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Abstract

Descriptive document clustering aims at discovering clusters of semantically interrelated documents

together with meaningful labels to summarise the content of each document cluster. In this work, we

propose a novel descriptive clustering framework, referred to as CEDL. It relies on the formulation and

generation of two types of heterogeneous objects, that correspond to documents and candidate phrases,

using multi-level similarity information. CEDL is composed of five main processing stages. Firstly, it

simultaneously maps the documents and candidate phrases into a common co-embedded space that

preserves higher-order neighbour-based proximities between the combined sets of documents and phrases.

Then, it discovers an approximate cluster structure of documents in the common space. The third stage

extracts promising topic phrases by constructing a discriminant model where documents along with their

cluster memberships are used as training instances. Subsequently, the final cluster labels are selected from

the topic phrases using a ranking scheme utilising multiple scores based on the extracted co-embedding

information and the discriminant output. The final stage polishes the initial clusters to reduce noise and

accommodate the multi-topic nature of documents. The effectiveness and competitiveness of CEDL is

demonstrated qualitatively and quantitatively with experiments using document databases from different

application fields.
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Descriptive Document Clustering via Discriminant Learning in a Co-embedded Space of

Multi-level Similarities

Introduction

Descriptive clustering is an important task in information retrieval and text mining, and is defined

as the “discovering of diverse groups of semantically related documents described with meaningful,

comprehensible and compact text labels" (Weiss, 2006). Such a task facilitates the management of the

large and ever-growing collection of electronic documents. It is particularly useful in search results

clustering for grouping fragments of documents retrieved by a search engine, in order to accommodate the

explosive expansion of the information accessible in the internet (Bharambe & Kale, 2011). Traditional

document clustering only focuses on one objective, which is to find groups of similar documents without

the need to generate descriptive labels for the pinpointed clusters. Differently, the primary goal of

descriptive clustering is to extract accurate, comprehensible and succinct descriptive labels for summarising

document cluster contents. In certain practical circumstances, the generation of good quality labels is

considered even more important than the discovery of accurate document clusters. For example, in the

development of a web-based search results clustering systems (Osiński & Weiss, 2005; Weiss, 2006;

Stefanowski & Weiss, 2007; Koshman, Spink, & Jansen, 2006), the priority is to help users to understand

rapidly the content of a document collection through comprehensible cluster labels.

Relevant descriptive clustering techniques are summarised in various surveys on topic discovery

(Jayabharathy, Kanmani, & Parveen, 2011) and search results clustering (Bharambe & Kale, 2011;

Carpineto, Osiński, Romano, & Weiss, 2009). These techniques are developed by utilising knowledge and

methodologies on information retrieval and machine learning. Frequently used descriptive clustering

approaches include phrase-based clustering, e.g., frequent term (FT) based clustering (Beil, Ester, & Xu,

2002; Y. Li, Chung, & Holt, 2008) and suffix tree clustering (STC) and its variations (Zamir, 1999;

Janruang & Kreesuradej, 2006; Wang, Mo, Huang, Wen, & He, 2008), various traditional clustering

algorithms combined with the procedure of post-assigning cluster labels (Cutting, Karger, Pedersen, &

Tukey, 1992; Lagus, Kaski, & Kohonen, 2004; Tseng, 2010), as well as description-comes-first (DCF)

clustering approaches, e.g., descriptive k-means (DKM) clustering (Weiss, 2006; Stefanowski & Weiss,

2007) and concept-driven clustering based on matrix factorisation (known as Lingo) (Osiński, Stefanowski,

& Weiss, 2004). Discussions of the advantages and disadvantages of these methods, as well as brief

descriptions of several representative methods are provided in the subsequent section.

Descriptive clustering solves a mixture of the document grouping (finding document clusters) and

summarisation (finding descriptive labels) problems. Although many methods have been developed, most
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of them provide solutions that offer performance improvement to only one of the two problems, e.g.,

pursuing either higher-quality document clusters or more meaningful descriptive labels (further discussions

are included in the subsequent section). However, both tasks of cluster discovery and cluster label

generation are actually of equal importance and highly sought by many text mining tools and services, and

it is thus important to study how to simultaneously improve each objective without unilaterally focusing

on either one. We will show that this new aim can transform the standard homogeneous data analysis

problem, e.g., grouping documents or ranking phrase labels respectively on their own, to a more

challenging heterogeneous data analysis problem of jointly analysing documents and descriptive phrases by

blending various connections between documents, between phrases, and between document and phrases.

To effectively solve the introduced heterogeneous problem, we propose a novel and powerful framework

that constitutes the principal contribution in this work.

The proposed framework is a multi-stage one driven by three input similarity matrices: a

between-document matrix, a between-phrase matrix, and a two-mode one between documents and phrases.

It discovers document clusters and induces cluster labels by using clustering, embedding and discriminant

learning techniques. It is composed of the following five main processing components: (i) generation of

co-embeddings, (ii) exploration of cluster structure, (iii) discovery of topic phrases, (iv) determination of

cluster labels, and (v) verification of document clusters. Both the cluster discovery and label generation

procedures are performed in a co-embedded space computed from a second-order neighbour-based

similarity matrix. This matrix is designed to represent better the syntactic and semantic connections

between and within the document sets and candidate phrase sets, and thus leads to more informative

co-embeddings. The cluster labels are generated by following a gradual multi-stage search procedure that

consults a discriminant model constructed using the documents associated with a set of initial cluster

memberships as the training instances, and multiple scores to support ranking. Such a design aims at

increasing the internal consistency of the document clusters and complying with the descriptive nature of

the language. For evaluation, we use documents from three databases in different application fields to

conduct comparative analysis between CEDL and two state-of-the-art descriptive clustering methods.

Experimental results demonstrate the effectiveness of our proposed method.

