζ4 + 153 ζ3 + 3072 ζ2 + 459 ζ2
2 ) H0

− 8/27 (2227 − 828 ζ3 + 27 ζ2) H2 + 4/81 (9655 + 14040 ζ3 + 8406 ζ2) H−1,0

− 2/405 (185225 + 36180 ζ5 + 9720 ζ4 + 42840 ζ3 − 114350 ζ2 − 62100 ζ2 ζ3

− 13446 ζ2
2 ) + 8/9 (1215 ζ3 − 334 ζ2) H−2 − 8/9 (1740 ζ3 + 11 ζ2) H−1,−1

+ 4/135 (8850 ζ3 − 4565 ζ2 − 1062 ζ2
2 ) H−1

}
− 512 H−2,−1 ζ2 − 256 H−2,3

− 512 H−1,−2 ζ2 + 1616/9 H−1,2 + 1152 H−1,3 − 320 H−1,4 − 4544/9 H2,1

− 160/3 H2,2 − 64 H2,3 − 808/3 H3,0 − 1280/3 H3,1 − 1168/3 H−2,−1,0

+ 512 H−2,−1,2 + 128 H−1,−3,0 − 304 H−1,−2,0 + 512 H−1,−2,2

+ 1024 H−1,−1,−1 ζ2 − 256 H−1,−1,2 + 512 H−1,−1,3 + 1792/3 H−1,2,0

+ 2560/3 H−1,2,1 + 128 H2,−2,0 + 160/3 H2,1,0 + 256 H−2,−1,0,0 − 64 H−2,0,0,0

+ 256 H−1,−2,0,0 + 944/3 H−1,−1,−1,0 − 1024 H−1,−1,−1,2 − 2504/3 H−1,−1,0,0

+ 2176/3 H−1,0,0,0 + 64 H−1,2,0,0 − 64 H2,0,0,0 + 64 H2,1,0,0 − 512 H−1,−1,−1,0,0

+ 128 H−1,−1,0,0,0 − 128 H−1,0,0,0,0 − 8/9 (132x−1 + 113 − 10x2

− 360 ζ2) H−2,0 − 4/27 (1317x−1 + 3544 + 1371x2 − 2592 ζ3 + 7362 ζ2) H−1,0

− 320/3 (1 + 6 ζ2) H−1,−1,0 + 56/9 (1 + 72 ζ2) H−1,0,0 − 32 (7 + 2x2) H0,0,0,0

+ 16 (29 + 16x2) H−2,2 − 16/3 (31 − x2) H2,0,0 − 4/9 (47 − 457x2 − 1464 ζ2
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− 444 ζ2 x
2) H0,0 + 16/3 (61 + 12x2) H−3,0 + 32/3 (67 + 12x2) H−2,0,0

− 8/3 (107 − 48 ζ2) H2,0 − 16/3 (109 + 25x2) H4 − 8/3 (216 + 19x2) H3

+ 4/9 (624 + 197x2) H0,0,0 + 8/27 (1061 + 306 ζ2) H2 − 4/81 (16481

− 14742 ζ3 − 4428 ζ3 x
2 − 9450 ζ2 − 1629 ζ2 x

2) H0 + 4/45 (1260 ζ5 + 5405 ζ3

+ 955 ζ3 x
2 − 6445 ζ2 − 2285 ζ2 x

2 + 1620 ζ2 ζ3 − 396 ζ2
2 + 312 ζ2

2 x
2)

+ 8/3 (144 ζ3 − 247 ζ2 − 96 ζ2 x
2) H−2 − 8/3 (288 ζ3 − 155 ζ2) H−1,−1

− 8/45 (4725 ζ3 + 1310 ζ2 − 72 ζ2
2 ) H−1 +

(
gE1 (x) + gE2 (x)− gO1 (x)− gO2 (x)

) {
1/3

}
+ δ(1− x)

