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An Empirical Comparison of Transformed Di¤usion Models
for VIX and VIX Futures

Abstract

Transformed di¤usions (TDs) are nonlinear functions of continuous-time a¢ ne di¤usion
processes. Since they are �exible models with tractable analytic properties, �nancial mod-
elling with TDs has become increasing popular in recent years. We �rst provide a formal
classi�cation of TD models into drift-driven, di¤usion-driven, and distribution-driven ac-
cording to their empirical emphases and speci�cation strategies. Motivated by the stylized
distributional features of VIX such as skewness and excess kurtosis, we then propose a pair of
new distribution-driven TDs for modelling VIX dynamics and pricing VIX futures by directly
incorporating such information into the speci�cation of the transformation. We conduct a
comprehensive empirical investigation into the relative performance of the three classes of
models against several empirically relevant criteria. Our focus is on the in-sample goodness-
of-�t measure and the out-of-sample forecast accuracy for modelling VIX and pricing VIX
futures, as well as the stock return predictability of the implied Variance Risk Premium.
Our �ndings demonstrate that the newly proposed distribution-driven models have clear
advantages over well-established alternatives in most of our exercises.

JEL Classi�cation: C13, C32, G13, G15
Keywords: Transformation Model; Nonlinear Di¤usion; Skewed Student-t Distribution; Volatil-

ity Index; VIX Futures.
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1. Introduction

As a measure of market volatility implied by traded S&P 500 index option prices, the Volatil-
ity Index (VIX), also known as the "investor fear gauge", has attracted enormous attention in
recent years. For �nancial market participants, it is of the utmost importance to understand
the dynamics of market volatility which is a crucial determinant of investment decisions.
One of the most important strands of the literature focuses on the data generating process
of VIX, since a realistic model for the VIX dynamics is vital for correct inference and accurate
derivative pricing.
Continuous-time di¤usion models are particularly useful for modelling �nancial variables,

not only because they are �exible yet parsimonious analytical tools, but also because deriv-
ative pricing crucially relies on a �continuous-time�no-arbitrage argument (i.e. change of
measure). For this reason, a growing number of studies have emerged on modelling the
dynamics of VIX and price VIX futures and options using continuous-time models. Whaley
(1993) used a Geometric Brownian Motion model which does not have the mean-reverting
feature for pricing volatility futures contracts. Grunbichler and Longsta¤ (1996) considered
pricing VIX futures and options assuming that VIX follows the Cox et al. (1985) square-root
process (CIR). Detemple and Osakwe (2000) considered the log-normal Ornstein-Uhlenbeck
(OU) model. Goard and Mazur (2013) advocated the so-called 3/2 model, which is the same
as the Ahn and Gao (1999) model, for VIX and VIX options. More recently, Eraker and
Wang (2015) proposed a new nonlinear di¤usion model with a cubic drift term to study the
Variance Risk Premium (VRP) implied by VIX futures prices.
One of the greatest challenges in di¤usion modelling is to construct models that are suf-

�ciently �exible to describe complex nonlinear dynamics in reality and su¢ ciently tractable
to allow e¢ cient inference such as the Maximum Likelihood (ML) and convenient and accu-
rate derivative pricing. For this purpose, one useful approach is to consider transformation
models in continuous time. Bu et al. (2011) promoted the idea of modelling nonlinear dif-
fusion, say Y , as a transformation of a more tractable basic a¢ ne process, say X, for which
the closed-form transition density is available. Prominent examples of tractable underlying
di¤usions include, but not restricted to, the OU and the CIR processes. For a given transfor-
mation, i.e. Y = V (X), the transition density of the transformed di¤usion (TD) Y is simply
the distribution transformation of the transition density of X under mild conditions. Most
importantly, if V is nonlinear and �exible, then Y would also be a nonlinear and conceivably
more �exible di¤usion process.
Financial modelling with TD models has been increasingly popular in recent years1. Bu

et al. (2011) considered transformed OU and CIR processes with Constant Variance Elas-
ticity (CEV) di¤usion terms (denoted as OUCEV and CIRCEV) for modelling short-term

1In a non-�nancial context, Forman and Sørensen (2014) considered a transformed OU process (henceforth
denoted as OUFS) with a bimodal marginal distribution for modelling molecular dynamics.
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interest rates2. They showed that their models can generate similar nonlinearities in both
the drift and di¤usion terms to those estimated nonparametrically (e.g. Aït-Sahalia 1996a).
More importantly, Bu et al. (2016b) showed that the CIRCEV model can provide much
better �t to the VIX data than the Nonlinear Drift CEV (NLDCEV) model of Aït-Sahalia
(1996b) and Conley et al. (1997). Detemple and Osakwe (2000) used the exponential trans-
formation of the OU process (henceforth denoted as OUDO) for pricing volatility options.
Goard and Mazur (2013) considered the reciprocal transformation of the CIR process for
modelling VIX and pricing VIX options. More recently, Eraker and Wang (2015) considered
a transformation of the CIR process which leads to a cubic drift function (henceforth denoted
as CIREW). Using the Fourier transformation method, they derived a pricing formula for
VIX futures and studied the VRP implied by the VIX futures prices.
The �rst contribution of this paper is to provide a formal classi�cation of TDs in the

literature, according to their empirical emphases and speci�cation strategies. The �rst class
are considered as "drift-driven" (e.g. CIREW and OUDO) where for an underlying process
X, the transformation is derived so that the resulting TD Y has a desired drift function.
The second class are "di¤usion-driven" (e.g. OUCEV and CIRCEV) where the users specify
a desired di¤usion term of Y and the drift term is determined simultaneously. The third
class are "distribution-driven" (e.g. OUFS) where the users specify the marginal distribution
of Y to be a member a class of parametric distributions, based on which the transforma-
tion function is then derived. It can be shown that theoretically all three approaches are
interchangeable since there is a intrinsic relationship between the drift, the di¤usion and the
marginal distribution of any stationary di¤usion process. In practice, however, the empiri-
cal relevance and also the analytic tractability of the three strategies can be fairly di¤erent
depending on the users�preferences.
Although TD models are increasingly popular in �nancial modelling, their full potential