Relevant Techniques

Among existing descriptive clustering algorithms, STC is perhaps the earliest one that discovers and

merges clusters based on phrase co-occurrences (Zamir, 1999). Subsequently proposed FT-based clustering

approaches (Beil et al., 2002; Y. Li et al., 2008) are designed to further improve STC, by directly

manipulating frequently occurred terms with respect to their supporting documents. Both STC and
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FT-based approaches operate on sequences of words according to document counts and phrase/term

frequencies. However, this may not well imply semantic connections between documents (Janruang &

Guha, 2011). Differently, traditional clustering algorithms and statistical topic models (Zeng, Cheung, &

Liu, 2013) have better chance of producing good semantic clusters with the use of sophisticated linguistic

features (Hatzivassiloglou, Gravano, & Maganti, 2001) or their corresponding embeddings for discovering

latent semantic information (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990; Lam, Tsang, &

Wong, 2013), as well as external information resources (Noel, Raghavan, & Chu, 2003; Theodosiou,

Darzentas, Angelis, & Ouzounis, 2008; Chang & Chen, 2011). These methods combined with strategies of

post-assigning cluster labels constitute an important group of descriptive clustering approaches as

described below.

Traditional Clustering with Post-assignment of Labels

This type of approaches typically start with characterising each target document with a set of

numerical features, and proceed with grouping the documents into clusters within the feature space.

Finally, they generate a text label to summarise the content of each document cluster based on its input

text.

To obtain the numerical feature representation for a set of documents, the vector space model

(VSM) (Baeza-Yates & Ribeiro-Neto, 1999; Dubin, 2004) is commonly used, and is often combined with a

term weighting scheme for computing the feature value (Salton & Buckley, 1987; Lan, Tan, Su, & Lu,

2009). Let {xi}ni=1 denote the set of d-dimensional feature vectors extracted from the n targeted

documents, where xi = [xi1, xi2, . . . , xid]T , and X = [xij ] denote the corresponding n× d feature matrix,

known as the document-term matrix. A clustering algorithm groups the documents into flat or hierarchical

clusters based on the matrix X, for instance, k-means clustering and its variations (Jain, 2010; Cutting et

al., 1992; Hearst & Pedersen, 1996; P. Jiang, Zhang, Guo, Niu, & Gao, 2009), matrix decomposition or

factorisation based clustering (Drineas, Frieze, Kannan, Vempala, & Vinay, 1999; W. Xu, Liu, & Gong,

2003; Zhang & Dong, 2004; Z. Li, Peng, & Wu, 2008), self-organising maps (Kohonen, 1990; Lagus et al.,

2004) and fuzzy clustering (Krishnapuram, Joshi, & Yi, 1999; Z. Jiang, Joshi, K., & Yi, 2000; Matsumoto

& Hung, 2010). Other than relying on the feature representation in terms of X, some clustering algorithms

directly operate on a similarity matrix or equivalently a relationship graph between documents; these

include minimum spanning tree clustering (Rooneya, Pattersona, Galushkaa, & Dobryninb, 2006; Chang &

Chen, 2011) and Markov clustering (Dongen, 2000; Theodosiou et al., 2008). For these algorithms, the

similarity matrix or graph to be used as the input can either be computed directly from X (Carmel,

Roitman, & Zwerdling, 2009; Hussain, Bisson, & Grimal, 2010), or constructed separately from external
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information resources (Noel et al., 2003; Theodosiou et al., 2008; Chang & Chen, 2011).

To summarise the content of an acquired document cluster with a description label, a candidate

label pool is first constructed, which includes multiple potential descriptive labels. There are several ways

for collecting such candidates. For example, they can be short lists of single words contained within the

documents (Cutting et al., 1992; Lagus & Kaski, 1999; Lagus et al., 2004), phrases directly extracted from

the input text (Zamir, 1999; Weiss, 2006; Jones & Paynter, 2002), key terms obtained from external

resources, e.g., the electronic lexical database WordNet (Tseng, 2010), MeSH terms from PubMed

(Theodosiou et al., 2008) and the free on-line encyclopedia Wikipedia (Syed, Finin, & Joshi, 2008; Carmel

et al., 2009), as well as phrases contained by a predefined ontology to guarantee comprehensibility (Weiss,

2006). Subsequently, for each document cluster, a set of descriptive scores is computed for these candidates

and the one possessing the highest score is selected as the corresponding cluster label. Usually, the scores

can be formulated with phrase lengths, term and/or document frequencies. Different scoring schemes that

can be used for such purpose are presented in (Lagus & Kaski, 1999; Treeratpituk & Callan, 2006; Geraci,

Pellegrini, Maggini, & Sebastiani, 2006; Tseng, 2010).

Although good semantic clusters of documents can be discovered due to the use of powerful features

or (dis)similarity representations of documents, the generated cluster labels may not always be satisfactory

(Weiss, 2006). This is because most strategies of post-assigning cluster labels are solely based on

occurrence frequencies of the candidate phrases, and thus, they can be semantically shallow. To improve

this, strategies that focus more on generating comprehensible, concise and transparent cluster labels than

document groupings are proposed, known as DCF with emphasis on cluster description. In the following,

we briefly introduce the two commonly used DCF approaches of DKM and Lingo.

Descriptive k-Means Algorithm

The basic idea of DCF is to determine the cluster labels first, and then discover the document

clusters based on the induced labels. DKM (Weiss, 2006; Stefanowski & Weiss, 2007) uses frequent phrases

and noun phrases extracted from the input text of the targeted documents via suffix trees and a

pre-trained statistical chunker as the candidate label pool.

To obtain the cluster labels, DKM first employs k-means clustering to group the targeted documents

into a pre-defined number of clusters. The used features for characterising these documents are obtained by

combining VSM and a term weighting scheme with each feature dimension corresponding to a uni-gram

word. For each cluster centroid feature vector, its top b features that possess the highest feature values

indicate the top b words that are the most relevant to the topic of that cluster. DKM determines each

cluster label based on the corresponding top b relevant words. Specifically, DKM builds a simple
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VSM-based information retrieval system with the top words forming a weighted boolean query. A

descriptive score measuring the relevance of each candidate label to the query is computed based on this

retrieval system, where the users are allowed to adjust the score by penalising it with a desired length

(number of words) for the label. For each cluster centroid, the candidate label possessing the highest

descriptive score is selected as the descriptive label.

