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In the framework of the Standard Model effective field theory, we examine the indirect
constraints on the trilinear Higgs coupling λ that arise from Higgs production in gluon-
gluon-fusion and diphoton Higgs decays. We calculate 2-loop contributions to the gg → h

and h→ γγ amplitudes that are affected by modifications of the trilinear Higgs-boson ver-
tex. Based on our new results, we analyse the sensitivity of present and future measurements
of the hgg and hγγ couplings to shifts in λ. Under the assumption that O6 = −λ

(
H†H

)3
is the only dimension-6 operator that alters the trilinear Higgs interactions, we find that
at present the considered loop-level probes provide stronger constraints than pp→ 2h. At
future high-energy colliders indirect O(5) determinations of the trilinear Higgs coupling
may be possible, making precision measurements of gg → h and h→ γγ a useful addition
to direct extractions of λ through double-Higgs production.
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1 Introduction

The discovery of a boson and measurements of its production and decay rates at the Large
Hadron Collider (LHC) give convincing evidence for the Higgs mechanism in which a linearly
realised SU(2)L × U(1)Y symmetry is spontaneously broken to U(1)EM by the vacuum
expectation value (VEV) of the Higgs field. The new state seems to behave like a CP-even
scalar and has couplings to the gauge bosons and fermions that agree with those predicted
by the Standard Model (SM) at the level of 20% to 100% [1, 2]. The strength of the
Higgs couplings to the other SM fields will be further scrutinised at forthcoming LHC runs
and (possibly) other future high-energy colliders such as an International Linear Collider
or a Future Circular Collider (FCC).

The mechanism of electroweak symmetry breaking (EWSB) is in contrast to the Higgs
gauge boson and fermion couplings essentially unexplored. Within the SM, the mass and
the self-interactions of the physical Higgs field h are parametrised by the potential

VSM =
m2
h

2
h2 + λvh3 +

κ

4
h4 , (1.1)
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where v ' 246 GeV denotes the Higgs VEV and

λ = κ =
m2
h

2v2
. (1.2)

The LHC measurement of the Higgs-boson mass leading to mh ' 125 GeV, probes the first
term in (1.1), but the h3 and h4 couplings, and in particular the SM relation (1.2) have
not been tested. Determinations of the Higgs self-couplings are therefore an essential task
that might provide indirect access to beyond the SM (BSM) dynamics, or if no significant
deviations from (1.2) are found, will further add to the impressive track record of the SM.

High-energy collider allow to probe the coefficients λ and κ in (1.1) through double-
Higgs and triple-Higgs production, respectively. At 14 TeV centre-of-mass energy, the cross
section for pp→ 3h production is of O(0.1 fb), which even at the high-luminosity LHC (HL-
LHC) renders any meaningful extraction of κ impossible (see for instance [3–5]). The
prospect to observe double-Higgs production at the HL-LHC is significantly better since
at 14 TeV the pp→ 2h production cross section amounts to O(35 fb) [6–12]. LHC detections
of double-Higgs production still remain challenging (cf. [13–29]) and in consequence even
with the full HL-LHC data set of 3 ab−1 only an O(1) determination of the trilinear Higgs
coupling seems feasible under optimistic assumptions.

This raises the question if it is possible to constrain λ by other (possibly complementary)
means. As pointed out in [30], one way to achieve sensitivity to the h3 coupling is provided
through precision studies of the process e+e− → hZ, which receives 1-loop corrections
proportional to λ from Feynman diagrams with virtual Higgses and/or a Z boson (see
more recently also [31]). While loop-level probes of the h3 vertex can clearly not replace
extractions of λ based on collider measurements of double-Higgs production, they might
be crucial in resolving degeneracies in parameter space. This is evident by recalling that
gg → 2h production is itself a quantum process that depends not only on the strength of
the h3 interaction, but also on the top-quark Yukawa coupling as well as all the masses and
all the Higgs couplings of the possible BSM particles circulating in the loop graphs.

The main purpose of our work is to illustrate other ways to indirectly probe the coef-
ficient λ entering (1.1). To keep our discussion as model-independent as possible, we will
use an effective field theory (EFT) in which the SM Lagrangian is the leading term and
BSM effects are encoded in dimension-6 operators constructed solely out of SM fields. In
this framework, we calculate 2-loop contributions to the gg → h and h → γγ amplitudes
that are affected by modifications of the h3 vertex. This calculation involves both the com-
putation of the relevant anomalous dimensions of the operators as well as the computation
of finite corrections at the weak scale. Based on our results, we analyse the sensitivity
of present and future measurements of the hgg and the hγγ couplings to shifts in the
trilinear Higgs interactions. We find that our new loop-level probes provide interesting
and meaningful model-independent constraints on λ, in the simplified case that the opera-
tor O6 = −λ

(
H†H

)3 furnishes the sole modification of the h3 vertex. Applying our findings
to ultraviolet (UV) complete realisations of BSM physics is left for further study.

