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Abstract—The current induced by incident electric field can
convert from antenna mode to differential mode at unbalanced
terminals of transmission lines (TLs), causing severe interference
to a number of applications such as broadband power line
communication, especially in the very high frequency (VHF)
band. The previous work on modeling the current conversion
is not applicable to VHF. We present a new model of the VHF
current conversion which includes a general formula for the
antenna mode characteristic impedance and two solutions to the
formulated problem: a) a numerical solution referred to as the
antenna theory numerical (ATN) approach, which gives the exact
value of the characteristic impedance; b) an analytical solution
referred to as the enhanced TL approximation (ETLA) approach,
which gives the mean of the characteristic impedance. This is the
first reported work to obtain the antenna mode characteristic
impedance by the antenna theory. While the ETLA approach
outperforms the previous frequency-independent solution and
requires a reduced complexity over the ATN approach. Our
model is general as it converges to the previous model at lower
frequencies. Simulation results also show the relationship between
the antenna mode characteristic impedance and the power of the
interference caused by the current conversion.

Index Terms—Antenna theory, electromagnetic interference,
electric field effects, transmission line theory, transmission line
modeling, VHF radio communication.

I. INTRODUCTION

Broadband power line communication (BPLC) [1] has
drawn much attention of researchers in the last decade as
a cost-effective solution for indoor broadband networks. In
the IEEE 1901 standard [1], BPLC is allowed to access the
frequency band below 100 MHz with restricted power spectral
density. Also, it has been proposed in [2] to extend the BPLC
bandwidth to cover the whole very high frequency (VHF)
band of 30-300 MHz. However, BPLC in the VHF band
suffers interference from surrounding wireless services such
as TV and radio channels [3] [4]. The current induced by
incident electric field has been investigated thoroughly in many
electromagnetic compatibility (EMC) applications [5]–[20].

The electromagnetic field can interfere with the VHF BPLC
by exciting the antenna mode current [16], also known as the
common mode current [14]. In this case, the excited current
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has the same magnitude and phase which implies that the
sum of the transmission line (TL) currents is not equal to
zero [16]. The excited antenna mode current can convert to
differential one by mode conversion mechanisms [21]. Those
mechanisms depend mainly on the imbalance between TLs,
which means that the impedance seen by each TL terminal
to the ground is not the same [21]. This mode conversion
is a significant source of interference to all the differential
mode communication signals such as VHF BPLC. In order to
evaluate the power converted from the antenna mode to the
differential mode at the TL terminals, we have to evaluate the
amount of the antenna mode power reflected or transmitted
at the terminals, due to the mismatch between the terminal
impedance and the antenna mode characteristic impedance.
This yields the importance of studying the antenna mode
characteristic impedance.

The main approach to describe the antenna mode and the
differential mode characteristic impedance is the TL theory,
which assumes the existence of three conditions: 1) The cross
section of the wire is very small compared to the wavelength
of the incident electric field; 2) The propagating field along
the wire is either transverse electromagnetic (TEM) or quasi-
TEM; c) The sum of the currents propagating along the wire
must be equal to zero. If any of those conditions is violated,
then the TL theory approach becomes inadequate for modeling
the characteristic impedance. In [15]–[20], an approximate TL
theory solution was adopted to model the TL characteristic
impedance.

When the first condition above is violated, several studies
such as [17] and [18] have considered the dependence of
the per unit length (p.u.l.) parameters on frequency. However,
those studies did not consider the effect of TL length, which
makes the solutions presented in [17] and [18] inadequate
for the case of thin wire TLs excited by VHF electric field,
e.g., the case of electromagnetic interference which is induced
across overhead lines or indoor power line cables. Also,
the studies presented in [17] and [18] focused only on the
differential mode excitation and neglected the antenna mode
excitation which is the main source of interference. In [19],
an iterative method was proposed to solve the classical TL
differential equations based on the perturbation theory. It was
proved to have higher accuracy than the classical TL method
in [20]. However, the iterative method could diverge at some
frequencies. In [16], the authors provided a TL approximated
solution for antenna mode characteristic impedance. However,
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Fig. 1. TL model of straight wires

they did not take into consideration the effect of the frequency
of operation or the angle of incidence of the electric field.
In [22], a full wave transmission line (FWTL) solution was
proposed based on Maxwell’s theory. The transmission line
parameters were expressed using a parameter matrix. Iteration
and perturbation methods were used to derive the exact so-
lution for the differential mode current case. The parameter
matrix of the transmission line is updated for every iteration,
which increases the complexity of the solution when being
applied to the antenna mode current case, since the integration
formula of the parameter matrix gets more complicated for
each iteration.

