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Highlights

• A novel algorithm for solving large sparse linear systems of equations

is proposed

• It combines an ILU preconditioner based on blended Jacobian and

GCRO-DR solver

• The solver implemented in DLR-TAU is applied to linearised aerody-

namics analysis

• Superior performance regarding memory and runtime is shown on chal-

lenging cases

• Our work enabled rapid aeroelastic analysis using CFD at off-design

conditions
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Enabling off-design linearised aerodynamics analysis

using Krylov subspace recycling technique

Shenren Xu∗, Sebastian Timme, Kenneth J. Badcock

School of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom

Abstract

The major computational challenge, when using frequency domain linearised

computational fluid dynamics in the analysis of aeroelastic problems such

as aircraft flutter, gust response or shock buffet, are the excessive memory

and CPU time requirements to solve the large sparse linear systems of equa-

tions. To address these issues found with the generalised minimal residual

linear equation solver, the generalised conjugate residual solver with deflated

restarting is adopted here in which an invariant Krylov subspace is recycled

both between restarts when solving a single linear frequency domain problem

and for a sequence of equations when varying the system matrix and forcing

terms. The proposed method is implemented in an industrial code and ap-

plied to three test cases including the forced excitation and buffet onset of a

pitch-plunge aerofoil, a realistic passenger aircraft in inviscid transonic flow

and a generic half wing-body model at a pre-buffet condition. The memory

requirements for the problems investigated are reduced by up to an order of

magnitude, while the CPU times are reduced by up to a factor of three.
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1. Introduction

This paper presents the details of an investigation to improve the gen-1

eralised minimal residual (GMRES) linear equation solver both in terms2

of memory requirements and convergence rates when using the generalised3

conjugate residual solver with deflated restarting (GCRO-DR). Linearised4

computational fluid dynamics (CFD) is chosen to model the transonic aero-5

dynamics in the aeroelastic test cases presented. The range of potential ap-6

plications include flutter and gust response analysis as well as the prediction7

of transonic shock buffet onset using eigenvalue calculation methods.8

For modern aircraft design, the accurate and efficient calculation of both9

the flutter onset and gust response at an early design stage is of critical im-10

portance as it, to large extent, determines the flight envelope and structural11

sizing. Despite significant advances in computational algorithms for CFD and12

structural dynamics, using time-domain simulation for such routine analyses13

is still not a viable option. Linear frequency domain solutions can be used to14

efficiently compute the aerodynamic response due to structural excitation [1],15

the information of which is then needed in a flutter analysis [2] similar to16

industrial approaches using the classical doublet lattice method (DLM). In17

addition, linear and nonlinear reduced order models can be constructed for18

gust response analysis when using eigenmodes of the aeroelastic system as a19

projection basis [3, 4].20

More specifically, to predict the flutter onset using CFD aerodynamics21
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in a DLM-like approach, the aerodynamic response due to excitation in the22

structural modes at various frequencies is first pre-computed, and then vari-23

ous interpolation techniques can be used to reconstruct a response surface to24

quickly provide aerodynamic data when solving the small flutter eigenvalue25

problem. Typically, for a complete passenger aircraft, the part of the analy-26

sis, requiring access to the CFD solver functionality with millions of degrees27

of freedom, involves up to 100 structural modes and seven to ten excitation28

frequencies resulting in several hundred solves per configuration.29

An even more computationally challenging situation arises when the fluid30

part exhibits an instability, which further complicates the fluid-structure in-31

teraction. An example of such flow instability with aeronautical relevance32

is transonic shock buffet. For small-scale problems, the onset of the flow33

instability can be found by solving for a few eigenvalues of the system, us-34

ing a direct sparse equation solver, at each flow condition and tracking the35

eigenvalue which first crosses the imaginary axis [5, 6, 7]. For realistic wing36

cases, a direct method is not a viable option and an iterative sparse equation37

solver combined with a shifted inverse eigenvalue method could be used in-38

stead to calculate the relevant eigenvalue. Different from a flutter analysis,39

where the frequency range of interest is dictated by the frequencies of the40

structural dynamics in vacuum, self-induced flow instability is independent41

of the structural motion. A good initial guess for the shift is thus not easy42

to find. In [8, 9] it was discussed however that the aerodynamic response at43

pre-buffet conditions exhibits resonance when excited near the frequency of44

the flow instability. This information can then serve as a good initial guess.45

Another computational challenge associated with tracking the destabilising46
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eigenvalue is that the shifted fluid Jacobian matrix is nearly singular. For47

instance, in [10] the preconditioned restarted GMRES solver was used to48

compute the frequency response of an aerofoil at pre-buffet conditions and49

the linear solver failed to converge in many cases, presumably due to the50

worsened stiffness at those conditions.51

Krylov subspace solvers, such as GMRES, have been applied in the past52

to converge the nonlinear Reynolds-averaged Navier–Stokes (RANS) equa-53

tions to a steady state [11, 12, 13]. In such implicit nonlinear RANS solvers,54

however, the numerical stiffness of the inner linear system is usually reduced55

due to an approximate or first-order Jacobian formulation [14]. The overall56

solver efficiency is usually achieved by using an approximate Newton formu-57

lation for the inner system and solving it only inexactly. It is shown in [15]58

that even for a two-dimensional RANS case, the linear system resulting from59

the exact second-order Jacobian formulation is extremely stiff and an incom-60

plete lower-upper (ILU) factorisation preconditioner with fill-in level of four61

is needed to precondition the GMRES solver in order to allow convergence.62

For three-dimensional cases with industrial relevance, the exact Newton–63

Krylov approach is not practical for the nonlinear RANS flow solver. Note64

that by ‘first/second-order Jacobian’, we mean the Jacobian matrix based on65

the first/second-order spatial discretisation, not a Hessian matrix.66

The numerical stiffness is much more severe for the linearised RANS equa-67

tions (as discussed in the current paper) because the coefficient matrix is68

now not only of second-order, but also shifted often close to become singu-69

lar, thus causing tremendous convergence difficulty [10]. In this work, we70

form the ILU preconditioner from a blended Jacobian matrix (even though71
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the coefficient matrix itself is still the second-order one) and show that a72