This article is structured as follows. In Section 2 we introduce the effective interactions
relevant for our paper. The results of our 2-loop calculations are presented in Sections 3
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and 4. Our numerical analyses are performed in Sections 5 and 6. We conclude in Section 7.
Some technical details of our computations are described in Appendix A, B, C and D.

2 Preliminaries

New physics can be described in a model-independent way by augmenting the SM La-
grangian LSM by SU(3)C ×SU(2)L×U(1)Y gauge-invariant higher-dimensional operators.
In our work, we consider the effective Lagrangian

L(6) =
∑
k

c̄k
v2
Ok , (2.1)

built out of the following dimension-6 operators

O6 = −λ
(
H†H

)3
,

OH =
1

2
∂µ
(
H†H

)
∂µ
(
H†H

)
,

OT =
1

2

(
H†
↔
DµH

)(
H†
↔
D
µ
H
)
,

OW =
4i

g

(
H†τ i

↔
DµH

)
DνW

i,µν ,

OB =
2ig′

g2
(
H†
↔
DµH

)
DνB

µν ,

OHW =
8i

g

(
DµH

†τ iDνH
)
W i,µν ,

OHB =
4ig′

g2
(
DµH

†DνH
)
Bµν ,

OGG =
2gs
g2

H†H GaµνG
a,µν ,

OBB =
2g′

g2
H†H BµνB

µν ,

Ou = −YuH†H Q̄LuRH̃ ,

Od = −YdH†H Q̄LdRH ,

O` = −Y`H†H L̄L`RH .

(2.2)

Here λ denotes the SM Higgs self-coupling introduced in (1.2), H is the SM Higgs doublet
and we have used the shorthand notation H̃ i = εij

(
Hj
)∗ with εij totally antisymmetric and

ε12 = 1. The covariant derivative operator
↔
Dµ is defined asH†

↔
DµH = H†DµH−

(
DµH

†)H
and τ i = σi/2 with σi the usual Pauli matrices. The coupling constants of the gauge
groups SU(3)C , SU(2)L and U(1)Y are denoted by gs, g and g′, while Gaµν , W i

µν , and Bµν
are the corresponding field strength tensors. The Yukawa couplings Yu, Yd and Y` are
matrices in flavour space and a sum over flavours indices is implicit in (2.2). Finally,
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QL, LL denote left-handed quark and lepton doublets, while uR, dR, `R are right-handed
fermion singlets.

After EWSB, the SU(3)C × SU(2)L × U(1)Y gauge-invariant operators introduced
in (2.2) modify the couplings of the Higgs boson to itself, to vector bosons and fermions.
We write the couplings that result from LSM +L(6) and that are relevant for our article as
follows

L ⊃ −λc3vh3 + cg
h

v
GaµνG

a,µν + cγ
h

v
FµνF

µν , (2.3)

where Fµν = ∂µAν − ∂µAν with Aµ the photon field. Upon canonical normalisation of the
Higgs kinetic term the tree-level coefficient c3 takes the form

c3 = 1 + c̄6 −
3c̄H

2
. (2.4)

The coefficients cg and cγ arise first at the 1-loop level and we will give the relevant expres-
sions below. Note that the Wilson coefficients ck as well as the trilinear Higgs coupling λ
appearing in (2.3) are all understood to be evaluated at the weak scale, which we will denote
by µw hereafter.

A final comment concerns the impact of operators with dimension larger than six.
Including for instance a dimension-8 term of the form

L(8) ⊃ −λc̄8
v4
(
H†H

)4
, (2.5)

would also result in a modification of the trilinear Higgs coupling and the coefficient c3
introduced in (2.3) would receive an additional additive contribution of 2c̄8 in (2.4). In a
given weakly-coupled UV-complete theory the Wilson coefficients c̄6, cH and c̄8 could be
calculated by integrating out heavy degrees of freedom and matching onto L(6) +L(8). The
important point is however that the indirect probes of the Higgs trilinear coupling proposed
in our work measure c3, i.e. the coefficient multiplying the interaction term −λvh3, so that
one does not need to know the precise form of the latter coefficient. In the following we
will focus our attention on BSM scenarios where the Wilson coefficient c̄6 furnishes the
sole modification of the h3 vertex and in consequence formulate the results presented in
Sections 4 to 6 in terms of c̄6. The dependence on c3 could however be easily restored by
replacing c̄6 with c3 − 1 in all relevant formulas.