in modelling �nancial derivatives have not been fully explored. The second contribution of
this paper is to propose a pair of new distribution-driven nonlinear TD processes purposefully
designed to fully incorporate stylized features such as the skewness and excess kurtosis in
the distribution of the VIX data while at the same time deliver a closed-form transition
density for e¢ cient likelihood inference and closed-form VIX futures pricing. Our new TDs
(named as CIRSKST and OUSKST) are constructed as the transformed CIR and OU process,
respectively, where we propose to use the Skewed Student-t distribution (SKST) of Hansen
(1994) to directly explore the information in the marginal distribution of VIX. Following a
simple argument of change of measure in continuous time, we derive a closed-form formula
for the prices of the VIX futures contract.
As our third contribution of this paper, we provide a comprehensive empirical investi-

gation into the comparative performance of the three classes of models for modelling time

2The CIRCEV model nests the Ahn and Gao (1999) and Goard and Mazur (2013) models as special
cases.
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series of VIX data (i.e. under the physical P -measure) and for pricing VIX futures (i.e.
under the risk-neutral Q-measure). Our data consist of 6352 daily observations of VIX from
January 2, 1990 to March 20, 2015 and 19215 observations of VIX futures closing prices
from March 26, 2004 to February 17, 2015. Our comparison is based on a set of empiri-
cally important criteria. Firstly, we compare the three classes of models in terms of their
in-sample goodness-of-�t and out-of-sample forecasting accuracy for modelling the VIX dy-
namics under the physical measure. We then examine our competing models in terms of
their in-sample and out-of-sample performance for pricing VIX futures, which is carried out
jointly under both the physical and risk-neutral measures. Finally, following the arguments
of Bollerslev et al. (2009) and Eraker and Wang (2015), we extract the time-varying VRP
jointly inferred from the VIX and VIX futures data for each of our competing models and
examine their predictability for S&P 500 index returns.
Our empirical analysis provides a number of important results. For modelling the VIX

dynamics under the physical measure, the newly proposed distribution-driven models dom-
inated well-established models in the literature in terms of both in-sample goodness-of-�t
measures and out-of-sample forecast accuracy. While both the CIRSKST and the OUSKST
models �tted the VIX data equally well, the latter produced the smallest average forecast
errors. For modelling VIX and pricing VIX futures under the joint measures, very similar
outcomes emerged. While the CIRSKST model dominated all other models in terms of in-
sample performances, the distribution-driven class dominated the other two classes in terms
of superior out-of-sample performances. In particular, the OUSKST model produced signif-
icantly smaller average forecast errors than any other competing model. All three classes of
models performed rather similarly in terms of stock return predictabilities of the extracted
VRP. Nevertheless, with non-substantial margins, the CIRSKST model produced the high-
est predictability for the shortest forecasting horizon and the OUSKST model produced the
highest predictability for the majority of the longer horizons. This outcome is broadly consis-
tent with earlier results about their respective superior in-sample and out-of-sample abilities.
It is worth mentioning that no models from the other classes ever dominated the rest of the
�eld against any of our empirically important criteria. These �ndings demonstrate quite
robustly that the new distribution-driven models have clear advantages over well-established
alternatives. In the meantime, we found that the CIREW, the CIRCEV and the OUCEV
models performed rather similarly in all categories, and the OUDO model performed better
out-of-sample than in-sample.
The rest of the paper is organized as follows: In Section 2, we brie�y review the transfor-

mation approach for modelling continuous-time di¤usions and propose a formal classi�cation.
In Section 3, we propose our new distribution-driven speci�cations purposefully designed for
�nancial time series. In Section 4, we discuss the pricing of VIX futures and our estimation
strategy. In Section 5, we present a thorough empirical comparison of competing TDs for
modelling VIX dynamics and pricing VIX futures against several empirically vital criteria.
Concluding remarks are included in Section 6.
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2. Nonlinear Transformed Di¤usion Models

2.1. General Framework

The dynamics of a continuous-time di¤usion Y is typically written as

dYt = �Y (Yt;�) dt+ �Y (Yt;�) dWt

where �Y (y;�) and �
2
Y (y;�) are the instantaneous drift and di¤usion functions respectively,

andW is a standard Brownian motion. The focus of �nancial modelling is on the speci�cation
of �Y (y;�) and �

2
Y (y;�). Well known examples include Merton (1973), Black and Scholes

(1973), Vasicek (1977), Cox et al. (1985), Du¢ e and Kan (1996), Aït-Sahalia (1996b),
Conley et al. (1997), Ahn and Gao (1999), Bu et al. (2011).
Bu et al. (2011) proposed to model stochastic �nancial variables by TDs where Y is

assumed to be a strictly monotone transformation of some basic a¢ ne di¤usion X, i.e.

Yt = V (Xt;#)

where
dXt = �X (Xt;!) dt+ �X (Xt;!) dWt; (1)

which depends on parameter !. V (x;#) is the transformation function with parameter #
satisfying @V (x;#)=@x 6= 0 for all x 2 DX . Ito�s Lemma determines that

�Y (y;�) =
�X (U (y;#) ;!)

U 0 (y;#)
� �

2
X (U (y;#) ;!)U

00 (y;#)

2U 0 (y;#)3
(2)

�2Y (y;�) =
�2X (U (y;#) ;!)

U 0 (y;#)2
(3)

where U (y;#) = V �1 (y;#) is the unique inverse of V (x;#), and U 0 (y;#) and U 00 (y;#) are
its �rst and second derivatives. Let pX (xjx0;!) and pY (yjy0;�) be the transition probability
density function (PDF) of X and Y , respectively. It follows immediately that

pY (yjy0;�) = jU 0 (y;#)j pX (U (y;#) jU (y0;#) ;!)