Other than adopting the clustering results of k-means as the final document clusters, DKM

implements an extra document reallocation procedure to produce overlapping between document clusters.

For each cluster label, any document that includes the exact copy of this label, its possibly distorted

version or any synonymous phrases, it is assigned as its member. Cluster labels that do not collect enough

documents are removed.

Compared to the label post-assignment procedures combined with the traditional clustering

approaches, the prior label generation procedure used by DKM is more sophisticated. It has higher chance

of producing more meaningful cluster labels due to its two-stage label selection procedure from the top b

words to the final label phrase, as well as the carefully designed descriptive score for ranking the candidate

phrases. However, the later document reallocation may affect the quality of document clusters when it

replaces the original cluster structure discovered by k-means clustering with ones obtained purely based on

phrase occurrence rate. During this procedure, semantic connections between documents may be lost.

Concept-driven Clustering based on Matrix Factorisation

Lingo is another popular DCF approach known as concept-driven clustering based on matrix

factorisation (Osiński et al., 2004; Osiński & Weiss, 2005; Weiss, 2006; Osiński, 2006). Its candidate label

pool includes both uni-gram words and a set of m frequent phrases extracted from the input text of the

targeted documents based on suffix trees. By applying VSM with a tf-idf (term frequency - inverse

document frequency) weighting scheme to both documents and candidate labels, Lingo operates on two

input matrices. One is the n× d feature matrix X of documents, obtained by converting each targeted

document to tf-idf values of a total of d uni-gram words. The other is the (m+ d)× d feature matrix

Xc = [XT
p , Id×d]T of candidate labels. The m× d matrix Xp converts each phrase candidate to tf-idf values

of the d uni-gram words. The identity matrix Id×d represents the feature matrix of the word candidates in

terms of uni-gram words themselves. The row vectors of X and Xp are normalised to have unit length.

To discover latent semantic topics from the targeted documents, the singular value decomposition

(SVD) of X is computed. Letting Uk denote the n× k left singular vector matrix, Vk the d× k right

singular vector matrix, and Sk the k × k singular value matrix, the quantity UkSkVT
k is well-known to

provide the k-rank approximation of X. The number of k is controlled by Lingo through a percentage
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threshold 0 < q ≤ 1. By treating the k × d matrix VT
k as the feature matrix of k latent topic vectors of

dimensionality d, Lingo computes a similarity matrix between the k topics and the (m+ d) candidate

labels as Stc = VT
kX

T
c . Then, the candidate that is the most similar to each semantic topic is selected as

its descriptive label. Such a procedure discovers a total of k cluster labels corresponding to k potential

document topics.

To discover document clusters based on the obtained cluster labels, Lingo computes an n× k

membership matrix M = [mij ] via M = XXT
l , where Xl denotes the k × d feature matrix of the cluster

labels in terms of uni-gram words. Each element mij indicates the relevance between the ith document and

the jth cluster label. The ith document is added to the jth cluster if mij exceeds a snippet assignment

threshold. Documents that are not assigned to any cluster constitute a new cluster of “others”.

Lingo generates cluster labels via manipulating latent variables produced by SVD. Its performance

heavily relies on the validity of the similarity assumption formulated by Stc = VT
kX

T
c , which unfortunately

can be unreliable when processing lengthy documents, and can thus, lead to unsatisfactory cluster quality.

Overall, existing methods, e.g., STC and FT-based clustering, that partition documents by

individually looking into their shared and/or frequent phrases and sequences of terms are not able to

capture well the hidden semantic information in the text. By utilising more sophisticated clustering models

and DCF models, improvement can be achieved in terms of either document clusters or descriptive labels,

but not both. To further improve the development of descriptive clustering techniques, we design a novel

descriptive clustering framework, aiming at simultaneously producing good quality of both document

clusters and descriptive labels.

The Proposed Method

Descriptive clustering is a unique heterogeneous data analysis task, which requires to manipulate

two sets of heterogeneous objects, a set of n documents {Di}ni=1 to be clustered and a set of m phrases

{Pi}mi=1 to be used as candidate labels, according to links between them. The considered link information,

such as similarities between documents, or connections between phrases and document contents, dominates

the procedure of what document clusters to discover and which phrase labels to choose. For example, STC

and FT-based approaches utilise frequent phrases occurring in documents as the link information to find

descriptive labels and also partition documents. Some traditional approaches combined with

post-assignment of labels utilise similar frequency-based link information to choose labels, but different

types of between-document similarities as the link information to discover document clusters. While DKM

and Lingo utilise frequency-based link information to partition documents, they rely on different types of

post-computed link information between phrases and latent topics to find descriptive labels. Limited by
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not considering all links between objects or not quantifying these links in sophisticated ways, their

clustering performance and label quality can be suboptimal.

Considering these issues, we aim at building a powerful framework that is able to effectively blend

all possible links between documents, between phrases, and between document and phrases, so that

appropriate document clusters and descriptive labels can be optimally discovered. Also, the constructed

framework should be as generic as possible, so that it becomes capable of encoding link information

quantified by different measures or computed by different means. To achieve this, we build a descriptive

clustering framework through the use of clustering (C), embedding (E) and discriminant learning (DL)

techniques, which we will refer to as CEDL. In the subsequent subsections, we first explain how to process

the input documents to extract useful information for document clustering and label determination. We

then detail the five processing stages of the proposed algorithm that include (1) generation of

co-embeddings, (2) exploration of cluster structure, (3) discovery of topic phrases, (4) determination of

cluster labels, and (5) verification of document clusters. The overall operations of CEDL and its main flow

of the data structures through its various stages are overviewed in Figure 1. The notation of its variables

and quantities used to formulate the method are summarised in Table 1. Within the algorithm, Stage 1

constructs a common platform for simultaneous manipulation of documents and phrases, Stage 2 performs

document clustering, while Stages 3 and 4 determine the cluster label based on a gradual multi-stage

search process. A running example for this search process is shown in Figure 2. Finally, Stage 5 further

verifies and trims the obtained clusters and labels.

