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ABSTRACT5

Complex mechanical (e.g. multi-body) systems with different types of constraints are gener-6

ally performed through analytical dynamics methods. In some cases, however, it is possible that7

the (augmented) mass and/or stiffness matrices may derive to be singular, consequently the modal8

analysis, which is used extensively in the classical dynamics literature, fails. In this paper, if the9

uniqueness condition is satisfied by the constraints, a properly modified modal analysis is eluci-10

dated into analytical dynamics leading to the evaluation of the natural frequencies in a simple and11

straightforward way. Under that framework, advances of both classical and analytical dynamics12

are taken into consideration for evaluating the structural response.13
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Matrices.15

INTRODUCTION16

In analytical dynamics, one of the most fundamental and consequently, well studied problem17

for more than 200 years ago is the determination of equations of motion for constrained mechanical18

systems (Pars 1979; Roberts and Spanos 2003; Ardema 2005). The pioneering works of (Lagrange19

1787) and (Gauss 1829) have inspired and influenced many other researchers. Thus, for the for-20

mulation of the equations of motion, at the beginning of 90’s, an alternative and very interesting21
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approach has been proposed (Udwadia and Kalaba 1992). With their seminal work, additional22

constraint forces have been introduced and eventually, the equations of constrained mechanical23

system have been augmented. Under this new framework, it derives that the explicit computation24

of constraint forces is not always an easy task to perform, especially in complex cases, such as for25

multi-body systems (Laulusa and Bauchau 2007; De Falco et al. 2009; Schutte and Udwadia 2011;26

Mariti et al. 2011; Garcia de Jalón and Guetiérrez-López 2013; Fragkoulis et al. 2015; Fragkoulis27

et al. 2016).28

In the present paper, our attention focuses on a rather recent approach for the formulation of29

equations of motion of constrained systems, which has been proposed and studied thoughtfully in30

a series of papers (Udwadia and Kalaba 1992; Udwadia et al. 1997; Udwadia and Kalaba 2001;31

Udwadia and Kalaba 2002;Udwadia and Kalaba 2007; Udwadia and Schutte 2010; Udwadia and32

Di Massa 2011; Udwadia and Wanichanon 2012; Udwadia and Wanichanon 2013). Particularly,33

under our framework, by adapting the technique introduced in (Udwadia and Phohomsiri 2006) for34

the formulation of equations of motion in cases where the mass matrix can be singular, an alterna-35

tive approach is proposed for the results presented therein which is related to the modal analysis. In36

more details, given a linear mechanical system subject to a number of linear constraints, unavoid-37

ably additional constraint forces have to be introduced in the system in order to guarantee that the38

imposed constraints are always satisfied. A workaround for this situation is to set up the equations39

of motion neglecting the dependence between generalized coordinates imposed by the constraints40

and then apply a methodology based on the Moore-Penrose (pseudo) inverse matrix theory (Gre-41

ville 1960; Campbell and Meyer 1979; Ben-Israel and Greville 2003) to incorporate the constraints42

in the modified equations of motion. On the formation of the unconstrained equations of motion,43

the mass matrix of the system may be singular. This might be either due to the dependence be-44

tween the generalized coordinates chosen to describe the system or occasions where it is possible45

to assign null mass to a body whose inertia is negligible. Note that some of the structural systems46

considered herein are related to the so-called singular systems described, in general, by a set of47

differential-algebraic equations (Kalogeropoulos and Pantelous 2008; Gashi and Pantelous 2013;48
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Kalogeropoulos et al. 2014; Gashi and Pantelous 2015).49

The main advantage of the approach proposed in (Udwadia and Phohomsiri 2006) is that it50

allows us to model easily complex mechanical (e.g. multi-body) systems by decomposing them51

into a collection of independently modeled subsystems, whose equations of motion can be easily52

formulated. It is only at the second stage of this approach where the constraints are taken into53

account, and lead to modified equations of motion, regardless of whether a singular mass matrix54

has encountered in the original equations or not (Garcia de Jalón and Guetiérrez-López 2013;55