3 Anomalous dimensions

The primary goal of this article is to determine the dominant corrections to the Higgs
couplings to gluon and photon pairs (2.3) that result from the effective operator O6. In
fact, there are two different kinds of such contributions. First, corrections enhanced by
logarithms ln

(
Λ2/µ2w

)
which arise from the renormalisation group (RG) evolution

dc̄k
d lnµ

= γk6 c̄6 , (3.1)

of the Wilson coefficients c̄k from the new-physics scale Λ down to µw, if the operator
O6 mixes into Ok. Second, finite corrections that stem from the calculation of gg → h
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and h → γγ Green’s functions with modified h3 vertices. In the following, we discuss the
logarithmically-enhanced corrections associated to the RG evolution, turning our attention
to the finite contributions in the next section.

Since a non-zero initial condition c̄6 at Λ does not affect the other weak-scale Wil-
son coefficients c̄k at the 1-loop level [32–35], the leading logarithmic corrections to (2.3)
proportional to c̄6 have to arise from 2-loop diagrams. In order to determine the mixing
of O6 into the set of operators introduced in (2.2) we have calculated the 2-loop matrix
elements HH → HH, HH → BB, HH → WW , HH → BW and HHH → ff̄ involving
a single insertion of O6. The pole parts of the graphs have been evaluated using the method
described for instance in [36–38]. Specifically, we have performed the calculation off-shell in
an arbitrary Rξ gauge which allows us to explicitly check the ξ-independence of the mixing
among physical operators. To distinguish between infrared (IR) and UV divergences, a
common mass M for all fields is introduced, expanding the loop integrals in inverse powers
of M . This makes the calculation of the 2-loop UV divergences straightforward, because
after Taylor expansion in the external momenta,M becomes the only relevant internal scale
and 2-loop tadpole integrals with a single non-zero mass are known [39]. Further technical
details on our off-shell calculation are given in Appendix A.

We find that the only non-vanishing anomalous dimensions γk6 that encode the 2-loop
off-diagonal mixing of O6 into the operators of (2.2) are

γH6 =
1

16π4
12λ2 , γf6 = − 1

16π4

(
λ2 + 3YfY

†
f

)
, (3.2)

where f = u, d, `. These results imply that the weak-scale Wilson coefficients of OH and Of
alone receive logarithmically-enhanced contributions ln

(
Λ2/µ2w

)
proportional to c̄6 at the

2-loop level. In this context it is also important to realise that the higher-dimensional
interactions introduced in (2.2) provide just a subset of the dimension-6 operators of the
full SM effective Lagrangian (cf. [40, 41]). In particular, operators that are composed out of
three field strength tensors such as O3W = 4g2 εijkW

i
µνW

j,ν
ρ W k,ρµ with εijk the Levi-Civita

tensor are not included in L(6). Since O6 involves three powers of H†H it however cannot
give rise to amplitudes like W → WW at two loops, because one has to contract all H
fields to obtain a non-zero matrix element. Since this is first possible at the 3-loop level,
all 2-loop anomalous dimensions describing the mixing of O6 into dimension-6 operators
containing only field strength tensors vanish identically. Beyond that order such mixings
are likely to be present, but a computation of these logarithmic 3-loop corrections is beyond
the scope of this work.

4 Finite corrections to gg → h and h → γγ

As already mentioned, a second type of contributions to the coefficients cg and cγ enter-
ing (2.3) originate from the calculation of gg → h and h→ γγ Green’s functions involving
interaction vertices that are modified by the presence of O6.
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Figure 1. Example of a 2-loop diagram with an insertion of the effective operator O6 that
contributes to the gg → h amplitude at O(λ).

We first discuss the corrections arising in the case of the gg → h amplitude. Expanding
the corresponding Wilson coefficient cg as follows

cg =
αs
π

(
c(0)g +

λ

(4π)2
c(1)g

)
, (4.1)

one obtains at the 1-loop level

c(0)g =
∑
q

Aq ' 0.081 + 0.007 i , (4.2)

where the sum runs over all quarks and

Af =
τf
8

[
1 + (1− τf ) arctan2 1√

τf − 1

]
, (4.3)

with τf = 4m2
f/m

2
h. The numerical value given in (4.2) corresponds to mt ' 163.3 GeV,

mb ' 4.2 GeV, mc ' 1.3 GeV and mh ' 125 GeV. Since the on-shell 1-loop form factor Af
approaches 1/12 for τf → ∞ and vanishes proportional to τf in the limit τf → 0, it is an
excellent approximation to include only the top quark in the sum appearing in (4.2) and
to take the infinite quark-mass limit. In such a case, one arrives at the classic Shifman-
Vainshtein-Zakharov result c(0)g = 1/12 ' 0.083 derived first in [42].