Input Preparation

The CEDL framework handles two object sets of documents {Di}ni=1 and candidate phrases

{Pi}mi=1. It operates on three input similarity matrices of Sdd, Spp and Sdp, where the n× n matrix Sdd

represents similarities between the n documents, the m×m matrix Spp represents connections between the

m candidate phrases, and the n×m matrix Sdp represents relevance values between the n documents and

the m phrases. These matrices are capable of storing fundamental links between any two objects from the

combined {Di}ni=1 and {Pi}mi=1. Furthermore, as shown in the following subsection, these matrices are

generic enough to accommodate different measures or ways for quantifying or computing these links. Below,

we first explain how to extract the candidate phrases and then describe how to compute the three matrices.

Candidate Phrase Extraction. The candidate phrases {Pi}mi=1 can either be extracted from the

input text of the n documents using established techniques for phrase extraction (Weiss, 2006; Zamir, 1999;

Jones & Paynter, 2002) or collected from various external resources (Tseng, 2010; Theodosiou et al., 2008;

Syed et al., 2008; Carmel et al., 2009; Weiss, 2006). In this work, we follow the former way due to the data
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availability, and extract candidate phrases from the input documents using the term extractor Termine1.

Since it is more natural to use noun phrases as short descriptions to summarise the topic of a document

cluster, Termine collects from the documents all the multi-word terms that are sequences of adjectives and

nouns, contain at least two unigram words, and end with nouns. Adjectives and nouns are recognised using

the GENIA part of speech tagger2 (Tsuruoka et al., 2005). A score of importance, referred to as C-value, is

computed for each term according to its frequency, length and nestedness, given as (Frantzi, Ananiadou, &

Mima, 2000)

C = log2 |P|

f(P)− 1
|TP|

∑
Pi∈TP

f(Pi)

 . (1)

Here, f(·) denotes the frequency of a term appearing in the documents. For a given term P, the set TP

includes P itself and all the longer terms that contain P. The notation | · | computes the number of words

contained by an input term, or the number of terms contained by an input set. This score encourages the

extraction of longer, more frequently appearing but less nested terms. The top m terms with the highest

scores are used as the candidate phrases.

Similarity Matrix Construction. Based on the text content of the extracted candidate phrases

and the target documents, a general procedure for obtaining Sdd, Spp and Sdp is proposed. Initially, three

intermediate matrices of tf-idf values are generated: the n× d feature matrix Xdw of documents, which

converts each document to tf-idf values of a total of d uni-gram words; the m× d feature matrix Xpw of

phrases, which converts each candidate phrase to tf-idf values of the same set of d uni-gram words; and

another n×m feature matrix Xdp of documents, which converts each document to tf-idf values of the m

candidate phrases.

To obtain Xdp, we treat both the possibly distorted and synonymous versions of a candidate phrase

the same as the exact copy of itself, in order to take into account better semantic connections between

phrases and documents. Using these three tf-idf matrices Xdw, Xpw and Xdp, we then compute the sought

ones Sdp, Sdd and Spp as follows:

• The similarity matrix between documents and candidate phrases is computed as

Sdp = Xdp

max (Xdp)
+ cos(Xdw,Xpw). (2)

The function max(·) returns the maximum element of the input matrix. The function cos(·, ·) returns

cosine similarities between two sets of instances represented by its two input matrices. Specifically, letting

A denote an n× d and B an m× d input matrix, the n×m output matrix cos(A,B) is computed by

D−
1
2

A ABTD−
1
2

B , where DA = diag
(
AAT

)
, DB = diag

(
BBT

)
. The function diag(·) returns a diagonal

1http://www.nactem.ac.uk/software/termine
2http://www.nactem.ac.uk/tsujii/GENIA/tagger
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matrix formulated with the diagonal vector of its input matrix, or the corresponding diagonal matrix if its

input is a vector. The first term of Eq. (2) is a scaled version of Xdp that is based on the normalised

frequencies of candidate phrases appearing in documents to measure the relevance between them. The

second term evaluates the similarity between a document and a candidate phrase through their word

co-occurrences. The combined term attempts to capture deeper semantic connections between documents

and candidate phrases than each individual term.

• The similarity matrix between documents is given by

Sdd = cos ([Xdw,Xdp], [Xdw,Xdp]) . (3)

In the above equation, we measure the cosine-based similarity between documents using the aggregate

n× (d+m) feature matrix [Xdw,Xdp]. This matrix captures the semantic closeness between documents,

based on word and (synonymous) phrase co-occurrences.

• The similarity matrix between candidate phrases is given by

Spp = cos(Xpw,Xpw) + cos(Fpd,Fpd), (4)

where the ijth element of the binary m× n matrix Fpd is 1 when the ith phrase and its distorted or

synonymous versions appear in the jth document, and 0 otherwise. The first term of Eq. (4) computes

similarities between candidate phrases, based on their word co-occurrences, while the second term assumes

that similarity between two candidate phrases is indirectly related to the number of documents that

contain their copies or synonymous versions. A combination of these two terms attempts to capture deeper

semantic connections between phrases than each term individually.