fill-in level of zero rather than four is necessary for effective precondition-73

ing, thus significantly reducing the memory requirement. In addition, the74

most commonly used Krylov solver, GMRES, is replaced with a deflated75

solver, GCRO-DR, to substantially reduce the minimal Krylov subspace size76

required to avoid stagnation. Our proposed algorithm is much more effi-77

cient than the state-of-the-art ILU-Newton–Krylov algorithm currently used78

in industry for linearised aerodynamics calculations. The application of our79

proposed algorithm to edge-of-envelope test cases shows that both the mem-80

ory requirement and the CPU time can be significantly reduced, enabling the81

linearised aerodynamics analysis of a much wider range of problems.82

The theoretical formulation of the linearised CFD aerodynamics is intro-83

duced in Section 2, while the numerical methods used for solving the resulting84

large sparse linear systems of equations are discussed in Section 3. Results85

demonstrating the memory and runtime efficiency of the GCRO-DR solver86

compared to the baseline GMRES solver are shown in Section 4 for three87

test cases.88

2. Linearised frequency domain aerodynamics89

The transient nonlinear equation describing the unsteady aerodynamics

is written in semi-discrete form as

ẇf = Rf (wf ,x, ẋ,θ)

where wf and Rf denote the fluid unknowns and corresponding residual90

vector, respectively, and θ are the system parameters. The vectors x and ẋ91
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are location and velocity of the fluid mesh points which are functions of the92

structural mode shapes and the modal amplitudes denoted η. Linearising93

about an equilibrium point and assuming small amplitude harmonic motion,94

the latter equation can be re-formulated as95

(
∂Rf

∂wf

− iω(k)I

)
φ

(j,k)
f = −

(
∂Rf

∂η
+ iω(k)∂Rf

∂η̇

)
φ(j)
η (1)

where φf and φη are complex-valued amplitudes of fluid and structure, re-96

spectively. The equation gives the aerodynamic response φf following a dis-97

turbance of the structure φη. To find aerodynamic data for further analysis,98

this equation usually has to be pre-computed for each structural mode shape99

(denoted by superscript j) and for a range of forced sinusoidal excitations100

in the modal amplitudes at different frequencies ω (denoted by superscript101

k). As mentioned earlier, several hundreds of this equation need to be solved102

for industrial problems with the number of fluid unknowns easily exceeding103

several tens of millions.104

Adding equations to describe the unsteady motion of the structure in105

terms of the modal amplitudes η gives a coupled problem to be solved for106

investigation in flutter stability and also gust response behaviour. The basis107

of a reduced order model for such aeroelastic analyses can be calculated from108

the eigenvectors of the coupled system. The fluid part of the direct (i.e. right)109

eigenvalue problem is equivalent to eq. (1), except that the structural part110

φη of the eigenvector is now part of the solution rather than a pre-defined111

user input and that the eigenvalue (i.e. frequency) corresponds to a particular112

eigenvector (with superscript k = j). The corresponding adjoint (i.e. left)113
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eigenvalue problem for the fluid part ψf of the eigenvector can be derived as114

((
∂Rf

∂wf

)T
+ iω(j)I

)
ψ

(j)
f = −

(
∂Rη̇

∂wf

)T
ψ

(j)
η̇ (2)

where Rη̇ is the residual vector corresponding to the structural unknowns.115

Details of the mathematical formulation of linearised frequency domain aero-116

dynamics and model reduction in the context of aeroelastic analysis can be117

found in [4].118

Another type of problem arises when the fluid exhibits an instability119

without structural motion. One typical example is the shock-buffet problem120

where the shock wave interacts with the boundary layer and destabilises the121

steady flow beyond a critical parameter. To find the buffet onset, shifted122

inverse methods are an obvious choice to calculate few eigenvalues close to123

an initial guess. To choose such initial shift (i.e. a characteristic frequency124

of the instability), either engineering judgement is required or the resonant125

behaviour of the flow when excited at frequencies in the vicinity of the insta-126

bility can be exploited [8, 9], which would be equivalent to solving eq. (1).127

The closer the shift to the target eigenvalue, the faster the algorithm con-128

verges. This however leads to the second, even bigger challenge using shifted129

inverse methods. The linear system to be solved is nearly singular. Using a130

direct sparse linear equation solver quickly becomes infeasible for everything131

beyond two-dimensional problems. Thus, a preconditioned sparse iterative132

linear equation solver is a possible alternative.133

We use the shifted inverse method from [16] referred to as inverse correc-134
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tion. The equation to be solved is135

(
∂Rf

∂wf

− σI
)
δφf = −

(
∂Rf

∂wf

− λI
)
φf (3)

where σ is the constant complex-valued shift close to the target eigenvalue λ

and the eigenvector is updated as

φf ← φf + δφf

until the norm of the right-hand side converges below a given tolerance. The

right-hand side in eq. (3) represents the residual vector of the eigenvalue

problem based on the current approximation to the eigenvector φf of unit

length and eigenvalue based on the Rayleigh quotient

λ = φHf
∂Rf

∂wf

φf

The eigenvector update δφf is always initialised to zero, which is convenient136

since for converging outer iterations the update will go to zero. The inner137

convergence is defined relative to the convergence of the outer iteration giving138

a nearly constant number of inner iterations. In this work, four orders of139

magnitude is chosen as stopping criterion of the inner linear system.140

As can be seen from this brief introduction of linearised aerodynamics,141

the efficient solution of large sparse linear systems of equations is at the heart142

of it. For convenience in the following discussion, the coefficient matrix (i.e.143

fluid Jacobian matrix plus a complex-valued shift) is denoted A, while the144

various right-hand side terms are called b.145
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3. Solving large sparse linear systems of equations146