In our work, a general model is constructed for the VHF
current conversion from antenna to differential mode across
TLs terminals. The proposed model includes the derivation
of a general formula for the characteristic impedance of
the antenna mode current. Two approaches are proposed to
the formulated problem: 1) Antenna theory numerical (ATN)
approach; 2) Enhanced TL approximation (ETLA) analytical
approach. The model is important in predicting the amount of
antenna mode power transmitted or reflected at the terminals
of the TL and hence, the amount of antenna mode interference
to the differential mode signals. Our work is different in the
following aspects. First, we investigate the high frequency
(more specifically the VHF) excitation of the antenna mode
current. We provide a comprehensive analysis on the antenna
mode current characteristic impedance since this is critical
for determining the amount of the antenna mode power that
converts to the differential mode and causes interference to the
differential signal. Second, this is the first work to adopt the
antenna theory to construct a general ATN solution for repre-
senting the antenna mode characteristic impedance. While in
[15]–[19], the antenna theory approach was limited to current
derivation. Third, the ETLA analytical approach is proposed
to represent the mean value of the antenna mode current
characteristic impedance. Unlike [16], where the characteristic
impedance is independent of the exciting frequency effect, our
analytical ETLA solution is applicable to the whole VHF band.
The proposed solution emphasizes the impact of the exciting
frequency and incident angle on the mean value of the antenna
mode characteristic impedance.

Fig. 2. Two-wire TL terminated with EMI filter

Section II presents our system model. Section III introduces
the antenna theory approach and the construction of the
Green’s functions for the excited current, volt and magnetic
vector potential. Section IV presents the construction of both
the ATN and ETLA solutions for representing the antenna
mode characteristic impedance. Section V shows the simula-
tion results from our two proposed solutions. Furthermore,
the simulation for the mode conversion from antenna to
differential mode is presented. Section VI concludes our work.

II. SYSTEM MODEL

In this paper, we investigate the case of two parallel straight
wires in the free space, as illustrated in Fig. 1. Each wire
has a length of 40 m and a radius of 1.5 mm. The distance
between the two wires is assumed to be 4.5 mm and the
maximum operating frequency is 300 MHz. This means that
the transverse dimensions of the wires are electrically small,
which satisfies the first two conditions in the TL theory and
supports the thin wire approximation. The wires are assumed
to be along z-axis. The electric field is assumed to be vertically
polarized in the XZ plane where θ represents its angle of
incidence on the two wires.

The electromagnetic interference filter (EMI) is a passive
device that is used to suppress conducted interference and, is
used to protect a device from outside interference or protect the
outside environment from unwanted signals generated by the
device. However, the asymmetry in the EMI filter with respect
to the ground can cause mode conversion between antenna and
differential mode signals [21].

In Fig. 2, a two-wire TL terminated by EMI filter is
shown. The equivalent circuit is the same as that presented in
[23]. ZL1,2 represents the equivalent impedance of the EMI
filter coil which can be modeled by parallel R-L-C circuit.
Also, ZC1,2 represents the equivalent impedance of the EMI
filter capacitance towards the ground. This capacitance can be
modeled by a series R-L-C circuit. All the values of R-L-C are
the same as those in [23]. It is assumed that the asymmetry
ratio between the transmission line components is 0.3, i.e.,
the components of the two transmission lines differ from each
other by 30% in value. A 100 mA antenna mode current is
assumed to be excited by the plane wave along the TL. Since
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each TL is terminated with different impedance, each line
shows different transmission coefficient. Hence, differential
signals will occur across the line terminals leading to the
generation of harmful interference. The interference power Pti
can be defined as the power of the differential signal induced
by the antenna mode current at the TL terminals, by any of the
mode conversion mechanisms. The calculation of Pti and the
model of mode conversion are discussed in detail in Appendix
A.

III. CHARACTERISTIC GREEN’S FUNCTIONS
CONSTRUCTION

In this section, we aim to construct an antenna potential
Green’s function (APGF) that represents the potential induced
along the TL when applying a delta external electric field to
a perfect conducting TL in free space. In the same sense, we
aim to construct the rest of the characteristic Green’s functions
like the magnetic vector potential Green’s function (MVGF)
and the charge density Green’s function (CDGF). Using the
Green’s functions of the antenna potential, the magnetic vector
potential, the charge density and the antenna current, we can
derive the general solution for the antenna mode characteristic
impedance in Section IV.

