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Abstract QCD at finite densities of heavy quarks is

investigated using the density-of-states method. The

phase factor expectation value of the quark determi-

nant is calculated to unprecedented precision as a func-

tion of the chemical potential. Results are validated us-

ing those from a reweighting approach where the latter

can produce a significant signal-to-noise ratio. We con-

firm the particle-hole symmetry at low temperatures,

find a strong sign problem at intermediate values of the

chemical potential, and an inverse Silver Blaze feature

for chemical potentials close to the onset value: here,

the phase quenched theory underestimates the density

of the full theory.
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1 Introduction

Monte-Carlo simulations of Quantum Chromo Dynam-

ics (QCD) at finite baryon densities would provide di-

rect insights into cold, but dense matter as it occurs in

compact stars. They would also trigger the evolution of

effective theories. To date, there are numerous propos-

als for such theories and models. Those rise from exact

solvable models that mimic certain aspects of QCD (see

the Gross-Neveu model [1,2]) or are motivated by cer-

tain limits of QCD: The limit of many colours has led

to the proposal of the “quarkyonic phase” [3,4]. Re-

ducing the gluon sector to the essence of the centre el-

ements has revealed that “centre-dressed quarks” obey
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Bose statistics and can undergo Bose-Einstein conden-

sation in the dense, but still confined phase (see “Fermi-

Einstein condensation” in [5]). Since heavy-ion collision

experiments probe matter at high temperatures, but

- at best - at moderate densities, the essential input

for understanding cold-dense baryonic matter has to

come from first principles computer simulations. Stan-

dard Monte-Carlo simulations, however, fail since the

Gibbs factor is complex at non-vanishing chemical po-

tentials and, thus, lacks the interpretation of a proba-

bilistic weight for lattice configurations. This problem

does not exclusively relate to dense QCD, but is generic

for dense matter quantum field theories. It has become

known as the notorious “sign-problem” over the last

three decades.

The recent years, however, have seen significant

progress in the numerical studies of complex action sys-

tems, both with Monte Carlo methods and techniques

that do not rely on importance sampling. Among the

most promising methods are the complexification of the

fields in a Langevin based approach [6,7], worm or flux

algorithms [8,9] to simulate the dual theory if it hap-

pens that this theory is real [10–13] and the use of tech-

niques that explicitly exploit the cancellations of classes

of fields [14].

Among the alternatives to conventional Monte Carlo

sampling, the so-called density-of-states simulations (for

early results for the gauge and spin systems see [15,16]):

this approach performs Monte-Carlo updates according

to the number of states for a given (complex) action

and employs the pioneering techniques introduced by

Wang and Landau [17] to refine the density-of-states

during simulation. Once this quantity has been deter-

mined, the partition function and derived expectation

values of observables can be computed semi-analytically
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by integrating the density of states with the appro-

priate (potentially complex) Boltzmann weight. More

recently, a Wang-Landau type method originally in-

troduced for continuous systems has been put forward

in [18–20]. This method features an exponential error

suppression and allows one to calculate the density-of-

states over many orders of magnitude [21]. At least for

the Z3 spin model at finite densities, the achieved pre-

cision of the density-of-states has been high enough to

solve the strong sign problem by direct integration [22].

Heavy-dense QCD (HDQCD) emerges in the limit

in which the quark mass and chemical potential are

simultaneously large [23,24]. This theory has a non-

trivial phase diagram in the plane of temperature and

chemical potential, which qualitatively agrees with the

one expected for real QCD: e.g., at vanishing chemical

potential, there is a thermal deconfinement transition

as the temperature is increased with the transition be-

ing first order for very heavy quarks and a crossover

for slightly lighter but still heavy quarks [25]. The glu-

onic part of HDQCD is given by the SU(3) Yang-Mills

theory, and a dualisation that could leave us with a

real theory at presence of a chemical potentials is not

known. So far, this rules out any flux or worm-type

algorithms and makes it a significant testing ground

for the density-of-states techniques. We point out that

HDQCD has been simulated with complex Langevin

method providing results for bench-marking our find-

ings [25,26]. We also refer the reader to [27] for a recent

study of HDQCD using re-weighting and a mean-field

approximation.

In this paper, we study HDQCD with the density-of-

states approach detailed in [22]. The theory is real in the

limit of vanishing and of large chemical potentials and

for chemical potential equalling the heavy quark mass.

Although the phase quenched approximation sketches a

qualitatively correct picture for this reason, we do find

a strong sign problem for chemical potentials close to

the mass threshold.

2 Heavy-dense QCD and the generalised

density-of-states approach

2.1 HDQCD - definitions and features

The partition function of QCD with the quarks field in-

tegrated out is a functional integral over SU(3) unitary

matrices only:

Z(µ) =

∫
DUµ exp{β SYM[U ]} DetM(µ) , (1)

where we use the Wilson formulation of the Yang-Mills

action:

SYM[U ] =
1

3

∑
x,µ>ν

Re tr
[
Uµ(x)Uν(x+ µ)

U†µ(x+ ν)U†ν (x)
]
. (2)

The so-called quark determinant possesses the property(
DetM(µ)

)∗
= DetM(−µ) , (µ ∈ IR) , (3)

which implies that QCD at vanishing chemical poten-

tial, i.e., µ = 0, is a real theory. For large quark mass

m and simultaneously large chemical potential µ, the

quark determinant factorises into [23–27]:

DetM(µ) =
∏
x

det2
(

1 + h eµ/T P (x)
)

det2
(

1 + h e−µ/T P †(x)
)
, (4)

where T = 1/Nta is the temperature with a the lattice

spacing and Nt the number of lattice points in temporal

direction. The parameter h is related to the quark hop-

ping parameter κ and P (x) is the Polyakov line starting

at position x and winding around the torus in temporal

direction:

h = (2κ)Nt , P (x) =

Nt∏
t=1

U4(x, t) . (5)

The determinants at the right hand side of (3) extend

over colour indices only. Introducing the heavy quark

mass m by

ma = − ln(2κ) , (6)

we find that h = exp{−m/T} yielding for (4):

DetM(µ) =
∏
x

det2
(

1 + e(µ−m)/T P (x)
)

det2
(

1 + e−(µ+m)/T P †(x)
)
, (7)

Inspection of the latter equation easily confirms that

DetM(µ = 0) ∈ IR . (8)

For non-vanishing µ, we will indeed find that the de-

terminant is complex (albeit the imaginary part can be

very small; see below). However, we are going to show

that the partition function is nevertheless real, i.e., the

imaginary part of Z vanishes upon the integration over

gauge configurations. This can be most easily seen by

adopting the Polyakov gauge where

U4(t 6= 1,x) = 1, P (x) = U4(t = 1,x).