The main challenge in using linearised CFD aerodynamics is solving large147

sparse linear systems of equations. Restarted generalised minimal residual148

(GMRES) solver [17] was implemented in the DLR–TAU code to solve the149

linearised equations. As mentioned in the introduction, for stiff problems,150

restarted GMRES often suffers from stagnation unless a large number of151

Krylov vectors is kept. It is not uncommon to keep several hundred Krylov152

vectors in order to converge. This large memory requirement could then153

become the bottleneck when solving large cases. To ease these difficulties,154

we implemented generalised conjugate residual solver with deflated restarting155

(GCRO-DR), which converges almost like full GMRES (GMRES that does156

not restart and keeps expanding the Krylov subspace until the convergence157

criterion is met) but has small memory requirement. In addition, recycling158

a certain Krylov subspace between different equations is possible for GCRO-159

DR and is thus favourable for solving a sequence of linear equations with160

similar coefficient matrices.161

In this section, both GMRES and GCRO-DR will be explained. Further-162

more, GCRO-DR combined with inter-equation recycling, dubbed GCRO-163

DR-R, is introduced.164

3.1. GMRES165

The baseline linear solver used is GMRES. The theory and implementa-

tion details are well documented in [17] and only a brief introduction is given

here. When solving the linear system

Ax = b
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one first forms the Krylov subspace

Km(A,b) = span(b, Ab, A2b, . . . , Am−1b)

using the Arnoldi iteration. After m Arnoldi steps, a unit vector basis Vm =

[v1,v2, . . . ,vm] that spans the Krylov subspace is constructed satisfying the

Arnoldi relation

AVm = Vm+1H̄m

where H̄m is an upper Hessenberg matrix. The solution x is approximated

as

x = x0 + Vmdm

where the coefficient vector dm is solved through the least square problem166

minimising the resulting residual r = b− Ax. It can be shown that167

‖r‖ = ‖r0 − AVmdm‖ = ‖βv1 − Vm+1H̄mdm‖

= ‖Vm+1‖‖βe1 − H̄mdm‖ = ‖βe1 − H̄mdm‖

where e1 is the first standard basis vector of Rm+1 and r0 = b − Ax0 is168

the initial residual. The least square problem is then reduced to a very low169

dimension m. The restarted version simply forms the Krylov subspace and170

solves the least square problem again from the updated initial solution and171

residual vectors.172

In the current work, GMRES is preconditioned using ILU factorisation.173

Once the matrices L and U are computed, the only modification to GMRES174

without preconditioning is whenever a vector is multiplied by the coefficient175
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matrix, the resulting vector is further left-multiplied first by L−1 and then176

by U−1. The triangular matrices L and U are inverted using forward and177

backward substitutions. Alternatively, right or split preconditioning could178

also easily be achieved by plugging in these two additional matrix inversions179

in a slightly different manner [17]. There seems to be no obvious advantage180

for any type of preconditioning over the others, therefore we only used left181

preconditioning throughout this work as the least modification is required.182

In addition, due to memory considerations, a complex-valued version of ILU183

with low fill-in is used.184

3.2. GCR185

Generalised conjugate residual (GCR) [18] is a Krylov subspace method186

algorithmically equivalent to GMRES with different procedures. For the187

theory and the detailed implementation, refer to [17, 19]. Only a brief intro-188

duction is given here.189

Standard GCR constructs two vector bases

Um = [u1,u2, . . . ,um] and Cm = [c1, c2, . . . , cm]

satisfying190

Cm = AUm and CH
mCm = I. (4)

The solution is approximated on the subspace spanned by the column vectors

of Um

x = x0 + Umdm

subject to the constraint that the resulting residual is perpendicular to the

12
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subspace spanned by the column vectors of Cm

CH
mr = CH

m (r0 − AUmdm) = 0

which is equivalent to dm being the minimiser of ‖r‖. Similar to the Arnoldi191

iteration generating the Krylov vectors in GMRES, GCR uses a recursive192

procedure to generate the column vectors of Cm and Um. At the i-th iteration,193

i ≥ 1, set194

ui ← ri−1 and ci ← Aui (5)

which are first orthogonalised against Ci−1 if i 6= 1,

ui ← ui − (Ci−1C
H
i−1)ui and ci ← ci − (Ci−1C

H
i−1)ci

and then normalised by ‖ci‖. The solution and residual vectors are then195

updated as196

xi ← xi−1 + ui(c
H
i ri−1) and ri ← ri−1 − ci(c

H
i ri−1). (6)

A preconditioned version of GCR is easily obtained by adding the matrix-197

vector multiplication step for the preconditioning matrices as in GMRES.198

3.3. GCRO199

Nested Krylov subspace solvers wrap one Krylov solver outside another200

and use the inner solver to precondition the outer one. One of those nested201

solvers is GCRO [20], which uses GCR for the outer loop and any Krylov202

subspace solver, such as GMRES, for the inner loop. The motivation behind203
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can best be explained by revisiting eq. (5). Instead of assigning the latest204

residual vector to ui, ideally we could set205

ui ← A−1ri−1. (7)

Then the solution is found immediately following the update step in eq. (6)

since the resulting residual vector is zero. Although it is generally not pos-

sible to invert the matrix A, it does imply that we could assign to ui an

approximate solution to the equation Aui = ri−1 to accelerate the conver-

gence. To get the approximate solution, GMRES is used to approximately

solve for ui in

(I − Ci−1C
H
i−1)Aui = ri−1

for k iterations with initial solution of zero. The term in the bracket preceding206