A. Problem Formulation of Excited Current

The current induced by an electric field incident over a wire
is related to the exciting field by the electric field integral
equation (EFIE) [24]. Let Eex

t be the tangential component
of the exciting electric field and let J be the induced current
along the length of the wire, then we have

Eex
t (r) = −jωµ0

∫
l

[̄I +
1

k20
55.]e

−jk0|r−r′|

4π|r− r′|
.J(r′)dr′ (1)

where r′ and r are the position vectors of the source and
observation points, respectively, l is the length of the wire, Ī
indicates a unit vector, k0 is the free space wave number where
k0 = ω

√
ε0µ0. Here, ω is the angular frequency of the exciting

electric field, ε0 is the free space electric permittivity and µ0

is the free space magnetic permeability. The wire is assumed
to be a perfect conductor. Hence, the total tangential electric
field shall be equal to zero. Also, a thin wire approximation is
assumed such that the radius of the wire is too much shorter
than the wavelength of the exciting electric field. Here we can
consider that the electric field is related to the induced current
by the dyadic free space Green’s function as

Eex
t (r) =

∫
l

GEGF (r− r′)J(r′)dr′ (2)

where the electric field Green’s function GEGF (r, r′) is ex-
pressed as

GEGF (r, r′) = −jωµ0 [̄I +
1

k20
55.]e

−jk0|r−r′|

4π|r− r′|
(3)

The relation between the exciting electric field and the induced
current can be expressed using the operator L as in [24]

Eex
t (r) = LJ(r′) (4)

where L can be expressed as

L =
−jωµ0

4π

∫
l

[̄I +
1

k20
55.]Gfs(r, r

′)dr′ (5)

Hence, the current can be expressed in the terms of the exciting
field as

J(r) = L−1Eex
t (r′) (6)

This means that the excited current can be obtained using
the integration of a Green’s function with the exciting electric
field. The antenna current Green’s function was derived in
[24] using the distribution theory. It was expressed as the
distribution of a series of dyadic antenna current Green’s
functions F̄n(r, r′) over the electric field as a test function.
F̄n(r, r′) can be derived using the operator L−1r , where the
subscript r in the operator L−1r indicates that the operator L−1
is applied to vector r. Hence, F̄n(r, r′) can be expressed as

F̄n(r, r′) = L−1r fSn (r, r′) (7)

where fSn (r, r′) is a series of non-negative locally integrable
functions along the wire. S is the two-dimensional manifold
space, where fSn (r, r′) functions are defined. Those functions
shall satisfy the conditions as defined in Theorem A.1 of
Appendix A in [24]. Also, if the operator L−1 is applied
to vector r′ or r′′ function the operator shall be L−1r′ or
L−1r′′ , respectively. For thin wire approximation, the series of
functions fSn (r, r′) converges to δ(r− r′) as n→∞. Hence,
it can be shown

L−1r δ(r− r′) = lim
n→∞

L−1r fSn (r, r′) (8)

Hence, the current can be expressed as

J(r) = lim
n→∞

〈F̄n(r, r′)Eex
t (r′)〉 (9)

This can be interpreted for the case of a thin wire in the
integral form as

J(r) = lim
n→∞

∫
l

F̄n(r, r′)Eex
t (r′)dr′ (10)

This means that according to the distribution theory, the
distribution of F̄n(r, r′) over electric field can converge to

J(r) =

∫
l

L−1r δ(r− r′)Eex
t (r′)dr′ (11)

Hence, the final expression for the antenna current Green’s
function GAC is

GAC(r, r′) = L−1r δ(r− r′) (12)

B. Construction of Green’s Function of the Charge Density,
the Antenna Potential and the Magnetic Vector Potential

1) Charge Density Green’s function: The charge density
ρ(r) can be expressed using the continuity equation as

ρ(r) =
−1

jω

∂J(r)

∂r
(13)

Applying (11) in (13), we get

ρ(r) =
−1

jω

∂

∂r

∫
l

L−1r δ(r− r′)Eex
t (r′)dr′ (14)
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We can conclude the charge density Green’s function GCD as

GCD(r, r′) =
−1

jω

∂

∂r
GAC(r, r′) (15)

2) Antenna Potential Green’s function: Let φ(r) be the
retarded scalar potential. Also, let r′′ be the position vector
of the impressed excitation electric field, r′ be the position
vector for the excited current and r be the position vector for
the observation point of induced potential. We can find an
expression for the antenna potential Green’s function as