The partition function takes the form

Z =

∫
DUµ eβSYM f

(
U4(1,x), U†4 (1,x)

)
,
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where f is a real and analytic function. Given that the

Haar measure and the action are real, we find upon the

substitution U4(1,x)→ U†4 (1,x) that

Z(µ) = Z∗(µ) . (9)

For positive chemical potentials and for low temper-

atures, i.e.,

µ ≥ 0 ,
m

T
� 1 , (10)

we can neglect quark excitations from the Dirac sea.

Formally, the second determinant in (7) equals unity to

a very good approximation, and we find:

DetM(µ) ≈
∏
x

det2
(

1 + e(µ−m)/T P (x)
)

(11)

For any unitary matrix P ∈ SU(3), we find that

det(1 + c P ) = 1 + c trP + c2 trP † + c3 . (12)

This implies that the quark determinant is also real for

µ = m (i.e., c = 1) (see also [27]):

DetM(µ = m) ∈ IR . (13)

Let us now study the case of large chemical potentials,

i.e., µ� m. Starting from (11), we obtain

Det M(µ) = e2Nc V (µ−m)/T (14)∏
x

det2
(

1 + e−(µ−m)/T P †(x)
)
,

where Nc = 3 is the number of colours, V =
∑

x is the

spatial volume and where we have used that P is a uni-

tary matrix, i.e., PP † = 1, detP = 1. It is convenient

to introduce the scaled chemical potential relative to

the mass threshold:

t =
µ−m
T

. (15)

Using (11) in the functional integral (1), the partition

function only depends on t and obeys the relation:

Z(t) ≈ e2Nc V t Z(−t) (m� T ) , (16)

where we have used that Z is real (see (9)). As usual,

we define the quark density by

σ(t) =
T

V

∂ ln Z(µ)

∂µ
=

1

V

∂ ln Z(t)

∂t
. (17)

Using (16), we find the duality

σ(t) ≈ 2Nc − σ(−t) (m� T ) . (18)

For negative t, the chemical potential is below the mass

threshold and the density σ(t) rapidly approaches zero

with decreasing t. This implies with the help of (18)

that for large t, the density rapidly approaches the sat-

uration density:

σ(t)
t→∞→ 2Nc . (19)

As a side-remark, we point out that in this regime, i.e.,

µ � m, the quark determinant becomes a (real) con-

stant (see (14)),

DetM(µ) ≈ e2Nc V (µ−m)/T ,

and the partition function at large µ is given by that

of pure SU(3) Yang-Mills theory up to a multiplicative

constant.

2.2 Reweighting simulations

If the imaginary part of the quark determinant is small,

i.e., for µ ≈ 0 or µ ≈ m or µ � m, the standard

reweighting procedure can produce reliable results. Us-

ing a polar decomposition of the determinant, the par-

tition function (1) can be rewritten as

Z(µ) =

∫
DUµ eβ SYM[U ]

∣∣∣DetM(µ)
∣∣∣ exp{iφ[U ]} . (20)

We here introduce the partition function of the phase

quenched theory by

ZPQ(µ) =

∫
DUµ eβ SYM[U ]

∣∣∣DetM(µ)
∣∣∣ . (21)

Sometimes, the phase quenched theory is referred to

as QCD with an iso-spin chemical potential. Indeed,

rewriting e.g.∣∣∣DetM(µ)
∣∣∣2 = DetM(µ) Det∗M(µ) =

= DetM(µ) DetM(−µ) ,

the phase quenched theories can be interpreted as (in

this case) a 2-flavour quark theory with a chemical po-

tential coupling to the flavours with opposite sign.

The Monte-Carlo simulation based upon reweight-

ing generates a Markov chain of configurations {Uµ} of

the phase-quenched theory (21). The expectation value

of any observable A is then obtained by

〈A〉 =
〈A exp{iφ[U ]}〉PQ

〈exp{iφ[U ]}〉PQ
. (22)

For a successful reweighting approach, it is essential

that the phase factor expectation value, i.e.,〈
exp{iφ[U ]}

〉
PQ

=
Z(µ)

ZPQ(µ)
, (23)

is of significant size. This would ensure a good signal-to-

noise ratio. However, it has been known for a long time

(see e.g. [28]), that the full and phase quenched theories

have a difference in their free energy density, say ∆f .

Using the triangle inequality, one also finds that

ZPQ(µ) ≤ Z(µ) .
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Hence, the ratio of their partition function in (23) is

exponentially suppressed with the volume V :〈
exp{iφ[U ]}

〉
PQ

= exp
{
−∆f V

}
, ∆f ≥ 0 .

Consequently, reweighting simulations are restricted to

the parameter space for which the quark determinant

is almost real, i.e.,

∆f(µ) ≈ O(1/V ) .

2.3 Density-of-states Method

The density-of-states method belongs to the class of

Wang-Landau type simulations [17]. It has been argued

in [21] that the LLR version [18] possesses an exponen-

tial error suppression that allows to estimate a strongly

suppressed phase factor expectation value (23) with

good relative precision. This has been demonstrated

for the first time for the Z3 spin model at finite densi-

ties [22].