The O(λ) correction to the coefficient cg arises from both 2-loop Feynman diagrams
and 1-loop counterterm graphs involving a Higgs wave function renormalisation. To find the
former type of contribution, we apply EFT techniques (see for instance [43] for a non-trivial
application to Higgs production) and employ a hard-mass expansion procedure τt →∞ to
the full 2-loop diagrams involving a top-quark loop and a h3 vertex that arises from the
insertion of O6. A prototype graph of such a contribution is shown in Figure 1. After
setting mh = 0 and Taylor expanding in the external momenta, this technique reduces the
calculation to the evaluation of 2-loop vacuum bubbles with a single mass scale, which can
all be expressed in terms of Gamma functions (cf. [39]).

The correction proportional to the O(λ) contribution to the Higgs wave function renor-
malisation constant

Zh = 1 +
λ

(4π)2
Z

(1)
h , (4.4)
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is instead found from the 1-loop Higgs-boson selfenergy with one and two insertions of O6.
By a straightforward calculation, we obtain the analytic result

Z
(1)
h =

(
9− 2

√
3π
)
c̄6 (c̄6 + 2) . (4.5)

Combining both contributions, we arrive at

c(1)g = − 1

12

(
1

4
+ 3 ln

µ2w
m2
t

)
c̄6 +

Z
(1)
h

2
c(0)g , (4.6)

with c
(0)
g given in (4.2). As a powerful cross-check of our calculation, we have extracted

the O(λ) correction to the coefficient cg also from the 2-loop gg → 2h and gg → 3h Green’s
functions, obtaining in all three cases the exact same result. Details on the renormalisation
of the bare 2-loop gg → h amplitude can be found in Appendix C. Notice that the first term
in (4.6) represents only the leading term in the asymptotic expansion of the O(λ) correction
to the on-shell gg → h form factor. To determine whether our analytic expression for c(1)g
approximates the full result well would require an explicit calculation of the relevant gg → h

amplitudes that does not rely on the heavy-quark expansion for what concerns the 2-loop
contributions. Such a computation is however beyond the scope of our article.

In the case of the h→ γγ transition, we write

cγ =
α

π

(
c(0)γ +

λ

(4π)2
c(1)γ

)
, (4.7)

where the 1-loop contribution is given by

c(0)γ = AW +
∑
f

2Nf
CQ

2
fAf ' −0.82− 0.01 i . (4.8)

Here N q
C = 3 and N `

C = 1 are colour factors, the sum runs over all electrically charged
fermions carrying charge Qu = 2/3, Qd = −1/3 and Q` = −1, Af has been introduced
in (4.3) and

AW = −1

8

[
2 + 3τW + 3τW (2− τW ) arctan2 1√

τW − 1

]
, (4.9)

with τW = 4m2
W /m

2
h. In order to obtain the numerical result in (4.8), we have employed

mW ' 80.4 GeV and mτ ' 1.777 GeV. Numerically, one has furthermore AW ' −1.04,
while in the limit τW → ∞ (τW → 0) the on-shell 1-loop form factor AW tends to the
constant value −7/8 (−1/4). In the infinite mass limit τt,W → ∞, one therefore finds
that c(0)γ = −47/72 ' −0.65. Notice that compared to the case of Af the heavy-mass
expansion works less well for AW , but still captures around 85% of the exact 1-loop result.
Motivated by this observation we again apply a hard-mass expansion procedure to obtain
an approximation for the 2-loop corrections to cγ involving W± (φ±) exchanges.

Since after EWSB the operator O6 modifies both the trilinear Higgs coupling as well as
the coupling between two Higgses and two charged would-be Goldstone bosons

(
see (B.2)

)
,

one naively has to consider 2-loop diagrams that contain both a h3 and a h2φ+φ− vertex.
A possible graph of each type is depicted in Figure 2. To maintain gauge invariance at the
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Figure 2. Left: Example of a 2-loop diagram involving a h3 vertex that in the limit mW � mh

gives rise to h → γγ at O(λ). Right: A possible 2-loop graph with a hφ+φ− vertex. For mh = 0,
diagrams of this type do however not contribute to h → γγ at O(λ). For additional explanations
see text.

level of off-shell Green’s functions, we use the ’t Hooft-Feynman version of the background
field gauge for the external photon fields (see e.g. [44]) when calculating these diagrams. In
this gauge there is no γW±φ∓ vertex and as a result all 2-loop graphs involving a h2φ+φ−

interaction necessarily also contain a hφ+φ− vertex. Since the Feynman rule of the hφ+φ−

coupling is proportional to m2
h/mW , it then follows that diagrams with a h2φ+φ− vertex

do not contribute to c(1)γ in the limit τW →∞. We have verified this feature by an explicit
calculation of the corresponding 2-loop graphs.

