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A reduced order model for free-flight test cases is presented considering the coupling
of flight dynamics and aerodynamics arising from computational fluid dynamics. The
formulation relies on an expansion of the full order non-linear residual function in a
truncated Taylor series and subsequent projection using modes of the coupled system.
Free-flight effects are included in the reduced order model by means of flight dynamics
modes identified with either of two approaches. The first technique is based on the Schur
decomposition of the coupled Jacobian matrix tracing the eigenvalues emerging from the
rigid-body degrees-of-freedom. The second method pre-computes dynamic derivatives
which are then used to identify the flight dynamics modes. The reduced order model
is expanded to simulate gust encounter. All methods are applied to a two-dimensional
aerofoil in transonic flow showing results for initial disturbance and gust simulations. The
reduced order model is capable of reproducing full order results accurately.

I. Introduction

During aircraft design and certification, loads analyses must be performed for many flight conditions.1

Investigating the parameter space with high-fidelity aerodynamics methods such as the Reynolds-averaged
Navier-Stokes equations is prohibitive with respect to computational cost and current industrial practice
relies on linear potential theory.2 Flight dynamics is included in the loads evaluation with simple numerical
methods only or neglected altogether. However, the influence of flight dynamics on the loads of a civil
aircraft encountering a gust was shown recently using a linearised approach based on a modal formulation.3

Simulations performed for transonic flow with and without flight dynamics included showed a significant
impact on the loads estimation. It was also established that computational fluid dynamics (CFD) is still
not ready to compete with low-fidelity aerodynamic models, such as the doublet lattice method, in terms of
computing requirements.

Reduced order modelling of high-fidelity approaches is thus a good alternative to balance cost and
accuracy. The research on HALE (High Altitude, Long Endurance) wings led to the development of
reduced models including structural and rigid-body motions in the same modal solver.4 System identification
methods, specifically balanced realisations, were used to reduce the aerodynamic model based on the unsteady
vortex lattice method. The coupled system is composed of two interacting modules reducing the structural
and aerodynamic model independently. Another possible approach manipulates the full order residual with a
projection on a modal basis composed of coupled structural and aerodynamic modes resulting in a monolithic
reduced model.5 The methodology was previously applied to coupled structural and aerodynamic systems
using linear aerodynamics to perform gust encounter simulations and robust control.5,6 The tools were also
tested on flexible full aircraft in transonic conditions with CFD aerodynamics, using the Schur complement
method to evaluate the coupled eigenmodes.7 In particular, the Schur complement method has proven to be
ready for industrial practice and it has successfully been applied to search for instabilities in the transonic
regime.8

The model is expanded herein to account for rigid-body motions of free-flight aircraft in the transonic
regime using CFD aerodynamics. This is achieved by including flight dynamics modes, also known as dynamic
stability modes,9 in the modal basis. These modes differ from the rigid-body modes since they account for
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the effect of aerodynamic coupling between the rigid-body degrees-of-freedom. They are similar to the
modes of an aeroelastic system but based on the flight dynamics equations.10 In a coupled structural and
aerodynamic system, the calculation of aeroelastic modes can start from an in vacuum structural analysis to
obtain the natural frequencies and mode shapes.8 However, the same procedure cannot be applied for flight
dynamics modes as the frequencies of the rigid-body degrees-of-freedom are all equal to zero in vacuum.11

An additional challenge arises looking at the eigenspectrum of the Jacobian matrix of the coupled system.
Eigenvalues corresponding to the flight dynamics modes depend on the flow conditions12 and, for typical
combinations of parameters, they can be found within the dense region of fluid eigenvalues. As a result,
their identification among other eigenvalues is difficult.

In Section II the numerical approach for the flight dynamics modes identification is described. A Schur
decomposition is applied to the coupled system and flight dynamics modes are traced starting from the
rigid-body modes. An approximation of this method, based on the calculation of dynamic derivatives, is
presented as well. Linear frequency-domain methods are used throughout for the CFD aerodynamics when
identifying modes. Thereafter, a modal basis, built from the identified flight dynamics modes, is assembled
and used to project the full order system. In Section III, results are shown for a two-dimensional test case.
The reduced model is obtained for a NACA 0012 aerofoil in transonic flow solving the Euler equations while
an extension to the Navier-Stokes equations is straightforward.