{
− 2/3 ζ3

})
+ CF (CA − 2CF )nf

(
+ (1 + x)−1

{
− 832/9 H−2 ζ2 − 640/27 H3 − 128/9 H4

+ 1600/9 H−3,0 + 3200/27 H−2,0 + 128/9 H−2,2 + 640/9 H−1,−1 ζ2

+ 1280/27 H−1,2 + 128/9 H−1,3 + 128/9 H3,1 − 1408/9 H−2,−1,0

+ 2176/9 H−2,0,0 − 1408/9 H−1,−2,0 − 1280/9 H−1,−1,0 + 5120/27 H−1,0,0

− 256/9 H−1,2,1 − 1328/27 H0,0,0 + 1280/9 H−1,−1,−1,0 − 2176/9 H−1,−1,0,0

+ 2176/9 H−1,0,0,0 − 736/9 H0,0,0,0 + 64/81 (83 − 63 ζ2) H−1,0 − 16/27 (87

− 66 ζ3 − 23 ζ2) H0 − 32/81 (191 − 45 ζ2) H0,0 − 128/27 (12 ζ3 + 25 ζ2) H−1

+ 32/405 (1350 ζ3 + 415 ζ2 + 513 ζ2
2 )

}
+ (1/x+ x2)

{
− 32/3 H−1 ζ2

+ 64/3 H−2,0 + 376/9 H−1,0 − 64/3 H−1,−1,0 + 32 H−1,0,0

}
+ (1− x)

{
224/9 H−2 ζ2 − 976/27 H1 + 656/27 H2 + 608/27 H3 + 64/9 H4 − 512/9 H−3,0

− 1120/27 H−2,0 − 64/9 H−2,2 − 128/9 H−1,−1 ζ2 − 1024/27 H−1,2

− 64/9 H−1,3 + 128/9 H1,1 − 64/9 H2,1 − 64/9 H3,1 + 320/9 H−2,−1,0

− 704/9 H−2,0,0 + 320/9 H−1,−2,0 + 256/9 H−1,−1,0 − 2944/27 H−1,0,0

+ 128/9 H−1,2,1 + 1456/27 H0,0,0 − 256/9 H−1,−1,−1,0 + 512/9 H−1,−1,0,0

− 800/9 H−1,0,0,0 + 368/9 H0,0,0,0 + 16/81 (119 − 45 ζ2) H0,0 − 8/81 (341

+ 90 ζ3 + 96 ζ2) H0 − 8/81 (857 − 144 ζ2) H−1,0 + 8/405 (3350 − 900 ζ3

− 2315 ζ2 − 702 ζ2
2 ) + 64/27 (3 ζ3 + 22 ζ2) H−1

}
+ 128/3 H−2 ζ2

− 1312/27 H2 − 64/3 H3 − 64 H−3,0 − 128/9 H−2,0 − 128/3 H−1,−1 ζ2

+ 256/9 H−1,2 + 128/9 H2,1 + 256/3 H−2,−1,0 − 256/3 H−2,0,0

+ 256/3 H−1,−2,0 + 256/3 H−1,−1,0 + 256/9 H−1,0,0 − 256/3 H−1,−1,−1,0

+ 128 H−1,−1,0,0 − 64 H−1,0,0,0 − 16/3 (19 + 6x2) H0,0,0 − 8/9 (63 + 47x2) H0,0

+ 16/27 (175 + 36 ζ2) H−1,0 + 16/81 (458 − 108 ζ3 + 135 ζ2 + 54 ζ2 x
2) H0

126



+ 128/9 (3 ζ3 + ζ2) H−1 − 8/45 (160 ζ3 − 120 ζ3 x
2 − 565 ζ2 − 235 ζ2 x

2

+ 72 ζ2
2 )

)
. (A.47)

A.8 Input Quantities for Small-x Resummation of Struc-
ture Functions

Here we give the input used for the structure function resummations, in addition to

the functions already given in Eqs. (4.14) and (4.15).