Instead of the above procedure, there can be alternative ways for creating these matrices. The users

of CEDL can experiment and define different similarity matrices using, for instance, advanced natural

language processing and text mining tools, or by taking advantage of expert knowledge and external

resources available in their domains. For example, it is possible to compute Sdd by employing linguistically

motivated text features instead of simple bag-of-word features (Hatzivassiloglou et al., 2001), or by judging

whether two documents are related through citations or hyperlinks (Noel et al., 2003), or by using “related

articles” information returned by PubMed (Theodosiou et al., 2008). It is also possible to construct Sdd,

Spp and Sdp by considering semantic similarities between the words contained by the documents and

phrases, computed based on the distributional representation of words learned by, for example, a deep

network (Bengio, Ducharme, Vincent, & Jauvin, 2003; Bengio, Courville, & Vincent, 2013). As will be seen

later, we attempt to generalise the design of CEDL so that it can be compatible with any types of input

similarity information Sdp, Sdd and Spp suitable to a particular domain or corpus.
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Algorithm Description

The working routines of many existing descriptive clustering algorithms, especially those combining

a traditional clustering method with post-assignment of cluster labels, e.g., Matsumoto and Hung (2010);

Theodosiou et al. (2008), are actually equivalent to first clustering the documents based on Sdd, and then

choosing as cluster label the phrase that possesses the highest averaged similarity to a cluster of documents

based on Sdp, where Sdd and Sdp are defined differently according to the algorithm. Such operation takes

into account Sdd only in cluster discovery and Sdp only in label induction. It not only ignores the possible

impact of Sdp and Spp in cluster discovery, and the impact of Sdd and Spp in label induction, but it also

completely neglects interactions and latent connections between all three similarity matrices, which could

potentially offer significant semantic information gain and thus improve the quality of document clusters

and their labels. Considering these issues, we design CEDL so that it is capable of utilising better both the

direct connections contained within Sdp, Sdd and Spp and the latent connections implied across all three

matrices. In the following subsections, we explain in detail the proposed algorithm in terms of its five main

processing components.

Stage 1: Generation of Co-embeddings. Differently from standard clustering tasks,

descriptive clustering requires to manipulate two sets of heterogeneous objects according to links between

them. Usually, instead of trying to reason from these links directly, it is more convenient to learn a

common space to embed both types of objects where the link information can be preserved (Globerson,

Chechik, Pereira, & Tishby, 2007; Mu & Goulermas, 2013). This is because such a common space can be

viewed as an alternative representation to the similarity-based one that stores the link information. It also

enables to treat heterogeneous objects as homogeneous ones, which broadens the range of techniques that

can be used to analyse them, and also offers opportunities for more thorough analyses. Specifically, in the

first stage of CEDL, a compact, lower dimensional, common description space is sought to embed

simultaneously the documents and candidate phrases by preserving the similarities as captured by Sdd, Spp

and Sdp. In order to effectively blend the link information stored in Sdp, Sdd and Spp so that not only the

direct connections contained within them, but the latent connections implied across them are also

considered, an enhancing procedure is conducted on these three matrices to output a composite version of

Sdp, Sdd and Spp highlighting the latent connections from which embeddings are computed, instead of

relying on their original versions.

The composite version of Sdp, Sdd is denoted as an (n+m)× (n+m) similarity matrix S = [sij ]. It

treats equally the documents and phrases as homogeneous objects, from which embeddings are computed.

A convenient way of formulating this overall similarity matrix is to combine the three partial similarity
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matrices Sdd, Spp and Sdp as

S0 =

 w1Sdd w3Sdp

w3STdp w2Spp

 , (5)

where the three parameters w1, w2, w3 > 0 are used to adjust the weight of each partial similarity matrix.

When elements of the three matrices of Sdp, Sdd and Spp are within a relatively similar range, a convenient

setting of w1 = w2 = w3 = 1 can be used without enhancing or weakening the contribution of any of the

three constituent matrices.

In order to reduce noise and sharpen the potential structure of S0, we apply a nearest neighbour

search to S0. This procedure removes unimportant information corresponding to distant object pairs in S0,

because the proximity information structure is better controlled by the local geometry of the data patterns.

Specifically, we define a binary neighbourhood indication matrix N(S0, h1) = [δij ] by applying an

h1-nearest neighbour search to the similarity matrix S0. By letting oi denote the ith from the (n+m)

totally available objects, each ijth element of N(S0, h1) is given by

δij =

 1 if oj ∈ N(oi,S0, h1) ∨ oi ∈ N(oj ,S0, h1),

0 otherwise,
(6)

where N(o,S0, h1) denotes the set of the h1-nearest neighbouring objects of o searched using the similarity

values in S0. The disjunction ∨ defines nonzero indicators only for instances that are undirected

neighbours of each other. Alternatively, the conjunction operation can be used to define nonzero indicators

for mutual neighbouring objects. The sharpened proximity matrix is then given as S0 ◦N(S0, h1), where ◦

denotes the Hadamard product of matrices.

Subsequently, in order to infer higher order (transitive) relationships that lie latent within the

current proximity structure of S0 ◦N(S0, h1), we further construct the following second-order similarity

matrix using the cosine function

S1 = cos (S0 ◦N(S0, h1),S0 ◦N(S0, h1)) . (7)

The rationale behind the latter enhancement, is that it has been demonstrated that second-order

similarities can capture latent dataset information better than first-order similarities (Chen, 2002; Cribbin,

2011; Kovács, 2010). In the end, we apply again the nearest neighbour search to further sharpen the

second-order proximity structure indicated by S1, leading to the final composite matrix of

S = S1 ◦N(S1, h2). (8)

where N(S1, h2) is defined for S1 similarly to Eq. (6) for S0, using the undirected neighbours search and a

different number h2 of nearest neighbours.
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In the final step of this stage, we use the composite (n+m)× (n+m) similarity matrix S of Eq. (8)

to generate the l-dimensional embeddings. Various techniques can be used to achieve this, for example,

multi-dimensional scaling (MDS) (Torgerson, 1952) and Laplacian eigenmaps (Belkin & Niyogi, 2003).