A ensures that the Krylov subspace formed in the inner loop is normal to the207

Krylov subspace in the outer GCR loop so that monotonic residual reduction208

is guaranteed.209

3.4. GCRO-DR and GCRO-DR-R210

For nested Krylov subspace solvers such as GCRO, the inner loop gener-211

ates a Krylov subspace to approximately solve the equation, and the subspace212

is discarded when exiting the inner loop. It would be advantageous to recycle213

some information from the discarded subspace to aid the outer convergence.214

One approach is to truncate based on the principle angle between the Krylov215

vectors constructed during the inner loop and select the important ones to216

augment the outer Krylov subspace. The criterion to select them is to check217

how much worse the inner loop convergence would have been if the inner218
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loop has stopped before those vectors are formed. One solver based on this219

idea is generalised conjugate residual with optimal truncation [21]. Another220

approach is to select the interior eigenvectors (eigenvectors corresponding221

to the smallest-in-magnitude eigenvalues) that can be computed during the222

Arnoldi iteration from the inner loop and use them to augment the outer223

Krylov subspace. The two most important solvers following this idea are224

generalised minimal residual with deflated restarting [22] and GCRO-DR225

[19]. Both are nested Krylov subspace solvers with the main difference being226

that the former uses GMRES for the outer loop while the latter uses GCR.227

Although the latter requires more memory, it has the advantage of recycling228

eigenvectors both between restarts and between equations with different co-229

efficient matrices and/or forcing terms. Due to this flexibility, GCRO-DR is230

used in this work.231

The algorithm of GCRO-DR is now explained. It begins with a start-up232

GMRES cycle with m Arnoldi iterations which produces the upper Hes-233

senberg matrix H̄m and the Krylov vectors Vm. The solution x and resid-234

ual vectors r are first updated accordingly. Compared with restarted GM-235

RES, an additional step to extract the approximate interior eigenvectors236

{y1,y2, . . . ,yk} of the matrix A is taken by first solving the eigenvalue prob-237

lem238

(Hm + h2m+1,mH
−H
m eme

H
m)pi = θipi, i = 1, . . . ,m (8)

where the square matrix Hm is H̄m without the last row and hm+1,m is the

non-zero entry of H̄m on its last row, and then setting

[y1,y2, . . . ,yk] =: Yk ← VmPk

15
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where Pk = [p1,p2, . . . ,pk] correspond to the k smallest θi. The matrices Ck239

and Uk are constructed from Yk by setting240

Ck ← Vm+1Q and Uk ← YkR
−1. (9)

where [Q,R] is the QR-factorisation of H̄mPk. It can be verified that the241

resulting Ck and Uk. satisfy the condition in eq. (4).242

The start-up cycle is followed by a deflated GMRES cycle in which we

perform (m− k) Arnoldi iterations starting with v1 = r/‖r‖ using the linear

operator (I−CkCH
k )A such that the Krylov vectors to be formed are orthogo-

nal to Ck as in GCR. The key step is to combine Uk from the outer GCR and

Vm−k from the inner Arnoldi iterations to form a subspace to approximate

the solution. Define

V̂m = [UkDk, Vm−k], Ŵm+1 = [Ck, Vm−k+1], Ḡm =


 Dk Bm−k

0 H̄m−k




which satisfy the generalised Arnoldi relation

AV̂m = Ŵm+1Ḡm

where Dk = diag(‖u1‖−1, ‖u2‖−1, . . . , ‖uk‖−1) and Bm−k = CH
k AVm−k. The243

solution update δx is approximated over the subspace spanned by the columns244

of V̂m and we solve for the coefficient vector dm that minimises the norm of245

the resulting residual ‖r − AV̂mdm‖, which, due to the Arnoldi relation, is246

equivalent to ‖ŴH
m+1r − Ḡmdm‖. The minimiser can be found by solving a247

least square problem. According to [20], a more efficient alternative is to first248

16
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solve for the last (m− k) components of dm using H̄m−k only and then solve249

for the first k components of dm that correspond to the basis vectors Uk.250

This alternative approach could be more accurate for some cases, although251

no notable difference is observed in our work. The solution and residual vec-252

tors are then updated with dm. In addition, we compute θi and pi of the253

generalised eigenvalue problem254

ḠH
mḠmpi = θiḠ

H
mŴ

H
m+1V̂mpi

similar to eq. (8). The approximate interior eigenvectors of the coefficient

matrix are Yk = V̂mPk with Pk containing the k interior eigenvectors to

the reduced system as its columns. To form Ck and Uk, first perform QR-

factorisation of ḠmPk and then set

Ck ← Ŵm+1Q and Uk ← YkR
−1.

similar to eq. (9).255

Different from GCRO, after Ck and Uk are formed, the solution and resid-256

ual vectors are not immediately updated in GCRO-DR. This is because the257

least square problem after the inner Arnoldi iteration has included the basis258

Uk in the search subspace. The resulting algorithm is denoted as GCRO-259

DR(m, k) where m is the dimension of the Krylov subspace retained for260

approximating the solution while k is the number of eigenvectors recycled.261

The total number of vectors that needs to be stored is thus (m + k). The262

deflated GMRES cycle is repeated using the most recent solution and resid-263

ual vectors along with the recycled eigenvectors until the stopping criterion264

is met.265
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In GCRO-DR, the eigenvectors Yk, computed from the Arnoldi itera-266

tions, are ‘recycled’ to improve/deflate the next subsequent cycle. Due to267

the flexibility of GCRO, any set of vectors could be recycled and regularised268

to form Uk and Ck, not only for the next restarted cycle, but also for solving269

a different equation. Instead of performing a start-up cycle of m GMRES270

iterations to get k approximate interior eigenvectors, those from a previous271

solve can be recycled using the QR-factorisation to generate Uk and Ck that272

satisfy the condition in eq. (4). We call this variant version that allows inter-273

equation recycling GCRO-DR-R. The algorithm for GCRO-DR-R is shown274

in Appendix A. It should be pointed out that the original GCRO-DR algo-275

rithm introduced in [19] is also capable of recycling from one equation to276

another. Here we denote this kind of inter-equation recycling technique with277

an additional ‘-R’ just for clarity.278

The effectiveness of recycling the eigenvectors between equations strongly279

depends on how good an approximation the eigenvectors from one equation280

are for another. For varying right-hand sides, there are mainly three sce-281

narios: (i) identical coefficient matrices, (ii) diagonally shifted coefficient282

matrices and (iii) similar but different coefficient matrices. For case (i),283

GCRO-DR-R should be very effective as the spectral information of the co-284

efficient matrix does not change. For case (ii), GCRO-DR-R is also expected285

to be quite effective. Although the eigenvectors are preserved despite the286

shifted spectrum, the smallest eigenvectors for (A − σ1I) are not necessar-287

ily the smallest eigenvectors for (A − σ2I). Thus the deflation may not be288

as effective as in the first case. Case (iii) is the most general one. In [23],289