II. Numerical approach

A. Full order model and model reduction

Rigid-body dynamics is described by the equations of motion which are obtained directly from Newton’s
second law.9 Denoting wr the vector containing the nr flight dynamics unknowns and Rr the corresponding
non-linear residual, the flight dynamics equations are formulated as

ẇr = fe(wr) + Cfa(wf ,wr)

= Rr(wf ,wr)
(1)

with the vector wf containing the nf fluid unknowns and fa representing aerodynamic forces. The
formulation of the vector function fe depends on the reference frame since it might include Coriolis effects10

besides additional external forces such as gravity. The matrix C accounts for the coupling between the
degrees-of-freedom and it contains information about mass and inertia properties of the system. The non-
linear equations describing aerodynamics are similarly written in a semi-discrete form as

ẇf = Rf (wf ,wr,ud) (2)

where ud represents a possible external disturbance such as gusts. Denoting w = [wT
f ,w

T
r ]T as the vector

of unknowns of the coupled system, the state-space equations of dimension n = nf + nr can be combined as

ẇ = R (w,ud) (3)

where R is the corresponding non-linear residual vector discretised in space.
The system in Eq. (3) is expanded in a Taylor series around an equilibrium state with R(w0) = 0,

R(w) ≈ A w̃ +
∂R

∂ud
ũd +O

(
|w̃|2, |ũd|2

)
(4)

where w(t) = w0 + w̃(t) and accordingly ud(t) = ud0 + ũd(t). The Jacobian matrix A of dimension n× n
is partitioned into blocks

A =

(
Aff Afr

Arf Arr

)
(5)

with

Aff =
∂Rf

∂wf
Afr =

∂Rf

∂wr
Arf = C

∂fa
∂wf

Arr =
∂fe
∂wr

+ C
∂fa
∂wr

(6)

The diagonal blocks Aff and Arr are fluid and flight dynamics Jacobian matrices, respectively, while the
off-diagonal blocks describe the coupling terms. Specifically, the matrix Arf describes the dependence of the
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aerodynamic loads on the fluid unknowns, whereas Afr represents fluid excitation due to the flight dynamics

degrees-of-freedom. The term ∂fa

∂wr
represents how aerodynamic forces change due to a rotation of surface

normals while keeping the flow variables fixed. This term is usually small and thus neglected in the current
investigation.

The system is translated into Laplace domain with complex-valued variable λ and re-arranged. The
external disturbance ud is zero for the identification of flight dynamics modes since the focus is on analysing
the undisturbed system. This leads to the right and left eigenvalue problems,(

A− λ(i)I
)
φ(i) = 0 and

(
AT − λ(i)I

)
ψ̄(i) = 0 ∀i, j ∈ [1, n] (7)

where (λ(i),φ(i)) and (λ(i),ψ(i)) are the corresponding eigenpairs.
The model reduction is performed by projecting the Taylor series in Eq. (4) on a smaller modal basis.5

The bi-orthonormal bases Φ and Ψ are built by choosing m eigenvectors out of n with m� n,

Φ =
(
φ(1) , φ(2) , . . . , φ(m)

)
and Ψ =

(
ψ(1) , ψ(2) , . . . , ψ(m)

)
(8)

The eigenvectors are normalized to satisfy the bi-orthonormality conditions resulting in

〈ψ(j), Aφ(i)〉 = λ(i)δij and 〈ψ(j), Aφ̄(i)〉 = 0 ∀i, j ∈ [1,m] (9)

where δij is the Kronecker delta and the Hermitian inner product 〈x,y〉 is defined as x̄Ty. The projection
is performed with the transformation

w̃ = Φz + Φ̄z̄, z ∈ Cm (10)

and pre-multiplying with the left modal basis Ψ. The reduced order model is then expressed as

ż = Λz + Ψ̄T ∂R

∂ud
ũd (11)

where the matrix Λ is defined as a diagonal matrix containing the m eigenvalues. The modal bases in Eq. (8)
must be built from flight dynamics modes and two techniques to identify these are described in the following.