Here, we apply the classical MDS framework to perform the task because it involves the least

computational operation as compared to others. Let Z = [zij ] denote the (n+m)× l embedding matrix for

both the n documents and m candidate phrases, Zd the n× l embedding matrix for documents only, and

Zp the m× l embedding matrix for candidate phrases only, with the three embedding matrices inter-related

as ZT =
[
ZTd ,Z

T
p

]
. Then, Z can be computed from S by minimising the following reconstruction error

based on the Frobenius norm

min
Z∈R(n+m)×l

rank(ZZT )=l

‖S− ZZT ‖2
F . (9)

The optimisation problem in Eq. (9) drives the inner products between the embeddings (rows of Z) closer

to the entries of S, so that the sharpened high-order proximity structure represented by S is preserved in

the inner product space of the embeddings.

Based on the Eckart-Young theorem for low-rank matrix approximation (Eckart & Young, 1936),

the optimal solution of Eq. (9) can be readily obtained by

Z = PlΣ
1
2
l , (10)

where Σl and Pl are the eigenvalue and eigenvector matrices of S corresponding to the largest l

eigenvalues. The computed embedding matrix preserves not only the original proximity information, but

also the higher-order relationships implied by the three input similarity matrices. Additionally, the

feature-based representations of Zd and Zp are more flexible and compact, and more amenable to

manipulation than Sdd, Spp and Sdp. Since the obtained common embedding space simultaneously

encompases heterogeneous document objects (rows of Zd) and candidate phrase objects (rows of Zp), we

will refer to these embeddings as the co-embeddings of documents and phrases, and the corresponding

l-dimensional space as the co-embedded space. In order to reduce the information loss to the minimum, we

set the co-embedding dimensionality to l = rank[S].

Stage 2: Exploration of Cluster Structure. The computed embedding matrix Z encodes

enhanced link information derived from the three similarity matrices of Sdd, Spp and Sdp. In later stages,

we work directly on these computed embeddings, treating documents and phrases as homogeneous objects.

To group the documents, a standard clustering algorithm can naturally be applied with document

embeddings Zd used as the input features. In the current stage, we only allow single cluster membership so

that one document can only belong to one cluster, in order to maintain good cluster separability.
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Here, we choose the k-means algorithm because of its simplicity and effectiveness. Other algorithms

(R. Xu, 2005) can also be used, e.g., mean shift clustering (Cheng, 1995), fuzzy clustering (Baraldi &

Blonda, 1999a, 1999b), Gaussian mixture clustering (Ouyang, Welsh, & Georgopoulos, 2004), or spectral

clustering (Luxburg, 2007). In this stage, an n× k binary cluster membership matrix Y = [yij ] is finally

acquired, where yij = 1 indicates that the ith document belongs to the jth cluster, whereas yij = −1 that

it does not. The parameter k denotes the number of clusters and it can be controlled by the user. We

assume that each document cluster suggests one potential topic of the studied documents.

Stage 3: Discovery of Topic Phrases. After determining the basic cluster structure in Stage 2,

we work on cluster label generation. Instead of choosing directly a single phrase from the whole candidate

pool that best describes the cluster topic in one go, it is more reasonable to conduct the search by

gradually narrowing down the search range. Thus, the third stage of CEDL seeks a group of phrases from

the total set {Pi}mi=1 so that they are more relevant to the document cluster topics, and possess higher

chance to be chosen as the final descriptive labels. For each document cluster, we define this subgroup of

phrases as its topic phrases. The most intuitive way to determine the topic phrases is perhaps to conduct a

clustering procedure on both documents and phrases in the co-embedded space, other than documents only

as in the current setup of Stage 2. Then, within each obtained cluster, its member documents constitute

the desired document cluster, while its member phrases constitutes the corresponding set of topic phrases.

However, this co-clustering procedure creates two problems. First, the incorporation of candidate phrases

into the clustering procedure could introduce noise and dependencies to the overall structure recovery of

both types of objects, thus affecting the cluster separability within each type. Second, such a procedure

provides the same type of membership for both types of objects. For example, it does not allow one set of

objects to appear in multiple clusters and the other set in single ones. Considering the fact that one phrase

can often be related to multiple topics and the current setup that one document can only belong to one

cluster to produce good cluster separability, co-clustering of documents and phrases is not an appropriate

choice. Therefore, in order to maintain good quality of document clusters and enable multi-memberships

for phrases, we propose to process documents and phrases separately. First, documents are clustered on

their own as in Stage 2. Then, a multi-class multi-label classification procedure is employed to ensure

multi-membership for phrases, which is trained in the co-embedded space in order to predict whether a

candidate phrase belongs to a targeted document cluster.

Specifically, the classification procedure begins with a set of training instances, which in our case are

the n documents. Their n× k cluster membership indication matrix Y, obtained in Stage 2, is used for the

training as the known class labels, while the n× l document embeddings Zd, computed in Stage 1, are used

as the input features. The entire procedure derives a prediction model that estimates a new m× k phrase
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cluster membership matrix Yp from the candidate phrases represented by the m× l phrase embedding

matrix Zp.

If we define our prediction model to correspond to some mapping F : Rl → {−1,+1}k ∈ F, defined

from the feature space of phrase co-embeddings to the binary indication space of document clusters, then

the training procedure of the classifier can be given by the optimisation

F ∗ = argmax
F∈F

L(F,Zd,Y), (11)

where L : F× Rn×l × {−1,+1}n×k → R is the objective function underlying the classification, designed to

compare possible prediction models. Then, the final output in matrix form is given by

Yp = F ∗(Zp). (12)

To enable multi-class multi-label classification, one binary classifier is trained for each document

cluster. We employ a set of k linear discriminant functions
{
fi(z) = sgn

(
wT
i z + bi

)}k
i=1, one for each of

the k document clusters, to despatch an one-against-all discrimination of the phrase embedding input. The

function sgn(·) is the sign function, {wi}ki=1 are the l-dimensional weight vectors of the k linear decision

boundaries, {bi}ki=1 their biases (or threshold weights), while z denotes a phrase instance in the

co-embedded space. To implement the objective function L of Eq. (11), Fisher criterion (Duda, Hart, &

Stork, 2001) is adapted to the current setup and derive the following formulations (Mu, Jiang, Wang, &

Goulermas, 2012) in order to compute the optimal weight vectors wi

wi =
(
ZTd (diag (G× 1n×1)−G)Zd

)−1
ZTd (diag(G) ◦ yi) ,

and biases bi

bi = −1
2wT

i Z
T
d diag(G).