GCRO is extended to solve a system of equations that have varying sym-290
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metric real-valued coefficient matrices as well as multiple complex shifts. In291

[23], some theory was developed regarding the convergence behaviour in the292

presence of small perturbation of the coefficient matrix, which indicates that293

the recycling in case (iii) may still be effective as long as the change in the294

coefficient matrix is small.295

The other factor determining the effectiveness of recycling is the right-296

hand side. However, a theory regarding the convergence due to the right-hand297

side does not seem to exist (for a survey of the existing theories regarding298

the convergence properties of various Krylov subspace methods, refer to [24]).299

While some attempts have recently been made to formulate an asymptotic300

convergence bound taking into account the right-hand sides [25], the more301

useful transient convergence behaviour is still unclear.302

4. Results303

The linear equation solvers outlined in the previous section are now ap-304

plied to three test cases to demonstrate their effectiveness in reducing the305

memory requirements and in accelerating convergence. The governing equa-306

tions of the flow are solved using the DLR–TAU code and all linear sys-307

tems are obtained from this solver’s discretisation scheme. For the two-308

dimensional aerofoil test case and the three-dimensional half wing-body case,309

the Reynolds-averaged Navier–Stokes equations are used together with the310

one equation turbulence model of Spalart–Allmaras. The inviscid fluxes of311

the mean flow equations are discretised using the second-order central scheme312

with scalar artificial dissipation, while the first-order Roe scheme is used for313

the turbulence equation. Viscous fluxes follow the full gradient approach314
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with the gradients reconstructed using the Green–Gauss theorem. The Euler315

equations are solved for the full aircraft case using the same central scheme.316

The matrix, which the ILU factorisation is based on, is formed by linearly317

blending the Jacobian matrices of first- and second-order spatial discretisa-318

tion [26]. Furthermore, ILU with zero fill-in is used throughout this work.319

ILU with one level of fill-in requires appreciably more memory but results in320

limited speedup.321

4.1. Frequency response and buffet onset for an aerofoil322

The first test case is a two-dimensional NACA 0012 aerofoil undergoing323

harmonic excitation in pitch and plunge modes at various frequencies in324

transonic flow near buffet onset. The freestream Mach number is 0.76 with a325

Reynolds number of 10 million. Fully turbulent flow is assumed. The angle326

of attack is 3.5 deg. The aerofoil case has 30,000 grid points, corresponding327

to 150,000 complex-valued unknowns. The sparse Jacobian matrix has 16.7328

million non-zero entries.329

To investigate basic properties of the different linear solvers, we first solve330

the linear equation for a reduced frequency of 0.35 excited by the pitch mode.331

As will be explained below, the resulting linear system at this frequency is332

most difficult to solve. The convergence history for ten orders of magnitude333

residual drop using different solvers is plotted in Fig. 1. The residual here and334

in the following paragraphs is the normalised L2 norm of the preconditioned335

residual, defined as Res = ‖U−1L−1(b − Ax)‖/‖U−1L−1b‖. As reference,336

full GMRES is first used and it converges with 464 iterations. Restarted337

GMRES is then run using 50, 100 and 200 Krylov vectors, respectively. At338

least 100 vectors are needed to avoid convergence stagnation and GMRES339
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Figure 1: Case 1. Left: Convergence history using restarted GMRES and GCRO-DR;
right: CPU time of GMRES and GCRO-DR using different number of vectors with ten
orders of magnitude convergence.

restarted with 200 vectors is found to be optimal. Using more than 200340

vectors does not further accelerate the convergence due to the increased cost341

in orthogonalisation. On the other hand, GCRO-DR(20,10), requiring only342

30 vectors to be stored, converges significantly faster, reducing the CPU time343

of the best performing GMRES solver by over a factor of three.344

To examine the memory requirements and CPU time for both solvers for345

the same linear system, different numbers of Krylov vectors are tested. All346

solvers are required to converge by ten orders of magnitude. Since there347

are two parameters m and k that can vary independently in GCRO-DR, we348

simplify the parameter study by setting k = m/2. Convergence stalls if less349

than 27 vectors are stored for GCRO-DR, above which the CPU time almost350

linearly increases with the fastest convergence achieved when storing 30 vec-351

tors. Therefore, GCRO-DR(20,10) is used for the remaining computations of352
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this case. For GMRES, the restart number is decreased from m = 464 until353

the convergence severely slows down and eventually stalls below m = 200.354

The two dashed lines in Fig. 1 show the respective smallest number of vec-355

tors needed by the two solvers. Note that the reduced memory requirement356

is equivalent to storing six flow Jacobian matrices for this two-dimensional357

case.358

Next, inter-equation recycling is investigated. The frequency response due359

to harmonic excitation in pitch and plunge modes is computed with three360

solvers: GMRES(200), GCRO-DR(20,10) and GCRO-DR-R(20,10). The re-361

duced frequency varies from 0.1 to 0.6 with an increment of 0.05. For each362

frequency, the aerofoil is first excited using the pitch and then the plunge363

mode. The order of solving the sequence of equations is such that the coef-364

ficient matrices and their complex-valued ILU(0) preconditioner are formed365

as few times as possible and the coefficient matrices vary monotonically to366

allow effective recycling between equations. A total of 22 linear solves are367

performed. The convergence criterion is again a residual drop of ten orders368

of magnitude.369

As can be seen in Fig. 2, compared with GCRO-DR, GCRO-DR-R com-370

pletely avoids the initial phase of the slow convergence from the second lin-371

ear equation solve due to recycling. The effect however slows down and the372

asymptotic convergence of the nested solvers is comparable, both outper-373

forming GMRES. The CPU time breakdown of each linear solve for all three374

solvers for different modes excited at different frequencies is shown in Fig. 3.375

