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Abstract. The ability to rewrite defined ontological entities into syn-
tactically different, but semantically equivalent forms is an important
property of Definability. While rewriting has been extensively studied,
the practical applicability of currently existing methods is limited, as
they are bounded to particular Description Logics (DLs), and they often
present only theoretical results. Moreover, these efforts focus on comput-
ing single definitions, whereas the ability to find the complete set of alter-
natives, or even just their signature, can support ontology alignment, and
semantic interoperability in general. As the number of possible rewritings
is potentially exponential in the size of the ontology, we present a novel
approach that provides a comprehensive and efficient way to compute in
practice all definition signatures of the feasible (given pre-defined com-
plexity bounds) defined entities described using a DL language for which
a particular definability property holds (Beth definability). This paper
assesses the prevalence, extent and merits of definability over large and
diverse corpora, and lays the basis for its use in ontology alignment.

1 Introduction

The ability to rewrite defined ontological entities into syntactically different,
but semantically equivalent forms is an important feature of the notion of De-
finability. In particular, Beth definability [2, 11] is a well-known property from
classical logic, that relates the notion of implicit definability to the one of explicit
definability, by stating that every implicitly defined concept is also explicitly de-
finable, in any definitorially complete DL language [21]. For example, given an
ontology O = {C ≡ A t B,A v ¬B,D v ∃r.>}, where the concept C is defined
explicitly, i.e. C ≡ A t B, the concept A is defined implicitly under O by the set
of general concept inclusions {C ≡ A t B,A v ¬B}. Thus, A can be explicitly
defined by the axiom A ≡ C u ¬B.

Definability in general (and Beth definability in particular) have been utilised
within DLs to generate syntactically different, albeit semantically equivalent
definitions. Known as rewriting, this process is primarily used for: 1) extract-
ing equivalent terminology from a general TBox [1]; and 2) finding equivalent
query rewritings in ontology-based data access scenarios [18]. These approaches
exploit the fact that any defined concept has one or more possible alternative
definitions; however they usually focus on finding a single alternate definition;



whereas several ontology engineering tasks would benefit from the ability to iden-
tify a complete set. In particular this paper focusses on ontology alignment [7],
where several approaches have been proposed that successfully align ontologies
[3]. However, Stuckenschmidt et. al. have argued that existing approaches often
fail to compute complex correspondences: typically, systems are only able to iden-
tify simple equivalence statements between class or relation names, but often fail
to identify richer semantic relation between elements of different ontologies [20].
Thus, the ability to rewrite concept definitions can widen the search space for
possible correspondences. This is illustrated by the fact that some alignment
mechanisms may not find a simple correspondence for some concept C, but may
be able to find a complex correspondence, given the its definition C ≡ A t B.

Determining the complete set of possible definitions of defined concepts is a
challenging task, as the number of different definitions is potentially exponential
in the size of the ontology. This is problematic for large scale ontologies, such
as SNOMED CT [6] or FMA [15]. Existing rewriting algorithms are language
dependent, and thus different approaches to construct rewritings are used for
different types of DL expressivity. Furthermore, even if there was an existing ap-
proach for a given language, many rewriting systems provide only a theoretical
characterization of the rewriting mechanism, therefore making them less usable
in practice. Finally, rewriting requires a seed signature to be specified in input,
i.e. a restricted vocabulary to be used in defining a given concept. The process
of identifying all valid seed signatures is inherently complex, as it requires ex-
amining each member of the powerset of the ontology signature and verifying
whether it actually implicitly defines a particular entity. Therefore, reducing the
search space for these problems is highly desirable.

In this paper we present a pragmatic approach to computing the complete
set of rewriting signatures for a given ontology. Our approach exploits Beth de-
finability to identify all possible alternative definitions of defined entities. We
present the notion of Beth definability in Section 2, and then introduce our
novel approach (Section 3) that, in practice, can efficiently compute the com-
plete set of definition signatures (DS) of defined entities, for any DL language
where the Beth definability property holds. Section 4 presents definition pat-
terns (DP), that aid comprehension of definability, and also serve as input for
a heuristic-based rewriting approach, which produces definition axioms without
using reasoning services. Section 5 presents an empirical analysis over a wide
range of OWL ontologies, and assesses the prevalence of definability and the be-
haviour of the proposed algorithms for computing definability. Finally, the paper
discusses definability for ontology alignment and presents concluding remarks.

2 Beth Definability in Description Logics

The vocabulary of a DL ontology1 consists of the (disjoint) union of the countably
infinite sets of concept names, role names and individual names, where an entity

1 In this paper, we assume familiarity with basic notions of Description Logics [1] and
the Web Ontology Language [10] (OWL).



e is either a named concept, role, or individual. A signature is an arbitrary
set of entities; by Sig(C) we denote the signature of the a complex concept
C, while Sig(T ) denotes the signature of a TBox. In this paper, Σ refers to a
definition signature (DS), i.e. the set of entities that implicitly define a given
concept. A DS is used to characterise implicitly definable concepts in terms
of their explicit definability, by exploiting the Beth definability theorem. The
theorem, initially studied for first-order logic [2], states that a logical term is
implicitly definable with respect to a theory if and only if it is also explicitly
definable. Given that explicit definability implies implicit definability, the Beth
definability property holds for some logic language L if the converse also holds,
i.e. if implicit definability implies explicit definability. Consequently, if a term is
implicitly defined then it is always possible to define it explicitly. As there are
several variants of Beth definability [21], we focus on Projective Beth definability
which is a stronger formulation [11] with the ability to specify a set of terms,
thus permitting us to restrict the vocabulary that can be used in definitions.
Beth definability has also been studied in the context of DLs [21], where it has
been used to compute explicit definitions based on implicit definitions. We thus
assume a general DL language L for which the Beth definability property holds.
We define an explicit definability concept as:

Definition 1 (Explicitly defined concept). Let C be a concept name, and T
a TBox, where C ∈ Sig(T ). C is explicitly defined under T , if and only if there
is an axiom α : C ≡ D, such that α ∈ T , where D is either a concept name in
T , or a complex concept such that Sig(D) ⊆ Sig(T ) \ {C}.
For example, let us consider T Family, a small ALC-TBox describing the family
domain, shown in Fig. 1 (upper). The concept Parent, defined by the axioms α1

and α2, is the only explicitly defined concept in the ontology. Similarly, we can
define implicitly definable concepts:

Definition 2 (Implicitly definable concept). Let C be a concept name, T
a TBox, and Σ a signature, where C ∈ Sig(T ), and Σ ⊆ Sig(T ) \ {C}. C is
implicitly definable from Σ under T , if and only if for any two models I and K
of T , ∆I = ∆K, and for all entity P ∈ Σ, P I = PK, then it holds that CI = CK.

Given the example, it can be seen that both Mother and Father are implicitly
defined concepts in T Family, and each has six syntactically different, but seman-
tically equivalent definitions (Fig. 1, lower).

The number of possible rewritings of a defined concept, regardless of whether
it is explicitly or implicitly defined, is potentially exponential in the size of the
ontology. Descriptions of defined concepts (i.e. the right-hand side of a non-
primitive concept definition axiom) are built inductively using other, potentially
defined concepts. Thus, the number of possible concept rewritings is dependent
on the definability of its constituent concepts. As the definability of any de-
fined description member concept is dependent on the definability of its own
description, definability is therefore a recursive notion [8].

Deciding Definability. A particular concept name C can either be defined
explicitly or implicitly under an ontology, or be undefined. Explicit definability



FatherMother 9hasChild.> u ¬Father

9hasChild.> u ¬Man

9hasChild.> u Woman

Parent u Woman
Parent u ¬Man
Parent u ¬Father

9hasChild.> u Man
9hasChild.> u ¬Woman

9hasChild.> u ¬Mother

Parent u Man
Parent u ¬Woman

Parent u ¬Mother

⌘⌘

↵3 : Father v Man

↵4 : Mother v Woman

↵5 : Man v ¬Woman

↵1 : Parent ⌘ 9hasChild.>
↵2 : Parent ⌘ Father t Mother

T Family {

}

=

J1 = {↵1, . . . ,↵5}

J2 = {↵2, . . . ,↵5}

Fig. 1. This small ontology describes a family domain. Concepts Mother and Father
are implicitly defined in T Family, hence these are also explicitly definable, as shown
by their definition axioms. Each axiom is explained by a justification (J1,J2), denoted
with dashed line.

is a syntactic notion; deciding whether C is explicitly defined under an ontology
is the trivial process of searching the TBox for a concept equivalence axiom
whose left-hand side is C, and the potentially complex concept on the right-
hand side does not include C (e.g. C ≡ D where C 6∈ Sig(D)). In contrast, implicit
definability is a semantic notion whose detection requires reasoning. Ten Cate
et.al. have shown that in DLs, testing implicit definability can be reduced to
entailment checking [21]; in this article, ImpDef(C, Σ, T ) denotes the function
that determines whether a concept C is implicitly definable under a TBox T
given a signature Σ). The computational complexity of determining whether a
concept is implicitly defined depends on the complexity of the entailment check,
which is predicted on the expressivity of the given DL language. Thus it is
potentially exponential in the size of the ontology, for expressive DL dialects.

Justifying Definability. It is often difficult for humans to identify the
axiom set in a TBox that implies definability. Justifications [12] can be used to
validate definability and to provide a set of axioms supporting an entailment. A
justification J for an entailment η in an ontology is the ontological fragment in
which η holds (i.e. a set of TBox axioms such that J ⊆ O). A justification is
minimal, if the entailment in question does not follow from any proper subset
of the justification. For example, if we assume O = {A v B,B v C,D v ∃r.C}
and the axiom α : A v C, then O |= α holds as {A v B,B v C} ⊆ O; i.e. the
entailment is justified2. The algorithm checking for implicit definability can be
modified to compute not only whether a concept is definable with respect to a
given signature, but to also provide its justifications.

Definability of Roles. Determining role definability3 can also be achieved
by using the same method outlined for determining concept definability. How-
ever, whilst concepts are defined using other concept and role names, roles are
defined only in terms of other role names; therefore the entailment check is re-

2 Horridge et. al. [12] introduced an efficient approach that computes either a single,
or all justifications of an entailment.

3 In this paper, we only focus on concept definability, and omit the description of
the approach for determining role definability. However, a full description of the
algorithm for deciding role definability is available in [8].



stricted to the RBox (role axioms), where the definition signature contains role
names only.

3 Minimal Definition Signatures (MDSs)

This section describes the approach for finding the complete set of definition
signatures of a particular defined concept, in any DL language where the Beth
definability property holds. A definition signature can be defined as:

Definition 3 (Definition Signature (DS)). A set of entity names Σ is a
definition signature of the concept C under a TBox T , if and only if there is
a complex concept D, such that Sig(D) ⊆ Σ, and T |= C ≡ D, where Σ ⊆
Sig(T ) \ {C}.