Antoniou et al. 2016). A second important advantage is that it provides an explicit formula for the56

acceleration, without engaging any auxiliary variables such as the Lagrange multipliers (Schiehlen57

1984; Pradhan et al. 1997). It should be noticed that the method is applicable to systems subject58

to holonomic and non-holonomic constraints or their combination, as well as systems where the59

constraint forces may or may not be ideal.60

For engineers, although reaching the solution is an important task (Antoniou et al. 2016), it is61

much more significant to know the natural structural frequencies to predict detrimental dynamic62

effects. Just think of the resonance phenomenon that occurs when the natural structural frequen-63

cies are very close to the excitation frequencies; especially, for design control devices (Di Matteo64

et al. 2014a; Di Matteo et al. 2014b), i.e., useful for mitigation of vibrations like tuned mass65

dampers or tuned liquid column damper that are tuned to the natural frequency of the system to be66

controlled. More generally in engineering applications, it is of fundamental importance to know67

the values of natural frequencies. Actually, this is the reason for the wide use of modal analysis,68

when the original system response is obtained through a superposition of modal responses shaped69

by the mode shapes itself, and they are as many as the frequencies of the system. But, looking70

at the fundamental matrices of the augmented system or whenever a system is characterised by a71

singular mass matrix, then the classical modal analysis may not be applicable in the current form.72

In the present paper, if the uniqueness condition, which is shown in (Udwadia and Phohomsiri73

2006), is satisfied by the constraints, a proper modified modal analysis is elucidated, valid for74

these augmented systems or singular mass matrix systems instead, leading to the evaluation of the75
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natural frequencies as first step in a simple and straightforward way as is derived clearly in the76

following sections. Indeed, the proposed formulation fits ideally to the case of linear time invariant77

(LTI) underdamped mechanical systems subject to linear constraints.78

STATE-VARIABLE FORMULATION BASED ON THE MOORE-PENROSE THEORY79

Considering a structural system for evaluating the dynamic response, dynamics equilibrium80

equations may be referred to the minimum set of coordinates, however, for complex systems as81

the multi-body ones, writing the equation of motion using the minimum set of coordinates is a82

hard task (Bae and Haug 1987; Featherstone 1987; Critchley and Anderson 2003; De Falco et83

al. 2009). As regards, choosing redundant set of coordinates, it makes easier the way of writing84

dynamics equilibrium equations. In this context, the set of equations is in an algebraic-differential85

form and composed of a lot of equations but with a simple algebraic structure. By using analytical86

dynamics tool, the solution provides not only information about the motion, but also on the forces87

of constraint. What makes the difference is the possibility to have singular mass matrices so that88

the classical modal analysis is not more applicable. Hereafter a section dedicated to the solution89

procedure for such a system used in the literature (Udwadia and Phohomsiri 2006). In this regard,90

consider an l-DOF system of the form91

Muü (t) +Cuu̇ (t) +Kuu (t) =fu (t) ,

u (0) = u0, u̇ (0) = u̇0,
(1)92

being u the l-vector of the coordinates, and fu (t) the l-vector of external forces. Mu, Cu, Ku are93

the mass, damping and stiffness (l× l) matrices, respectively, corresponding to the system Eq. (1).94

Further, consider that the above system is subjected to m-constraints as95

A (u, u̇, t) ü = b (u, u̇, t) , (2)96

being A an (m× l) matrix and b an m-vector. To simplify the procedure, assuming, b (u, u̇, t) =97

4



−Eu̇− Lu + F, Eq. (2) may be rewritten as98

A (u, u̇, t) ü =− Eu̇− Lu + F. (3)99

Next, combining Eq. (1) with Eq. (3), the system is written in the form100

M̄uü (t) +C̄uu̇ (t) +K̄uu (t) =f̄u (t) ,

u (0) = u0, u̇ (0) = u̇0,
(4)101

with102

M̄u =

 (I−A+A) Mu

A

 , (5)103

104

C̄u =

 (I−A+A) Cu

E

 , (6)105

106

K̄u =

 (I−A+A) Ku

L

 , (7)107

108

f̄u =

 (I−A+A) fu

F

 , (8)109

and A+ (l ×m) is the so called Moore-Penrose inverse of A.110

For such a system using the analytical dynamics approach, the acceleration response is evalu-111

ated by112

ü (t) = M̄+
u

[
−C̄uu̇ (t)− K̄uu (t) + f̄u (t)