A.8.1 Non-Singlet Input: F̂L,ns and F̂3,ns

The input quantities for the resummation of F̂L,ns and F̂3,ns read:

c
(1,0)
L,ns = + 4− 4N + 4N2

c
(1,1)
L,ns = + 4− [4− 4ζ2]N

c
(1,2)
L,ns = + [8− 2ζ2]

c
(2,0)
L,ns = + 8CFN

−2 + (12CF − 4β0)N−1 +
(40

3
CA +

38

3
β0 − [74 + 8ζ2]CF

)
c

(2,1)
L,ns =− 8CFN

−3 − (4CF − 4β0)N−2 −
(40

3
CA +

50

3
β0 − [70 + 20ζ2]CF

)
N−1

c
(3,0)
L,ns = + 40C 2

FN
−4 + (64C 2

F − 36β0CF )N−3 +
(112

3
β0CF − 120C 2

Aζ2 + 8β2
0

− [168 + 416ζ2]C 2
F +

[200

3
+ 384ζ2

]
CACF

)
N−2 (A.48)

c
(1,0),−
3,ns = + 2N−2 +N−1 − [7 + 2ζ2]

c
(1,1),−
3,ns =− 2N−3 −N−2 + [1 + 3ζ2]N−1

c
(1,2),−
3,ns = + 2N−4 +N−3 − [1 + 3ζ2]N−2

c
(2,0),−
3,ns = + 10CFN

−4 + (10CF − 5β0)N−3 + (10CA + 10β0 − [33 + 24ζ2]CF )N−2

c
(2,1),−
3,ns =− 26CFN

−5 − (26CF − 13β0)N−4 −
(70

3
CA +

68

3
β0 − [71 + 68ζ2]CF

)
N−3

c
(3,0),−
3,ns = + 60C 2

FN
−6 + (90C 2

F −
182

3
β0CF )N−5 +

(143

3
β0CF − 120C 2

Aζ2 +
46

3
β2

0

− [142 + 524ζ2]C 2
F +

[260

3
+ 384ζ2

]
CACF

)
N−4 (A.49)

An overall factor of CF has been omitted.

A.8.2 Singlet Input: F̂2,q, F̂2,g, F̂L,q, F̂L,g, F̂φ,q and F̂φ,g

Here we show the input for the resummation of the singlet structure functions. In

all cases we state beneath the functions if an overall colour factor has been omitted

in the typesetting. The functions labelled ps should be added to the corresponding

non-singlet parts of Eq. (4.14), Eq. (4.15), Eq. (A.48) to form the full singlet quantity.
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γ(1)
qq,ps = + 8N−3 + 4N−2 + 8N−1

γ(2)
qq,ps = + (64CF − 64CA)N−5 +

(16

3
nf + 24CF −

232

3
CA

)
N−4 −

(232

9
nf

+
[404

9
+ 8ζ2

]
CA − [160− 96ζ2]CF

)
N−3 (A.50)

Here an overall factor of CFnf has been omitted.

γ(0)
qg =− 2N−1 + 2− 3N

γ(1)
qg =− (4CF − 8CA)N−3 + (6CF + 4CA)N−2 + (8CA − [28− 8ζ2]CF )N−1

γ(2)
qg = + (32CFnf − 16C 2

F + 32CACF − 64C 2
A)N−5 −

(152

3
CFnf − 12C 2

F +
16

3
CAnf

− 44

3
CACF +

56

3
C 2
A

)
N−4 +

(1370

9
CFnf −

64

9
CAnf − [89− 56ζ2]C 2

F

+
[1171

9
− 96ζ2

]
CACF −

[1724

9
− 12ζ2

]
C 2
A

)
N−3 (A.51)

Here an overall factor of nf has been omitted.

γ(0)
gq = + 4N−1 + 2 + 6N

γ(1)
gq = + (8CF − 16CA)N−3 + (8CF − 16CA)N−2 −

(128

9
nf + 14CF

−
[332

9
− 16ζ2

]
CA

)
N−1

γ(2)
gq =− (64CFnf − 32C 2

F + 64CACF − 128C 2
A)N−5 +

(16

3
CFnf + 48C 2

F +
32

3
CAnf

− 376

3
CACF +

400

3
C 2
A

)
N−4 −

(2380

9
CFnf −

992

9
CAnf −

2446

9
CACF

−
[280

9
+ 104ζ2

]
C 2
A + [42 + 48ζ2]C 2

F

)
N−3 (A.52)

Here and overall factor of CF has been omitted.