B. Flight dynamics mode identification

The superscript (i) is dropped in the following discussion for clarity of notation. The right eigenvector
is partitioned in aerodynamic and flight dynamics unknowns according to Eq. (5). The small eigenvalue
problem of dimension nr resulting from the flight dynamics part of the coupled equations is[

(Arr − λI)− βArf (Aff − λI)
−1
Afr

]
φr = S(λ)φr = 0 (12)

where S(λ) is the spectral Schur complement of A with respect to flight dynamics degrees-of-freedom. An
artificial weighting factor β is introduced to gradually add the coupling effect. Newton’s method solving
for (λ,φr) is used to trace the evolution of the rigid-body modes starting from zero frequency at β = 0 to
the coupled eigenvalue at β = 1. The corresponding fluid part φf of the eigenvector is calculated for the
converged solution (λ,φr) at β = 1 by solving

(Aff − λI)φf = −Afrφr (13)

The computationally expensive part of Eq. (12) is the repeated evaluation of the interaction term

Arf (Aff − λI)
−1
Afr depending on the solution λ. For small-sized problems, this matrix can be computed

with direct solvers whereas iterative solvers have to be applied for industrial test cases. This can lead to
convergence problems if the flight dynamics eigenvalue is within the cloud of aerodynamic modes. A Taylor
expansion for λ = λ0 + λε can be applied instead to improve the tracing,8

(Aff − λI)
−1

= (Aff − λ0I)
−1

+ λε (Aff − λ0I)
−2

+O(|λε|2) (14)
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where λε represents a small variation of λ from a reference value λ0 given by a previously converged solution
or, initially, by the rigid-body eigenvalue. The expansion can be pre-computed with matrix Afr as right-
hand-side using linear frequency-domain13 (LFD) solvers and then projected with Arf .

The adjoint eigenvalue problem, the solution of which is needed for the model reduction, is equivalently
formulated as [ (

ATrr − λI
)
− βATfr

(
ATff − λI

)−1
ATrf

]
ψ̄r = 0 (15)

Note that [Arf (Aff − λI)
−1
Afr]

T = ATfr(A
T
ff − λI)−1ATrf and thus the interaction term only needs to be

pre-computed once to be applied for left and right eigenvalue problems. The fluid part of the left eigenvector
is then calculated by solving the adjoint problem corresponding to Eq. (13)(

ATff − λI
)
ψ̄f = −ATrf ψ̄r (16)

It can be shown that the interaction term corresponds to dynamic derivatives. Substituting the definition
of Arf into Eq. (12), the interaction term is expressed as

Arf (Aff − λI)
−1
Afr = C

∂fa
∂wf

(Aff − λI)
−1
Afr (17)

The LFD term (Aff − λI)
−1
Afr is associated with the response of the fluid unknowns to excitations in the

flight dynamics degrees-of-freedom,

C
∂fa
∂wf

(Aff − λI)
−1
Afr = C

∂fa
∂wf

∂wf
∂wr

= C
∂fa
∂wr

= CQ (18)

Thus, the matrix Q describes the transfer function relating flight dynamics motions (input) to the
aerodynamic loads (output) by means of complex-valued dynamic derivatives of the aerodynamic system.14,15

The eigenvalue problem in Eq. (12) is then rewritten using dynamic derivatives as[
(Arr − λI) + βCQ

]
φr = 0 (19)

and solved using Newton’s method. The dynamic derivatives are pre-computed for non-harmonic motions
corresponding to a finite number of sample points in the complex plane. Interpolation techniques are used
to calculate values for points not sampled. The eigenvalue problem, Eq. (19), is theoretically identical
to Eq. (12), if Q was computed for each point in the complex plane. The adjoint problem is formulated
accordingly as [ (

ATrr − λI
)

+ βQTCT
]
ψ̄r = 0 (20)

For this approach to work however, the dynamic derivatives must be computed by splitting the fluid dynamics
unknowns in displacement and velocity.7

An approach to reduce the number of samples is obtained by neglecting the damping during the
computation of the aerodynamic influence. Similarly to the P-K method,16 which is widely used for
flutter analysis, the real part of the eigenvalue is discarded when calculating the dynamic derivatives. As a
consequence, the matrix Q depends on frequency only.