Compared to GMRES(200), GCRO-DR(20,10) reduces the overall CPU time376

by 64% and using recycling between equations speeds up another 15%.377
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Figure 2: Case 1. Convergence history of GMRES(200), GCRO-DR(20,10) and GCRO-
DR-R(20,10) for the first three equation solves.
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The CPU time of GMRES for the frequency sweep in this case shows378

a peak at the reduced frequency of 0.35 for both pitch and plunge modes,379

which is believed related to the near resonance fluid motion. This resonance380

behaviour is more evident from the plot on the left of Fig. 4 showing the381
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Figure 4: Case 1. Left: the complex lift derivative for 3.5 deg angle of attack excited by
pitch and plunge modes over the range of reduced frequencies; right: convergence history
of different linear solvers for the first outer iteration of the inverse correction solver.

magnitude of the unsteady lift derivative of the aerofoil excited by both382

modes at different reduced frequencies. This motivates the computation of383

the responsible fluid eigenvalue and eigenvector. To compute the eigen pair,384

inverse correction method [16] as in eq. (3), is used with shift σ = 0.35i and385

a random initial guess for the eigenvector.386

The first outer iteration is solved using GMRES with different restarts387

and GCRO-DR, for which the convergence history is shown on the right of388

Fig. 4. Restarting after every 300 vectors seems to be optimal for GMRES.389

For GCRO-DR(20,10), the memory required is only one tenth of that of390

GMRES, while the convergence is accelerated by over a factor of four. The391

convergence criterion used here is ten orders of magnitude. In practice, since392

only the outer iteration convergence is related to the actual convergence of393

the eigenvalue problem, the inner iteration convergence could be relaxed to394
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Figure 5: Case 1. Left: CPU time comparison of different solvers for all nine outer
iterations; right: convergence of the eigenvalue problem.

achieve better overall performance. It is found that converging four orders of395

magnitude during inner iterations is sufficiently efficient, thus is chosen for396

the entire calculation.397

For the outer eigenvalue problem, GMRES(300), GCRO-DR(20,10) and398

GCRO-DR-R(20,10) are used. The CPU time of all three solvers for all nine399

outer iterations is plotted on the left in Fig. 5 together with the convergence400

of the outer eigenvalue problem shown on the right. Inter-equation recycling401

is very effective for computing the eigenvalue with a speedup by a factor of402

two, because the coefficient matrix does not change over the outer iterations.403

The final converged eigenvalue corresponding to the critical mode is λ =404

−0.014 + 0.354i. Note that all the results for this test case are computed405

using one CPU only.406
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4.2. Basis of reduced order model for an aircraft model407

The three-dimensional model is a wide-body civil aircraft research con-408

figuration with a semi-span of about 30 m and an overall length of about409

65 m. Flow conditions are a freestream Mach number of 0.85 at 1.0 deg410

angle of attack. The computational mesh for the Euler CFD calculation411

has 0.74 million grid points, equivalent to 3.7 million complex-valued un-412

knowns for the linear system. In terms of storage, the flow Jacobian matrix413

for the second-order spatial discretisation has around 451 million non-zero414

real-valued entries requiring around 3.3 GB of memory to be stored with415

double precision. The complex-valued ILU(0) preconditioning matrix stored416

in single precision requires another 3.3 GB of memory.417

Using ten mode shapes of the structure (the first mode, dominant in wing418

bending, as mapped to the CFD surfaces is illustrated on the left of Fig. 6),419

ten eigenvalues are found using the Schur complement method. The Schur420

complement method can efficiently compute eigenvalues and the associated421

structural part of the right and left eigenvectors. The remaining task is to422

find the fluid part of the eigenvectors using eqs. (1) and (2). Once both the423

right and left eigenvectors of the coupled problems are found, a reduced order424

model can be constructed [4].425

From previous experience, it is known that the left eigenvector problem426

is more challenging. Thus, GMRES and GCRO-DR using different parame-427

ters are first used to solve for the first left eigenvector with the convergence428

history shown on the right in Fig. 6. The convergence criterion has been429

set to six orders of magnitude, which is sufficient to converge the unsteady430

lift derivative to within 1% accuracy. GMRES with 100 vectors is found431
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Figure 6: Case 2. Left: aerodynamic surfaces of a civil aircraft model for projected first
bending mode; right: convergence for computing the first left eigenvector.

to be optimal, i.e., using 50 vectors leads to convergence stagnation while432

using more slows down the convergence due to the increased cost in orthog-433

onalisation. For GCRO-DR, there is only marginal variation in CPU time434

for the three combinations of parameters used, and thus GCRO-DR(30,10)435

is chosen for all the remaining eigenvector solves. Replacing GMRES(100)436

with GCRO-DR(30,10) reduces the total memory requirement for the linear437

solve (flow Jacobian matrix, ILU preconditioning matrix and Krylov vectors438

combined) from 18.2 GB to 11.4 GB, with the difference being the 60 fewer439

vectors needed to be stored, while the CPU time is reduced by a factor of440

three. Note that the results for this case are computed using one CPU only.441

The CPU time breakdown of the 20 eigenvector solves using GMRES(100)442

and GCRO-DR(30,10) is shown in Fig. 7. Using deflated restarting speeds up443
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Figure 7: Case 2. CPU time for solving all eigenvectors using the three different solvers.