Combining the 2-loop gauge boson and top-quark contributions and including the cor-
rection due to the wave function renormalisation of the Higgs boson, we find for τt,W →∞
the following analytic expression

c(1)γ = −7

8

(
9

7
− 22

7
ln

µ2w
m2
W

)
c̄6 −

2

9

(
1

4
+ 3 ln

µ2w
m2
t

)
c̄6 +

Z
(1)
h

2
c(0)γ , (4.10)

with Z(1)
h and c(0)γ given in (4.5) and (4.8), respectively. The necessary ingredients to obtain

the above result are presented in Appendix C, while the renormalisation of the would-be
Goldstone boson sector is discussed in Appendix D.

5 Constraints from double-Higgs production

In the next section will derive existing and possible future limits on the modifications of
the h3 coupling that arise from gg → h and h→ γγ. All the numbers that we will present
below should be compared to the bounds on the trilinear Higgs coupling that one can obtain
by studying double-Higgs production at the LHC.

In fact, ATLAS has combined the full 8 TeV data set corresponding to 20.3 fb−1 of in-
tegrated luminosity to search for 2h→ 2b2τ, 2γ2W, 2γ2b and 4b [45–47]. While no evidence
for double-Higgs production is observed, a 95% confidence level (CL) upper limit of 0.69 pb

is set on the production cross section, which is about 70 times above the SM expectation of
(9.9± 1.3) fb [10]. To derive a bound on c̄6, we use the MadGraph5_aMC@NLO [48] implemen-
tation of cross section computations for loop-induced processes [49] as well as HPAIR [50, 51].
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For pp collisions at 8 TeV, we obtain

σ(pp→ 2h) = (9.9± 1.3)
(
1− 0.87c̄6 + 0.33 c̄ 26

)
fb , (5.1)

if only the Wilson coefficient c̄6 is allowed to be non-zero, but the remaining coefficients c̄k
of the operators entering (2.2) are assumed to vanish. Taking into account theoretical
uncertainties, we find from this formula that the ATLAS limit on the pp→ 2h production
cross section translates into the following 95% CL bound

c̄6 ∈ [−15.5, 18.1] . (5.2)

This limit implies that the combination λc̄3 introduced in (2.3) can at present still deviate
from the SM trilinear Higgs coupling λ by a factor of about 17. This finding agrees with
the conclusion drawn in [28].

At the HL-LHC with 3 ab−1 of integrated luminosity the constraints on the trilinear
Higgs coupling are expected to improve considerably (cf. [13–29]). For example, the ATLAS
study [26] implies that the ultimate sensitivity that the LHC can reach in the 2h → 2b2γ

channel, will allow to set a 95% CL bound of

c̄6 ∈ [−2.3, 7.7] , (5.3)

on the coefficient of the dimension-6 operator O6. In order to allow for a better comparison
with (5.2) and the bounds derived in the next section, the quoted limit again assumes that c̄6
is the only numerically relevant Wilson coefficient at the weak scale. If this assumption is
relaxed the limit (5.3) can worsen by a factor of a few [25, 27]. Notice finally that (5.3)
exhibits two solutions. The first one is located close to the SM point at c̄6 = 0, while the
second solution at c̄6 ' 5.7 corresponds to the case where the gg → 2h amplitude has an
opposite sign with respect to the SM. Removing the non-SM solution seems challenging at
the HL-LHC, but should be possible at a 100 TeV FCC-pp [27].

6 Constraints from Higgs production and diphoton decay

In the following, we study the present constraints and the future sensitivities on the tri-
linear Higgs coupling that are provided by gg → h and h → γγ. In order to allow for
an easy comparison with the results (5.2) and (5.3), we will throughout assume that the
modifications of the Wilson coefficient of the operator O6 furnish the dominant contribution
to the observable under consideration, and consequently neglect effects associated to the
remaining c̄k in (2.1).