γ(0)
gg = + 4CAN

−1 +
(2

3
nf −

5

3
CA

)
+ ([7 + 4ζ2]CA)N

γ(1)
gg = + (8CFnf − 16C 2

A)N−3 −
(

12CFnf +
8

3
CAnf +

4

3
C 2
A

)
N−2

+
(

32CFnf −
76

9
CAnf −

[74

9
+ 16ζ2

]
C 2
A

)
N−1

γ(2)
gg = + (32C 2

F nf − 128CACFnf + 128C 3
A)N−5 −

(16

3
CFn

2
f + 24C 2

F nf

− 232

3
CACFnf − 32C 2

Anf − 16C 3
A

)
N−4 −

(184

9
CFn

2
f −

16

9
CAn

2
f

−
[208

3
+ 24ζ2

]
C 2
Anf − [120− 32ζ2]C 2

F nf −
[2612

9
+ 160ζ2

]
C 3
A

+
[3548

9
+ 96ζ2

]
CACFnf

)
N−3 (A.53)
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c
(2,0)
2,ps =− 20N−4 − 2N−3 − [56− 16ζ2]N−2

c
(2,1)
2,ps = + 52N−5 + 2N−4 + [160− 56ζ2]N−3

c
(3,0)
2,ps =− (240CF − 240CA)N−6 −

(368

9
nf +

440

3
CF −

3416

9
CA

)
N−5 +

(1784

27
nf

−
[
572− 1328

3
ζ2

]
CF +

[16984

27
− 320

3
ζ2

]
CA

)
N−4 (A.54)

Here an overall factor of CFnf has been omitted.

c
(1,0)
2,g = + 2N−2 − 2N−1 + [6− 2ζ2]

c
(1,1)
2,g =− 2N−3 + 2N−2 − [6− 3ζ2]N−1

c
(1,2)
2,g = + 2N−4 − 2N−3 + [6− 3ζ2]N−2

c
(2,0)
2,g = + (10CF − 20CA)N−4 − (3CF + 2CA)N−3 + ([16− 16ζ2]CF

− [58− 8ζ2]CA)N−2

c
(2,1)
2,g =− (26CF − 52CA)N−5 + (3CF + 2CA)N−4 − ([20− 44ζ2]CF

− [166− 32ζ2]CA)N−3

c
(3,0)
2,g =− (120CFnf − 60C 2

F + 120CACF − 240C 2
A)N−6 +

(1636

9
CFnf +

44

3
C 2
F

− 8

9
CAnf −

1636

9
CACF +

1436

9
C 2
A

)
N−5 +

(532

27
CAnf +

[178

3
− 524

3
ζ2

]
C 2
F

−
[4589

27
− 656

3
ζ2

]
CACF −

[17782

27
− 88ζ2

]
CFnf +

[27338

27
− 56ζ2

]
C 2
A

)
N−4

(A.55)

Here an overall factor of nf has been omitted.

c
(1,0)
φ,q =− 4N−2 − 4N−1 + [5 + 4ζ2]

c
(1,1)
φ,q = + 4N−3 + 4N−2 + [1− 6ζ2]N−1

c
(1,2)
φ,q =− 4N−4 − 4N−3 − [1− 6ζ2]N−2

c
(2,0)
φ,q =− (20CF − 40CA)N−4 + (12nf + [16− 16ζ2]CA + [21 + 32ζ2]CF )N−2

−
(32

3
nf + 28CF −

344

3
CA

)
N−3

c
(2,1)
φ,q = + (52CF − 104CA)N−5 + (32nf + 76CF − 328CA)N−4 −

(196

9
nf

+ [25 + 104ζ2]CF +
[1196

9
− 80ζ2

]
CA

)
N−3

c
(3,0)
φ,q = + (240CFnf − 120C 2

F + 240CACF − 480C 2
A)N−6 −

(440

9
CFnf + 224C 2

F

− 1072

9
CAnf −

8960

9
CACF +

13960

9
C 2
A

)
N−5 −

(
32n 2

f −
6592

27
CAnf

−
[2338

27
− 1120

3
ζ2

]
CACF −

[308

3
+ 328ζ2

]
C 2
F −

[17456

27
− 176ζ2

]
CFnf

+
[69928

27
− 208

3
ζ2

]
C 2
A

)
N−4 (A.56)
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Here an overall factor of CF has been omitted.