the whole calculation by a factor of two. However, the recycling technique444

does not seems to be effective for this case. Using eigenvector recycling445

between solves even slows down the convergence for left eigenvector problems,446

while the speedup for the right eigenvector solves are marginal at around447

6%. This is presumably due to the fact that the approximate eigenvectors448

recycled from solving one linear system is no longer a good approximation449

for the eigenvectors of the next.450

It was reported in [19] that GCRO-DR with recycling may not necessarily451

accelerate the convergence even when recycling is applied to the same equa-452

tion with both identical coefficient matrices and right-hand sides. This same453

behaviour was found in this case when repeatedly solving the first left eigen-454

vector problem, i.e., solving the equation again with recycled eigenvectors455

from the previous solve of the same equation does not speed up convergence.456
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Another feature of the convergence is that the left eigenvectors are in general457

more difficult to solve compared to the right eigenvectors, even though their458

coefficient matrices have the same spectrum, thus the same asymptotic con-459

vergence property. This implies that the right-hand side plays an important460

role in the transient convergence in these cases [25].461

4.3. Frequency response for a pre-buffet half wing-body configuration462

The frequency response for a generic half wing-body model is now com-463

puted. The freestream Mach number is 0.8 while the Reynolds number based464

on the aerodynamic mean chord is 3.5 million. Fully turbulent flow is as-465

sumed. Two angles of attack at 2.8 deg and 3.0 deg are considered, with the466

higher angle close to buffet onset. Similar to the aerofoil-near-buffet case, the467

higher angle of attack case exhibits significant stiffness in the linear system.468

The steady state solutions are converged by ten orders of magnitude, which is469

deemed sufficient by monitoring the lift, drag and moment coefficients. The470

surface pressure distribution for the steady state solution at 2.8 deg angle471

of attack is shown on the left in Fig. 8. To perform linearised aerodynamic472

analysis, four synthetic mode shapes (the first of which is shown on the right473

in Fig. 8) are used to harmonically excite the system at a range of reduced474

frequencies.475

The test case consists of around 2.7 million grid points, resulting in a476

complex-valued linear system of equations with around 16.3 million degrees477

of freedom. The second-order Jacobian matrix has 3.14 billion real-valued478

entries corresponding to 24 GB of memory. Storing the Jacobian matrix is479

equivalent to 100 Krylov vectors. The ILU(0) preconditioning matrix, based480

on the blended first- and second-order Jacobian matrices, stores around 3.14481
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Figure 8: Case 3. Left: pressure coefficient distribution at 2.8 deg angle of attack;
right: baseline wing shape and the deformed one with the first synthetic mode.

billion complex-valued entries in single precision. For comparison, ILU(1)482

would require 48 GB of memory. All simulations are run on 144 cores with 2483

GB per core. The ILU(0) preconditioning matrix is computed locally without484

parallel communication. It will have deteriorated performance with increased485

number of cores as reported in [27]. The convergence tolerance is set to ten486

orders of magnitude throughout.487

To perform a parameter study for both GMRES and GCRO-DR, the488

effect of two key parameters is examined: blending coefficient to combine489

first- and second-order Jacobian matrices and number of Krylov vectors.490

For each angle of attack, the blending coefficient is varied between 0 and491

1. Then both m for GMRES and (m + k) for GCRO-DR vary from 50492

to 500 for each value of the blending coefficient. For each combination of493

m+k, m and k are already optimised. More details on the best combination494

is discussed in the following paragraph. The runtime of both GMRES and495
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Figure 9: Case 3. Runtime of linear frequency domain solvers at 2.8 and 3.0 deg angle of
attack, all converged ten orders of magnitude.

best-performing GCRO-DR with respect to the number of vectors stored and496

blending coefficient are shown in Fig. 9.497

At 2.8 deg angle of attack, GCRO-DR roughly speeds up the solution by498

a factor of two. In addition, the lower threshold of the number of Krylov499
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Table 1: Optimal number of recycled eigenvectors at 2.8 deg (left) and 3.0 deg (right)
angle of attack. (NA = Not Available)

k
m+ k

60 80 100 200 300 400 500

b
le

n
d

in
g

co
effi

ci
en

t 0.0 2 3 10 20 30 40 15

0.2 2 3 5 20 15 20 15

0.4 2 5 10 30 15 20 15

0.6 4 2 5 10 15 20 15

0.8 NA NA 5 10 15 20 15

0.9 NA NA 10 10 15 20 15

k
m+ k

80 100 150 200 300 400 500

b
le

n
d
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g
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effi
ci

en
t 0.0 10 15 30 30 30 20 20

0.2 10 15 25 30 30 15 20

0.4 10 15 25 30 30 15 20

0.6 NA 15 25 30 30 15 20

0.8 NA 15 20 20 30 20 20

0.9 NA NA 25 25 35 15 20

vectors for reasonable convergence is reduced substantially, from 300 to below500

100. At 3.0 deg angle of attack, GCRO-DR accelerates the convergence much501

more significantly, by a peak-to-peak ratio of 4.5. For GMRES to converge in502

reasonable time, at least 300 vectors are required, while 150 Krylov vectors503

seem sufficient otherwise. Overall, the convergence is not very sensitive to504

the blending coefficient as long as it does not exceed 0.9, beyond which the505

stiffness of the linear system increases drastically. For a blending coefficient506

of 1, none of the linear solvers is able to converge with 500 Krylov vectors,507

neither with ILU(0) nor ILU(1). The extreme stiffness has been reported508

previously but a plausible elucidation is still missing.509

Note that in Fig. 9 the runtime for GCRO-DR is for the optimal combi-510

nation of m and k, while keeping the sum constant, from a series of tests. To511

understand how the parameters should be chosen, Table 1 presents the val-512

ues of k for the plotted GCRO-DR convergence data. This optimal value is513

found by varying k from 0 to m/2 and identifying the one that results in the514

fastest convergence. As can be seen, there does not seem to be a general rule515

for choosing k, except some guiding principles such as k should be around516
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10% of m + k and below a maximum of 30 in general. Some attempts have517