The choice of (1) is typically restricted to the a¢ ne class so that pX (xjx0;!) and hence
pY (yjy0;�) are in closed form. In the literature, the CIR and the OU processes are the most
common choices. The dynamics of the CIR process is written as

dXt = �(� �Xt)dt+ �
p
XtdWt

where � > 0, � > 0 and 2�� � �2 > 0 and that of the OU process is given by

dXt = �(� �Xt)dt+ �dWt

where � > 0 and �2 > 0. The resulting closed-form transition PDF pY (yjy0;�) forms a very
useful basis for ML inference and pricing VIX futures.
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2.2. Classi�cation of Transformed Di¤usion Models

The most important task in modelling TDs is the speci�cation of V (x;#). Bu et al. (2011)
noted that for any given speci�cation of X, the knowledge of the functional form of either
�Y (y;�) or �

2
Y (y;�) leads to the unique solution of V (x;#). In the meantime, under the

stationarity assumption of X, the marginal Cumulative Distribution Function (CDF) of X
and Y both exist, from which V (x;#) can also be inferred uniquely. In this section, we
provide a formal classi�cation of TD models depending on their empirical emphases and
hence their corresponding speci�cation strategies.

2.2.1. Drift-Driven Class

We de�ne the class of TD models which focus on a desired drift function �Y (y;�) as drift-
driven. Note that for a given �Y (y;�), the transformation function U (y;#) is the solution to
the system of Ordinary Di¤erential Equations (ODE) of (2) and (3), which depends on both
�X (x;!) and �

2
X (x;!). For an arbitrary �Y (y;�), the closed-form expression for U (y;#) is

usually unavailable.
Nevertheless, special cases where the drift-driven strategy does lead to elegant closed-

form U (y;#) have been proposed in the literature. For example, when X is the CIR and
the desired drift function is a cubic polynomial3, Eraker and Wang (2015) showed that the
required U (y;#) is given by

U (y;#) = 1= (y � ')� �
and the resulting drift function is given by

�Y (y;�) = � (y � ') +
�
�2 � � (� + �)

�
(y � ')2 � � (y � ')3

Similarly, Detemple and Osakwe (2000) showed that when X is the OU, the logarithmic
transformation U (y;#) = ln y implies the following linear drift for ln y

�lnY (ln y;�) = �(� � ln y)

or equivalently
�Y (y;�) =

�
�� + �2=2

�
y � �y ln y

which gives rise to the so-called Mean-Reverting Log process (i.e. OUDO). As leading
examples of TDs for VIX in the literature, both the OUDO model and the CIREW model
are considered in our empirical comparison.

3Ahn and Gao (1999) model for short-term interest rates is a special case where the underlying basic
a¢ ne process is the CIR and the drift function has a quadratic form.
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2.2.2. Di¤usion-Driven Class

The di¤usion-driven class of TD models begin with a desired di¤usion function �2Y (y;�). It
follows that U (y;#) is the solution to the 1st-order ODE in (3). Solving (3) is compara-
tively simple and in some cases analytical solutions exist. A prominent example frequently
promoted in �nancial modelling is the following CEV speci�cation

�2Y (y;�) = �
2
0y
2
 for 
 2 [0;+1)

It was introduced by Chan et al. (1992) who considered a linear drift and subsequently
studied by Aït-Sahalia (1996b) who promoted a nonlinear drift to improve the mean reversion
e¤ect. Bu et al. (2011) proposed two TD models with CEV di¤usion terms, the CIRCEV
and the OUCEV, where X is either the CIR or the OU, respectively. They showed that for
the CIRCEV model the transformation function is

U(y;#) =

�
(y1�
= (1� 
))2 =4 for 
 2 [0; 1) [ (1;+1)

(log y)2 =4 for 
 = 1

and for the OUCEV model it is

U(y;#) =

�
y1�
= (1� 
) for 
 2 [0; 1) [ (1;+1)

log y for 
 = 1

It is worth stressing that the drift and di¤usion terms of both models are nonlinear. In
addition to the CEV di¤usion term, the drift also exhibits a much stronger pull at high and
low levels of the state variable than the linear drift. Both properties are consistent with
empirical �ndings about the two functions reported in Aït-Sahalia (1996a,b), Conley et al.
(1997), Stanton (1997) and others. The CIRCEV model encompasses the CIR model with

 = 0:5 and the Ahn and Gao (1999) model with 
 = 1:5, and the OUCEV model nests the
OU model with 
 = 0. Clearly, both models are more general, which not only provide the
nonlinearity in both terms but also allow extra degrees of freedom in the data-driven choice
of 
. Bu et al. (2016a,b) considered some extensions of the CIRCEV model for empirical
applications.
In practice, it is always useful to test the linear or a¢ ne restrictions when a nonlinear

model is deemed more suitable. However, although the CIREWmodel is a transformed CIR,
it does not nest CIR model itself. Consequently, Eraker and Wang (2015) had to rely on a
parametric bootstrap method to test the a¢ ne restriction. In contrast, the CIRCEV model
strictly nests the CIR model and also the Ahn and Gao (1999) model. Therefore, testing
existing speci�cations nested in the model only requires the very simple standard Likelihood
Ratio testing procedure. Finally, despite its desirable �exibility and tractability, to our best
knowledge, the CIRCEV and the OUCEV have yet to be exploited for pricing �nancial assets
such as the VIX derivatives.
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2.2.3. Distribution-Driven Class

The third class of TD models are designed to have a desired marginal distribution. Under the
stationarity assumption, the marginal PDFs and CDFs exist. Let FY (y;#) and FX (x;!) be
the marginal CDF of Y and X, respectively. Under the increasing monotonicity assumption,
we have

