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Abstract

This paper investigates the performance of the tests proposed by Hadri (2000) and
by Hadri and Larsson (2005) for testing for stationarity in heterogeneous panel data
under model misspeci�cation. The panel tests are based on the well known KPSS test
(cf. Kwiatkowski et al. (1992)) which considers two models: stationarity around a
deterministic level and stationarity around a deterministic level and trend. There is
no study, as far as we know, on the statistical properties of the test when the wrong
model is used. We also consider the case of the presence of the two types of models
simultaneously in a panel. We employ two asymptotics: joint asymptotic, T and
N ! 1 simultaneously; and T �xed and N allowed to grow inde�nitely. We use
Monte Carlo experiments to investigate the e¤ects of misspeci�cation in sample sizes
usually used in practice. The results indicate that the assumption that T is �xed rather
than asymptotic leads to tests that have less size distortions, particularly for relatively
small T with large N panels (micro panels) than the tests derived under the joint
asymptotics. We also �nd that choosing a deterministic trend when a deterministic
level is true does not a¤ect signi�cantly the properties of the test. But, choosing a
deterministic level when a deterministic trend is true leads to extreme over-rejections.
Therefore, when unsure about which model has generated the data, it is suggested to
use the model with a trend. We also propose a new statistic for testing for stationarity
in mixed panel data where the mixture is known. The performance of this new test is
very good for both cases of T asymptotic and T �xed. The statistic for T asymptotic
is slightly undersized when T is very small (�10).

Keywords: Heterogeneous panel data, Model misspeci�cation, Stationarity
test.
JEL classi�cation: C12; C23; C52.
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1 Introduction

An upsurge of interest in testing for nonstationarity in panel data has been wit-
nessed in econometrics literature recently. Since the seminal papers by Breitung
and Meyer (1994), Quah (1994), Maddala and Wu (1999), Phillips and Moon
(1999), Levin, Lin and Chu (2002), Im, Pesaran and Shin (2003), Hadri (2000)
and Hadri and Larsson (2005), panel unit root and stationarity tests, have been
applied to a variety of key economic issues with the hope that the increased
power of these tests, due to the exploitation of the cross-section dimension,
would provide more compelling evidence. Banerjee (1999), Baltagi and Kao
(2000), Baltagi (2001) and Breitung and Pesaran (2005) provide comprehensive
surveys on the subject. The original panel stationary test suggested by Hadri
(2000) is extensively used in empirical work as a complement to standard panel
unit root tests. It has also been the subject of further theoretical development
by, inter-alia, Hadri and Larsson (2005) for �nite T; Carrion-i-Silvestre, J. L., T.
Del Barrio and E. López-Bazo (2005) and Hadri and Rao (2007) who extended
the test to account for structural breaks in the deterministic components.
These tests are very popular among researchers due to the availability of

panel data sets with large T and N; e.g, Penn World Tables data set. The pro-
posed panel tests have been used in many studies including O�Connell (1998),
Oh (1996), Papell (1997, 2002), Wu (1996) and Wu and Wu (2001), who fo-
cused on testing the existence of purchasing power parity. Culver and Papell
(1997) applied panel unit root tests to the in�ation rate for a subset of OECD
countries. They have also been employed in testing output convergence and
more recently in the analysis of business cycle synchronization, house price con-
vergence, regional migration and household income dynamics (cf. Breitung and
Pesaran (2005)).
Traditional panel data analysis was mainly applied to micro panel with large