φ(r) =
1

4πε0

∫
l

Gfs(r, r
′)ρ(r′)dr′ (16)

where Gfs(r, r
′) is free space Green’s function described by

Gfs(r, r
′) =

e−jk0|r−r
′|

|r− r′|
(17)

Substituting (11) and (13) into (16), we get

φ(r) =

−1

4πε0jω

∫
l

∫
l

Gfs(r, r
′)
∂

∂r′
L−1r′ δ(r

′ − r′′)Eex
t (r′′)dr′′dr′

(18)

Using (12) and (18), we can conclude the final expression for
the antenna potential Green’s function GAV as

GAV(r, r′′) =
−1

4πε0jω

∫
l

Gfs(r, r
′)
∂

∂r′
GAC(r′, r′′)dr′ (19)

3) Magnetic Vector Potential Green’s function: Using an
approach similar to the above, we find the magnetic vector
potential Green’s function. Let A(r) be the magnetic vector
potential which can be expressed as

A(r) =
µ0

4π

∫
l

Gfs(r, r
′)J(r′)dr′ (20)

Substituting (11) into (20) yields

A(r) =
µ0

4π

∫
l

∫
l

Gfs(r, r
′)L−1r′ δ(r

′ − r′′)Eex
t (r′′)dr′′dr′

(21)
Also substituting (12) into (21), the final expression for the
magnetic vector potential Green’s function GMV can be stated
as

GMV(r, r′′) =
µ0

4π

∫
l

Gfs(r, r
′)GAC(r′, r′′)dr′ (22)

IV. THE ATN AND ETLA APPROACHES FOR
CHARACTERISTIC IMPEDANCE CONSTRUCTION OF THE

ANTENNA MODE CURRENT

In this section, we propose the ATN and ETLA approaches
for representing the characteristic impedance of the antenna
mode current. We derive the direct relations between the
characteristic impedance and the exciting field incident over
two perfect conducting wires in free space.

A. The ATN Approach for Characteristic Impedance

In this part, we propose the general ATN solution for the
characteristic impedance. We use the Green’s functions of the
antenna potential, the magnetic vector potential and antenna
current derived in Section III throughout our derivation. The
capacitance p.u.l. Cd/a can be defined as [25]

Cd/a(r) =
ρd/a(r)

φd/a(r)
(23)

where the subscript d/a indicates the differential or antenna
mode of excitation. Using (14), (15), (18) and (19), (23) can
be written as

Cd/a(r) =

∫
l
GCD−d/a(r, r

′)Eex
t (r′)dr′∫

l
GAV−d/a(r, r′′)Eex

t (r′′)dr′′
(24)

Also, the inductance p.u.l. Ld/a can be defined as [25]

Ld/a(r) =
Ad/a(r)

Jd/a(r)
(25)

Using (21), (22), (11) and (12), (25) can be written as

Ld/a(r) =

∫
l
GMV−d/a(r, r

′′)Eex
t (r′′)dr′′∫

l
GAC−d/a(r, r′)Eex

t (r′)dr′
(26)

where GCD−d/a, GAV−d/a, GMV−d/a and GAC−d/a are precisely
defined in Appendix B.

It is worth mentioning that our numerical ATN solution uses
the approximated method of moments (MOM) numerical form
of equations (24) and (26), where the boundary condition ma-
trix is represented. The boundary condition matrix is forcing
the boundary conditions at the TL terminals. Using matrix
operations, the boundary condition matrix is eliminated from
the numerator and denominator so that the p.u.l. parameters
are independent of the boundary conditions at the TL termi-
nals. The complete proof of the boundary condition matrix
elimination is shown in Appendix C.

Equations (24) and (26) provide a general integral form
for the capacitance and inductance p.u.l., respectively. Since
we are concerned about the behavior of the antenna mode
characteristic impedance for lossless conductors in free space,
we can define the characteristic impedance Z(r) as

Z(r) =

√
Ld/a(r)

Cd/a(r)
(27)

B. The ETLA Approach for the Mean Value of the Antenna
Mode Characteristic Impedance

Due to the complexity of the ATN approach using the
antenna theory, we present an ETLA approach based on a
modified TL approach. Although the first two conditions of
the TL theory are still satisfied in the antenna mode current
case under consideration, the third condition is not satisfied
(i.e., the sum of the currents is not equal to zero). Hence, the
ETLA approach adopts an approximation for the TL theory to
represent the mean value of the antenna mode characteristic
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impedance, taking into consideration the frequency of opera-
tion and angle of incidence. We can define Ψ(r) as