C. Computational fluid dynamics solver

The CFD code uses a meshless scheme to solve the Euler, laminar and Reynolds-averaged Navier-Stokes
equations (with the Spalart-Allmaras turbulence model).17,18 The unknowns are stored at each point and
the spatial discretisation is performed on a stencil of neighbouring points. Osher’s approximate Riemann
solver is used to evaluate the convective fluxes between each point and the points in its stencil. The gradients
of the flow variables are reconstructed with the least squares method and used to provide a higher order
reconstruction of the interface values for the Riemann problem. A fully implicit scheme is applied using local
time stepping for convergence acceleration, while the unsteady, time-dependent equations are solved with a
dual-time integration scheme. The disturbance vector ∂R

∂ud
contains the influence of the grid velocities on

the residual and is calculated with central finite differences. Gusts are modelled in the flow solver with the
field velocity approach.19
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(a) Aerofoil close-up
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- c
p

(b) Pressure distribution

Figure 1. Point distribution for NACA 0012 aerofoil and pressure coefficient at steady state

The coupling between rigid-body dynamics and aerodynamics is performed with a modular approach
at each inner iteration resulting in a strongly coupled system. At each inner iteration, the positions and
velocities of grid points are modified according to the rigid motions (translation and rotation) provided by
the flight dynamics module. The flight dynamics state vector is updated by integrating Newton’s second law
and equations for Euler angles.3

The linear solver used to perform LFD computations is the generalized minimal residual solver with
complex arithmetic.20 The linear solver is preconditioned using incomplete lower-upper factorization. The
factorization is computed from a matrix combining Jacobian matrices arising from first and second order
spacial discretizations. The blending factor is set to 0.5 which is found to be robust from numerical
experiments. The preconditioner has zero fill-in to limit the memory overhead, thus retaining the same
sparsity pattern as the second order Jacobian matrix.

III. Results

Results are presented for a NACA 0012 aerofoil solving the Euler equations. The computational domain
is discretized with 7860 points as shown in Fig. 1(a). The steady state is calculated at a Mach number of
0.75 and zero deg angle-of-attack. The corresponding surface pressure is given in Fig. 1(b). Assuming
small variations around the initial equilibrium state, the linearised equations of motion are integrated
for longitudinal dynamics.9,10 The flight dynamics part of the state vector contains the flight dynamics
unknowns wr = [u, v, q, x, z, θ]

T
. The vertical and horizontal translations, respectively x and z, are referred

to body axes10 and the rigid rotation θ is around the centre of mass. The corresponding velocities are
indicated with u, v and q. The reference length b is defined here as the semi-chord. Mass and moment
of inertia of the system are denoted m and Iθ, respectively. The geometric properties of the system are
expressed by means of radius of gyration rθ =

√
Iθ/(mb2) = 0.5 and mass ratio µ = m

πρb . The aerodynamic
drag is assumed to be constantly balanced by a thrust so that the rate of horizontal speed u̇ is zero. Without
affecting the generality of the problem, the centre of mass is located at the leading edge to have a stable
system for many flow conditions.

A. Flight dynamics mode identification

For short-term longitudinal motions, two flight dynamics modes are expected.9 The mode corresponding
to the horizontal degree-of-freedom does not contribute to the short-term response of the system and is
omitted.10 While the eigenvalue of the vertical translation mode remains close to the origin and is thus easy
to calculate, the short period mode originating from the rigid rotation is more challenging to identify. The
associated eigenvalue moves from the origin of the complex plane for an in vacuum mode, to a new, as yet
undefined, position when aerodynamics is added. Two values of the mass ratio µ are investigated for which
the system shows distinct behaviour. The results of identifying this flight dynamics mode are shown with
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Figure 2. Eigenspectrum for identification of flight dynamics mode at µ = 100.
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Figure 3. Magnitude and phase of lift-coefficient derivative CLθ shown as representative entry of Q.

parts of the complete eigenspectrum in Figs. 2 and 4. Note that only the size of the full order problem allows
a direct calculation of the eigenvalues of A and this is not the case in general. Eigenvalues close to a shift
were thus extracted with the shift-invert method and included in Figs. 2 and 4 as reference.