If a concept C is defined in an ontology, then we can entail that there exists
some subset Σ of the ontology signature that implicitly defines C, i.e. members
of Σ can be used to construct the right-hand side of a definition axiom for C.
We only focus on acyclic definitions, as definitions with direct cycles (where
the defined concept appears in its corresponding description) have no use in
rewriting (as such signatures do not permit the substitution of defined entities),
thus are excluded by this definition. As definition signatures may contain redun-
dant members, their size could be very large, hence we introduced the notion of
signature minimality :

Definition 4 (Minimal Definition Signature (MDS)). A signature Σ is a
minimal definition signature of a defined concept C under a TBox T , if there
exists no other definition signature Σ′ such that Σ′ ⊂ Σ.

The minimality property of an MDS refers to minimising the size of the signa-
tures, by eliminating superfluous entities. However, a defined concept may have
multiple unique MDSs (where the difference of any two MDSs is not an empty
set) under an ontology, with the same cardinality. From the definition, it follows
that every MDS is also a DS, and any DS may contain at least one, but poten-
tially many MDSs. For example, in the T Family example (Fig. 1), the signature
Σ = {hasChild, Man,Woman} is a DS of all three defined concepts in the TBox.
However, this signature is not a minimal DS of Parent, because it can be defined
by the following two MDSs: {hasChild}, {Mother,Father}; as formalised by axiom
α1 and α2, respectively.

Finding MDSs can be computationally expensive, as the number of defini-
tions themselves can be exponential in the size of the ontology. Furthermore, the
set of candidate signatures is equivalent to the power set of the TBox signature
(excluding the defined concept itself, i.e. 2Sig(T )\{C}). In order to reduce this
complexity, modularisation [16] is used as space reduction mechanism. As mod-
ules preserve all entailments with respect to a signature consisting of a concept
name, any MDS of a defined concept is contained in the module signature [8].
Syntactic locality based modules (LBM) have been shown to be sound approx-
imations of semantic locality based modules (that preserve entailments over all



Algorithm 6: GetAllMDSs(C, T )

Input : C: defined concept;
T : TBox

Output: M: the complete set of
minimal definition signatures
of concept C

1 S  Sig(T ) \ {C}
2 M GetDisjointMDSs(C, T , S)
3 while True do
4 M0  ExpandMDSs(C, T , M)
5 if M0 = M then
6 return M
7 end
8 else
9 M M0

10 end

11 end

Algorithm 1: GetSingleMDS(C, T , S)

Input : C: defined concept;
T : TBox;
S: definition signature (DS)

Output: ⌃: one minimal definition
signature (MDS) of C

1 ⌃ S
2 for e 2 ⌃ do
3 ⌃ ⌃ \ {e}
4 if not ImpDef(C, T ,⌃) then
5 ⌃ ⌃ [ {e}
6 end

7 end
8 return ⌃

Algorithm 2: GetSingleMDS-D&C(C, T , S)

Input : C: defined concept; T : TBox; S: DS
Output: ⌃: one MDS of C

1 S 0  S
2 R ;
3 R SplitAndPrune(C, T , S 0, S, R)
4 ⌃ S \ R
5 return ⌃

Algorithm 3: SplitAndPrune(C, T , S 0, S, R)

Input : C: concept; T : TBox; S 0: examined
part of S; S: original signature;
R: redundant entities of S

Output: R and the redundant entities of S 0

1 if |S 0| > 1 then
2 SL, SR  Split(S 0)
3 Scheck  S \ (R [ SL)
4 if ImpDef(C, T , Scheck) then
5 R R [ SL

6 end
7 else
8 R SplitAndPrune(C, T , SL, S, R)
9 end

10 Scheck  S \ (R [ SR)
11 if ImpDef(C, T , Scheck) then
12 R R [ SR

13 end
14 else
15 R SplitAndPrune(C, T , SR, S, R)
16 end

17 end
18 return R

Algorithm 4: GetDisj.MDSs(C, T , S)

Input : C: defined concept;
T : TBox; S: DS

Output: M: pairwise disjoint
MDSs of C in S

1 ⌃ ;
2 while ImpDef(C, T , S) do
3 ⌃ GetS.MDS-D&C(C, T , S)
4 S  S \ ⌃
5 M M [ {⌃}
6 end
7 return M
Algorithm 5: ExpandMDSs(C, T , M)

Input : C: defined concept; T : TBox;
M = {⌃1, . . . ,⌃n}: the set of
already identified MDS-s of C

Output: a potentially updated M is
returned that may contain new
MDSs, if M was incomplete

1 S  
|M|S
i=1

⌃i

2 K Sig(T ) \ (S [ {C})
3 S 0  P(S) \ M
4 for s 2 S 0 do
5 W  K [ s
6 if ImpDef(C, T , W) then
7 ⌃ GetS.MDS-D&C(C, T , W)
8 M ⌃ [ {⌃}
9 end

10 end
11 return M

Fig. 2. The algorithms computing Minimal Definition Signatures.

the terms that occur in the module) [5], and there are efficient and widely used
polynomial time algorithms for extracting syntactic LBMs4. As modules can
be considerably smaller compared to the original ontology, modularisation is an
effective mechanism for reducing the complexity of computing MDSs.