]
+
[
I− M̄+

u M̄u

]
q (t) , (9)113

where M̄+
u (l × (l + m)) is the Moore-Penrose inverse of M̄u, and q (t) is an arbitrary vector114

involved in the definition of the Moore-Penrose inverse matrix, that does not contribute when the115

((l+m)×l) matrix M̄u has full rank l, returning, in this case, a unique response solution (Udwadia116

and Phohomsiri 2006). It should be mentioned here that a simple, general, and explicit form of117
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equations of motion for general constrained mechanical systems by fully preserving the physical118

meaning of the systems without using the generalized Moore-Penrose (MP) inverse of the matrixA119

for the determination of the unconstrained auxiliary system appears in (Udwadia and Wanichanon120

2012; Udwadia and Wanichanon 2013). Instead, the transpose of A is just used to describe the121

unconstrained auxiliary system; further discussion is omitted as it is out of the scope of the paper.122

Furthermore, it is worth stressing that even when the solution is unique and is carried out123

through the above procedure, all dynamics features remain hidden. To highlight these characteris-124

tics a proper modal analysis has been proposed recovering all physical meaning, as detailed in the125

following section.126

PROPOSED MODAL ANALYSIS FRAMED INTO ANALYTICAL DYNAMICS127

Dealing with systems referred to redundant coordinates or with those having singular mass ma-128

trices, the general approach framed into analytical dynamics furnishes the final solution in efficient129

and elegant way, although the mass matrix is singular. Just due to this singularity effect, modal130

analysis is not applicable, let alone that now the relevant matrices are rectangular. However en-131

gineers cannot overlook an approach rich of physical meanings (Udwadia and Wanichanon 2012;132

Udwadia and Wanichanon 2013).133

To aim at this hereafter a proper modal analysis is proposed that solves out the differential sys-134

tem of equations referred to redundant variables or system with singular mass matrix, decoupling135

the system itself and returning the main dynamics characteristics as frequency and mode shape.136

The main idea is to evaluate the eigenvalues ω̄2
j and eigenvectors φ̄j (j = 1, 2 . . . l) of the following137

matrix138 [
M̄+

u K̄u

]
. (10)139

Then, considering the modal matrix Φ̄ (l × l) containing the eigenvectors φ̄j as columns, the fun-140
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damental following relationships hold true141

I = Φ̄−1M̄+
u M̄uΦ̄ = diag {1} ,

Ω̄ = Φ̄−1M̄+
u K̄uΦ̄ = diag

{
ω̄2
j

}
,

Λ̄ = Φ̄−1M̄+
u C̄uΦ̄ = diag

{
2ζ̄jω̄j

}
,

(11)142

where I (l × l) is the identity matrix while Ω̄ (l × l) and Λ̄ (l × l) are diagonal matrices, and ω̄j143

and ζ̄j are respectively, undamped natural circular frequencies and values of the damping ratio of144

the system. Moreover, introducing the following modal transformation145

u (t) = Φ̄p (t) , (12)146

into the Eq. (4), it leads to147

M̄uΦ̄p̈ (t) +C̄uΦ̄ṗ (t) +K̄uΦ̄p (t) =f̄u (t) . (13)148

Then pre-multiplying by
[
Φ̄−1M̄+

u

]
, the original system (13) is transformed into149

Φ̄−1M̄+
u M̄uΦ̄p̈ (t) +Φ̄−1M̄+

u C̄uΦ̄ṗ (t) +Φ̄−1M̄+
u K̄uΦ̄p (t) =Φ̄−1M̄+

u f̄u (t) . (14)150

Next, by considering the relations Eq. (11), it is decoupled in the form151

p̈ (t) +Λ̄ ṗ (t) +Ω̄ p (t) = f̄ (t) ,

p (0) = Φ̄−1u0, ṗ (0) = Φ̄−1u̇0,
(15)152

being f̄ (t) = Φ̄−1M̄+
u f̄u (t). Then, the system response may be evaluated as a superposition of153