The ratio of the cross sections for Higgs-boson production in gluon-gluon fusion and
the modification of the signal strength for Higgs decays into two photons can be written as

µgg =
σ(gg → h)

σSM(gg → h)
= |κg|2 , µγγ =

Γ(h→ γγ)

ΓSM(h→ γγ)
= |κγ |2 , (6.1)

respectively. From the definitions (4.1) and (4.7) it is then readily seen that (i = g, γ)

κi ' 1 +
λ

(4π)2
Re c

(1)
i

Re c
(0)
i

, (6.2)
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where we have neglected the small imaginary parts of c(0)i and c(1)i .
In order to set limits on the Wilson coefficient c̄6, we use the latest results of a global

fit to the Higgs production channels performed by ATLAS [1] and CMS [2], where the
effective couplings κg, κγ and κγZ are left to vary freely. All the remaining couplings are
set to their SM values. ATLAS and CMS obtain κg = 1.12 ± 0.12, κγ = 1.00 ± 0.12 and
κg = 0.89± 0.10, κγ = 1.15± 0.13, respectively. Performing a naive weighted average, one
finds

κg = 0.98± 0.08 , κγ = 1.07± 0.09 . (6.3)

Employing now (4.2), (4.6), (4.8), (4.10), identifying µw = mh ' 125 GeV and treating the
extractions of κg and κγ as uncorrelated, these limits translate into

c̄6 ∈ [−12.7, 9.9] , (6.4)

at 95% CL. One observes that the present indirect constraint arising from a combination
of the observed gg → h and h → γγ signal strengths is more restrictive than the direct
bound (5.2) from pp → 2h production. We believe that this is an interesting finding,
because it shows that it is possible to constrain the h3 couplings at a pp collider by means
other than double-Higgs production.

Since at the time the LHC has collected 3 ab−1 of data, the effective hgg and hγγ

couplings will be known much more accurately than today as well, it is also interesting
to study the prospects of the indirect probes provided by gg → h and h → γγ. The
sensitivity study [52] finds for instance that compared to (6.3) the precision on κg (κγ)
might be improved by a factor of 3 (4). Assuming that the central values of the future LHC
measurements end up being spot on the SM, this means

κg = 1.00± 0.03 , κγ = 1.00± 0.02 . (6.5)

The corresponding 95% CL limit on the Wilson coefficient of O6 reads

c̄6 ∈ [−8.0, 5.1] . (6.6)

With such a precision one will start to become sensitive to the flipped-sign solution in (5.3).
At a e+e− option of a FCC (FCC-ee), the bounds (6.5) may even be further tight-

ened [53], possibly leading to

κg = 1.00± 0.01 , κγ = 1.00± 0.015 . (6.7)

With this sensitivity, one could set the following 95% CL limit

c̄6 ∈ [−5.3, 3.8] . (6.8)

This bound improves on the LHC Run I constraint (6.4) by a factor of around 2.5. No-
tice that in this case the non-SM solution present in (5.3) would be fully removed by the
combination of gg → h and h→ γγ.
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7 Conclusions

In this article, we have proposed to constrain deviations in the trilinear Higgs coupling λ
by studying Higgs production in gluon-gluon-fusion and diphoton Higgs decays. To keep
our discussion general, we have employed the SM EFT, in which new-physics effects are de-
scribed by dimension-6 operators. In this framework, we have calculate 2-loop contributions
to the gg → h and h→ γγ amplitudes that are affected by insertions of the effective operator
O6 = −λ

(
H†H

)3. By an explicit calculation of the complete 2-loop anomalous dimensions
involving a single insertion of O6, we have shown that the effective hgg and hγγ couplings
do not receive logarithmically-enhanced contributions proportional to c̄6. The leading con-
tributions to the gg → h and h→ γγ transitions involving the Wilson coefficient of O6 are
hence finite and arise from 2-loop Green’s functions with modified interaction vertices. We
have calculated these corrections by employing a heavy-mass expansion procedure.

Assuming that c̄6 is the only Wilson coefficient that receives a non-vanishing correction
at the scale where new physics enters, we have analysed the sensitivity of present and
future measurements of the signal strengths in gg → h and h → γγ. In particular, we
have demonstrated that the indirect constraints on c̄6 that follow from a combination of
the LHC Run I measurements of Higgs production in gluon-gluon-fusion and diphoton Higgs
decays are more stringent than a direct extraction that uses the recent ATLAS upper limit
on double-Higgs production. Our novel 95% CL bound of c̄6 ∈ [−12.7, 9.9] implies that the
trilinear Higgs coupling can at the moment still deviate from its SM value by a factor of
approximately 11.