The basic idea behind computing a single MDS (Alg. 1, Fig. 2) is that the in-
put DS (i.e. the signature of the module which describes a given defined concept)
is iteratively pruned until it is reduced to a subset that is an MDS. Pruning is
achieved by removing a member of the DS and testing the remaining signature
to check if it still implicitly defines the given concept. If so, then the entity is
redundant as opposed to being required. Algorithm 1 has linear time complex-
ity, as each member of the input is examined exactly once. However, it is worth
noting that this excludes the complexity of the implicit definability check, which
is delegated to an external oracle i.e. a reasoner; thus it always depends on the
DL expressivity of the ontology, and that can be exponential in the size of the
ontology. Therefore, in order to reduce the overall complexity, we decrease the
number of implicit definability checks. By applying a divide and conquer strategy
(Alg. 2&3) pruning is carried by testing (and removing) entity groups, instead of
individual entities. Algorithm 2&3 has logarithmic time complexity w.r.t the size
of the module signature in the best case scenario, polynomial in the worst case5.
Algorithms 1 and 2&3 are complete and correct, as if the input is a valid DS, by

4 The OWL API provides methods for extracting several types of LBMs.
5 Both Algorithm 1, and 2&3 are used in practice, where the former is better suited for

computing an MDS from a DS that is the RHS signatures of an explicit definition,
as such signature typically contain either none, or only a few redundant members
(i.e. reaching the worst-case scenario of Alg. 2&3)



only removing redundant entities, they reduce it to a minimal DS. Algorithm 4
computes a set of pairwise disjoint MDSs, in polynomial time. The input DS is
iteratively reduced to an MDS, and the resulting MDS is subtracted from the
input signature. This is repeated until the input signature is no longer a DS of
the defined concept, thus the algorithm is complete and correct.

In order to find the complete set of MDSs (Alg. 6), the first step requires com-
puting of a set of pairwise disjoint MDSs. After this initial step, any unidentified
MDS must overlap with an identified MDS. The rest of the process is delegated
to Algorithm 5, which either expands on an existing but incomplete set of MDSs,
or confirms its completeness. The expansion process involves iterating through
the power set of the union of disjoint MDSs (S, the smallest known set of related
signature members of the defined entity), where each subset is combined (into
W) with the set of non-MDS entities (K) in the ontology (or module) signature,
and tested for validity. Despite its exponential computational complexity, the
approach is feasible to use for most real-world ontologies (because S is typically
small), as we show with the empirical evaluation presented in Section 5. A more
exhaustive description of the algorithms presented above can be found in [8].

4 Definition Patterns

As part of our empirical investigation, we have computed the DSs for numer-
ous ontologies (Sec. 5), and validated them by obtain the corresponding justi-
fications. An explicit concept definition is always formalised as a single axiom,
whereas the definition of an implicitly defined concept is derived from an axiom
set (i.e. a justification); thus, implicit definitions are often not straightforward to
recognise and interpret. By studying the composition of DSs (their cardinality,
and the type and number of their member entities) together with their justifica-
tions (their size, and the type of their constituent axioms) we have identified a
number of definition patterns. The patterns aim to generalise the frequent forms
of creating definitions; these were inspired by ontology alignment design patterns
[17], and by the predefined axiom types in OWL (where the atomic axioms form
complex constructs). In addition to the validation and the interpretation of de-
finability, the identifiable definition patterns permit rule-based definition axiom
generation, i.e. the generation of an explicit definition of a defined entity, accord-
ing to an inference rule, by processing a given DS and a justification. In contrast
to general rewriting methods, this approach is language independent and does
not require ontological reasoning (apart from obtaining a single justification,
which is achievable in polynomial time [12]). Furthermore, the computational
complexity is polynomial in the size of the input. The set of patterns is not ex-
haustive, i.e. it is not guaranteed to represent all definitions, however as shown
by the empirical analysis, it covers a significant portion of cases6.

Table 1 presents the list of patterns, showing the composition of the minimal
definition signature (Σ), the corresponding justification in terms of its size (|J |)
6 Further details on patterns, and the axiom generation algorithm are presented in [8].



Table 1. Basic definition patterns

Entity ID Pattern Σ (MDS)
Justification Defined

|J | J Expl. Impl.

Concept

1 Explicit definition |Σ| > 1 = 1 {C ≡ ∃r.> u D} C
2 Explicit synonym Σ: 1 concept = 1 {C ≡ D} C,D
3 Implicit synonym Σ: 1 concept > 1 {C v D,D v C} C,D
4 Disjoint union |Σ| > 1 > 1 {C ≡ D1 t D2,D1 v ¬D2} C D1,D2

5 Role domain concept Σ: 1 role > 1 {C v ∃r.>, ∃r.> v C} C
6 Role range concept Σ: 1 role > 1 {> v ∀r.C,C v ∃r−.>} C
7 Synonym role (domain or range) Σ: 1 role > 1 {C ≡ ∃r.>, r ≡ s} C
8 Inverse role (domain or range) Σ: 1 role > 1 {C ≡ ∃r.>, r ≡ s−} C

Role

9 Explicit definition |Σ| > 1 = 1 {r ≡ s ◦ q} r
11 Explicit synonym Σ: 1 role = 1 {r ≡ s} r, s
12 Explicit inverse Σ: 1 role = 1 {r ≡ s−} r s
13 Implicit synonym Σ: 1 role > 1 {r v s, s v r} r, s
14 Implicit inverse Σ: 1 role > 1 {r v s−, s v r−} r, s

and the set of axioms forming the justification. The right column presents the
concepts or roles that are explicitly or implicitly defined in a pattern. In some
patterns, more than one entity can be defined, for example, in an explicit, or an
implicit synonym concept pattern, both concepts C and D are defined, however
the actual members of the particular MDS depend on which defined entity the
patterns refers to (ΣC = {D}, ΣD = {C}). For example, in T Family (Fig. 1) the
set of axioms {α2, . . . , α5} form the justification in a disjoint union pattern ,
where the concept Parent is defined explicitly, and the concepts Mother,Father
are both defined implicitly by the same MDS Σ = {Parent,Mother,Father}. The
definability cases that do not fall into these basic patterns, are arbitrary com-
binations of the basic ones, meaning that the justification of such combination
has one or more subset that is the justification (i.e. a minimal set) of some other
defined entity which contribute to the definition. Fig. 3 presents an example of
a pattern combination, where the justification entails the definition of concept
Invited speaker; furthermore, it contains two explicit definitions of the concept
Conference contribution, one explicit definition of Regular contribution, and a dis-
joint union pattern of Invited talk. Although our rule-based approach does not
produce a definition axiom for Invited speaker, it generates an axiom for all the
other defined entities, that are characterised by processable patterns.