Central to all Wang-Landau methods is the density

of states, which is defined in the present case of HDQCD

by

ρ(s) =

∫
DUµ δ

(
s− φ[U ]

)
eβSYM[U ]

∣∣∣DetM
∣∣∣ . (24)

Using this definition, the phase factor expectation value

(23) can be obtained by Fourier transform

〈eiφ〉 =

∫
ds ρ(s) exp{i s}∫

ds ρ(s)
. (25)

Since the final answer is potentially a very small num-

ber, the density-of-states method needs to overcome

two issues here: (i) ρ(s) must be calculated to high pre-

cision over the whole range of s. This is were standard

histogram methods fail: they do not produce enough

statistics in certain regions of s (overlap problem). (ii)

The smallness of 〈exp{iφ}〉 arises from cancellations im-

plying that the numerical integration must be carried

out with extreme care. The LLR algorithm generically

overcomes the issue (i), and we refer to the literature

for details (most notably see [29] for a thorough discus-

sion of the theoretical framework). To resolve issue (ii),

we will adopt the approach that proved successful in

the case of the Z3 spin model [22], and we will present

details in the result section.

We finally point out that the quark density σ(µ)

can be calculated once good result for the phase fac-

tor expectation value are available. This rises from the

observation that (23) leads to

σ(µ) =
T

V

d

dµ
ln 〈eiφ〉(µ) + σPQ(µ) , (26)

where we have introduced the phase quenched quark

density by

σPQ(µ) =
T

V

d lnZPQ(µ)

dµ
. (27)

3 Results from reweighting

Throughout this paper, we use discretised space-time

employing a N4 cubic lattice and the Wilson action

(2). We work in the Polyakov gauge, i.e., all links are

updated except

U4(x, t 6= 1) = 1 .

This implies that the remaining time-like links are iden-

tified with the Polyakov line:

U4(x, t = 1) = P (x) .

Using the gauge invariance of the quark determinant, it

is apparent that DetM does only depend on trPn(x) [30–

32]. We use the Local Hybrid-Monte Carlo (LHMC)

simulation algorithm (with respect to the angles of the

algebra) for the update of configurations according to

the phase quenched partition function (21). We have

validated and fine-tuned the algorithm by comparing

some of the results with those obtained by the standard

Cabibbo-Marinari method. The LHMC update shows

shorter auto-correlation times (e.g. for the topological

charge). The simulation parameters are

N = 8 β = 5.8 κ = 0.12 Nconf = 12000 (28)

where Nconf is the number of the independent con-

figurations for the Monte-Carlo estimators. Errors are

obtained by a bootstrap analysis. Our findings from

the reweighting approach are shown in figure 1. The

chemical potentials are chosen symmetrically around

the mass threshold, which is (using κ = 0.12, into (6))

am ≈ 1.427 .

Our numerical findings are in line with the theoretical

predictions in subsection 2.1: the phase factor expecta-

tion value approaches 1 for small and large values of µ

and for µ close to the mass threshold. Because of the

particle-hole duality (18), we can confine ourselves to

discussing only the case µ ≤ m. It is remarkable that on

a quantitative level the reweighting approach produces

reliable results for µ as large as 1. Note, however, that

for the intermediate values, i.e.,

1.15 <∼ µ <∼ 1.4 ,

we do encounter a sign problem with the signal being

much smaller than the noise.
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Fig. 1 Left: The phase factor expectation value 〈eiφ〉 as a function of the chemical potential µ (simulation parameters in
(29)); Black symbols: the reweighting approach; Red symbols: the LLR approach as a preview. Right: detail of the graph.
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Fig. 2 Quark density σPQ(µ) of the phase quenched theory
as a function of the chemical potential µ.

Let us discuss the implications for the quark density

σ(µ). We start with a discussion of the phase quenched

density. Since the only µ dependence is in the quark

operator, we find:

σPQ(µ) =
1

ZPQ(µ)

∫
DUµ eβ SYM[U ]

∣∣∣DetM(µ)
∣∣∣ (29)

× ∂

∂µ
ln
∣∣∣DetM(µ)

∣∣∣ ,
where for HDQCD DetM is given in (4). As detailed

in subsection 2.1, HDQCD is real for vanishing chemi-

cal potential, for µ = m and for large µ implying that

σ = σPQ for these limiting cases. This signals that the

phase quenched density shows the correct behaviour for

small µ, the correct onset at µ = m and the correct

asymptotic value given by saturation. It is therefore

expected that σPQ(µ) qualitatively reflects the µ de-

pendence of the full density σ. This is indeed verified

by our direct evaluation of (29) shown in figure 2. Al-

though phase quenching produces qualitatively correct

results, we cannot conclude that the sign problem is

weak (see below).

Regardless of the quantitative details, we can draw

some interesting conclusions for the density using the

identity (26). For small chemical potentials, e.g., µ ≤
1.1, the phase factor expectation value is decreasing.
Consequently, the correction

T

V

d

dµ
〈eiφ〉

is negative implying that the phase quenched result

overestimates the true result σ. This is usually referred

to as “Silver Blaze problem”. With a smoothness as-

sumption of 〈eiφ〉, we expect that its derivative with

respect to µ vanishes at µc1 with 1.15 < µc1 < 1.4. For

this chemical potential, we find agreement:

σPQ(µc1) = σ(µc1) .