Regarding the case with mass ratio of 100, shown in Fig. 2, the eigenvalue corresponding to the short
period is outside the cloud of fluid eigenvalues. The tracing performed with the Schur complement method,
described in Eq. (12), is shown with the parameter β increasing from zero to one in 20 steps. For each step
Newton’s method was used to calculate the eigenpair for the new value of β using the previous converged
solution as initial guess. At β = 0, when all the flight dynamics eigenvalues are located in the origin of the
eigenspectrum, the selection of the mode to trace is eigenvector-driven and performed by choosing a different
rigid-body eigenvector of Arr as initial guess. The Schur complement method provides an exact solution
to the eigenvalue problem, as can be seen by comparison with the direct method. In addition, the figure
includes the results from the identification method based on the approximation of the interaction matrix
with dynamic derivatives. The matrix Q in Eq. (19) was pre-computed using LFD solves at 25 reduced
frequencies linearly distributed in the interval 0 to 3. A linear interpolation technique is used to evaluate Q
for intermediate reduced frequencies.

The dynamic derivative CLθ relating the lift coefficient to the pitch angle θ is shown in Fig. 3 as a
representative entry of Q. Time-domain forced motion simulations were performed as reference and good
agreement was found with the LFD calculations. Solving Eq. (19), the approximation of simple harmonic
motions for the dynamic derivative method (DD), i.e. by discarding the damping when calculating the
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(a) Part of the eigenspectrum.
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Figure 4. Eigenspectrum for identification of flight dynamics mode at µ = 35.

interaction term, leads to slightly different results compared to the Schur complement method. However,
this introduced error should be seen in relation to the computational cost reduced by an order of magnitude.
A trade-off between the two approaches is the inclusion of damping for the calculation of the dynamic
derivatives. The pre-computation of Q was extended to non-harmonic motions corresponding to a finite
number of points in the complex plane. The set of 25 samples already available at zero damping was
extended calculating the dynamic derivatives at the same frequencies but with a damping corresponding to
the solution provided by the simple dynamic derivatives method. Linear interpolation was then used for
points in the complex plane. The assumption of a linear behaviour with respect to the damping improves
the final solution which is now closer to the exact result provided by the Schur complement method.

The case for the lower mass ratio of 35, when the flight dynamics eigenvalue is inside the cloud as
shown in Fig. 4, is significantly more challenging. The presence of fluid eigenvalues around the target
eigenvalue confuses the Schur tracer converging to fluid eigenpairs during the tracing procedure instead.
This is especially true when approaching the cloud and iterative methods are used to evaluate the interaction
matrix. A way to alleviate this problem, while adding to the computational cost, is to increase the number
of steps for the tracing. In addition, Newton’s method can be formulated to be eigenvector-driven when
solving Eq. (12) by calculating the residual with the eigenvector part of the solution only by ignoring the
component corresponding to the eigenvalue. In fact, distinct eigenvectors correspond to close eigenvalues.
However, the number of steps cannot be increased significantly for realistic test cases and another procedure
is required. The problem is overcome using the dynamic derivatives method for a first approximation of the
solution. This method is not sensible to the presence of fluid eigenvalues since it uses sample points along
the imaginary axis to reconstruct Q. Using the same dynamic derivatives shown in Fig. 3, the eigenvalue
problem in Eq. (19) was solved for µ = 35 by changing the entries in the matrix C only. The approximation
of the resulting eigenvalue was further improved by adding sample points with damping value corresponding
to the approximation. The resulting eigenvalue and eigenvector were used as initial solution for the Schur
complement method which was capable of converging to the exact solution in few iterations.