FY (y;#) = FX [U (y;#) ;!]

which implies the following transformation function

U (y;#) = F�1X [FY (y;#) ;!] (4)

and the Jacobian
@U (y;#)

@y
=

fY (y;#)

fX
�
F�1X [FY (y;#) ;!] ;!

	
where fY (y;#) and fX fx;!g are the marginal PDF of Y and X. The transition PDF of Y
is then

pY (yjy0;!; #) =
fY (y;#)

fX fU (y;#) ;!g
pX (U (y;#) jU (y0;#) ;!) (5)

This speci�cation strategy was considered by Forman and Sørensen (2014) for modelling
molecular dynamics, where they assumed that the marginal distribution of Y is a mixture of
two normal distributions. The motivation of their speci�cation is that it is a stylized feature
that the marginal distribution of their protein folding data exhibits bimodality and existing
models failed to model this marginal feature and time series dynamics adequately. They
assumed that the underlying process is the OU process.

3. A New Transformed Di¤usion for VIX

Bu et al. (2011) noted that there exists little direct guidance on how to specify U (y;#)
such that the resulting TDs are not only tractable but also realistically �exible to capture
important distributional features of the data such as skewness and fat tails. For this reason,
the distribution-driven approach has the clear advantage over the other two classes in that
researchers can directly specify a �exible functional form for the marginal density fY (y;#)
to directly incorporate distributional information in the data. Moreover, choices of desired
drift function �Y (y;�) or desired di¤usion function �Y (y;�) that will lead to closed-form
solutions of U (y;#) are rather limited. In contrast, there is an enormous literature on
density speci�cation and estimation in statistics, and (4) and (5) show that any desired
speci�cation can lead to closed-form transformation function U (y;#) and hence transition
PDF pY (yjy0;!; #).
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3.1. Skewed Student-t Marginal Distribution

Most �nancial data exhibit skewness and fat tails that a¢ ne di¤usions are unable to model
su¢ ciently (c.f. Aït-Sahalia 1996b). The distribution-driven speci�cation strategy allows for
more �exibility in the marginal distributions without sacri�cing the dynamic structure. To
directly incorporate distributional information of the data, we propose two new distribution-
driven TD models where the marginal distribution of Y is assumed to follow the Skewed
Student-t Distribution (SKST) of Hansen (1994). The location-scale version of the SKST
distribution has the following density function:

fY (y;#) =

8>>>>>>>>>>><>>>>>>>>>>>:

bq

&

0BB@1 + 1

v � 2

0B@
b

&
(y �m) + a

1� �

1CA
21CCA

�(v+1)=2

if y < m� a&=b;

bq

&

0BB@1 + 1

v � 2

0B@
b

&
(y �m) + a

1 + �

1CA
21CCA

�(v+1)=2

if y � m� a&=b;

where & > 0, 2 < v <1, �1 < � < 1, and

a = 4�q

�
v � 2
v � 1

�
; b2 = 1 + 3�2 � a2; q = � ((v + 1) =2)p

� (v � 2)� (v=2)
:

Note that the location-scale SKST has four parameters, i.e., # = (m; &; �; v)0, While m
and & are the mean and standard deviation of the distribution, � and v control the skewness
and the degrees of freedom (i.e. fat-tailedness) of the distribution. The SKST distribution
reduces to the usual student-t distribution when � = 0. Due to its �exibility in modelling
skewness and kurtosis, the SKST distribution is often used in �nancial modelling (c.f. Patton
2004, Jondeau and Rockinger 2006).

3.2. CIRSKST and OUSKST Models

The distribution-driven speci�cation strategy requires a suitable normalization of the un-
derlying di¤usion X to exclude unidenti�ed parameters. For the CIR process, it can be
easily shown that we can only identify � and �2 up to the ratio �=�2. For ease of model
estimation and pricing VIX futures subsequently, we choose to set �2 = 1 and consequently
our normalized CIR process is given by

dXt = �(� �Xt)dt+
p
XtdWt

The resulting TD model is referred to as the CIRSKST model with � = (m; &; �; v; �; �)0.
Similarly, for the OU process, it can be shown that � and �2 are unidenti�ed and can be set
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to any admissible constant. For ease of estimation and pricing, we choose to set � = 0 and
�2 = 1 and thus the normalized OU process is given by

dXt = ��Xtdt+ dWt

The resulting TD model is referred to as the OUSKST model with � = (m; &; �; v; �)0.

4. Valuation of VIX Futures

4.1. VIX Futures Price

In the absence of arbitrage opportunities in a complete market, the VIX futures price is
the conditional mean of the unique risk-neutral Martingale measure. Since our underlying
di¤usion X has closed-form transition density, the VIX futures price can be easily obtained
in explicit form. The unique risk-neutral Q-measure that is equivalent to the observed
physical P -measure can be established by applying Girsanov�s theorem. Let � (Yt) be the
Market Price of Risk (MPR) with respect to the Brownian motion. Under the Q-measure,
the risk-neutral process of Y can be expressed as

dYt = [�Y (Yt;�)� � (Yt)�Y (Yt;�)] dt+ �Y (Yt;�) dW
Q
t (6)

Following the convention, the parametric speci�cation of Y is assumed to be the same under
both measures. It is important to note that for TDs, the speci�cation in (6) is determined
jointly by the speci�cation of X and U (y;#). Thus, in order for �Y (Yt;�) to be identical
under both measures, the parameters in the di¤usion function of X and U (y;#) must also
be identical under both measures. Consequently, the di¤usion function �Y (Yt;�) remains
the same under both measures, but the drift parameters will di¤er under the two measures.
De�ne !Q as the parameter of X under the Q-measure. Then, the price of VIX futures at

time t is simply the time-t conditional expectation of the value of VIX at a future maturity
date T under the Q-measure, i.e.

F
�
t; T; yt; !