For µc1 < µ < m, the derivative of 〈eiφ〉 is positive. We

here find an inverted Silver Blaze behaviour: close to

the mass threshold, the phase quenched theory under-

estimates the value of the density. We stress, however,

that a study involving several volumes and tempera-

tures would be needed to decide whether this effect has

a role to play for phenomenology. This is left to future

work.
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4 LLR results

4.1 Foundations of the LLR simulation

Our aim is to calculate an approximation of the density-

of-states ρ(s) for the imaginary part s of the quark de-

terminant. We divide the domain of support for ρ into

intervals [sk, sk + δs]. Under physically motivated as-

sumptions, ρ(s) is a smooth function such that a Tay-

lor expansion over these intervals yields a valid approx-

imation. Central to the LLR approach are the Taylor

coefficients (also called LLR coefficients)

ak :=
d ln ρ

ds

∣∣∣
s=sk+δs/2

, (30)

which will be the target of our numerical simulations

below. With these coefficients at our fingertips, we use

a piece-wise linear approximation for ln ρ and derive the

approximation:

ρ(s) = ρ0

(
N−1∏
k=1

eakδs

)
exp {aN (s− sN ) } , (31)

where, for a given s, the upper boundary N is chosen

such that

sN ≤ s ≤ sN + δs , sk = s0 + k δs .

The goal of the LLR method is to calculate the coeffi-

cients from a stochastic non-linear equation. A key in-

gredient of this equation is the restricted and reweighted

expectation values [18] with a being an external vari-

able (not to be confused with the lattice spacing):

〈〈W [φ]〉〉k (a) =
1

Nk

∫
DUµ

∣∣∣DetM
∣∣∣ eβSYM

θ[sk,δs](φ[U ]) W [φ] e−aφ[U ] , (32)

Nk =

∫
DUµ

∣∣∣DetM
∣∣∣ eβSYM θ[sk,δs](φ[U ])

e−aφ[U ] , (33)

where we have introduced the modified Heaviside func-

tion

θ[sk,δs](φ) =

{
1 for sk ≤ φ ≤ sk + δs
0 otherwise .

For the particular choice

W [φ] = φ − sk −
δs
2

=: ∆φ

we showed that

〈〈∆φ〉〉k (a) = 0 for a = ak . (34)

0 1000 2000 3000 4000
n

0

1

2

3

4

5

6

a k

(n
)

8
4
 beta=5.8 kappa=0.12 mu=1.4321 gamma=1

Fig. 3 Thermalisation history (simulations parameters are
in table 1).

The latter equation is a non-linear equation to obtain a.

For instance, this can be done by using the fixed point

iteration:

a
(n+1)
k = a

(n)
k +

12

δ2s
〈〈∆φ〉〉k

(
a
(n)
k

)
.

Note that the expectation value 〈〈∆φ〉〉k is not known

exactly. An estimate, however, can be obtained by stan-

dard Monte-Carlo simulations. The issue here is that

the statistical error interferes with convergence of the

fixed point iteration. The mathematical framework to

obtain a solution was developed by Robbins and Monro.

They showed that the under relaxed iteration

a
(n+1)
k = a

(n)
k + αn

12

δ2s
〈〈∆φ〉〉k

(
a
(n)
k

)
(35)∑

n

αn →∞ ,
∑
n

α2
n = finite , (36)

converges to the correct answer. Moreover, if the it-

eration is truncated at N = Ncut and independently

repeated many times, the final values a
(Ncut)
k are nor-

mal distributed with the true value ak as mean. This

paves the path to a bootstrap analysis to obtain an er-

ror estimate for our estimate for ak. A common choice

is (0 < γ ≤ 1)

αn =

{
1 for 0 ≤ n ≤ nt ,
1/(n− nt)γ for n > nt ,

(37)

where the iterations with n ≤ nt are considered as ther-

malisation steps, and for which the limiting case γ = 1

is the optimal choice for error suppression.

Once the Taylor coefficients are obtained for the

range s of interest, the generalised density-of-states ρ(s)
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Fig. 4 Strong Sign Problem regime: The LLR-coefficient a(s) as a function of s for µ = 1.3321 (left panel). Right: detail of
the graph.

δs sk nt γ L4 β κ µ

0.2986 11.797 30 1 84 5.8 0.12 1.4321

Table 1 Simulation parameters for one particular value s

can be calculated in the usual way:

ln ρ(s) = −
n−1∑
k=1

ai δs − an δs/2 (38)

n such that: sn ≤ s < sn+1 . (39)

Our final target is phase factor expectation value, which

can be obtained by means of two LLR integrals (details

of the numerical method will be presented in subsec-

tion 4.4 below):

〈eiφ〉 =

∫ smax

0

ρ(s) cos(s) ds∫ smax

0

ρ(s) ds

(40)

Since ρ(s) is rapidly decreasing, we will find that it is

not difficult to find a reliable cutoff smax.

4.2 Thermalisation

We find that the thermalisation is most demanding for

small interval sizes δs and for chemical potentials near

the onset value. In order to provide an insight into the

thermalisation history, we present here some results for

the simulation parameters listed in table 1.

The thermalisation history for 40 independent ran-

dom starts is shown in figure 3. Between each iterations,

we performed 40 sweeps at a fixed parameter a
(n)
k in or-

der to let the system equilibrate.

We see a decrease of the width of the error band

with increasing iteration number n, which is due to the

Robbins Monro underrelaxation. In the production runs

for the results below, we have chosen nt = 200 and

a maximum of 1, 000 iterations. We then make use of

the Robbins Monro feature that the final values for ak
are normal distributed with the correct mean. For the

statistical analysis, we repeated each iteration 40 times

and use the copies for ak for the bootstrap analysis.

For a consistency check and to analyse the effect

of the Robbins Monro parameter γ, we calculated the

average ak for different values of γ. we find:

γ 0.6 0.7 0.8 0.9 1.0

−ak 3.287 3.334 3.256 3.288 3.300

err [10−2] 5.397 3.495 2.356 1.656 1.082

We did not observe any ergodicity issues and found

that the limiting case γ = 1 is most effective for error

reduction as expected.

4.3 Probability distribution of the imaginary part

According to figure 1, we will distinguish three param-

eter regimes depending on the choice of the chemical

potential µ:

• Low density regime for µ <∼ 1.1: this regime might

be accessible by a Taylor expansion with respect to

µ and simulations using reweighting.