5 Empirical Analysis

In this section we empirically investigate the occurrence of definability in ex-
isting ontologies and the impact it has in supporting semantic interoperability.

↵1 : Conference contribution ⌘ Presentation t Written contribution

↵2 : Conference contribution ⌘ Invited talk t Poster t Regular contribution

↵3 : Invited talk v ¬Regular contribution

↵4 : Invited talk v ¬Poster

↵5 : Invited talk v Presentation

↵7 : Invited speaker ⌘ 9contributes.Invited talk

↵6 : Regular contribution ⌘ Extended abstract t Paper

J = {

}

⌘ 9contributes.(Presentation u ¬(Extended abstract t Paper t Poster))

¬(Regular contribution t Poster)

Conference contribution

Regular contribution

Invited speaker

Invited talk ⌘ Conference contribution u

Fig. 3. Example combinations of basic patterns in Conference.owl, where respectively,
explicit, or implicit definability is denoted with a normal, or a dashed line.



Table 2. Comparing defined and undefined ontology properties

(a) OWL Profiles
EL only EL QL only QL RL only RL DL only DL Full

Defined 1.99% 5.89% 0.81% 3.97% 7.69% 11.60% 48.76% 58.62% 36.17%
Undefined 1.76% 9.36% 1.32% 7.29% 7.22% 15.26% 38.88% 56.60% 42.34%

(b) OWL Constructors (c) Logical Axioms
AL C D E F H I Defined Undefined

Defined 82% 28.72% 51.36% 12.33% 15.29% 37.58% 45.40% <10 8.94% 25.42%
Undefined 84% 26.07% 45.02% 9.85% 14.08% 30.13% 37.83% 10- 33.33% 40.74%

N O Q R S TRAN U 101- 50.21% 26.42%
Defined 31.04% 29.24% 5.44% 2.84% 18.01% 7.70% 10.83% 1001- 6.76% 6.14%
Undefined 24.68% 32.62% 4.92% 3.71% 14.02% 6.37% 8.63% 10001- 0.76% 1.29%

(d) Ratio of defined entities in ontologies in the corpus

Defined Ratio 0% <0-10% 11-20% 21-30% 31-40% 41-50% 51-60% 61-70% 71-80% 81-90% 91-100%
Nb of Ont 50.10% 9.01% 7.87% 7.46% 6.37% 6.63% 3.14% 2.88% 1.41% 1.20% 3.93%

We also analyse the behaviour of the proposed algorithms to compute the de-
finability of ontological terms. The underlying assumption we make is that the
definability status (undefined, or defined: explicitly and/or implicitly) of ontol-
ogy signature entities, and the number of MDSs of defined entities provide a
measure of the usability of an ontology in semantic interoperability7. Thus, in
order to gain insight on whether, in practice, the use of definability signatures
would contribute to ontology alignment in particular, and ontology engineering
in general, we have analyzed the prevalence and the extent of definability over a
wide range of OWL ontologies. Furthermore, we also study the behaviour of the
proposed approximations to compute MDSs in terms of run time taken for each
of the stages necessary to compute the MDSs. In the first experiment we dis-
tinguish between defined and undefined ontologies (depending on whether they
contain at least one defined concept, or no defined entities), and we examine
the definability status and type for each entity in all the ontologies of a large
and diverse corpus, and considered several characteristics of the defined and the
undefined ontologies. A second aim of this empirical analysis is to characterise
the behaviour and assess the practical applicability of the proposed definability
computation algorithms. This is achieved by measuring the processing time of
computing MDSs in a corpus of made of ‘semantically rich’ ontologies, i.e. that
contains a large portion of defined entities and MDSs. We remind the reader
(Section 3), that definability computation is a three step process: first the defin-
ability status of each entity is established, next the disjoint MDSs are obtained,
finally any potentially unidentified MDS is computed (i.e. the complete set of
MDSs). While the first two steps are polynomial (excluding the complexity of
the implicit definability check, i.e. an entailment check which depends on the
ontology language expressivity), the third step has exponential time complexity.

The experimental framework used to run this analysis is implemented in Java;
the OWL API is used for ontology manipulation and for interacting with the
reasoners [13], whilst the OWL Explanation API [12] is used to compute justifi-
cations. The framework utilizes both the HermiT [9] and Pellet [19] reasoners8.

7 For example, given two versions of an ontology, the one with more defined entities
or higher MDS to entity ratio is more valuable, as it may permit the expression of
more entities with alignments, that are typically incomplete [7].

8 HermiT performs faster with most datasets, however Pellet was able to load and
process some ontologies that HermiT could not (due to ontologies using datatypes



Table 3. Cost measured in terms of different characteristics (time, and number of
definability checks #Imp), and results (Def%: definable entities in an ontology, M:
number of MDSs per defined entity) of the three stages of definability computation.