We have furthermore investigated the prospects of the indirect constraints at future
high-energy colliders. In the case of the HL-LHC with 3 ab−1 of integrated luminosity,
we have found that it should be possible to improve the present bound by a factor of
more than 1.5, while for a FCC-ee an improvement by a factor of 2.5 seems feasible. The
indirect tests proposed in our work could thus become sensitive to |c̄6| ' 5, while studies
of double-Higgs production at the LHC may ultimately allow to set a 95% CL bound
of c̄6 ∈ [−2.3, 7.7]. The sensitivity of our proposal is hence not sufficient to compete with
the constraints of pp → 2h for what concerns the solution close to c̄6 = 0, but it should
allow to remove parts of the flipped-sign solution centred around c̄6 ' 5.7.

While the proposed indirect probes of λ can clearly not replace the direct extraction
of the trilinear Higgs coupling at the LHC through double-Higgs production, we believe
that they may turn out to be very valuable when included into a global analysis of Wilson
coefficients, because compared to the direct measurement they constrain different linear
combinations of effective operators in the SM EFT. An extension of our analysis of indirect
probes to other Higgs measurements, electroweak precision observables or quark flavour
physics thus seems worthwhile and will be considered elsewhere.
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A Non-physical operators

In addition to the gauge-invariant operators (2.2), non-physical operators arise as countert-
erms in the renormalisation of higher loop one-particle-irreducible off-shell Green’s functions
with an insertion of the operator O6. These non-physical operators can in general be di-
vided into operators that vanish by the use of the equations of motion (EOM), non-physical
counterterms that can be written as a Becchi-Rouet-Stora-Tyutin (BRST) variation of other
operators, i.e. so-called BRST-exact operators, and evanescent operators that vanish alge-
braically in d = 4 dimensions.

For the calculation of the 2-loop anomalous dimensions that describes the mixing of O6

into Ok, it turns out that BRST-exact and evanescent operators do not play a role, and
that only a single EOM-vanishing operator is necessary. This operator can be written as

N1 = H†H

[
H†
[
DµD

µH
]

+
[
Dµ (DµH)†

]
H

−m2
h

(
1− 3c̄6

4

)
H†H + 4λ

(
1− 3c̄6

2

)(
H†H

)2
+
(
Yu Q̄LuRH̃ + Yd Q̄LdRH + Y` L̄L`RH + h.c.

)]
.

(A.1)

The terms c̄6 appear here because λ denotes the combinationm2
h/(2v

2) of the Higgs massmh

and its VEV v
(
see (1.2)

)
and not the coefficient multiplying the quartic coupling (H†H)2

entering the SM Higgs potential. At the order we are working the terms proportional to c̄6 do
not contribute to (3.2). Note that the EOM-vanishing operator N1 arises as a counterterm
independently of the IR regularisation adopted in the computation of the 2-loop anomalous
dimensions of O6. However, if the regularisation respects the underlying symmetry, and all
the diagrams are calculated on-shell, non-physical operators have vanishing matrix elements.
In this case the operator given in (A.1) would not contribute to the mixing of physical
operators. If the gauge symmetry is broken this is no longer the case, as graphs with
insertions of non-physical operators will generally project onto physical operators. Since
our IR regularisation implies massive boson propagators, non-physical counterterms play a
crucial role at intermediate stages of our anomalous dimensions calculation.

B Feynman rules

Inserting the explicit form of the SM Higgs doublet

H =

 φ+

1√
2

(
v + h+ iφ0

)
 , (B.1)
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Figure 3. Left: UV divergent 1-loop diagram that involves the insertion of an effective gghh and h3

vertex. Right: An example of a 1-loop diagram that gives rise to an effective gghh interaction after
the top quark has been integrated out.

into the expression for O6 as given in (2.2), one obtains the following interactions

O6 ⊃ −
[
vh3 +

3

2
h4 +

3

2
h2
(
(φ0)2 + 2φ+φ−

)
+

3

4v
h5

+
3

2v
h3
(
(φ0)2 + 2φ+φ−

)
+

3

4v
h
(
(φ0)2 + 2φ+φ−

)2]
λv2 .

(B.2)

Notice that O6 does not contain a 3-point interaction of the form hφ+φ−, but 4-point
interactions like h2φ+φ− and h2(φ0)2 as well as 5-point interactions such as h3φ+φ−

and h (φ0)2φ+φ−.