c
(1,0)
φ,g =− 4CAN

−2 +
(2

3
nf −

23

3
CA

)
N−1 −

(16

9
nf −

[118

9
+ 4ζ2

]
CA

)
c

(1,1)
φ,g = + 4CAN

−3 −
(2

3
nf −

23

3
CA

)
N−2 +

(16

9
nf −

[64

9
+ 6ζ2

]
CA

)
N−1

c
(1,2)
φ,g =− 4CAN

−4 +
(2

3
nf −

23

3
CA

)
N−3 −

(16

9
nf −

[64

9
+ 6ζ2

]
CA

)
N−2

c
(2,0)
φ,g =− (20CFnf − 40C 2

A)N−4 + (14CFnf − 4CAnf + 78C 2
A)N−3 +

(8

9
n 2
f

− 22

9
CAnf +

833

9
C 2
A − [34− 16ζ2]CFnf

)
N−2

c
(2,1)
φ,g = + (52CFnf − 104C 2

A)N−5 −
(

30CFnf −
44

3
CAnf +

698

3
C 2
A

)
N−4 −

(8

3
n 2
f

− 142

9
CAnf − [94− 56ζ2]CFnf +

[2857

9
− 32ζ2

]
C 2
A

)
N−3

c
(3,0)
φ,g =− (120C 2

F nf − 480CACFnf + 480C 3
A)N−6 −

(536

9
CFn

2
f −

44

3
C 2
F nf

− 3140

9
CACFnf −

352

9
C 2
Anf +

10000

9
C 3
A

)
N−5 +

(3508

27
CFn

2
f −

328

27
CAn

2
f

+
[560

27
− 48ζ2

]
C 2
Anf −

[
162− 616

3
ζ2

]
C 2
F nf +

[16622

27
− 256

3
ζ2

]
CACFnf

−
[59902

27
+ 224ζ2

]
C 3
A

)
N−4 (A.57)

c
(2,0)
L,ps =− 16N−2 + [16 + 16ζ2]

c
(2,1)
L,ps = + 16N−3 − 32N−2 + [72− 40ζ2]N−1

c
(3,0)
L,ps =− (160CF − 160CA)N−4 −

(64

3
nf + 16CF −

496

3
CA

)
N−3 +

(512

9
nf

− [80− 256ζ2]CF +
[400

9
− 112ζ2

]
CA

)
N−2 (A.58)

Here an overall factor of CFnf has been omitted.

c
(1,0)
L,g = + 4− 6N + 7N2

c
(1,1)
L,g = + 8− [12− 4ζ2]N

c
(1,2)
L,g = + [16− 2ζ2]

c
(2,0)
L,g = + (8CF − 16CA)N−2 − 8CFN

−1 − ([4 + 8ζ2]CF − [16 + 16ζ2]CA)

c
(2,1)
L,g =− (8CF − 16CA)N−3 + (16CF − 32CA)N−2 − ([12− 20ζ2]CF

− [72− 40ζ2]CA)N−1

c
(3,0)
L,g =− (80CFnf − 40C 2

F + 80CACF − 160C 2
A)N−4 +

(464

3
CFnf − 20C 2

F

+
16

3
CAnf −

152

3
CACF +

56

3
C 2
A

)
N−3 +

(80

9
CAnf − [16 + 96ζ2]C 2

F

+
[308

9
+ 144ζ2

]
CACF −

[3416

9
− 64ζ2

]
CFnf +

[3640

9
− 120ζ2

]
C 2
A

)
N−2

(A.59)
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Here an overall factor of nf has been omitted.