Ontology DL
Expressivity

Logical
Axioms

(C ∪ R)
(1) Definability Status (2) Disjoint MDSs (3) All MDSs

ID Name Time #Imp Def% Time #Imp M Time #Imp M
Conference corpus

1 cmt ALCIN (D) 226 86 2.88s 86 51.16% 1.85s 99 1.09 0.54s 36 1.09
2 conference ALCHIF(D) 285 109 3.35s 109 65.14% 6.63s 352 1.13 307.54s 19833 1.54
3 confOf SIN (D) 196 57 2.92s 57 15.79% 2.67s 195 2.33 8.03s 573 3.33
4 edas ALCOIN (D) 739 138 20.84s 175 28.99% 28.63s 397 1.18 23.22h 1509274 2.80
5 iasted ALCIN (D) 358 182 16.14s 182 17.58% 150.89s 212 1.25 1058.74s 1756 1.75
6 sigkdd ALEI(D) 116 77 3.22s 77 28.57% 2.55s 122 1.50 0.62s 61 1.55

384.00 129.80 9.87s 137.20 41.45% 38.64s 275.40 1.70 4.72h 306306.60 2.41

LargeBio corpus

7 NCI fma ALC 9083 6552 5.97h 6552 29.99% 222.38h 229206 1.31 115.76h 118456 1.31
8 SNOMED fma ALER 20243 13431 21.49h 13431 21.47% 234.75h 109980 1.09 756.53h 384930 1.36
9 SNOMED nci ALER 71042 51180 392.95h 51180 57.87% 1885.39h 1145057 1.07 3991.85h 2619125 1.08

33456.00 23721.00 140.14h 23721.00 36.44% 780.84h 494747.53 1.16 1621.38h 1040837.00 1.25

All of the data and software, including computed DSs, definition patterns, and
other results are available online9. The evaluation corpus has been assembled
from a variety of OWL ontology datasets, including ontologies in the Manch-
ester Ontology Repository 10, datasets used in the OAEI evaluation challenge11,
and a sizable set of ontologies obtained by crawling the Web [14]. In particular,
this evaluation corpus consists of 3576 ontologies of different size, DL expres-
sivity, conceptualized domain, and source of origin (professional, academic etc.).
The second experiment uses a sample of 9 ontologies, and is carried out on a
16GB RAM, 10 core processor machine (with 8GB memory used by the JVM).

In order to determine which ontology characteristics (if any) are affected by
definability, the first experiment examines each concept in all 3576 ontologies
with the aim to determine whether they are undefined, or defined either ex-
plicitly or implicitly. Therefore, we aim to assess the prevalence of (implicitly)
definable concepts in state of the art ontologies. The hypothesis tested in this
experiment is that definability occurs in ontology irrespective on the ontology
characteristics e.g. size, expressivity etc. The analysis of the entire corpus clas-
sifies 1703 ontologies (49.89%) as defined, i.e. that contain at least one defined
concept. Out of all concepts, 75.82% are undefined, 20.74% are explicitly and
3.44% are implicitly (only) defined. Table (2.d) shows the proportion of ontolo-
gies in the corpus, binned by the ratio of defined to undefined concepts within an
ontology. Table (2.c) presents the relative distribution of defined and undefined
ontologies, binned by the number of logical axioms; Table (2.a) shows the dis-
tribution of OWL profiles in defined and undefined ontologies; and Table (2.b)
shows the OWL constructor usage in defined and undefined ontologies. Apart
from some outliers, the results show an even distribution of defined and unde-
fined ontologies, w.r.t. size, and OWL profiles and constructors, thus definability
may occur in any type of ontology, regardless of the employed DL language, the
size of an ontology, the conceptualised domain of interest, or its origin (source of

that are not part of the OWL 2 datatype map and no custom datatype definition
was given).

9 http://www.csc.liv.ac.uk/~dgeleta/ontodef.html
10 http://owl.cs.manchester.ac.uk/tools/repositories/
11 http://oaei.ontologymatching.org



Table 4. Minimal Definition Signatures and their corresponding Definition Patterns

O
Minimal Definition Signatures (MDSs) Definition Patterns

|MDS| per Def. Entity Cardinality Concept Role
min avg med max min avg med max 1 2 3 4 5 6 7 8 Cmb. 11

Conference corpus

1 48 1 1.09 1 3 1 1.06 1 3 9.68% 0.00% 0.00% 0.00% 29.03% 19.35% 3.23% 0.00% 0.00% 38.71%
2 109 1 1.54 1 14 1 2.07 2 5 2.08% 0.00% 0.00% 0.00% 8.33% 4.17% 0.00% 0.00% 2.08% 83.33%
3 30 1 3.33 2 8 1 1.43 1 2 0.00% 0.00% 0.00% 0.00% 46.67% 3.33% 0.00% 0.00% 43.33% 6.67%
4 112 1 2.80 1 34 1 3.05 3 6 7.34% 0.00% 0.00% 21.10% 5.50% 5.50% 0.92% 0.00% 21.10% 38.53%
5 56 1 1.75 1 5 1 1.68 2 5 26.79% 1.79% 7.14% 0.00% 0.00% 0.00% 21.43% 0.00% 14.29% 28.57%
6 31 1 1.55 1 6 1 1.13 1 2 2.68% 0.00% 0.00% 3.57% 3.57% 0.89% 0.89% 0.89% 62.50% 25.00%

64.33 1.00 2.01 1.17 11.67 1.00 1.74 1.67 3.83 8.09% 0.30% 1.19% 4.11% 15.52% 5.54% 4.41% 0.15% 23.88% 36.80%

LargeBio corpus

7 2583 1 1.32 1 5 2 5.07 4 33 67.52% 0.00% 0.00% 22.45% 0.00% 0.00% 0.00% 0.00% 10.03% 0.00%
8 3929 1 1.36 1 30 1 4.80 4 720 16.03% 0.00% 0.00% 17.54% 0.00% 0.00% 0.00% 0.00% 66.43% 0.00%
9 31831 1 1.08 1 5 1 5.59 6 15 16.90% 0.00% 0.00% 15.53% 0.00% 0.00% 0.00% 0.00% 67.55% 0.00%

12781.00 1.00 1.25 1.00 13.33 1.33 5.15 4.67 256.00 33.48% 0.00% 0.00% 18.51% 0.00% 0.00% 0.00% 0.00% 48.00% 0.00%

creation). The only property, which affects the level of definability in an ontology,
is, unsurprisingly, the granularity of conceptualisation.