modal responses p (t) as154

ui (t) =
l∑

j=1

φ̄ij pj (t), i = 1, 2 · · · l, (16)155

where pj (t) is the solution response of the following uncoupled jth equation of the system in Eq.156
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(15)157

p̈j (t) +2ζ̄j ω̄j ṗj (t) +ω̄2
j pj (t) =f̄j (t) . (17)158

It is worth underscoring that the main goal of this procedure that is to return the physical meaning159

of frequency and mode shape is achieved. Specifically, for redundant systems, since the package160

of l undamped natural frequencies ω̄j (t) contains the undamped natural frequencies (say n values161

with n < l) of the system referred to n strictly variables together with null frequencies pertaining162

rigid motions, that are expected, since redundant variables are present. As regards mode shapes,163

they are provided by the eigenvectors correspondent to the eigenvalues ω̄2
j

(t). In this direction, let164

us proceed a little further in order to avoid to calculate analytically the M̄+
u , for the evaluation of165

natural frequencies166

det
(
M̄+

u K̄u − ω̄Il
)

= det
((

M̄T
uM̄u

)−1
M̄T

u K̄u − ω̄Il
)

=

det
((

M̄T
uM̄u

)−1
)

det
(
M̄T

u K̄u − ω̄M̄T
uM̄u

)
= 0⇔

167

168

det
(
M̄T

u

(
K̄u − ω̄M̄u

))
= 0. (18)169

Let

 l +m

m

 be the possible l × l- submatrices of M̄T
u and

(
K̄u − ω̄M̄u

)
. Let Il+m,l denote170

the set of l-element subsets of [l +m] = {1, 2, . . . , l +m}. For each subset S ∈ Il+m,l, we can171

uniquely write S = {n1, n2, . . . , nl}, where 1 ≤ n1 < n2 < . . . < nl ≤ l + m. Let M̄T
u,S be the172

l × l matrix formed from M̄T
u by keeping only the rows with row index in S, and removing the173

rest. Thus, the row i of M̄T
u,S is equal to the row ni of M̄T

u .174

Then, by applying the Cauchy-Binet theorem (Gohberg et al. 1986), since M̄T
u is a l× (l +m)175

matrix and
(
K̄u − ω̄M̄u

)
is a (l +m)× l matrix, then we obtain that176

det
(
M̄T

u

(
K̄u − ω̄M̄u

))
=
∑
S

det
(
M̄T

u,S

)
det
((

K̄u − ω̄M̄u

)
S

)
. (19)177
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Additionally, we have that178

K̄u − ω̄M̄u =

 (Il −A+A) (Ku − ω̄Mu)

−ω̄A

 , (20)179

and rank (K) = rank (M) = rank (Ku) = rank (Mu) = r. We are interested in calculating180

det
((

K̄u − ω̄M̄u

)
S

)
= det


 (Il −A+A) (Ku − ω̄Mu)

−ω̄A


S

 = 0, for S ∈

 l +m

l

 .

(21)181

Actually, after some algebraic calculations, it can be seen that the only determinant among a182

choice of

 l +m

l

 candidates which does not contain linear dependent rows is the following183

one184

det


 [(Il −A+A) (Ku − ω̄Mu)]r×l

−ω̄Am×l


 = 0, (22)185

where the matrix186 [(
Il −A+A

)
(Ku − ω̄Mu)