C Renormalisation procedure for gg → h and h → γγ

In this appendix we briefly describe the renormalisation procedure that leads to our re-
sults (4.6) and (4.10). We start with the O(λ) corrections to the gg → h amplitude. In the
limit of infinitely heavy top quark, we find the following unrenormalised 2-loop amplitude

A(1)
un (gg → h) =

αs
πv

λc̄6
(4π)2

[
− 1

4ε
− 1

2
ln
µ2w
m2
t

− 25

48

]
, (C.1)

where ε = (4−d)/2. The renormalised 2-loop amplitude is obtained by adding to (C.1) the
counterterm contribution

A(1)
ct (gg → h) =

λc̄6
(4π)2

12v

ε

{
αs

48πv2

[
1 + ε

(
ln
µ2w
m2
t

+ 2

)]}
. (C.2)

Here the first term proportional to c̄6 arises from the fact that for τt →∞ the operator O6

leads to a UV divergent ggh matrix element through a 1-loop diagram involving an ef-
fective gghh coupling. The term in the curly brackets, on the other hand, represents the
result for the 1-loop amplitude of gg → hh in the infinite top-quark mass limit, including
terms up to O(ε). The corresponding Feynman graphs are depicted in Figure 3. Notice
that subtracting the counterterm contribution (C.2) from the unrenormalised result (C.1),
leads to the finite correction (4.6) that is independent of IR physics, i.e. our result for c(1)g
does not depend on how light degrees of freedom are treated in the calculation.
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Figure 4. Left: Diagram with an insertion of O6 that leads to a UV divergent contribution
to the hφ+φ− amplitude at the 1-loop level. Right: Feynman diagram that is needed to cancel
the UV poles of the 2-loop h → γγ diagrams involving a divergent hφ+φ− subgraph. The black
box indicates a counterterm insertion here.

In the case of h→ γγ, we instead find the following unrenormalised 2-loop amplitude

A(1)
un (h→ γγ) =

α

πv

λc̄6
(4π)2

[
11

4ε
+

11

2
ln

µ2w
m2
W

+
35

8

]
, (C.3)

in the limit τW →∞. The corresponding counterterm takes the form

A(1)
ct (h→ γγ) =

λc̄6
(4π)2

12v

ε

{
− 7α

32πv2

[
1 + ε

(
ln

µ2w
m2
W

+
44

21

)]}

+
α

π

λc̄6
(4π)2

3v

2εs2w

{
− s2w

12v2

(
1 + ε ln

µ2w
m2
W

)}
,

(C.4)

where sw denotes the sine of the weak mixing angle. The counterterm contribution has
been split into two parts. The first one represents (in full analogy to the case of gg → h)
the product of the UV divergent 1-loop matrix element involving O6 and an effective hhγγ
vertex times the gauge-boson contribution to the 1-loop hh → γγ amplitude, evaluated
for mW � mh. The second term subtracts the UV divergences of the 2-loop diagrams
that contain a divergent hφ+φ− subgraph. The relevant 1-loop diagrams needed for this
subtraction are shown Figure 4. The graph on the left-hand side leads to the UV pole in
the second line of (C.4), while the right diagram gives rise to the expression inside the curly
bracket.

D Unphysical Higgs sector

To first order in λ the charged would-be Goldstone boson propagator receives corrections
from the Feynman diagrams shown in Figure 5, and similar graphs involving a virtual
exchange of a neutral would-be Goldstone boson φ0. The calculation of the renormalised
1-loop Goldstone selfenergies requires a renormalisation condition that involves tadpoles.
The most common ways to fix the tadpole contributions consists in requiring that the
effective potential contains no term linear in the Higgs field [54] or in employing the MS

scheme [55, 56]. After a simple calculation it turns out that the O(λ) corrections to the
Goldstone selfenergies cancel irrespectively of the precise treatment of the tadpoles. This
is a result of gauge invariance.
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Figure 5. Feynman graphs with an insertion of O6 (black box) that contribute to the selfenergy
of the charged would-be Goldstone bosons φ± at the 1-loop level. The corresponding countert-
erm (black cross) diagrams are also shown.

The vanishing of the O(λ) corrections to the φ± selfenergies implies that in the calcu-
lation of the coefficient c(1)γ

(
see (4.7)

)
one does not have to consider 2-loop diagrams that

involve a 1-loop correction to charged would-be Goldstone boson propagators. One can fur-
thermore show that 2-loop O(λ) contributions that arise from the h3φ+φ− or h (φ0)2φ+φ−

parts of O6

(
see (B.2)

)
are cancelled by 1-loop counterterm contributions, and that this

cancellation is again independent of the precise treatment of the unphysical Higgs sector,
as long as the procedure respects gauge invariance.
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