Ψ(r) =

− 0.9.{jπH(2)
0 (a

√
k20 − k21) + jπH

(2)
0 (d

√
k20 − k21)}

− 2{E1(j(l − r + a)(k0 − k1)) + E1(j(r + a)(k0 + k1))}
(28)

where H
(2)
0 (x) denotes the Hankel function of the zero-th

order and second kind, E1(z) is the exponential integral
function, d is the distance between the two wires of the TL.
a is the radius of each wire in the TL and k1 = k0 cos(θ),
where θ is the incidence angle. Hence, the inductance and the
capacitance p.u.l. can be expressed as

La(r) =
µ0Ψ(r)

4π
(29)

Ca(r) =
4πε0
Ψ(r)

(30)

where the subscript a refers to the antenna mode of excitation.
Subistituting (29) and (30) into (27) yields

Z(r) =
Ψ(r)

4π

√
µ0

ε0
(31)

The full derivation of the ETLA solution can be found in
Appendix D. It can be easily concluded that the characteristic
impedance depends mainly on the value of Ψ(r). Here we
shall refer to two important parameters that affect Z(r): 1)
Frequency; 2) Incidence angle and discuss their relationships
in the following:

1) Z(r) vs. Frequency: As mentioned before, Ψ(r) has
been derived on the basis that the wire length is much more
than the operating wavelength. Hence, we can intuitively
conclude from (28), that Ψ(r) decreases as the frequency
increases. This is due to the fact that when the frequency in-
creases, the wavelength decreases and both k0 and k1 increase,
and hence, both the Hankel functions and the exponential
integral functions decrease.

2) Z(r) vs. Incidence Angle: Incidence angle has inverse
relationship with the value of k1. Consequently, as the in-
cidence angle increases, k0 − k1 increases while k0 + k1
decreases. This leads to the decrease of H(2)

0 (a
√
k20 − k21),

H
(2)
0 (d

√
k20 − k21) and E1(j(l − r + a)(k0 − k1)) and the

increase of E1(j(r + a)(k0 + k1)). Hence, the variation of
the incident angle does not yield a significant variation of the
characteristic impedance mean value.

V. SIMULATION RESULTS

In (27) and (31), we have proposed the ATN and ETLA
solutions for the antenna mode characteristic impedance. In
this section, we present their performance by simulation, in
comparison to the classical TL solution in [16]. We use
the formulae presented in [16] for the inductance and the
capacitance p.u.l. of the antenna mode current to derive the
TL antenna mode characteristic impedance. Also, we present a
performance comparison between our proposed solutions and
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Fig. 3. Characteristic impedance at frequency 2 MHz and θ =
30◦.

the FWTL solution, which was proposed in [22] to derive
the differential mode current and its characteristic parameter
matrix. However, in our simulations we use the FWTL solution
in order to derive the antenna mode characteristic impedance,
where the relation between the characteristic impedance and
the characteristic parameter matrix is defined according to
[26].

A. Characteristic Impedance vs. Frequency

In Fig. 3, the characteristic impedance is shown using our
ATN solution for the antenna mode of excitation at frequency
of 2 MHz and angle of incidence θ = 30◦. The wavelength
of operation is 150 m which is much more than the wire
length. It can be observed that both our ATN solution and
the FWTL solution converge to the TL solution in [16] at low
frequency of 2 MHz, proving the validity of our solution. Also,
it can be easily observed that the difference between the ATN
and the TL solutions approaches 157 Ω. This is due to the
difference between our ATN procedure and the TL approxi-
mation adopted in [16], where the ATN numerical approach
gives the exact solution for the characteristic impedance and
the TL approach gives an approximated value. We shall take
into consideration that the antenna mode Green’s function in
equation (36) is not fast decaying as the differential mode one,
which increases the approximation error in the TL approach.
This makes the difference between our solution and that in
[16] easily justified.

In Fig. 4, the characteristic impedance is shown versus the
distance along the wire. We compare the performance of our
ATN solution at different frequencies of 30, 100 and 300 MHz
(the corresponding wavelengths are all shorter than the wire
length) to the performance of the TL solution in [16]. It can
be observed the effect of the frequency on changing the mean
value of the characteristic impedance.