]
r×l

(23)187

contains r independent rows from188

(
Il −A+A

)
(Ku − ω̄Mu) . (24)189

What is more, it can be seen that the following l × l matrix190

 [(Il −A+A) (Ku − ω̄Mu)]r×l

−ω̄Am×l

 (25)191
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is invertible, i.e., full rank192

rank

 [(Il −A+A) (Ku − ω̄Mu)](l−m)×l

−ω̄Am×l

 = l = r +m. (26)193

Thus, we can conclude that ω̄ is eigenvalue of
(
K̄u − ω̄2

jM̄u

)
φ̄j=0, if ω̄ is eigenvalue of194

 [(Il −A+A) (Ku − ω̄Mu)]
(l−m)×l

−ω̄Am×l

 φ̄j=0. (27)195

To better understanding this statement it follows a simple but vivid example which is solved196

through the proposed modal analysis.197

NUMERICAL EXAMPLE198

In this section a numerical example is provided to show how simple it is to perform the pro-199

posed modal analysis for systems with singular matrices (Udwadia and Phohomsiri 2006; Fragk-200

oulis et al. 2016).201

2-DOF Underdamped Linear Structural System202

Considering the system composed of two masses m1 and m2 depicted in Fig. 1, where the first203

mass m1 is connected to the ground and to the second mass m2 through a linear spring in parallel204

with a linear damper of coefficients k1, C1 and k2, C2, respectively.205

Selecting m1 = m2 = 1, C1 = C2 = 0.1 and K1 = K2 = 1, it leads to the following two206

values of undamped natural frequencies: ω1 =
√

0.38 = 0.616 , ω2 =
√

2.62 = 1.618.207

Further, selecting the following general assigned conditions x1 (0) = 1, x2 (0) = −1 , ẋ1 (0) =208

2, ẋ2 (0) = 0, f1 (t) = 1, f2 (t) = 10sin (10t), both time history-displacements x1(t) and x2(t) are209

depicted in Fig. 2.210

Now, consider the same system as above modeled as a multi-body one composed of two sep-211

arate subsystems as shown in Fig. 3. The matrix form equilibrium Eqs. (1) are particularized212

as213
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Mu =


m1 0 0

0 m2 m2

0 m2 m2

 ,Cu =


C1 0 0

0 0 0

0 0 C2

 ,Ku =


K1 0 0

0 0 0

0 0 K2

 , (28)214

215

u =


u1 (t)

u2 (t)

u3 (t)

 , (29)216

while the assigned conditions are related to those of the original system as217

u0 =


x1 (0)

x1 (0)

x2 (0)− x1 (0)

 , u̇0 =


ẋ1 (0)

ẋ1 (0)

ẋ2 (0)− ẋ1 (0)

 , fu =


f1 (t)

f2 (t)

f2 (t)

 . (30)218

It is worth stressing that the relations Eq. (30), between restricted variable system xj (t) and the219

redundant ones ui (t), come out from a clear view of the main system from a physical standpoint.220

The latter statement emerges absolutely necessary to obtain the restricted variable responses de-221

picted in Fig. 2 from analytical dynamics, although generally this step is ignored in the literature!222

Next, consider that the above system is subjected to the following constraints as u2 (t) =223

u1 (t) + l1,0 + d = ū1 (t) + d , where l1,0 the unstretched length of the first spring.224

Differentiating twice the constraint equation, it is possible to particularize Eq. (3) in the form225

[
1 −1 0

]
ü1 (t)

ü2 (t)

ü3 (t)

 =


0

0

0

 . (31)226
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Considering the same numerical values as before it leads to227

M̄u =



0.5 0.5 0.5

0.5 0.5 0.5

0 1 1

1 −1 0


, C̄u =



0.05 0 0

0.05 0 0

0 0 0.1

0 0 0


, K̄u =



0.5 0 0

0.5 0 0

0 0 1

0 0 0


, (32)228

229

f̄u =



0.5 + 5Sin (10t)

0.5 + 5Sin (10t)

10Sin (10t)

0


. (33)230

Based now on Eq. (27), since we have that r = 2, m = 1 and l = 3, we take that231

[(
Il −A+A

)
(Ku − ω̄Mu)

]
2×3

=

 1
2
(k1 − ω̄m1) −

1

2
ω̄m2 −1

2
ω̄m2

0 −1

2
ω̄m2 k2 −

1

2
ω̄m2

 , (34)232

and233

[−ω̄A]
1×3

=

[
−ω̄ ω̄ 0

]
. (35)234

Then,235

det


 [(Il −A+A) (Ku − ω̄Mu)]2×3

−ω̄A1×3


 = det




1
2
(k1 − ω̄m1) −

1

2
ω̄m2 −1

2
ω̄m2

0 −1

2
ω̄m2 k2 −

1

2
ω̄m2

−ω̄ ω̄ 0


 = 0.