N and small T: However, as noted above, the availability of panel data sets with
large N and large T led to the development of asymptotics adapted to this type
of panels. The main contribution in this area is by Phillips and Moon (1999)
who considered three con�gurations of asymptotics: sequential limits, wherein
T !1 followed by N !1; joint limits where T; N !1 simultaneously and
the diagonal path limit theory in which the passage to in�nity is done along
a speci�c diagonal path. The drawback of sequential limits is that in certain
cases, they can give asymptotic results which are misleading. The downside of
diagonal path limit theory is that the assumed expansion path (T (N); N) !
1 may not provide an appropriate approximation for a given (T;N) blend.
Finally, the joint limit theory requires, generally, a rate condition on the relative
speed of T and N going to in�nity. For Hadri (2000) panel stationarity test
considered here, the more robust joint asymptotics requires N=T ! 0 when
T;N ! 1 simultaneously which means that the tests are applicable to panels
with T larger than N: This condition therefore limits the applicability of the
tests. To overcome this di¢ culty, Hadri and Larsson (2005) consider a fourth
limit theory in which T is �xed and N is allowed to grow inde�nitely. This
makes the test applicable even when T is smaller than N .
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In this paper, we analyze via simulations the robustness of Hadri (2000) and
Hadri and Larsson (2005) panel stationarity tests for possible misspeci�cation.
More precisely, we assume that for all the cross-sections we have stationarity
around a level (Model 1) when the true model is stationarity for all the cross-
sections around a trend (Model 2) and vice versa. We also consider the case
of mixed models, i.e., the true models are di¤erent across cross-sections. The
main motivation of this paper is that, in practice, the researcher ignores the true
models and does not pre-test2 . Therefore, the possibility of misspeci�cation is
real. The paper seeks to uncover the consequences of misspeci�cation on the
statistical properties of the tests. Finally, we also propose a new test for testing
for stationarity in mixed panel data where the mixture is known.
The remainder of this paper is organized as follows. Section 2 reviews the

related models and test statistics. Section 3 investigates the �nite sample prop-
erties of the tests under misspeci�cation via Monte Carlo simulations. Section
4 concludes.

2 Panel models and statistics

We recall that the models in Hadri (2000) can be written as follows:

Model 1: yit = rit + "it; (1)

and

Model 2: yit = rit + �it+ "it; (2)

where rit is a random walk:

rit = rit�1 + uit:

yit (i = 1; 2; :::; N and t = 1; 2; :::; T ) are the observed series for which we wish
to test the stationarity for all i: The "it and uit are i:i:d error terms across i
and over t with E["it] = 0; E["2it] = �

2
i" > 0 and E[uit] = 0; E[�

2
iu] = �

2
iu � 0:

Under the null, �2iu = 0 for all i, the initial value ri0 is treated as �xed unknown
and plays the role of an intercept (cf. Abadir (1993) and Abadir and Hadri
(2000) for the importance of initial values in autoregressive models). Hence,
under the null hypothesis yit is stationary around a level in Model 1 and trend
stationary in Model 2.
Suppose b"it are the residuals from the regression yit on an intercept for Model

1 and on an intercept plus a time trend for Model 2, the panel test statistic is
the average of the KPSS test applied to each cross-section (cf. Hadri (2000) for
more details) is given by

dLM =
1

N

NX
i=1

1
T 2

PT
t=1 S

2
itb�2i" ; (3)

2Pre-testing has its own problems.
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where b�2i" is a consistent estimator of �2i". In the absence of serial correlation a
consistenr estimator is given by:

b�2i" = 1

T

TX
t=1

b"2it: (4)

In the presence of serial correlation, b�2i" is replace by a consistent estimator of
the long-run variance. The panel statistic for the null of stationarity is given
by:

Z� =

p
N(dLM� � ��)

��
! N(0; 1); (5)

and

Z� =

p
N(dLM� � �� )

��
! N(0; 1): (6)

The indices � and � indicate that the statistic corresponds to Model 1 and Model
2 respectively. These results are obtained using the Lindberg-levy central limit
theorem exploiting the cross-sectional independence.
Under the assumption of T !1, the means �k and the variances �2k of the

random variable
R
Vk(r)

2 are obtained by Hadri (2000) using the technique of
characteristic functions, where k = f�; �g. V�(r) denotes a standard Brownian
bridge in Model 1 and V� (r) a second-level Brownian bridge in Model 2.
For Model 1, the mean and variance are

�� =
1

6
; �2� =

1

45
;

and for Model 2,

�� =
1

15
; �2� =

11

6300
: (7)

In the case where T is assumed to be �xed, the means and variances of Model
1 and Model 2 are given by:

�� =
T + 1

6T
; �2� =

T 2 + 1

20T 2
� (T + 1

6T
)2 and

�� =
T + 2

15T
; �2� =

(T + 2)(13T 2 + 23)

2100T 3
� (T + 2

15T
)2; (8)

respectively.
Consider a mixture panel of size N , where we have M time series follow a

level case and the remaining N �M time series follow a trend case. De�ne the
proportion

� =
M

N

and assume that � remains a known constant proportion.
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For a mixture panel of principal concern here, we propose to use the following
statistic

dLMm = � � dLM� + (1� �)� dLM�

and as a result we obtain the following limiting distribution

Zm =

p
N(dLMm � �m)

�m
! N (0; 1) (9)

where

�m = ��� + (1� �)��
�2m = ��2� + (1� �)�2� (10)

The poofs are collected in Appendix.

3 Monte Carlo simulation results

In this section, Monte Carlo experiments are used to evaluate the �nite sample
performances of the proposed tests in the case of misspeci�cation under both
assumptions of T asymptotic and T �xed. Each simulation is based on GAUSS
RNDN procedure, using 10000 replications (cf. Hadri and Phillips (1999) for the
importance of the number of replications in simulations). The data-generating
process (DGP) for Model 1 is:

yit = �i + "it;

and for Model 2 is:
yit = �i + �it+ "it;

where "it are i:i:d N(0; 1) under the null hypothesis. We generated �i from
U [0; 10] and �i from U [0; 2]. Please note that the results when T is assumed
�xed are reported inside brackets in the Tables.
In simulations, when T is assumed asymptotic, the estimator of �2i" is cor-

rected for the number of degree of freedom. Therefore, we use

b�2i" = 1

T � 1

TX
t=1

b"2it;
as an estimator of �2i" for Model 1 and

b�2i" = 1

T � 2

TX
t=1

b"2it:
for Model 2. In the case when T is assumed �xed, we use (4) without any
correction.
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3.1 Model misspeci�cations using the same model in all
the cross-sections

In this subsection, the wrong model is used. Table 1 presents the empirical
size at 5% signi�cance level corresponding to the critical value 1.645 (one-sided
test). In this case, the true model is Model 2 but we wrongly use the statistic
Z�; hence, committing a deliberate misspeci�cation. The tests have extremely
severe size distortions, all equal to 1. This means that despite that the null
hypothesis is true, we will wrongly reject it all the time. The same conclusion
is reached when we use the tests where T is assumed �nite.

[Table 1 here]

Table 2 shows the reverse situation. The data is generated by Model 1 but
we employ on purpose the wrong statistic Z� : For the case where T is assumed
asymptotic, the size of the test is very close to the nominal value 0.05 for samples
with T > 25: As expected, as T and N get larger but N is not too large relatively
to T , the test becomes less distorted. This is due to the relative rate condition:
N=T ! 0 when T;N !1. For T assumed �xed, the size does not deteriorate
even when N is larger than T; as expected.

[Table 2 here]

3.2 Model misspeci�cations in a mixed stationary panel

In this subsection, we investigate the mixed stationary panel data where there
are M (M < N) cross-sections, which are from Model 1, while the remaining
(N � M) cross-sections are generated by Model 2. We apply the panel test
statistics Z� and Z� in turn to a mixed stationary panel data to evaluate their
performances.
We have misspeci�cation whether we apply Z� or Z� statistic in a mixed

stationary panel data. Table 3 and Table 4 report the simulation results about
the size of Z� and Z� respectively. Di¤erent proportions of each models in a
panel are examined.
The results in Table 3, where we use Z� statistic, reveal that most results

have large size distortion when M=N < 1 under both assumptions of T asymp-
totic and T �xed. We �nd that there is a tendency for the size to improve when
the proportion of level stationary models increases. At the extreme point when
M=N = 1, that is, all the cross-sections are generated by Model 1, there is no
misspeci�cation problem and the sizes are close to the nominal 0.05 as expected.
Similar results are obtained when T is assumed �xed.