Q; #
�
= EQt

�
yT jyt; !Q; #

�
=

Z 1

0

yTpY
�
yT jyt;!Q; #

�
dyT

By construction of our TDs, the risk-neutral transition density pY
�
yjy0;!Q; #

�
is in closed-

form and thus VIX futures pricing involves only a 1-dimensional numerical integration.

4.2. Joint Measure Estimation

Let fYi�; i = 0; :::; nV IXg be a sample of VIX data, where � is the sampling interval. De�ne
! as the parameter of X under the P -measure. Then, the log-likelihood (LL) function under
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the physical P -measure is given by

LLV IX (!; #) =

nV IXX
i=1

ln pY
�
Yi�jY(i�1)�;!; #

�
Meanwhile, let fFj (t; T; Yt) ; j = 1; :::; nFg be a sample of VIX futures prices and assume
that the VIX futures pricing error has the following distribution

ej(!
Q; #) = Fj (t; T; Yt)� Fj

�
t; T; Yt; !

Q; #
�
� N

�
0; �2F

�
We can pro�le out �F which can be estimated by

�̂F =

vuut 1

n

nX
j=1

[Fj (t; T; Yt)� Fj (t; T; Yt; !Q; #)]2 (7)

which is actually the Root Mean Squared Error (RMSE) of our pricing model. Consequently,
our pro�le LL for VIX futures can be written as

LLF
�
!Q; #

�
=

nFX
j=1

ln' (ej)

where ' (�) is normal density with mean zero and standard deviation �̂F given in (7). Finally,
the joint LL based on both VIX and VIX futures data is given by the following sum

LLTotal
�
!; !Q; #

�
= LLV IX (!; #) + LLF

�
!Q; #

�
5. Empirical Analysis

5.1. Data and Models

We compare the empirical performance of the three classes of TD models discussed above for
modelling the VIX dynamics and pricing VIX futures. Our data obtained from the CBOE
website include the daily VIX closing index from January 2, 1990 to March 20, 2015 (6352
observations) and VIX future closing prices fromMarch 26, 2004 to February 17, 2015 (19215
observations). Following Eraker and Wang (2015), we constructed 7 series of daily hypothet-
ical constant maturity (1; 2; 3; :::; 7 month) future prices by linear interpolation. Each series
contains 2742 observations. We use data up to December 31, 2014 for in-sample analysis and
the remaining data for out-of-sample comparison. This gives us 6298 observations of VIX
index, 2711 observations of VIX futures for each constant maturity, and a total of 19141
observations of natural maturity VIX futures for the estimation of our models.
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The plots of the VIX and the constant maturity VIX future prices are given in Figures
1 and 2, respectively. Some summary statistics are reported in Table 1. The mean of VIX
is 20:61 with standard deviation 10:19. The large skewness 2:21 and kurtosis 9:25 suggest
strong deviation from normality. The evolution of VIX indicates that the mean reversion
is weak when VIX is low but much stronger when it is high. This suggests that the most
suitable di¤usion model for VIX may have a drift function that is close to zero when VIX
is low and strongly negative when VIX is high. Meanwhile, the local volatility of VIX is
also low when VIX is low and substantially higher when VIX is high. This suggests that the
most suitable di¤usion model may also need a di¤usion term that increases rapidly as VIX
increases.

[Figure 1 and 2]
[Table 1]

The evolutionary paths of constant maturity VIX future prices with di¤erent maturities
are highly correlated. The largest eigenvalue of the correlation matrix is almost 50 times
larger than the second largest, suggesting that the �rst factor explains around 98% of the
variation in the 7 series. To a large extent, this justi�es the use of single-factor models for
our data. Meanwhile, the spread between short and long maturities are fairly narrow. This
is indicative of a rather �at term structure of VIX futures. Augmented Dickey-Fuller tests
on these time series all rejected the unit root hypothesis with 4 lags at 5% signi�cance level,
which justi�es the use of stationary models.
A total of six models are considered in our empirical analysis. For each class, two models

are considered, one being a transformed CIR model and the other being a transformed OU
model. The two models from the drift-driven class are the CIREW and the OUDO models.
The two models from the di¤usion-driven class are the CIRCEV and the OUCEV models.
Finally and the most importantly, the distribution-driven class is represented by the newly
proposed CIRSKST and OUSKST models.

5.2. Analysis of Time Series of VIX

We �rst examine the performance these models for modelling VIX dynamics. This amounts
to comparing models under the physical P -measure. We investigate both in-sample goodness-
of-�t measures and out-of-sample forecasting accuracy. As discussed earlier, one of the
biggest advantages of TDs is the availability of closed-form transition PDFs. For this rea-
son, ML is obviously the preferred choice estimation method. Table 2 reports our estima-
tion results. Firstly, in terms of goodness-of-�t measured by the LL, the newly proposed
distribution-driven models outperformed the other two classes very clearly. This may not
be too surprising, because the CIRSKST and the OUSKST models directly capture the
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information in the stylized skewness and kurtosis of the marginal distribution of the data
and therefore use the information more e¤ectively than the other two classes. Within this
class, the CIRSKST �tted the data better than the OUSKST, which is also expected since
the former has one more parameter describing the underlying dynamics than the latter.
However, in terms of AIC, they are e¤ectively the same, whereas the BIC even favors the
OUSKST due to its parsimony. Based on this evidence, we may conclude that the newly
proposed distribution-driven models outperformed the other two classes in terms of the in-
sample performance for modelling VIX under the P -measure. Comparing between the other
two classes, the drift-driven CIREW and OUDO models are inferior to the two di¤usion-
driven CEV models quite signi�cantly. This re�ects existing empirical evidence that the
di¤usion speci�cation is more important than the drift speci�cation for most �nancial series
(c.f. Aït-Sahalia 1996a, Mencia and Santana 2013).