Two modes were identified for the subsequent model reduction, specifically the short period and the mode
corresponding to the vertical translation. The same techniques described in this section for the identification
of the short period were applied to the translation mode. The corresponding eigenvalue stays very close to
the origin of the eigenspectrum when increasing β. This means that the aerodynamic influence on this mode
is weak making the identification easier.

Once the flight dynamics part of the eigenvector and the corresponding eigenvalue are available, the fluid
parts are computed to assemble the modal bases. As representative entry, the pressure component of the
eigenvector related to the short period at µ = 100 is shown in Fig. 5. A difference of less than 0.4% was
found in the pressure magnitude between eigenvectors resulting from the Schur complement method and the
dynamic derivatives method.
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(a) Magnitude (b) Magnitude difference due to neglecting damping

Figure 5. Difference in pressure component of right fluid eigenvector between Schur complement method and
dynamic derivative method.

B. Model reduction

Subsequently, the system was projected on the modal basis to perform the model reduction. The system is
investigated and results are compared to the full order model. Based on the real part of the flight dynamics
eigenvalues, the system response is expected to be stable for an initial disturbance analysis. Results for an
initial disturbance in the angular velocity of q = 0.1 deg/s at µ = 100 are presented in Fig. 6 for the full
order model (FOM) and reduced order model (ROM). Three ROMs were built using the modes provided by
the Schur complement method, the dynamic derivatives approach (DD) and the dynamic derivatives method
with damping (DDD). The change in the equilibrium state is reproduced by all the ROMs. Results from
the reduced model based on the exact solution from the Schur complement method match the reference full
order model. Small differences are visible in the first two peak values due to the broad band excitation given
by the initial disturbance analysis. This can excite flight dynamics as well as the aerodynamic modes which
decay leaving the system response to the dominant modes. Results from the dynamic derivatives method
show an underestimation of peak values and a general frequency shift. This effect can be related to the
approximations made in evaluating the real and imaginary parts of the eigenvalue. As a confirmation, the
discrepancy disappears when damping is included.

The case for µ = 35 presented in Fig. 7 shows a more damped response as expected from the real part
of the flight dynamics eigenvalue. The new flight path is estimated by all the ROMs while some differences
appear for the peak values. This results from the broadband excitation and increased aerodynamic influence.
The reduced model built with the dynamic derivative method is less accurate for the transient decay even
though the transition to the new equilibrium state is captured. Introducing the aerodynamic damping
when estimating the dynamic derivatives improves the results, which are now closer to the full order model.
However, differences still persist in the transient decay.

The reduced model was extended by introducing an external disturbance. The aim was to produce
a reduced model capable of incorporating flight dynamics effects during gust encounter. Specifically, an
example produced with the full order model at µ = 100 is given in Fig. 8, showing loads for a gust encounter
of a travelling 1– cos gust with vertical velocity Vz = 0.1% of free-stream velocity and initial starting point
at the aerofoil leading edge. Two gust wavelengths with Lg = 5 and Lg = 10 chords were investigated.
Including flight dynamics effects changes the peak values for lift and moment and modifies the general
behaviour. Part of the energy from the disturbance goes into the system dynamics. As a results, the peak
values are lowered and effects on rigid-body dynamics are significant and still visible after the disturbance
had affected the system.
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Figure 6. Response to initial disturbance in angular velocity of q=0.1 deg/s at µ = 100.

Aerodynamic influences contained in the flight dynamics eigenpairs are able to capture the response of
the system to external disturbances as depicted in Fig. 9 for the two wavelengths considered. The results
from the Schur complement method are compared to the full order model showing a general agreement.
Some differences arising in the peak values might depend on a non-complete description of the aerodynamic
phenomena and they are more evident for angular velocity. The reduced model built with the dynamic
derivatives method shows an underestimation of peak values and a shift in the frequency, when compared
to the Schur complement method. The error in the identification of the flight dynamics eigenvalues, as
shown in Fig. 2, affects the final results by means of Eq. (11). The decay ratio and frequency, linked to
the real and imaginary parts of the eigenvalues, are therefore different from exact values given by the Schur
complement method. As a confirmation, extending the calculation of dynamic derivatives to non-harmonic
motions improves the final results and provides a trade-off solution between the two approaches. The trend
is confirmed for a longer gust for which the differences between ROMs and FOM involve the first and second
peak. Afterwards, the system dynamics is dominated by flight dynamics modes and the reduced model
matches the full order model.