[Table 3 here]

In Table 4, where we use Z� statistic, we �nd that the calculated sizes are
very close to the nominal one for any combination of T , N and M=N when T
is assumed �xed. However, for T assumed asymptotic, the sizes are distorted
when T is smaller than N:
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[Table 4 here]

3.2.1 The correct statistic for mixed panel data

Table 5 gives the sizes in a mixed panel data where the correct statistic in-
corporating the information about the mixture is used. The sizes for both T
asymptotic and T �xed are very close to the nominal one. The statistic for T
asymptotic is slightly undersized when T is very small (�10).

[Table 5 here]

4 Conclusion

This paper extends the panel stationarity test proposed by Hadri (2000) and
Hadri and Larsson (2005) to the more realistic case of model misspeci�cation.
The investigations are based on the assumptions of T asymptotic and T �xed.
Monte Carlo simulations are used to analyze the e¤ects of misspeci�cations. The
results suggest that using the statistic corresponding to Model 2 is very robust
to misspeci�cation. The statistic under the assumption of T �xed performs
better than the statistic where T is assumed asymptotic particularly when T
is relatively smaller than N: Finally, we propose a new statistic for testing
stationarity in mixed panel data where the mixture is known. The performance
of this new test is very good for both cases of T asymptotic and T �xed. The
statistic for T asymptotic is slightly undersized when T is very small (�10).
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Appendix
Proof. of equation (10).
We recall that (cf. Hadri (2000)):

b��i = T�2 TX
t=1

S2it=b�2i� ! Z
V�(r)

2dr as T !1

and

b��i = T�2 TX
t=1

S2it=b�2i� ! Z
V� (r)

2dr as T !1

Hence, for Model 1

E(b��i)! E

Z
V�(r)

2dr = ��; V (b��i)! V ar(

Z
V�(r)

2dr) = �2�

and for Model 2

E(b��i)! E

Z
V� (r)

2dr = �� ; V (b��i)! V ar(

Z
V� (r)

2dr) = �2� :

The values of the above moments are given by (7) and (8) for T asymptotic and
T �xed respectively.
Calculations of the mean and variance of dLM� and dLM� are as follows. For

Model 1, since

dLM� =
1

M
(
MX
i=1

1
T 2 (
PT

t=1 S
2
it)b�2i";1 ) =

1

M

MX
i=1

(b��i);
therefore

E[dLM�] =
1

M

MX
i=1

E(b��i) = ��;
and

V ar(dLM�) = V ar(
1

M
(
MX
i=1

b��i)
=

1

M2

MX
i=1

V ar(b��i)
=

1

M
�2�:

For Model 2, we have

dLM� =
1

N �M (
NX

i=M+1

1
T 2 (
PT

t=1 S
2
it)b�2i";1 )

=
1

N �M

NX
i=M+1

(b��i);
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so we can �nd

E(dLM� ) =
1

N �M

NX
i=M+1

E(c��i) = ��
and

V ar(dLM� ) = V ar(
1

N �M

NX
i=M+1

b��i)
=

1

(N �M)2
NX

i=M+1

V ar(b��i)
=

1

N �M �2�

Derivation of the mean and variance of dLMm are as follows:

dLMm =
M

N
(dLM�) +

N �M
N

(dLM� );

E[dLMm] =
M

N
(E[dLM�]) +

N �M
N

(E[dLM� ])

=
M

N
(��) +

N �M
N

(�� )

= �m

and

V ar[dLMm] =
M2

N2
(V ar[dLM�]) +

(N �M)2
N2

(V ar[dLM� ])

=
M2

N2

1

M
(�2�) +

(N �M)2
N2

1

N �M (�2� )

=
M

N2
(�2�) +

N �M
N2

(�2� )

=
1

N
�2m:

Recall that as M !1 and N �M !1 (while � remains constant)

Z� =

p
M(dLM� � ��)

��
! N(0; 1)

and as

Z� =

p
N �M(dLM� � �� )

��
! N(0; 1)

It follows that dLMm which is a weighted average of dLM� and dLM� has the
following limiting distribution

Zm =

p
N(dLMm � �m)