The second experiment investigates the feasibility of the algorithms for com-
puting definability by analysing their behaviour and performance. The corpus
used in this experiment is made of small ontologies that conceptualise the confer-
ence domain (Conference track, OAEI corpus), and 3 vast biomedical ontologies
(LargeBio track, OAEI corpus). The aim of this experiment is to assess the time
taken by the proposed approximation when computing MDS over a variety of
ontologies. Table 3 presents the characteristics of the sample corpus (DL expres-
sivity, number of logical axioms, and the number of concepts and role names,
(C ∪ R)), and the experiment results. The three numbered partitions show the
results of the definability computation steps, where each step is measured in
terms of the computation time (this is given either in seconds, or in hours in
some cases), and the number of implicit definability checks (#Imp). The first
stage establishes the definability status of each concept and role, hence Def%
denotes the ratio of defined entities in the ontology signature. In the other two
stages, where first the disjoint MDSs, then all MDSs are computed, M denotes
the MDS to defined entity ratio. In general, as it can be anticipated, the larger,
more expressive ontologies take much longer to compute than the smaller, less
expressive ones. The definability status and the disjoint MDS computation stages
are feasible for both small and large ontologies; whereas obtaining the complete
set of MDSs (stage 3) is a considerably more costly operation, in most of the
cases12. However, despite the cost of the last stage, the difference between the
number of MDSs found during stage 2 (on average 1.70 MDSs per defined entity
in the small, and 1.16 in the large ontologies) and 3 (2.41, and 1.25 MDSs), in
many cases is negligible (0.71, and 0.09 MDSs more per entity). A notable case
is the small edas ontology, where the first two stages take only 49.47 seconds
to complete, however, the last stage takes 23.22 hours, although the MDSs to
defined entities ratio has more than doubled (from 1.18 to 2.80). In the con-
fOf ontology, the last stage also shows a significant increase, from 2.33 MDSs
per entity to 3.33, but in this case the computation time is close (8.03 sec) to
the sum of the two prior steps (5.59 sec). Table 4 provides further information

12 The MDS expansion (Alg. 5) is restricted to computing an MDS union size S ≤ 20.
This excluded no entities in the Conference, and 441 in the LargeBio corpus.



about the computed MDSs (for each ontology in the sample corpus), where the
left partition shows the total number of different MDSs in the ontology (|MDS|),
the number of MDSs per defined entity, and the cardinality of MDSs; the right
partition presents the distribution of MDSs w.r.t. to the corresponding definition
patterns13. MDS per entity scores show that in most ontologies, about half of
the defined entities have only one definition, and there are only a few entities in
each ontologies with large number of MDSs. The average cardinality of an MDS
is considerably low, with 1.74 entities per MDS in the small, and 5.15 in the large
ontologies; however, there are some extreme cases, such as the SNO nci ontol-
ogy, where one MDS contains 720 entities. In the Conference corpus, 52.51% of
all MDSs correspond to a single entity (i.e. |MDS| = 1) definition pattern. Out
of all MDSs in the Conference corpus only 23.88% of all cases in this corpus are
combined, thus for the majority of cases, our rule-based rewriting approach is
sufficient; however, in the LargeBio corpus it only covers 52.00% of all MDSs.

6 Definability and Ontology Alignment

Definability can be exploited in a number of novel contexts; in particular in this
paper we argue that MDSs coupled with justification-based explanations [12] can
support ontology alignment by identifying seemingly unrelated entities that are
used to describe defined entities, and can thus be used to produce (in the case
of identifiable patterns) new definition axioms (Section 4). Ontology alignment
addresses the problem of mapping terms in heterogeneous ontologies and aims to
create alignments, i.e. sets of correspondences between semantically related enti-
ties in different ontologies [7]. Over the past decade more than several alignment
approaches have emerged [7]. However, neither state of the art matching systems,
nor evaluation measures that assess the quality of alignments, have considered
the notion of rewriting. As rewriting permits defined entities to be expressed
in syntactically different but semantically equivalent forms, we argue, that an
entity is rewritable under an alignment if the entities of its MDS are mapped by
the alignment, thus rewriting entails a new type of correspondence, based on the
definitions of entities. For instance, given an ontology O = {C ≡ A t B,B v ¬A},
and alignment A = {〈C,C′,≡〉 , 〈B,B′,≡〉}, which maps O to O′, the implicitly
defined concept A is rewritable w.r.t. the alignment, yielding 〈A,C′ u ¬B′,≡〉, a
definability-based correspondence. This complex correspondence describes a rela-
tion between a defined entity (or its description) in one ontology, and a complex
concept (or role) in an aligned ontology. We suggest that definability-based map-
pings can potentially 1) increase alignment coverage [4] (the ratio of elements of
the ontology which are mapped14) as they can cover otherwise uncovered entities;
2) increase coverage retention, i.e. removing some mappings from an alignment
does not necessarily effect its expressive capacity (i.e. coverage) as some entities

13 Pattern numbers reference Table 1, Cmb. denotes those MDS cases that do not
correspond to any individual pattern, but to a combination of patterns. Patterns
that have no MDS in the sample corpus are omitted for brevity.