A.9 a5
s Predictions from the Small-x Resummation of DIS

Structure Functions

We present here the explicit a5
s predictions of the all-as-order expressions computed in

Chapter 4. For the non-singlet anomalous dimension,

γ(4),+
ns (N) =− 448C 5

FN
−9 +

(
− 1120C 5

F + 560β0C
4
F

)
N −8 +

(
3600C 2

AC
3
F ζ2

− 640/3β0C
4
F − 240β2

0C
3
F + [−1280 + 11840ζ2]C 5

F

+ [−3200/3− 11520ζ2]CAC
4
F

)
N −7 +O(N −6). (A.60)

For the non-singlet coefficient functions,

c
(5)
2,ns(N) = + 2652C 5

FN
−10 +

(
8418C 5

F − 17012/3β0C
4
F

)
N −9 +

(
− 15840C 2

AC
3
F ζ2

− 23546/3β0C
4
F + 14363/3β2

0C
3
F + [6040 + 50688ζ2]CAC

4
F

+ [6438− 56508ζ2]C 5
F

)
N −8 +O(N −7) (A.61)

c
(5)
L,ns(N) = + 1560C 5

FN
−8 +

(
3736C 5

F − 8920/3β0C
4
F

)
N −7 +

(
− 10800C 2

AC
3
F ζ2

− 1504β0C
4
F + 6574/3β2

0C
3
F − [2064 + 35648ζ2]C 5

F

+ [11120/3 + 34560ζ2]CAC
4
F

)
N −6 +O(N −5) (A.62)

c
(5),−
3,ns (N) = + 2652C 5

FN
−10 +

(
6630C 5

F − 17012/3β0C
4
F

)
N −9 +

(
− 15840C 2

AC
3
F ζ2

− 11374/3β0C
4
F + 14363/3β2

0C
3
F + [66− 56508ζ2]C 5

F

+ [6040 + 50688ζ2]CAC
4
F

)
N −8 +O(N −7) (A.63)

For the singlet splitting functions,

γ(4)
qq (N) = γ(4),+

ns (N) + nf CF

{
N−9

(
− 7168C 3

A + 7168CF C
2
A − 5376C 2

F CA

+ 3584C 3
F + 7168nf CF CA − 5376nf C

2
F

)
+N−8

(
− 7936C 3

A

+
38720

3 CF C
2
A − 41984

3 C 2
F CA +

12272
3 C 3

F − 1792
3 nf C

2
A

+ 1088nf CF CA +
6656

3 nf C
2
F − 896

3 n 2
f CF

)
+N−7

(
− 256

9 n 2
f CA

+
20480

9 n 2
f CF − 32

3 [442 + 105 ζ2]nf C
2
A − 32

9 [7054 + 243 ζ2]C 3
A

+
4
3 [9109− 19668 ζ2]C 3

F − 4
9 [9211− 72108 ζ2]C 2

F CA

+
16
9 [16829 + 1602 ζ2]nf CF CA +

8
9 [24337− 22320 ζ2]CF C

2
A

− 8
9 [33715− 9216 ζ2]nf C

2
F

)}
+O(N−6) , (A.64)

131



γ(4)
qg (N) = nf

{
N−9

(
− 7168C 4

A + 3584CF C
3
A − 1792C 2

F C
2
A + 896C 3

F CA − 448C 4
F

+ 10752nf CF C
2
A − 7168nf C

2
F CA + 2688nf C
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2
F
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gq (N) = CF
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and for the singlet coefficient functions,

c
(5)
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A.10 The Small-x Behaviour of the Fourth-Order QCD
Splitting Functions at Large-nf

In Chapter 5 we computed fourth-order contributions to the n 3
f terms of the singlet

anomalous dimensions and the n 2
f terms of the non-singlet anomalous dimensions. For

future reference, the leading small-x behaviour of the associated splitting functions is

presented here.

P±ns
∣∣
n 3
f

= ln3 x
(
− 8

81 CF

)
+ ln2 x

(
− 88

81 CF

)
+ lnx

(
− 64

27 CF

)
, (A.72)
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