�m
! N (0; 1)
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where

�m =
M � �� + (N �M)� ��

N
= ��� + (1� �)��

�2m =
M�2� + (N �M)�2�

N
= ��2� + (1� �)�2� (11)

Now in order to apply this new test, we have just to replace the appropriate
above moments in (9).
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Table 1. Size of Z� in the case of model misspeci�cation
N = 5 N = 10 N = 15 N = 25 N = 50 N = 100

T = 10 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000
(1:0000) (1:0000) (1:0000) (1:0000) (1:0000) (1:0000)

T = 20 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000
(1:0000) (1:0000) (1:0000) (1:0000) (1:0000) (1:0000)

T = 50 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000
(1:0000) (1:0000) (1:0000) (1:0000) (1:0000) (1:0000)

T = 100 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000
(1:0000) (1:0000) (1:0000) (1:0000) (1:0000) (1:0000)

T = 200 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000
(1:0000) (1:0000) (1:0000) (1:0000) (1:0000) (1:0000)

Table 2. Size of Z� in the case of misspeci�cation
N = 5 N = 10 N = 15 N = 25 N = 50 N = 100

T = 10 0:0079 0:0052 0:0049 0:0023 0:0012 0:0002
(0:1021) (0:1145) (0:1146) (0:1244) (0:1256) (0:1290)

T = 20 0:0336 0:0322 0:0313 0:0223 0:0226 0:0193
(0:0848) (0:0922) (0:0962) (0:0911) (0:0917) (0:0916)

T = 50 0:0572 0:0496 0:0502 0:0503 0:0427 0:0362
(0:0746) (0:0699) (0:0775) (0:0794) (0:0733) (0:0615)

T = 100 0:0618 0:0556 0:0551 0:0545 0:0547 0:0500
(0:0687) (0:0639) (0:0676) (0:0682) (0:0673) (0:0644)

T = 200 0:0606 0:0575 0:0544 0:0561 0:0536 0:0546
(0:0659) (0:0645) (0:0576) (0:0625) (0:0609) (0:0616)
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Table 3 Size of Z� in model of mixed stationary panel series
M=N 0:25 0:50 0:75 1

N = 20 T = 10 1:0000 1:0000 0:77899 0:0255
(1:0000) (1:0000) (0:9970) (0:0583)

T = 20 1:0000 1:0000 1:0000 0:0419
(1:0000) (1:0000) (1:0000) (0:0618)

T = 50 1:0000 1:0000 1:0000 0:0544
(1:0000) (1:0000) (1:0000) (0:0628)

T = 100 1:0000 1:0000 1:0000 0:0603
(1:0000) (1:0000) (1:0000) (0:0633

N = 40 T = 10 1:0000 1:0000 1:0000 0:0195
(1:0000) (1:0000) (1:0000) (0:0553)

T = 20 1:0000 1:0000 1:0000 0:0362
(1:0000) (1:0000) (1:0000) (0:0571)

T = 50 1:0000 1:0000 1:0000 0:0499
(1:0000) (1:0000) (1:0000) (0:0570)

T = 100 1:0000 1:0000 1:0000 0:0530
(1:0000) (1:0000) (1:0000) (0:0570)

N = 60 T = 10 1:0000 1:0000 1:0000 0:0187
(1:0000) (1:0000) (1:0000) (0:0569)

T = 20 1:0000 1:0000 1:0000 0:0380
(1:0000) (1:0000) (1:0000) (0:0571)

T = 50 1:0000 1:0000 1:0000 0:0529
(1:0000) (1:0000) (1:0000) (0:0613)

T = 100 1:0000 1:0000 1:0000 0:0518
(1:0000) (1:0000) (1:0000) (0:0558)

N = 100 T = 10 1:0000 1:0000 1:0000 0:0139
(1:0000) (1:0000) (1:0000) (0:0493)

T = 20 1:0000 1:0000 1:0000 0:0357
(1:0000) (1:0000) (1:0000) (0:0549)

T = 50 1:0000 1:0000 1:0000 0:0488
(1:0000) (1:0000) (1:0000) (0:0571)