14 An entity e is covered by a mapping c in an alignment A iff {∃c ∈ A|c : 〈e, e′, r〉}.



J1 = {↵1 : Anthropometrics v Anthropometrics BMI u
Anthropometrics Height u Anthropometrics Weight,

↵2 : Anthropometrics Height v Anthropometrics,

↵3 : Anthropometrics Weight v Anthropometrics}

J2 = {↵1 : Anthropometrics v Anthropometrics BMI u
Anthropometrics Height u Anthropometrics Weight,

↵2 : Anthropometrics Height v Anthropometrics}

J3 = {↵1 : Anthropometrics v Anthropometrics BMI u
Anthropometrics Height u Anthropometrics Weight,

↵2 : Anthropometrics Height v Anthropometrics,

↵4 : Anthropometrics BMI v Anthropometrics}

|= Anthropometrics Height ⌘ Anthropometrics Weight

|= Anthropometrics Height ⌘ Anthropometrics BMI

|= Anthropometrics Height ⌘ Anthropometrics

Fig. 4. Modelling error: three concepts that should be different, are semantically equiv-
alent to each other (unwanted synonyms in the Bioportal corpus, bp26.owl).

may be mapped by both an asserted, and a definability-based correspondence;
3) increase compactness, i.e. for a given knowledge-based task signature, only a
subset of an alignment may be necessary to provide coverage.

7 Definability and Ontology Modelling

The empirical analysis presented in previous section has also highlighted how
the computation of MDSs can help in identifying modelling errors in ontologies.

We have formalised three types of errors, each of which can be automati-
cally detected15, but their repairs requires the involvement of an ontology en-
gineer and a domain expert. (1) Implicit definability by an empty signature:
the only concept in any ontology, which requires no signature for its definition
is >. If a named concept is definable by an empty signature, then the ontol-
ogy is most likely to contain an error, or purposely define the concept as the
synonym of >. For example in the cocus.owl ontology of the Conference cor-
pus Person ≡ >. By examining the document, it becomes obvious that this
is unintentional, as the ontology contains many other concepts (such as Con-
ference) that are definitely not semantically related to Person. (2) Unwanted
synonym(s): These occur when two or more concepts, meant to convey different
meaning, are wrongly represented as interchangeable synonyms of one another.
Fig. 4 shows three different ways of defining the concept Anthropometrics Height.
Obviously, A. Height, A. Weight and A. BMI are semantically related, but differ-
ent concepts. However, in TBox T where (J1 ∪ J2 ∪ J3) ⊆ T , these concepts
are defined as equivalent. The correction requires expert knowledge16. (3) Re-
dundant concept(s): this is not necessarily an error, but a discrepancy between

15 Error #1 and #2 can also be detected without MDSs, via classifying the ontology
and inspecting the resulting tree for unsatisfiable or equivalent concepts, respectively.

16 Anthropometrics means measurement of the size and proportions of the human body.
Axioms α2, α3, α4 are correct, as height, weight and BMI are all type of mea-
surements that make up the general class Anthropometrics, but axiom α1 is in-
correct as height and weight measurements would share nothing in common, i.e.
their intersection would be empty. The correct representation would be to describe
Anthropometrics as a disjoint union of these concepts.



↵2 : Contribution 1th � author v Regular author,

↵3 : Contribution co � author v Regular author}

u (9contributes.Conference contribution| {z }
redundant

)

↵1 |= Regular author v (Contribution 1th � author t Contribution co � author)

{↵2,↵3} |= (Contribution 1th � author t Contribution co � author) v Regular author

J = {↵1 : Regular author ⌘ (Contribution 1th � author t Contribution co � author)

J |= Regular author ⌘ Contribution 1th � author t Contribution co � author

Fig. 5. Redundant concepts in explicit definition (Conference corpus, conference.owl).

the intended meaning (formalised by explicit definition axioms), and the actual
meaning (the alternative explicit definition, which corresponds to an MDS of the
defined concept). Fig. 5 presents an example of this case, here Regular author is
defined by axiom α1, however, its signature is not a minimal, because its subset
{Contribution 1th− author,Contribution co− author} can also be used to define
the concept, as it is implied by the justification. An argument can be made, that
an explicit concept definition ought to be a succinct representation, meaning
that it should only consist of those entities that are necessary to unambiguously
describe the concept. However a knowledge engineer may add semantically re-
dundant entities to certain definitions in order to aid human comprehension. This
occurs frequently, e.g. in SNO nci, 76.28% of all MDSs had redundant concepts
in explicit definitions, and therefore is not considered an error.

8 Conclusions

In this paper we have presented a novel way to compute the complete set of
definition signatures, and introduced a set of new application areas of concept
rewriting that motivated the development of this method. In order to justify the
viability of these new areas, a large and diverse set of ontologies were subjected
to definability computation. This has confirmed the hypothesis that definability
is prevalent in any type of ontology, although it is more likely to occur in more
expressive, and semantically richer ontologies. Hence the exploitation of MDSs
could indeed benefit the previously described application areas. In addition it was
shown, that definability computation is feasible for most real world ontologies,
and in some cases, it can be useful in dynamic environments as well, due to the
fact that a subset of MDSs can be found in polynomial time. However, as the
approach does not scale for larger, very expressive ontologies, a more efficient
approach should be developed.
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