• Regime with a strong sign problem for 1.1 <∼ µ <∼ 1.4:

this regime is beyond the scope of standard Monte-

Carlo methods and will be specifically targeted with

the LLR-method below.
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← µ = 1.0821
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← µ = 1.1221
← µ = 1.1421

Fig. 5 Low density regime: the LLR-coefficient a(s) as a
function of s for several values of the chemical potential µ
between 1.0421 and 1.1421. The error bars are smaller than
the symbols.

• Dense regime for 1.4 <∼ µ ≤ m ≈ 1.427: the system

possesses a significant quark density, which reaches

half of the saturation density for µ = m.

Because of the duality (16), we do not need to explic-

itly explore the regime µ > m. We stress that the above

regime boundaries have been chosen in an ad hoc way.

We are not aware of any physical phenomenon that

would define these boundaries in a rigorous way. The

different regimes above, however, have quite distinct

features as we will reveal in this section by exploring

the density-of-states.

To this aim, we have calculated the LLR-coefficients

ak (30) over a range of imaginary parts s for given chem-

ical potentials. The simulation parameters again have

been

84 β = 5.8 κ = 0.12 .

Note that the LLR-method becomes exact in the limit

of vanishing interval size δs. In practice, we check that

our result for ak does not dependent on δs. We illus-

trate this fact for µ = 1.3321, which belongs to the

interesting regime of a strong sign problem. Our find-

ings are shown in figure 4. We find that the coefficients

are quite insensitive to size of δs. This also holds for

the other regimes. Note that a smaller δs requests more

intervals to cover the same (integration) domain for s.

We found that δs = 0.896 is a good compromise be-

tween accuracy and computational effort, and it is this

value which we have used in most simulations.

Figure 5-8, left panel, show the LLR-coefficient as a

function of s for various values of the chemical poten-

tial. We stress that in these figures, the error bars are

s

0 10 20 30 40

a
(s
)

-2

-1.5

-1

-0.5

0

← µ = 1.2021

← µ = 1.2321

← µ = 1.2521

← µ = 1.2721
← µ = 1.2921

Fig. 6 Strong sign problem regime (i): a(s) for several values
of the chemical potential µ between 1.2021 and 1.2921. Note
that the y-scale differs from the previous plot. We observe
that a(s) is an increasing function of µ for any value of s > 0.

s

0 10 20 30 40

a
(s
)

-1.5

-1

-0.5

0

← µ = 1.3121
← µ = 1.3321
← µ = 1.3521

← µ = 1.3721

Fig. 7 Strong sign problem regime (ii): a(s) for several val-
ues of the chemical potential µ between 1.3121 and 1.3721.
In this range, we observe that a(s) is a decreasing function of
µ.

present but smaller than the symbols. Error bars are ob-

tained from 40 independent sets of a that are subjected

to 500 bootstrap samples. Figure 5 shows the low den-

sity regime. We find a slight modulation of a(s) with

s, which did not occur for µ = 1.3321 (see figure 4). In

figure 6 and 7, we summarise our findings for a(s) for a

range of chemical potentials that mostly belong to the

strong sign problem regime. We observe a quite distinct

behaviour: the curvature of the curves increases with in-

creasing chemical potential. For the largest values of µ

shown in figure 7, we enter the dense phase. Our largest

values of µ are shown in 8, left panel. Here, we observe
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Fig. 8 Left: Dense regime(i): a(s) for several values of the chemical potential µ close to the mass threshold m. Right: Dense
regime (ii): a(s) as a function of s near “half-filling” (slightly above m) for three different values of δs.
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Fig. 9 Left: Natural logarithm of the density of states as a function of s for µ = 1.3321, in the strong sign problem regime.
We show both the data points with their error bars (blue cross) and the fit results (red solid line) for 120 intervals in s,
corresponding to δs ∼ 0.299. Right: Same as left, but on a linear scale.

that a(s) starts to show an oscillatory behaviour. Need-

less to say that we have checked that these oscillations

are independent of the choice of δs and statistically sig-

nificant. This is illustrated in figure 8, left panel, where

we show the coefficient a(s) for the chemical potential

µ = 1.4321, which is slightly above the mass threshold

of m = 1.42711.

4.4 The LLR integration

Once the coefficient a(s) have been extracted, we are

in a position to calculate the phase factor expectation

value 〈eiφ〉 for a given value of µ by means of (40).

The straightforward method would be to make use of

the piece-wise linear interpolation (39) and to control

the systematic errors in the Riemann sense by making

δs smaller. It was already noted in [22] for the case of

the Z3 theory at finite densities that this method does

not muster enough precision at an affordable size δs to

obtain a good signal to noise ratio. Instead of seeking

convergence in the Riemann sense, we expand ln ρ in

terms of basis functions fn(s):

ln ρ(s) =

Nmax∑
n

cn fn(s) . (41)

The approximation now occurs by the truncation of the

above sum at Nmax. Here, we follow the strategy of

compressed sensing (see e.g. [33]) and choose the basis

in such a way that a minimal number of coefficients
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Fig. 10 Left: Result for the phase factor expectation value as a function of the cut smax. Results are shown for µ = 1.3321
and δs = 0.29867. Right: 〈eiφ〉 for µ = 1.3321 as a function of δ2s . The results of the extrapolation is 1.185(18) × 10−5,
statistical error only.

cn represents the data at given accuracy and χ2 per

degree-of-freedom (dof) of the fit. It is quite remarkable

that a basis with simple powers of s, i.e.,

fn(s) = sn . (42)

already produces very good results, at least for the Z3

theory [22]. Eq.(42) is also our choice here for HDQCD.

Note that coefficients cn, with n are incompatible with

the theory’s reflection symmetry ln ρ(−s) = ln ρ(s) and

are therefore set to zero.

In summary, our approach is:

• Using the numerical estimates ak, we build the func-

tion P (s) = ln(ρ(s)) according to

P (s) = −
n−1∑
k=1

ai δs − an δs/2 , (43)

s = sn + δs/2 = nδs + δs/2 , (44)

where in the last equation, we choose s0 = 0 as a

starting point.