T = 100 1:0000 1:0000 1:0000 0:0509
(1:0000) (1:0000) (1:0000) (0:0540)
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Table 4. Size of Z� in model of mixed stationary panel series
M=N 0:25 0:50 0:75 1

N = 20 T = 10 0:0031 0:0034 0:0034 0:0032
(0:0548) (0:0558) (0:0595) (0:0564)

T = 20 0:0252 0:0250 0:0285 0:0281
(0:0579) (0:0567) (0:0567) (0:0583)

T = 50 0:0501 0:0451 0:0488 0:0498
(0:0620) (0:0582) (0:0596) (0:0611)

T = 100 0:0537 0:0530 0:0536 0:0542
(0:0604) (0:0585) (0:0597) (0:0596)

N = 40 T = 10 0:0013 0:0014 0:0016 0:0019
(0:0575) (0:0563) (0:0550) (0:0563)

T = 20 0:0200 0:0198 0:0223 0:0198
(0:0556) (0:0538) (0:0573) (0:0583)

T = 50 0:0445 0:0462 0:0453 0:0458
(0:0555) (0:0594) (0:0590) (0:0573)

T = 100 0:0471 0:0511 0:0511 0:0510
(0:0527) (0:0576) (0:0580) (0:0567)

N = 60 T = 10 0:0010 0:0018 0:0010 0:0010
(0:0537) (0:0521) (0:0518) (0:0537)

T = 20 0:0217 0:0197 0:0203 0:0208
(0:0541) (0:0551) (0:0563) (0:0578)

T = 50 0:0432 0:0414 0:0436 0:0415
(0:0577) (0:0542) (0:0575) (0:0537)

T = 100 0:0521 0:0486 0:0498 0:0493
(0:0573) (0:0548) (0:0560) (0:0546)

N = 100 T = 10 0:0004 0:0003 0:0003 0:0005
(0:0518) (0:0496) (0:0543) (0:0515)

T = 20 0:0198 0:0183 0:0170 0:0166
(0:0575) (0:0551) (0:0556) (0:0526)

T = 50 0:0406 0:0428 0:0412 0:0421
(0:0544) (0:0561) (0:0548) (0:0564)

T = 100 0:0472 0:0503 0:0436 0:0489
(0:0528) (0:0576) (0:0497) (0:0565)
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Table 5 Size of Zm in mixed stationary panel series
M=N 0:25 0:50 0:75

N = 20 T = 10 0:0191 0:0240 0:0227
(0:0665) (0:0622) (0:0586)

T = 20 0:0401 0:0402 0:0426
(0:0608) (0:0609) (0:0587)

T = 50 0:0618 0:0590 0:0567
(0:0702) (0:0655) (0:0644)

T = 100 0:0606 0:0608 0:0588
(0:0644) (0:0643) (0:0623)

N = 40 T = 10 0:0151 0:0193 0:0154
(0:0599) (0:0586) (0:0552)

T = 20 0:0410 0:0366 0:0365
(0:0648) (0:0571) (0:0555)

T = 50 0:0569 0:0525 0:0544
(0:0649) (0:0617) (0:0612)

T = 100 0:0580 0:0569 0:0511
(0:0612) (0:0604) (0:0552)

N = 60 T = 10 0:0123 0:0141 0:0183
(0:0574) (0:0564) (0:0632)

T = 20 0:0368 0:0357 0:0369
(0:0571) (0:0567) (0:0563)

T = 50 0:0512 0:0492 0:0516
(0:0605) (0:0566) (0:0595)

T = 100 0:0555 0:0539 0:0529
(0:0591) (0:0575) (0:0567)

N = 100 T = 10 0:0085 0:0134 0:0154
(0:0560) (0:0571) (0:0559)

T = 20 0:0337 0:0348 0:0343
(0:0588) (0:0565) (0:0543)

T = 50 0:0505 0:0507 0:0492
(0:0594) (0:0592) (0:0580)

T = 100 0:0558 0:0538 0:0539
(0:0598) (0:0574) (0:0578)
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