[Table 2]

We then compare the models in terms of out-of-sample forecast accuracy. For each model,
we produce a series of rolling sample one-period-ahead forecast for VIX and compute the Root
Mean Squared Forecast Error (RMSFE) also reported in Table 2. Again, the two distribution-
driven models outperformed the other classes rather clearly. This is quite revealing results
because normally there is a trade of between in-sample goodness-of-�t and out-of-sample
forecasting accuracy, i.e. models �t the in-sample data well tend to perform weakly in out-of-
sample forecasting. However, this is not the case here, suggesting no evidence of over-�tting.
This is a quite strong indication of the e¤ectiveness and superiority of the newly proposed
models for modelling the VIX dynamics. Based on this evidence, we can further conclude
that the newly proposed distribution-driven models also outperformed the other two classes
in terms of the out-of-sample performance under the P -measure. It is worth mentioning that
the OUSKST model performed better than the CIRSKST model. This together with the
smaller BIC value leads us to conclude that in terms of overall performance the distribution-
driven OUSKST is probably the best model for the VIX dynamics under the P -measure.

5.3. Analysis of VIX Futures Pricing

We now examine the performance of these models for pricing VIX futures. We estimate
model parameters under both measures jointly by ML using a combination of the VIX data
and one of the two sets of VIX future data. The �rst set includes 19141 observations of
observed natural maturity VIX futures data in our sample period. Since this combination
only involves directly observed data, the parameter estimates are most realistic. In addition,
as a robustness check, we also used a set of hypothetical constant maturity futures. Following
Eraker and Wang (2015), we include 1; 3; 5 and 7-month maturity futures (2711� 4 = 10844
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observations) in the second set. Tables 3 and 4 present the estimation results for these
two cases. It turns out that the two sets of data produced rather similar results. As we
argued above, the strong correlation between hypothetical constant maturity VIX futures
prices is a reasonable justi�cation for single-factor models. Meanwhile, the fact that the
estimation results from natural maturity futures are so close to those from hypothetical
constant maturity futures is a further con�rmation of the general suitability of single-factor
models for our data.
We again compare the in-sample and out-of-sample performance of the three classes for

pricing VIX futures. Note that the LL, AIC and BIC are joint measures based on VIX and
VIX futures, and the RMSE measures the in-sample average futures pricing errors. From the
results based on natural maturity futures in Table 3, we can see that the CIRSKST model
produced the largest LL and the smallest AIC and BIC values, as well as the smallest RMSE
across all six models. This suggests that the distribution-driven CIRSKST is the all-round
best model in terms of in-sample performance, leading the second besting performing model,
which is the drift-driven CIREW model, by a signi�cant margin. Meanwhile, the OUSKST
model produced the best results within the transformed OU class of models. In contrast, the
drift-driven OUDO model has the worst results, suggesting that the exponential transform,
which is parameter free, may be too simple to produce necessary �exibility for VIX data. The
results based on constant maturity futures in Table 4 delivered a rather similar picture, i.e.
the CIRSKST produced the best in-sample performance, while the OUSKST outperformed
the other models in the transformed OU class.

[Table 3 and 4]

To examine out-of-sample performance for pricing futures, we calculated the RMSFE for
pricing natural maturity futures in our forecasting sample. From Table 3, the distribution-
driven class dominated the other two classes overwhelmingly, with the OUSKST and the
CIRSKST being the best two performing models. In particular, within the transformed CIR
class, the RMSFEs from the CIREW and CIRCEV models are 44% and 40% higher than
that of the CIRSKST model, respectively. In the transformed OU class, the RMSFEs from
the OUDO and OUCEV models are 24% and 46% higher than that of the OUSKST model,
respectively. More importantly, as in the case of forecasting VIX under the P -measure, the
OUSKST model is also by far the best forecasting model for VIX future prices under the
Q-measure. In the case where constant maturity futures are used, we reported in Table 4
the RMSFEs based on all futures in the forecasting sample (RMSFE_F) and those based on
futures with di¤erent maturities (RMSFE_1, RMSFE_3, RMSFE_5, RMSFE_7). Firstly,
in terms of every single measure, the distribution-driven class dominated the other two
classes, where the OUSKST is always better than the CIRSKST. In particular, the relative
performance of the OUSKST model is even stronger. For example, RMSFE_F of the second
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best CIRSKST model is now 102% higher than that of the OUSKST and the RMSFE_F of
the worst performing CIREW model is even 150% higher. Secondly, in terms of RMSFE for
individual maturities, the di¤erence across all six models is the smallest for 1-month maturity,
where the OUSKST outperforms the second best CIRSKST by 27% and the CIREW model
by 58%. The di¤erence is the largest for 3-month maturity with the OUSKST outperforming
the CIRSKST by 187% and the CIREW model by a staggering 317%.
Overall, these evidence suggest that the two newly proposed distribution-driven models

performed very well in our joint measure analysis, where the CIRSKST performed well in
both in-sample �t and out-of-sample forecast and the OUSKST model is particularly suitable
for out-of-sample exercises.

5.4. Variance Risk Premium and Return Predictability

Recent studies including Bollerslev et al. (2009) and Eraker and Wang (2015) documented
that the VRP predicts stock returns. Bollerslev et al. (2009) using a model free frame-
work showed that the predictive R2 peaked at 6:8% at the 3-month horizon. Eraker and
Wang (2015), using their drift-driven model and a �exible regression model, documented
the highest adjusted-R2 of 8:41% at the 9-month horizon. Since the three classes of mod-
els performed quite di¤erently in capturing the VIX dynamics under both the physical and
risk-neutral measures, it will be useful to also examine the stock return predictability of the
VRP extracted from competing models.
Eraker and Wang (2015) showed in the context of general TDs that the market price of