been made to adaptively determine the number of recycled vectors in [22],518

however, as mentioned therein, even the simplest strategy does not seem to519

apply to all the cases tested. One strategy, which seems to be quite robust520

in our numerical experiments, is to keep the ratio k/(m+ k) at around 10%,521

and increase m and k proportionally whenever convergence stall is detected,522

until the memory limit is reached.523

Once the parameter study is done, GMRES(300) and GCRO-DR(125,25),524

both with blending coefficient of 0.6, are used to perform a frequency response525

study at 3.0 deg angle of attack. The reduced frequency ranges from 0 to 1.526

The deflated linear solver is run with and without inter-equation recycling,527

denoted by GCRO-DR-R and GCRO-DR respectively. The CPU time of528

all solves using three different solvers are shown in Fig. 10. The goal being529

the shortest overall turnover time, inter-equation recycling is applied to a530

sequence of equations with different forcing terms, while recycling between531

different frequencies is not considered. This sequencing strategy results in532

eleven groups of equations being solved simultaneously, each group with one533

frequency and varying forcing terms. Other sequencing strategies can be534

considered as well. Although using 150 fewer Krylov vectors, GCRO-DR535

speeds up the overall convergence by a factor of over three. At no extra cost,536

GCRO-DR-R further accelerates convergence by over 20%.537

5. Conclusions538

In this paper, generalised conjugate residual solver with deflated restart-539

ing is applied to a few typical problems of linearised aerodynamic analy-540

33



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

8

9

10
mode 1

Reduced frequency

C
P

U
 t
im

e
 (

h
o
u
r)

 

 

GMRES(300)

GCRO−DR(125,25)

GCRO−DR−R(125,25)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

8

9

10
mode 2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

8

9

10
mode 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

7

8

9

10
mode 4

Figure 10: Case 3. Runtime of all solves at 3.0 deg angle of attack using three different
solvers with tolerance of ten orders of magnitude.

sis and the significant improvement over the baseline generalised minimal541

residual method, regarding both the memory requirement and CPU time, is542

demonstrated. The cases investigated are the frequency response computa-543

tion of an aerofoil undergoing pitch or plunge motions in transonic flow at544
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near buffet onset condition, computing the left and right eigenvectors for a545

full aircraft model in inviscid transonic flow, and the frequency response of546

a half wing-body model in viscous transonic flows at below- and near-buffet,547

both of which are challenging off-design conditions. All the test cases involve548

solving large sparse linear systems of equations arising from linear frequency549

domain Euler or Navier–Stokes equations.550

The deflation technique significantly reduces both the CPU time and the551

number of Krylov vectors that need to be stored for all cases. Although552

recycling eigenvectors between equations does not necessarily improve the553

asymptotic convergence rate, it does significantly improve the transient con-554

vergence by overcoming the initial stagnation, making it ideal for solving a555

sequence of linear systems of equations with relaxed convergence criteria.556
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Algorithm 1 GCRO-DR-R(A,x0,b,m, k, iter max, tol, U, L,Recycle)

1: r← U−1(L−1(b− Ax0)); iter← 0

2: if (Recycle=True) then % QR factorisation of recycled Yk
3: [Q,R]← QR(Yk); Ck ← Q; Uk ← YkR

−1

4: x← x0 + UkC
H
k r; r← r− CkCH

k r

5: else % m Arnoldi iterations to calculate Yk
6: β ← ‖r‖; v1 ← r/β

7: for i = 1, 2, . . . , m do

8: vi+1 ← U−1(L−1(Avi)); iter← iter + 1

9: for j = 1, 2, . . . , i do % Orthogonalisation

10: hj,i ← vHj vi+1; vi+1 ← vi+1 − hj,ivj
11: hi+1,i ← ‖vi+1‖; vi+1 ← vi+1/hi+1,i

12: Solve for dm that minimises J(dm) := ‖βe1 − H̄mdm‖
13: x← x0 + Vmdm; r← Vm+1(βe1 − H̄mdm)

14: Compute k eigenvectors pi in (Hm + h2m+1,mH
−H
m eme

H
m)pi = θipi

15: [Q,R]← QR(H̄mPk); Ck ← Vm+1Q; Yk ← VmPk; Uk ← YkR
−1

16: v1 ← r/‖r‖
17: for i = 1, 2, . . . , m− k do

18: vi+1 ← (I − CkCH
k )(U−1(L−1(Avi))); iter← iter + 1

19: for j = 1, 2, . . . , i do % Orthogonalisation

20: hj,i ← vHj vi+1; vi+1 ← vi+1 − hj,ivj
21: hi+1,i ← ‖vi+1‖; vi+1 ← vi+1/hi+1,i

22: Dk ← Diag(‖u1‖−1, ‖u2‖−1, . . . , ‖uk‖−1)

23: Bk ← CH
k (U−1(L−1(AVm−k))); Ḡm ←

[
Dk, Bk; 0, H̄m−k

]

24: V̂m ← [UkDk, Vm−k]; Ŵm+1 ← [Ck, Vm−k+1]

25: Solve for dm that minimises J(dm) := ‖ŴH
m+1r− Ḡmdm‖

26: x← x + V̂mdm; r← r− Ŵm+1Ḡmdm
27: Compute k eigenvectors pi in ḠH

mḠmpi = θiḠ
H
mŴ

H
m+1V̂mpi

28: [Q,R]← QR(ḠmPk); Ck ← Ŵm+1Q; Yk ← V̂mPk; Uk ← YkR
−1

29: if (J(dm) < tol or iter > iter max) then

30: Yk = Uk; Terminate programme.

31: Goto line 16
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