In Fig. 5, the characteristic impedance versus frequency
is shown at a fixed position of 30 meters from the origin
and at an angle of incidence of θ = 45◦. The characteristic
impedance obtained from ATN, FWTL and ETLA solutions
decreases with the increase in the frequency, while the TL
solution [16] presents a frequency-independent characteristic
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Fig. 4. Characteristic impedance vs. distance along the wire
length at incident angle θ = 45◦.

50 100 150 200 250 300

Frequency (MHz)

10
2

10
3

10
4

C
h

a
ra

c
te

ri
st

ic
 I

m
p

e
d

a
n

c
e
 (
Ω

) 

ATN Solution

FWTL Solution [22]

ETLA Solution

TL Solution [16]

Fig. 5. Characteristic impedance vs. frequency at a distance
30 m from the origin and θ = 45◦.

impedance. This verifies our analysis in Subsection IV-B.
In Fig. 6, the characteristic impedance of the antenna mode

current is shown versus the frequency of different geometric
structures for the two straight wires in free space. In the
simulations, three geometric structures with different values
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Fig. 6. Characteristic impedance vs. frequency for different
geometric structures.
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Fig. 7. Characteristic impedance vs. angle of incidence θ at a
distance 30 m from the origin and frequency 100 MHz.

of wire length (l), radius (a) and separation distance (d) have
been considered. The three geometric structures 1, 2 and 3
have the geometric parameter combination (l, a, d) as: (40,
1.5 × 10−3, 4.5 × 10−3 ) m, (60, 2 × 10−3, 1.8 × 10−3 ) m
and (80, 3×10−2, 8.1×10−2 ) m. It can be observed that for
different geometric structures, the antenna mode characteristic
impedance still decreases with the frequency increase. This
proves that in the VHF band (more specifically when the
λ < l, where λ is the exciting wavelength) the antenna mode
characteristic impedance decreases with the increase in the
frequency regardless of the geometric structure.

B. Characteristic Impedance vs. Incidence Angle

The effect of the incident angle on the mean value of the
characteristic impedance is smaller than that of the frequency.
This is demonstrated in Fig. 7. The simulation results show
that the angle of incidence has a smaller effect on the mean
value of the characteristic impedance compared to the effect of
the exciting frequency. This agrees with our analysis in Section
IV-B. In Fig. 7, the difference between the simulation results
obtained using our proposed solutions and the TL solution [16]
is due to the fact that the simulation is done at 100 MHz. As
mentioned before, the TL solution is not applicable to high
frequency.

In Fig. 8, the characteristic impedance of the antenna
mode current is shown versus the incident angle for different
geometric structures. The simulation results show that the
geometric structure does not affect the performance of the
antenna mode characteristic impedance towards the change in
the incident angle.

C. Antenna Mode Interference to Differential Mode Signal

The antenna mode current can convert to differential mode
by mode conversion mechanisms [21] [27] [28]. The adopted
mode conversion mechanism is discussed in Appendix A. In
Figs. 9 and 10, the calculation of the converted interference
signal from antenna mode to differential mode is presented
at different frequencies. In Fig. 9, the interference power is
calculated for different EMI filter locations across the TL,
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Fig. 10. Interference power vs. frequency at incident angle
θ = 45◦.
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Fig. 11. Interference power vs. distance at different incident
angles for frequency of 100 MHz.

where the distance is measured from the origin to the location
of the EMI filter. The interference power reduces with the
increase of frequency, but is relatively stable at different
distances. It can be observed that our proposed solutions yield
a higher calculated interference power at different frequencies
than that in [16]. The difference between the ETLA approach
and the TL approach in [16] reaches more than 4 dB at 300
MHz, which means more than double the interference power.
This is because our proposed solution has lower antenna mode
characteristic impedance than that proposed in [16].

In Fig. 11, the interference power at different incident angles
for the same frequency of operation is shown. It can be
observed that the interference mean value is not much affected
by the incident angle.

VI. CONCLUSION

The antenna mode interference to the differential mode
signal has a great influence on a number of EMC applica-
tions such as BPLC in the VHF band. In this paper, two
solutions (ATN and ETLA) for representing the characteristic
impedance of the excited antenna mode current in the VHF
band have been proposed. The ATN solution has been shown
to be dependent on the exciting frequency and incidence
angle, unlike the TL solution in [16] which is independent
of the two parameters. Also, the ATN solution matches the
FWTL solution in [22], while directly deriving the impedance
without the need to derive the current as the FWTL solution.
Furthermore, the ETLA solution shows a negligible difference
from the ATN and FWTL solutions, while requiring a lower
computational complexity. Our proposed solutions show a
higher interference power across a TL terminated by EMI filter
than the TL solution in [16]. This will help in providing a
more accurate estimation of the power of the antenna mode
interference to the differential mode signal.