The class-based similarity matrix used above is defined as

G = Yi

(
YT
i Yi

)−1
YT
i , (13)

and is based on the n× 2 binary matrix Yi = 1
2 [1 + yi, 1− yi] with yi denoting the ith column of the main

document-cluster membership matrix Y. The notation 1m×n denotes the m× n matrix with all elements

equal to 1. The individually computed weight vectors wi can then compose an l × k weight matrix W,

with each wi being its ith column, while the biases can compose a k-dimensional column vector

b = [b1, b2 . . . , bk]T . In this way, the finally estimated m× k candidate phrase membership matrix Yp is

calculated as

Yp = sgn
(
ZpW + 1m×1bT

)
, (14)
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where the sign function is applied element-wise. The interpretation of Yp, is that its ijth element indicates

whether the ith candidate phrase is the topic phrase of the jth document cluster. This bears the significant

advantage that the contents of different document clusters can be compactly summarised with their

corresponding topic phrases, while the same candidate phrases can describe multiple topics.

The classification procedure employed here acts as a filtering step that takes advantage of the

co-embedding information of documents and phrases to smoothen out the approximate document cluster

information and form more robust relationships between documents and topic phrases. A final remark is

that apart from the simple linear discriminant functions fi optimised via the Fisher criterion, other

classification algorithms could be used; examples include k-nearest neighbours (Cover & Hart, 1967),

Bayesian classification (Domingos & pazzani, 1997), support vector machines (Cristianini & Shawe-Taylor,

2002) and neural networks (Haykin, c 1999). However, we recommend here the use of a simple and efficient

classifier that does not require extra effort for determining complex model parameters. Using more

powerful classification boundaries, in addition to being redundant for this task, could overfit the topic

phrase recovery and produce false or extraneous cluster memberships.

Stage 4: Determination of Cluster Descriptions. The stages so far accomplish the

summarisation of each document cluster with a set of topic phrases that provide a compact description of

the contents of each cluster. In this stage, we attempt to extract the final cluster labels from these topic

phrases. To assure the quality of the chosen cluster labels, we keep following the strategy of gradually

narrowing down the search range of phrases that can be potentially utilised. Also, for further quality

assurance, we evaluate the candidate phrases based on multiple measures assessing different properties.

Before further explanation, we first extend the definition of some previous quantities to cover cluster

membership and make the exposition clearer. Specifically, we use
{
P

(i)
j

}mi

j=1
and

{
D

(i)
j

}ni

j=1
to denote the

set of the mi topic phrases and the set of the ni documents, respectively, that belong to the ith cluster. We

also define two row submatrices of ZT =
[
ZTd ,Z

T
p

]
to correspond to these two sets; namely, the ni × l

embedding matrix Z(i)
d for the ni documents, and the mi × l embedding matrix Z(i)

p for the mi topic

phrases. We similarly introduce for the mi topic phrases of the ith cluster, the mi × k per-cluster unsigned

phrase membership matrix Ŷ
(i)
p . This is a row submatrix for the overall m× k matrix

Ŷp = ZpW + 1m×1bT , which is defined as Yp in Eq. (14) but without the discretisation imposed by the

sgn(·) function.

The first step of this stage is to compute the following mi-length score vector for the mi topic

phrases of each ith cluster

score(i)
1 = cos

(
Z(i)
p ,Z(i)

d

)
1ni×1. (15)

Each jth element of the above vector evaluates the overall closeness between the jth topic phrase (jth row



DESCRIPTIVE DOCUMENT CLUSTERING 18

of Z(i)
p ) and all of the ni member documents (rows of Z(i)

d ) of the cluster the phrase appears in. This

closeness is simply estimated as the sum of the elements of the jth row of the mi × ni similarity matrix

cos(Z(i)
p ,Z(i)

d ). The crucial advantage of this score is that, because it is computed through the second-order

neighbour-based similarities in the co-embedded space (as described in Stage 1), it takes into account the

combined semantic and syntactic connections between documents and phrases.

Although the above score can be used directly for our final purpose, in order to increase its

robustness we combine it with a secondary score vector, defined for each ith document cluster as score(i)
2 .

This score is taken to be the ith column of Ŷ
(i)
p that contains the continuous linear prediction values from

the classification model introduced in Stage 3. Each jth element of score(i)
2 gives the signed degree of

confidence that the jth topic phrase of the ith cluster is assigned to that cluster. The benefit of this score

is that it reveals the latent connections between candidate phrases and document clusters, as it uses the

core information extrapolated in the discriminant learning stage to perform the phrase to cluster

allocation. This information is effectively used here again to amplify or attenuate the values of score(i)
1 .

The two scores can then be scaled within the range [0, 1] and combined to a single vector defined for

each ith cluster as

score(i) = score(i)
1 ◦

(
score(i)

2

)a
. (16)

The user-defined parameter a ≥ 0 modifies the effect of the weight score(i)
2 . This score has the potential to

include phrases that are semantically connected to the topic in a latent way, but may also introduce more

noisy phrases compared to score(i)
1 . Therefore, we use the parameter a to control the degree that score(i)

2

influences the phrase selection procedure. When a = 0, score(i)
2 is not considered and only the primary score

score(i)
1 is in effect. In the present work, both scores are considered equally important by setting a = 1.

The ranking procedure based on score(i), selects the m∗i ≤ mi top phrases possessing the highest

scores from the total of mi topic phrases in each ith cluster. We extract the cluster labels only from these

top m∗i phrases. A typical pattern in human languages is that phrases that are used to describe the same

topic share certain common words. Therefore, we extract a set of common words from the top m∗i phrases,

which are defined as uni-gram words that appear in at least two of those m∗i phrases. Only topic phrases

that contain more than two such common words are allowed to be used as cluster labels; these are referred

to as the final candidates. Finally, we rank these final candidates based on their corresponding score(i)
1

values (as this score is the primary one), and choose the one with the highest value as the

final cluster label. In this procedure, we recommend setting m∗i = min(10,mi), as we found it

experimentally sufficient to summarise the topic of a document cluster with approximately ten phrases.