VIX-squared risk is the same as the market price of risk for the spot variance, and hence the
VRP de�ned as the di¤erence between the drift of the VIX-squared under the Q-measure
and that under the P -measure is the same as in the extant literature (e.g. Bollerslev et
al. 2009)4. Therefore, for each estimated model, we can extract a time series VRP by
�rst applying the Ito�s Lemma to the estimated dynamics for VIX to get the corresponding
dynamics for VIX-squared and then taking the di¤erence between the drift under the two
measures. We use parameters calibrated from the VIX and natural maturity VIX futures.
Following the literature, we consider VIX and S&P 500 Index return data at the monthly

frequency and a multi-period predictive regression of the following form

1

h

hX
j=1

rt+j = �0 (h) + x
0
t� (h) + "t

where the dependent variable is the scaled h-month return, xt is a predictor vector, and "t is
a white noise process. As in Eraker and Wang (2015), the current framework does not imply
any speci�c functional form between VRP and stock returns. For Eraker and Wang (2015),
the best predictability was achieved by including V IX, V RP and V RP 2. Following this

4See Eraker and Wang (2015) for a detailed discussion.
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suggestion, we include V IX; V IX2; V RP and V RP 2 as our candidate predictors and then
apply the stepwise regression technique to choose the best predictive models. Our sample
period is from January 1990 to December 2014.

[Table 5]

Results in terms of the adjusted R2 from all six models for forecasting horizon ranging
from 1 month to 2 years are reported in Table 5. The magnitudes of the adjusted R2�s at
all forecasting horizons are fairly consistent with those in Eraker and Wang (2015). Also
consistent with Eraker and Wang (2015) is that the adjusted R2�s peaked at the 9-month
forecasting horizon uniformly across all models. It is important to mention that our results
are slightly higher than theirs, 8:71% for the CIREW model compared to theirs 8:41%.
However, we conjecture that this is most likely due to the di¤erence in the data we used
for calibrating the pricing models as we covered di¤erent sample period. The highest value
achieved in this study is the 8:75% from the OUSKST model.
Generally speaking, all three classes of models performed similarly, with no single model

dominating the others. However, at the 1-month horizon, the CIRSKST model produced the
highest predictability but its performance is much weaker than other models for longer hori-
zons. In contrast, the OUSKST model produced the highest predictability for the majority
of the horizons from 3-month to 18-month. Nonetheless, the advantages are marginal. Thus,
we can only cautiously conclude that the CIRSKST model may have some advantage in the
very short forecasting horizon possibly due to its consistently superior in-sample �t to both
VIX and VIX future data. We may also cautiously conclude that the OUSKST model has
some marginal advantages over existing models for longer horizons, which is also consistent
with its convincingly superior out-of-sample performance for VIX and VIX futures.

6. Conclusion

This paper made three contributions to the literature of modelling VIX and pricing VIX
futures using continuous-time di¤usions. We systematically studied existing TD models
and more importantly we suitably classi�ed all TD models into three clearly de�ned classes
in terms of how the transformation functions are speci�ed. Our classi�cation may help
researchers to understand the relative advantages and disadvantages of di¤erent TD models
and hence provides a useful guide for creating new TD models for practice in the future.
Taking the advantage of the distribution-driven approach, we proposed two new models,
namely the CIRSKST and the OUSKST models, purposefully designed to directly exploit
stylized features in the marginal distribution of VIX. We also derived a closed-form formula
for the prices of VIX future contracts, which allowed us to study the VIX and VIX futures
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markets at the minimum computational expenses. The main contribution of this paper is
our fairly systematic and comprehensive empirical comparison of the three classes of TDs
for modelling VIX and VIX futures. Our comparison focused on in-sample goodness-of-�t
measures and out-of-sample forecasting accuracy for modelling VIX dynamics under both
the physical and risk-neutral measures, as well as the stock return predictability of the VRP
extracted from competing models, which are all empirical vital criteria for modelling market
volatility. As we expected, the two newly proposed distribution-driven models demonstrated
their advantages in most of the comparisons we carried out. While both models can �t
the data well with the CIRSKST model always producing the best in-sample results, the
OUSKST model was particularly powerful in its out-of-sample ability. Our framework allows
the pricing of VIX options in very similar fashion. Thus, future work may consider the pricing
of VIX futures and options jointly, since the option markets are expected to contain more
abundant ex ante information about the market volatility and the �nancial risk.
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Figure 1: Time Series of VIX

Figure 2: Time Series of Constant Maturity VIX Future Prices
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Table 1: Summary of VIX and Constant Maturity VIX Future Prices
VIX Futures VIX

1M 2M 3M 4M 5M 6M 7M
Correlation 1.00 0.99 0.97 0.96 0.94 0.92 0.91

0.99 1.00 1.00 0.99 0.97 0.96 0.95
0.97 1.00 1.00 1.00 0.99 0.98 0.97
0.96 0.99 1.00 1.00 1.00 0.99 0.99
0.94 0.97 0.99 1.00 1.00 1.00 0.99
0.92 0.96 0.98 0.99 1.00 1.00 1.00
0.91 0.95 0.97 0.99 0.99 1.00 1.00

Eigenvalue 6.85 0.14 0.01 0.00 0.00 0.00 0.00

Maximum 65.46 59.00 53.78 49.73 46.71 44.64 44.08 80.86
Minimum 11.29 12.23 12.54 12.87 13.20 13.53 13.69 9.89
Mean 21.41 22.02 22.37 22.64 22.88 23.09 23.25 20.61
Median 19.41 20.81 21.68 22.16 22.70 23.16 23.41 17.63
Std. Dev. 8.77 8.02 7.46 7.10 6.85 6.67 6.51 10.19
Skewness 1.62 1.31 1.05 0.84 0.71 0.60 0.54 2.21
Kurtosis 6.14 5.09 4.13 3.44 3.07 2.84 2.72 9.25
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Table 2: ML Estimation Results for VIX
EW CIRCEV CIRSKST OUDO OUCEV OUSKST