APPENDIX A
MODELLING THE ANTENNA MODE CURRENT

CONVERSION TO DIFFERENTIAL MODE

The antenna mode current is converted to differential mode
due to the asymmetry of the terminal loads as in [21] [27] [28].
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Fig. 12. T-network terminal impedance

As shown in Fig. 12, a T-network is adopted to represent the
impedance asymmetry at the TL terminals. Let φat and φdt
be the generated antenna and differential mode potentials at
the terminal loads. Also, let Jat and Jdt be the values of
the antenna and differential mode currents transmitted to the
terminal loads. The conversion between the different modes
of current propagating along the TL can be written as[

φat
φdt

]
=

[
Zat 4Zt
4Zt Zdt

] [
Jat
Jdt

]
(32)

where Zat and Zdt are the equivalent antenna mode and
differential mode impedance at the terminal loads, respectively.
The relationship between Zat , Zdt and Z1, Z2, Z3 is defined
as in [27] [28]. 4Zt is the difference between the values of
the impedance seen by each transmission line to the ground.
The relationship between the terminal load currents Jat , Jdt
and the TL currents Ja, Jd can be expressed as[

Jat
Jdt

]
=

[
Tat 0
0 Tdt

] [
Ja
Jd

]
(33)

where Tat and Tdt are the transmission coefficients of the both
the antenna mode and differential mode current at the terminal
loads.

Hence, the differential interference potential φdti induced
due to the antenna mode current is expressed as

φdti = 4ZtTatJa (34)

The interference power Pti can be calculated as

Pti = φdtiJat (35)

APPENDIX B
GREEN’S FUNCTION OF ANTENNA POTENTIAL, MAGNETIC

VECTOR POTENTIAL AND ANTENNA CURRENT FOR
DIFFERENTIAL AND ANTENNA MODES OF EXCITATION

Consider the case of two perfect conducting parallel wires.
Let r1 and r2 be the position vectors for the observation points
located on wires, 1 and 2, respectively. Let r′1 and r′2 are the
position vectors for the source points located on wire 1 and
2, respectively. Free space Green’s function Gfs(r, r

′) for the
differential/antenna (d/a) mode can be defined as

Gfs−d/a(r, r
′) =

e−jk0|r−r
′
1|

|r− r′1|
(−+)

e−jk0|r−r
′
2|

|r− r′2|
(36)

Hence the L operator for the differential mode can be defined
as

Ld/a =
−jωµ0

4π

∫
l

[̄I +
1

k20
55.]Gfs−d/a(r, r

′)dr′ (37)

Hence we can define the Green’s functions of the antenna
current , the antenna potential, the magnetic vector potential
and the charge density for the differential or antenna mode of
excitation as

GAC−d/a(r, r
′) = Ld/a

−1
r δ(r− r′) (38)

GAV−d/a(r, r
′′) =

−1

4πε0jω

∫
l

Gfs−d/a(r, r
′)
∂

∂r′
L−1r′−d/aδ(r

′ − r′′)dr′
(39)

GMV−d/a(r, r
′′) =

µ0

4π

∫
l

Gfs−d/a(r, r
′)L−1r′−d/aδ(r

′ − r′′)dr′
(40)

GCD−d/a(r, r
′) =

−1

jω

∂

∂r
L−1r−d/aδ(r− r′) (41)

APPENDIX C

BOUNDARY CONDITION MATRIX ELEMINATION

Let Q be a diagonal matrix which forces the boundary
conditions on the excited current at the terminals of the trans-
mission line as presented in [29]. Using the MOM numerical
method to solve the integral in equation (20) as in [29],
equation (20) is rewritten in the numerical form as

A(r) =
µ0

4π
UQJ(r) (42)

where U represents the matrix of integrations of the free space
Green’s function Gfs(r, r

′) with current basis function for
different source and observation points. J(r) is a vector which
represents the excited current value at different source points.
J(r) represents the current component which is independent
of the boundary conditions, while the effect of the forward
and reflected current components are represented in the Q
diagonal matrix. It is worth mentioning that both U and Q
are symmetric matrices such that UT = U and QT = Q.
Equation (25) can be rewritten in the numerical form as

Ld/a(r) =
µ0

4πUQJ(r)