– We fit the result to a even-powers polynomial

P (s) =

deg/2∑
i=0

c2i s
2i . (45)

• From the fit result, we reconstruct the density

ρ(s) = exp(P (s)) . (46)

• Finally, we semi-analytically compute the LLR in-

tegral

〈eiφ〉 =

∫ smax

0

ρ(s) cos(s) ds∫ smax

0

ρ(s) ds

(47)

We have performed various checks in order to ensure

that our procedure is stable. First, we have tried differ-

ent truncations: we denote by Ai a fit to a polynomial of

degree i in which all the coefficient c2i are free parame-

ters. We also performed some fits with c0 fixed to 0, we

call them Ãi. Some details of our fit procedure for the

finest δs can be found in Table 2 for the specific value of

µ = 1.3321. By comparing Ã2 with A2 and A6 with Ã6,

we see that constant term c0 has very little effect on the

other fit parameters. All in all, we observe that the fit

procedure is robust, however our data are clearly best

fitted by a degree-6 polynomial. Adding higher degrees

gives compatible results with larger errors (see A8). We

also present the fit results for δs = 0.29867 in Figure 9.

Since we are looking for a very small signal emerging

after large cancellations, even the trivial identity∫ smax

0

→ 1

2

∫ smax

−smax

(folding) (48)

might perform differently upon its numerical implemen-

tation. In order to check the robustness of our results,

we implemented both integrals. In Table 2, the first in-

tegral (from 0 to smax) is denoted by (i) and the second

(from −smax to smax) is marked by (ii). We see that the

difference is smaller than the statistical error.

We have also checked that the results do not depend on

the cutoff smax, which is expected since ρ(s) is rapidly

decreasing. This is illustrated in figure 10, left panel,

where we have changed the value of smax before per-

forming the fit of ln(ρ), in other words we have varied

the value of n in the functional form Eq. 43. We have

also checked that the integral itself does not depend on

smax.
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Finally we investigate the δs dependence. We have al-

ready seen that the LLR coefficients exhibit very little

dependence, but it remains to be checked that the same

holds for the LLR integrals leading to the phase factor

expectation value. In fact, we expect the artefacts to be

dominated by order δs2 terms [29]. Using µ = 1.3321

(from the severe sign problem region), we carried out

simulations with several different values of δs, recon-

structed the LLR-coefficients and finally performed the

LLR-integrals to obtain values of 〈eiφ〉 for this set of δs.

We then performed a linear extrapolation in δs2. Our

findings are summarised in figure 10, right panel: we

indeed find a very small δs2 dependence. In fact, the

final results for 〈eiφ〉 are more or less independent of δs
within statistical error bars. Our numerical findings for

〈eiφ〉 for different truncations can be found in Table 3.

4.5 The phase factor expectation value

We have repeated the analysis outlined in the previous

subsection for several values of the chemical potential

in the low density region, in the strong sign problem

and in the dense regimes (see subsection 4.3 for a more

formal definition of these regimes). The numerical re-

sults are given in the Appendix. Each regime has its

own challenges:

In the low density regime, the LLR coefficients a(s) are

rapidly increasing with s. This implies a rather narrow

density-of-states ρ(s), which might approximate a Dirac

function δ if µ approaches zero. Here, a careful fine-

tuning of δs and of the upper integration limit smax

would be in order. Since this regime is easily accessible

by the reweighting approach, we did not further pursue

an optimal choice of parameters, but used a generic

choice of parameters for a validation of the method only.

In the strong sign problem regime, our method works

best: the results are very robust against the parame-

ter choice. The LLR coefficients show a monotonic be-

haviour as a function of s, and the choice of even powers

of s for the base functions fn(s) in (42) is converging

rapidly: a few non-vanishing coefficients represents hun-

dreds of data points with a χ2/dof well below one.

The dense regime is obtained if the chemical potential

takes values close to the heavy quark mass, i.e., its on-

set value. The sign problem in this regime is mild, and

good results are obtained by the reweighting approach.

The coefficients a(s) show oscillations around a signif-

icant (negative) mean value. Upon reconstructing the

density-of-states (see (31)), we find still find a mono-

tonic decreasing ρ(s) (by virtue of the mean value of

a), but clearly a significant number of base functions

fn(s) is needed to grasp the oscillatory behaviour, and

the method looses its appeal. Insights into the cause

of the oscillations would help to develop a new set of

base functions fn(s) that, again with few coefficients,

would grasp the essence of the numerical data. For the

present paper, we do present LLR results for this regime

as well, but observe that the representation of the data

with the base functions fn(s) = s2n failed. Further work

in this direction is needed, which we will be presented

elsewhere.

Finally, we point out our rationale for the approxima-

tion of the numerical data for ln ρ(s) in terms of fn(s):

if few base functions can approximate the data well

(χ2/dof < 1), the bootstrap analysis for the final value

of the phase factor expectation values yields small sta-

tistical errors, and if the final result is insensitive to

the interval size δs, we are confident that the LLR ap-

proach solves the sign problem in this regime. We have

presented evidence for HDQCD in cases for which the

reweighting method can still produce statistical signif-

icant results. We also note that if the base function

fit fails in the sense that it produces a χ2/dof ≥ 100,

it does not necessarily fail to produce a result for the

phase factor expectation value close to the true value:

it might that fit fails at a large scale in a region of the

integration parameter s that is irrelevant to the final

result of the integration. We indeed have observed this

for dense regime: although the fit fails according to the

obtained χ2/dof, the final results is close to the value

known from the reweighting method.