� 3.7553 3.8678 2.9601 4.0219 4.1021 3.4136
(0.5562) (0.5605) (0.4376) (0.5718) (0.5778) (0.4730)

� 0.0508 0.1627 0.9340 2.9295 -0.8009 0
(0.0031) (0.0462) (0.4615) (0.0489) (0.1140)

� 0.2175 0.3027 1 0.9838 0.3030 1
(0.0190) (0.0234) (0.0088) (0.0233)


 1.3958 1.3955
(0.0262) (0.0261)

' 0.7315
(0.7003)

� 0.0033
(0.0031)

m 18.0955 17.8926
(0.6148) (0.6629)

& 7.3174 7.3328
(0.6803) (0.9703)

� 6.8309 4.8395
(1.4024) (0.6726)

� 0.6242 0.6371
(0.0472) (0.0328)

LL (�103) -9.6909 -9.6896 -9.6662 -9.8128 -9.6886 -9.6673
AIC (�104) 1.9392 1.9387 1.9344 1.9632 1.9385 1.9345
BIC (�104) 1.9426 1.9414 1.9385 1.9652 1.9412 1.9378
RMSFE 1.2784 1.2778 1.2744 1.2753 1.2764 1.2722
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Table 3: Joint ML Estimation Results (Natural Maturity VIX Futures)
EW CIRCEV CIRSKST OUDO OUCEV OUSKST

� 3.6111 4.1315 2.5786 4.7369 4.3672 2.5341
(0.5608) (0.5776) (0.1283) (0.6251) (0.5951) (0.0473)

� 0.0558 0.0277 0.3597 2.9293 -0.2798 0
(0.0041) (0.0022) (0.0175) (0.0451) (0.0133)

� 0.3069 0.1838 1 1.0682 0.1656 1
(0.0027) (0.0042) (0.0123) (0.0052)


 1.5766 1.6105
(0.0067) (0.0087)

' -2.0272
(0.0003)

� 0.0100
(0.0000)

m 27.0558 23.5662
(0.5075) (0.4662)

& 11.9904 30.7818
(0.2824) (0.3663)

� 28.3530 2.1919
(0.1885) (0.0259)

� 0.6918 0.7490
(0.0591) (0.0117)

�Q 0.7281 0.9486 0.6346 1.3353 1.0709 1.1892
(0.0198) (0.0166) (0.0267) (0.0107) (0.0167) (0.0155)

�Q 0.0855 0.0367 0.7882 2.9874 -0.2942 0.1222
(0.0024) (0.0021) (0.0204) (0.0080) (0.0120) (0.0173)

LL (�104) -5.6257 -5.6537 -5.6042 -5.8057 -5.6702 -5.6765
AIC (�105) 1.1253 1.1309 1.1210 1.1612 1.1342 1.1354
BIC (�105) 1.1258 1.1314 1.1217 1.1616 1.1347 1.1360
RMSE 2.7529 2.7931 2.7173 3.0025 2.8162 2.8226
RMSFE_F 1.5933 1.5426 1.1038 1.2798 1.5098 1.0312
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Table 4: Joint ML Estimation Results (Constant Maturity VIX Futures)
EW CIRCEV CIRSKST OUDO OUCEV OUSKST

� 3.9252 3.7733 2.0326 4.1419 4.0618 3.1945
(0.5181) (0.5500) (0.0433) (0.5810) (0.5732) (0.0663)

� 0.0476 0.0381 0.4465 2.9294 -0.3017 0
(0.0028) (0.0038) (0.0054) (0.0482) (0.0166)

� 0.2737 0.1942 1 0.9984 0.1675 1
(0.0026) (0.0056) (0.0095) (0.0060)


 1.5415 1.5939
(0.0090) (0.0105)

' -1.1504
(0.0022)

� 0.0100
(0.0001)

m 26.2446 19.4947
(0.3617) (0.4528)

& 11.8907 10.1070
(0.3826) (0.2587)

� 27.1275 3.1463
(0.3867) (0.0551)

� 0.6558 0.6078
(0.0093) (0.0098)

�Q 0.7831 1.0227 0.7108 1.2880 1.1403 1.2931
(0.0211) (0.0185) (0.0153) (0.0125) (0.0194) (0.0173)

�Q 0.0702 0.0459 0.7632 3.0127 -0.3116 -0.0304
(0.0018) (0.0036) (0.0110) (0.0068) (0.0151) (0.0334)

LL (�104) -3.5515 -3.5665 -3.5430 -3.6495 -3.5754 -3.5783
AIC (�104) 7.1044 7.1342 7.0877 7.3001 7.1520 7.1579
BIC (�104) 7.1098 7.1388 7.0939 7.3039 7.1566 7.1634
RMSE 2.6161 2.6507 2.5853 2.8335 2.6698 2.6807
RMSFE_F 11.8824 11.7330 9.6216 9.7756 11.5153 4.7618
RMSFE_1M 1.4497 1.3996 1.1600 1.2370 1.3658 0.9156
RMSFE_3M 2.8066 2.7686 1.9350 2.0893 2.7500 0.6738
RMSFE_5M 3.6145 3.5867 2.8626 2.8811 3.5190 1.1220
RMSFE_7M 4.0117 3.9781 3.6640 3.5682 3.8805 2.0504
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Table 5: Market Return Regression Adjusted R2

1M 3M 6M 9M 12M 15M 18M 24M
EW 0.52 5.66 7.08 8.71 8.37 6.89 5.42 5.26

CIRCEV 0.52 5.65 7.08 8.70 8.35 6.87 5.41 5.24
CIRSKST 0.80 5.36 6.78 8.42 8.11 6.63 5.14 5.14
OUDO 0.22 6.05 7.37 8.51 8.00 6.56 5.30 4.69
OUCEV 0.39 5.88 7.27 8.70 8.28 6.81 5.43 5.05
OUSKST 0.48 6.21 7.48 8.75 8.33 6.95 5.50 5.16
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