QJ(r)
(43)

Using the symmetry property of U and Q, equation (43) can
be rewritten as

Ld/a(r) =
µ0

4πQUJ(r)

QJ(r)
(44)

The boundary condition matrix can be removed from both
numerator and denominator, since Q matrix is a diagonal
matrix. Hence, the above equation is written as

Ld/a(r) =
µ0

4πUJ(r)

J(r)
(45)

Following the same principle the boundary condition matrix
can be removed from the numerical form of equation (23) for
the capacity p.u.l..
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APPENDIX D
DERIVATION OF THE ETLA SOLUTION OF THE ANTENNA

MODE CHARACTERISTIC IMPEDANCE MEAN VALUE

The exciting electric field Eex
t (r) can be expressed in the

terms of the potential φ(r) and the magnetic vector potential
A(r) as

Eex
t (r) = −jωA(r)−∇φ(r) (46)

Using both (16) and (46) the general Telegrapher equations
for the current induced along two parallel wires in free space
by the effect of incident electric field are expressed as

∂φa(r)

∂r
+
jωµ0

4π

∫
l

Gfs−a(r, r′)Ja(r′)dr′ = Eex
t−a(r) (47)

φa(r) = − 1

jω4πε0

∂

∂r

∫
l

Gfs−a(r, r′)Ja(r′)dr′ (48)

where φa(r) and Ja(r) are the excited antenna mode potential
and current, respectively.

In case l < λ (where λ represents the wavelength), we
can consider the current as constant along the integral and
apply the approximation used in [16]. However, if l > λ, the
approximation made in [16] becomes invalid and we shall look
for a better approximation. Here we assume that the current
has two separate components Jo(r) and e−jk1r

Ja(r) = Jo(r)e−jk1r (49)

where the rate of change of Jo(r) with the position vector
r is much less than the decay rate of the free space Green’s
function Gfs−a(r, r′), so it can be considered as constant over
the integral. Also k1 = kocos(θ) where ko is the wave number
in free space and θ is the incident angle. The integral in
equations (47) and (48) can be rewritten as∫

l

Gfs−a(r, r′)Ja(r′)dr′ =

Jo(r)

∫
l

e−jk0|r−r
′
1|

|r− r′1|
+
e−jk0|r−r

′
2|

|r− r′2|
e−jk1r

′
dr′

(50)

Assume that the two wires are along the z-axis. Thus (50)
reduces to∫
l

Gfs−a(z, z′)J(z′)dz′ =

Jo(z)

∫
l

[
e−jk0

√
(z−z′)2+a2√

(z− z′)
2

+ a2
+
e−jk0

√
(z−z′)2+d2√

(z− z′)
2

+ d2

]
e−jk1z

′
dz′

(51)

where a is the wire radius and d is the distance between the
two wires. Substitute u = z′ − z into (51) we get∫
l

Gfs−a(z, z′)J(z′)dz′ =

Jo(z)e−jk1z
∫ l−z

−z

[
e−jk0

√
u2+a2

√
u2 + a2

+
e−jk0

√
u2+d2

√
u2 + d2

]
e−jk1udu

(52)

we can use the following two known integrals∫ ∞
−∞

e−jk0
√
u2+a2

√
u2 + a2

e−jk1u = −jπH(2)
0 (a

√
k20 − k21) (53)

and

E1(z) =

∫ ∞
z

e−t

t
dt (54)

Using (53) and (54) to solve the integral in (52), we can
conclude ∫

l

Gfs−a(r, r′)J(r′)dr′ = J(r)Ψ(r) (55)

where Ψ(r) is given by (28).
We added a 0.9 fitting factor to the approximated analytical

solution in (28) since we observed a difference between
our approximated solution and the numerical solution of the
integral in (52). This difference comes from the adopted
approximation that the area covered by the integral in (52) is
equal to the difference between the areas covered by integrals
in (53) and (54). Substituting (28) into (47) and (48), we can
obtain the inductance and capacitance p.u.l. in (29) and (30),
respectively, and the characteristic impedance in (31).

Discussion on the ETLA approximation: The assumption of
the antenna mode current in (49) does not consider two other
components of the current which represent the travelling and
reflected currents at the TL terminals as discussed in [19].
This is due to the small effect of those current components
on the value of the antenna mode characteristic impedance in
the VHF band. This small effect can be concluded from the
small difference of the ETLA solution compared to both the
ATN and FWTL solutions in the simulation results shown in
Figs. 3-8.
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