We finally present our main numerical finding. We are

interested in ln 〈exp{iφ}〉 since it is this quantity that

enters in e.g. the calculation of the quark density (see
(17)):

σ(µ) =
T

V

∂

∂µ
ln 〈eiφ〉+

T

V

∂

∂µ
ln ZPQ(µ) (49)

Our result for ln 〈exp{iφ}〉 as a function of the chemical

potential µ is shown in figure 11. Further details, such

as the quality of the fits are given in the tables 4 - 7 in

the Appendix. We have also added these LLR results to

the figure 1 of subsection 3 to validate the LLR method

against the reweighting data and to demonstrate the

quality of the LLR data in the strong sign problem

regime.

5 Conclusions

We have thoroughly studied QCD with a chemical po-

tential for heavy quarks using the density-of-states ap-

proach (LLR version [18,22]). This approach allows for

a determination of the probability distribution of the
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δs = 0.29867 c0 × 103 c2 × 102 c4 × 106 c6 × 1010 c8 × 1014 χ2/dof 〈eiφ〉 × 105 (i) 〈eiφ〉 × 105 (ii)

Ã4 −2.0929(27) 1.770(22) 7.4 0.962(16) 0.951(16)
A4 −1.8(1.1) −2.0921(25) 1.764(20) 7.3 0.957(15) 0.946(15)
A6 0.3(1.0) −2.1148(44) 2.423(84) −4.14(43) 0.14 1.222(44) 1.209(43)

Ã6 −2.1145(47) 2.418(91) −4.12(46) 0.15 1.220(47) 1.206(46)

Ã8 −2.1161(68) 2.507(270) −5.46(2.71) 6.03(11) 0.13 1.255(99) 1.241(98)

Table 2 Fit results for µ = 1.3321 and δs = 0.29867. We show the fit coefficients for different truncations Ai, the corresponding
χ2 per degree of freedom and the result of the integration. Missing results imply that the corresponding coefficient is fixed to
zero. In the last rows, the results are obtained by numerical integration either with or without folding.

A4 A6 Ã6 Ã8

δs 〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 105 χ2/dof

0.89600 0.944(17) 6.1 1.196(39) 0.6 1.223(44) 0.99 1.368(102) 0.77
0.71680 0.957(15) 11 1.254(39) 0.8 1.299(43) 2.5 1.563(94) 1.46
0.59733 0.929(14) 6.1 1.189(41) 0.10 1.206(49) 0.26 1.304(112) 0.15
0.44800 0.928(12) 4.8 1.146(39) 0.16 1.151(46) 0.18 1.159(112) 0.18
0.35840 0.923(16) 3.7 1.144(49) 0.11 1.156(54) 0.22 1.254(119) 0.14
0.29867 0.946(15) 7.3 1.209(43) 0.14 1.206(46) 0.15 1.241(98) 0.13

Table 3 Result for the phase factor expectation value for µ = 1.3321 as a function of δs for various fit Ansätze. The integral
has been computed from −smax to smax (with folding).

µ
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ln
〈e
x
p
(i
φ
)〉

-14

-12
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0

Fig. 11 Natural logarithm of 〈eiφ〉 for different values of
µ, only the statistical errors are shown. The colour code is
as follows: the plain blue points (between µ = 1.0621 and
µ = 1.3721) have a χ2 per degree-of-freedom of order one,
the light blue points between 10 and 50, and the white points
larger than 50.

imaginary part of the quark determinant featuring ex-

ponential error suppression. The partition function ap-

pears as Fourier transform of this probability distribu-

tion. We have bench-marked the LLR results against

results from the standard reweighting procedure (in

the regime where the latter produces a viable signal-

to-noise ratio) and find excellent agreement. We stress

however that our approach yields an error that is typi-

cally smaller by five orders of magnitude.

Due to an (approximate) particle hole duality at low

temperatures, the phase factor expectation value

〈exp{iφ}〉(µ) is symmetric around the onset chemical

potential µ = m for which 〈exp{iφ}〉 = 1. This sug-

gests an inverted Silver Blaze behaviour: close to the

mass threshold, the phase quenched quark density un-

derestimates the result of the full theory.

Depending on the chemical potential, we found three

different regimes which exhibit a different qualitative

behaviour of the density-of-states ρ(s):

(i) In the low density regime, where the theory is almost

real, the domain of support of ρ(s) is limited to small

values of s as expected.

(ii) For intermediate values of µ, we find a strong sign

problem with 〈exp{iφ}〉(µ) reaching values as low as

10−6 for a small lattice size of 84 (see 28 for the simu-

lation parameters).

(iii) For chemical potentials close to the onset value,

the theory is almost real again. By contrast to the low

density regime, however, the density-of-states for the

imaginary part, i.e., ρ(s), has a large domain of sup-

port, and the corresponding LLR coefficients a(s) show

a oscillatory behaviour. It is exceedingly difficult to con-

trol the errors of the Fourier transform that is needed

to access the phase factor expectation value. Further

studies to explore the nature of the oscillations of a(s)
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is left to future work. We point out, however, the the

regime close to onset is accessible by reweighting.

In summary, we find that the LLR approach to the

probability distribution of the imaginary part of the

quark determinant is a viable tool for the whole range

of chemical potentials (with a possible exemption near

the onset transition). At least for the moderate lattice

size explored in this paper, the approach does solve a

strong sign problem.
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Appendix A: Numerical details

The tables below present details of the fit of the base

function expansion depending on the truncation (see

section 4.4 for details). In boldface is the fit used for

the final results presented in figure 11.
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Ã8 2.513(5) 786 1.834(6) 293 1.299(3) 189 8.14(3) 53 4.46(2) 64
A8 2.452(5) 610 1.806(5) 24 1.278(3) 126 8.03(3) 17 4.40(2) 47

Ã10 2.727(5) 252 1.990(7) 66 1.372(4) 45 8.32(4) 43 4.29(2) 43
A10 2.670(6) 181 1.963(6) 42 1.349(4) 8.3 8.18(3) 10 4.20(2) 16

Ã12 2.856(6) 75 2.072(7) 20 1.391(4) 38.2 8.24(4) 42 4.17(3) 35
A12 2.806(6) 42 2.042(7) 4.8 1.362(4) 5.1 8.05(4) 5.9 4.03(2) 1.25

Ã14 2.927(7) 41 2.107(9) 40 1.390(5) 47 8.15(4) 58 4.17(3) 37
A14 2.878(6) 67 2.072(8) 31 1.353(5) 13 7.89(4) 20 3.99(2) 19

Table 4 Fit result of the the phase factor expectation value for the low values of µ and different truncations.