Regarding loads, a comparison between lift coefficients computed with reduced and full order models is
presented in Fig. 10 for both initial disturbance analysis and gust encounter. The reduced model based on
the Schur complement method is capable of reconstructing the aerodynamic loads due to the interaction
between the system dynamics and aerodynamics. A good agreement is found for the initial disturbance
analysis as shown in Fig. 10(a). Besides an underestimation of the first peak, loads are evaluated correctly
in terms of both maximal values and phase. The first peak in Fig. 10(b) due to gust loads is completely
ignored by the reduced model. Flight dynamics modes are insufficient to evaluate the increment in loads
from pure aerodynamic disturbances like gusts. The evolution of the system is tracked when the disturbance
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Figure 7. Response to initial disturbance in angular velocity of q=0.1 deg/s at µ = 35.
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Figure 8. Effects of including flight dynamics for gust encounter.
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(a) Gust wavelength Lg = 5
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Figure 9. Gust encounter simulation for 1–cos gust with vertical velocity Vz = 0.1% of free-stream velocity
and initial position at aerofoil leading edge.

0 10 20 30 40 50 60

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

non−dimensional time

C
L

 

 

FOM
ROM (Schur)
ROM (DD)

(a) Initial disturbance

0 10 20 30 40 50 60
−4

−3

−2

−1

0

1

2

3

4
x 10

−3

non−dimensional time

C
L

 

 

FOM
ROM (Schur)
ROM (DD)

(b) Gust encounter with Lg = 5

Figure 10. Loads computation performed with full and reduced order models.

is weaker and system dynamics is dominated by flight dynamics modes. The same behaviour is reported for
longer gust and hence not shown. A solution to reproduce gust loads was recently offered by including gust
modes in the reduced order model.21 These modes, identified using proper orthogonal decomposition, would
be in charge of retaining information for gust loads. The approximation made for the dynamic derivative
method also affects loads estimation since a frequency shift and an underestimation of values is present for
all the cases reported. The inclusion of the damping for the dynamic derivatives method leads to results
which closely resemble the ones from the Schur complement method, thus they are not reported.

IV. Conclusions

The paper outlines a method to include flight dynamics into a reduced order formulation and presents
results for gust encounter of free-flight aircraft structures, specifically aerofoils. Computational fluid
dynamics models the aerodynamics and, in particular, linear frequency-domain methods are largely used.
Two solutions are proposed to identify flight dynamics modes. The first is based on the Schur complement
method applied to the Jacobian matrix of the coupled aerodynamics and flight dynamics system. In terms
of accuracy, results from this technique are comparable to eigenvalue extraction using direct methods. The
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second approach is based on pre-computed dynamic derivatives for simple harmonic motions and implemented
with the linear frequency-domain approach. A trade-off between these two methods is described and applied
by pre-computing dynamic derivatives also for points in the complex plane. These modes identification
techniques are applied to two parameter sets for which the system shows different behaviour. In particular,
a strategy to cope with the identification of flight dynamics eigenvalues inside the cloud of fluid eigenvalues
is presented.

The flight dynamics modes are then used to project the full order residual expanded in a Taylor series.
The resulting reduced model is composed of two modes related to rigid rotation and vertical translation.
The model reduction technique is capable of reproducing the effects of free flight. The reduced model is then
expanded to simulate gust encounter. The effects of the aerodynamic disturbances on the system dynamics
are retained even though the reduced model is not able to reconstruct gust loads, as expected, without
adding additional information to model gusts. Future improvements to the modelling technique such as the
inclusion of gust-related modes to fully account for gust loads and the application of these techniques to
larger three-dimensional test cases, for which no comparison with direct methods is possible, are ongoing.
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