(36)236

After some algebraic calculations, the following cubic polynomial is derived, i.e.,237

1

2
ω̄
(
ω̄2 − aω̄ + bω̄

)
= 0, (37)238
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where, again, a = k1m1+k2m2+k2m1

m1m2
and b =

k1k2
m1m2

. It is worth underscoring that using this239

procedure the main frequencies of the original system are recovered, i.e., ω̃ = ω̄, together with the240

null frequency that stresses a rigid motion as expected.241

Finally replacing the numbers, the eigenvalues ω̄2
j = (0, 0.38, 2.62) and eigenvectors φ̄j242

(j = 1, 2, 3) of the Eq. (27) have been evaluated.243

Introducing these matrices into the system Eq. (4), the response u (t) is evaluated and depicted244

in Fig. 4. Notice that the first two components u1 (t) and u2 (t) coincide one another and with245

x1 (t) of the original system as expected by a physical point of view. To recover x2 (t) it needs246

summing the u2 (t) and u3 (t) time histories as shown in Fig. 4.247

In particular, considering the modal matrix Φ̄ (3×3) containing the eigenvectors φ̄j as columns,248

Φ̄ =


0 1.618 −0.618

1 1.618 −0.618

0 1 1

 . (38)249

the fundamental following relationships hold true250

Ω̄ = Φ̄−1M̄+
u K̄uΦ̄ = diag {0, 0.38, 2.62} , (39)251

252

Λ̄ = Φ̄−1M̄+
u C̄uΦ̄ = diag {0, 0.038, 0.262} . (40)253

Further, solving the system in Eq. (15), the modal responses pj (t) (j = 1, 2, 3) (depicted in254

Fig. 5) are obtained useful for applying the modal transformation u (t) = Φ̄p (t) that returns the255

structural response absolutely equal to responses depicted in Fig. 4.256

CONCLUDING REMARKS257

The governing equation of motion of complex underdamped mechanical systems (e.g. multi-258

body systems) are easily formulated decomposing them into a collection of independently modeled259

subsystems. The solution, getting using analytical dynamics tool, provides not only information260
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about the motion, but also on the forces of constraint. However proceeding in this way, it is261

possible to have singular mass matrices so that classical modal analysis is not any more applicable.262

But in structural design, it is of fundamental importance to know the values of natural frequencies263

that is the reason for the wide use of modal analysis performing the system response through a264

superposition of modal responses shaped by the mode shapes itself, as many as the frequencies265

of the system. In the present paper, if the uniqueness condition is satisfied by the constraints, a266

proper modified modal analysis is introduced, valid for these systems having singular matrices,267

leading to the evaluation of the natural frequencies as first step in a simple and straightforward268

way. Indeed, the proposed formulation fits ideally to the case of linear time invariant underdamped269

mechanical systems subject to linear constraints. Finally, it should be emphasised that the validity270

of the resulting methodology we have taken advantage of the fact that the M̄+
u is not needed271

to be calculated analytically. Although the reported example deals with systems with redundant272

coordinates, the authors underscore the validity of the proposed procedure for systems having273

singular mass matrix as well. However, due to space limitations, further discussion is omitted.274
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FIG. 1: A two degree-of-freedom linear structural system
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FIG. 2: Time history-displacement: x1 (t), x2 (t)
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FIG. 3: Modeling of the system shown in Fig. 1 using more than two coordinates
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FIG. 4: Time history response: u1 (t), u2 (t), u3 (t), u2 (t) + u3 (t)
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FIG. 5: Time history modal response: p1 (t), p2 (t), p3 (t)
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