µ→ 1.14210 1.16210 1.18210 1.20210 1.23210

〈eiφ〉 × 102 χ2/dof 〈eiφ〉 × 103 χ2/dof 〈eiφ〉 × 103 χ2/dof 〈eiφ〉 × 104 χ2/dof 〈eiφ〉 × 105 χ2/dof

Ã6 2.018(5) 117 6.817(47) 41 1.888(5) 12 4.89(4) 17 5.02(4) 13
A6 2.008(4) 115 6.710(24) 32 1.883(5) 11 4.78(3) 0.3 4.87(3) 0.3

Ã8 1.861(9) 37 6.415(43) 21 1.959(1) 0.7 5.02(6) 16 5.28(10) 12
A8 1.832(8) 22 6.250(36) 4.6 1.953(9) 0.2 4.81(4) 0.3 4.94(8) 0.2

Ã10 1.777(12) 25 6.752(61) 14 1.960(2) 0.7 5.26(9) 16 5.86(21) 12
A10 1.725(11) 2.4 6.515(50) 0.5 1.951(1) 0.2 4.86(8) 0.2 5.11(17) 0.1

Ã12 1.817(16 234 6.930(80) 13 1.945(2) 0.6 5.67(16) 15 6.99(46) 11
A12 1.747(14) 1.9 6.605(53) 0.2 1.929(2) 0.1 4.98(13) 0.2 5.43(36) 0.1

Ã14 1.885(21) 20 6.972(11) 14 1.958(3) 0.6 6.23(25) 50 8.79(89) 19
A14 1.796(22) 0.3 6.505(82) 0.1 1.933(3) 0.1 5.10(22) 40.42 5.74(73) 0.5

Table 5 Fit result of the the phase factor expectation value for the middle-low values of µ and different truncations.

µ→ 1.25210 1.27210 1.29210 1.31210 1.33210

〈eiφ〉 × 105 χ2/dof 〈eiφ〉 × 106 χ2/dof 〈eiφ〉 × 106 χ2/dof 〈eiφ〉 × 106 χ2/dof 〈eiφ〉 × 105 χ2/dof

Ã6 1.20(2) 12 3.97(6) 14 2.56(3) 9.8 3.33(4) 9.3 1.25(10) 10.5
A6 1.16(1) 0.2 3.76(5) 0.3 2.47(3) 0.2 3.23(3) 0.2 1.21(9) 0.9

Ã8 1.26(3) 12 4.26(13) 14 2.77(9) 9.5 3.60(12) 8.7 1.37(3) 8.1
A8 1.15(3) 0.1 3.74(10) 0.4 2.51(7) 0.2 3.30(10) 0.1 1.28(2) 0.1

Ã10 1.35(7) 12 5.15(3) 14 3.09(27) 9.7 4.04(28) 8.7 1.49(6) 7.9
A10 1.09(6) 0.1 3.75(2) 0.4 2.37(21) 0.1 3.23(21) 0.1 1.27(5) 0.2

Ã12 1.60(2) 12 7.56(9) 13 3.97(63) 9.8 5.03(64) 8.7 1.71(11) 7.9
A12 1.02(14) 0.1 3.98(7) 0.4 2.07(5) 0.1 3.01(47) 0.1 1.23(9) 0.1

Ã14 2.11(33) 1392 1.34(21) 34 5.93(15) 394 7.68(141) 184 2.35(23) 7.8
A14 0.829(28) 2853 0.50(174) 21 9.86(11) 462 2.91(96) 246 1.34(17) 0.4

Table 6 Fit result of the the phase factor expectation value for the middle-high values of µ and different truncations.
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µ→ 1.35210 1.37210 1.39210 1.41210 1.43210

〈eiφ〉 × 104 χ2/dof 〈eiφ〉 × 103 χ2/dof 〈eiφ〉 × 102 χ2/dof 〈eiφ〉 × 10 χ2/dof 〈eiφ〉 × 10 χ2/dof

Ã6 1.354(7) 44 2.66(2) 47 3.42(2) 858 2.177(6) 4418 4.667(7) � 103

A6 1.316(6) 17 2.65(2) 43 3.26(2) 735 2.135(6) 3906 4.600(7) � 103

Ã8 1.523(12) 17 3.24(4) 8.1 4.80(3) 243 2.869(9) 2478 5.564(6) � 103

A8 1.456(9) 0.3 3.22(4) 4.8 4.62(3) 208 2.812(9) 2107 5.484(7) � 103

Ã10 1.613(25) 16 3.60(7) 3.6 5.82(5) 74 3.479(1) 1574 6.207(6) � 103

A10 1.489(19) 0.1 3.56(7) 0.7 5.65(4) 63 3.404(1) 1296 6.117(7) � 103

Ã12 1.717(47) 15 3.80(12) 3.1 6.51(6) 26 3.994(1) 1065 6.659(6) � 103

A12 1.486(36) 0.1 3.73(12) 0.3 6.35(5) 21 3.902(1) 855 6.560(6) � 103

Ã14 1.926(77) 63 3.96(16) 4.5 6.97(7) 21 4.422(1) 944 7.021(5) � 103

A14 1.511(58) 58 3.85(16) 1.8 6.83(5) 21 4.317(1) 799 6.915(6) 4858
A16 - - 3.95(22) � 103 7.17(6) � 103 4.658(15) � 103 7.224(6) 4787

Table 7 Fit result of the the phase factor expectation value for the high values of µ and different truncations. We do not give
the χ2-values larger than 5000.