The proposed label induction strategy gradually reduces the content of each document cluster in

terms of the sets of phrases potentially utilised. For example, the total of m phrases was reduced, for the
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ith cluster, to mi < m topic phrases, which in turn led to m∗i ≤ mi top phrases with the aid of ranking.

Then, an even smaller set of final candidates was obtained using common words, and finally, a single

cluster label was selected (see the example in Figure 2). This gradual multi-stage process of narrowing

down the residual phrase search range contributes to the stability of the algorithm and the reduction of the

negative effects from noisy candidates, and hence, enables us to obtain more meaningful and more accurate

cluster descriptions.

Stage 5: Verification of Document Clusters. From Stage 2, we obtain an initial cluster

structure of the studied documents where only single memberships are allowed in order to maintain good

cluster separability. However, many text mining and information retrieval services demand overlapping

clusters of documents, because of the existence of documents relevant to multiple topics. Thus, the main

function of this final stage is to trim the k document clusters obtained in Stage 2 to allow overlappings

between clusters.

First, we combine document clusters that possess identical, similar or synonymous cluster labels.

Subsequently, we modify the content of each document cluster by adding relevant documents from other

clusters. Using our co-embedding formulation, this is straightforward to achieve as follows. Letting z
(i)
p

denote the l-dimensional row co-embedding vector of the cluster label of the ith cluster, we compute the

following relevance threshold

c(i) = max
(

cos
(
Z(i)
d , z(i)

p

))
. (17)

This is the maximum value of the similarity between the cluster label and all the ni documents in that

cluster and reflects the lowest bound for inter-cluster document membership. If z
(j)
d denotes the

co-embedding of some document from any other cluster of index j 6= i, we consider that document relevant

to the ith cluster if and only if cos(z(j)
d , z

(i)
p ) ≥ c(i). In such case, we assign it to also belong to the ith

cluster (in addition to its original jth cluster allocation).

Another step in this stage is to remove clusters that do not contain enough documents (e.g., less

than three) as those can be considered trivial. The final polishing step here needed to improve the internal

consistency of each document cluster, is to reallocate those documents that are within the bottom 10% of

the least relevant documents to their corresponding cluster label. As before, this is done using the

relevance values evaluated with the cosine similarities between documents and cluster label co-embeddings,

so that those dubious documents are re-allocated to other more relevant clusters with higher similarity.

In summary, this stage includes the three operations of firstly, merging highly related clusters,

secondly, allowing multi-membership for highly related inter-cluster documents, and finally, reallocating the

least related documents from each cluster. Differently from DKM that completely abandons the original

cluster structure obtained by k-means, the proposed trimming procedure relies on the cluster structure
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obtained in Stage 2, while allowing modifications to outlier and ambiguous documents. This is because

such structure is derived from a carefully designed composite similarity matrix, which stores more

advanced link information than those frequency-based links as used by DKM. The composite similarities

are also used to drive the trimming procedure by computing the cosine score in the co-embedded space.

Experimental Results and Analysis

Databases

In order to assess the performance of the proposed descriptive clustering algorithm CEDL, we use

documents from three different databases. These include a large clinical trial collection provided by the

UK’s National Centre for Text Mining (NaCTeM) (Korkontzelos, Mu, & Ananiadou, 2012), the

“Reuters-21578 Text Categorisation Test Collection” containing articles taken from the Reuters newswire

(Lewis, 1997), and a collection of systematic reviews of research evidence conducted by the Evidence for

Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) (Ananiadou, Okazaki, Procter,

Rea, & Thomas, 2009; Thomas, McNaught, & Ananiadou, 2011). We refer to these three databases as CT,

Reuters and EEP, respectively.

These databases include documents of varying length collected from different fields. For instance,

the average length of a clinical trial document is around a few hundreds of words, while the Reuters articles

vary from a few hundred to several thousands of words. The review articles from the EEP database are

quite lengthy with approximate sizes of 250KB plain text document files. To process these documents, text

in their title and body was part-of-speech tagged and lemmatised using the GeniaTagger (Tsuruoka et al.,

2005) and finally lower-cased. Lemmas that occur in a stop-list for general English were removed.

The documents in the Reuters collection are originally annotated with zero or more from a set of

135 topic tags, amongst which the ten largest topics are “earn”, “acq”, “crude”, “trade”, “money-fx”,

“interest”, “ship”, “sugar”, “money-supply” and “coffee”. The documents in the EEP collection were

manually assigned zero or more topic tags from a topic hierarchy created by the EPPI-Centre, where the

most popular topic is “management, governance and finance”. From the CT collection, we retrieved nine

sets of documents based on nine different queries, including “asthma”, “breast cancer”, “lung cancer”,

“prostate cancer”, “cardiovascular”, “HIV”, “leukemia”, “depression” and “schizophrenia”. These queries

are used as the topic tags for the retrieved documents. Finally, all the documents contained two types of

information, that is input text and topic tags.
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Experimental Setup

One reliable and convenient way for assessing the cluster quality is to compare the clustering results

against a set of predefined classes that are also known as the ground truth partitioning of the documents.

In our case, the original topic tags of the documents can be used as the reference set of this ground truth.

To allow for an informative and quantitative analysis, specific numerical measures can be used. Here, we

use f-measure, cluster purity, entropy and cluster contamination to evaluate the difference between the

obtained clusters and the ground truth topics (Weiss, 2006). Letting {Ui}gi=1 denote g sets of documents

each corresponding to a document cluster obtained by the algorithm, while {Ai}hi=1 denote h sets of

documents each corresponding to a ground truth topic, the f-measure is computed by

Fβ =
h∑
i=1

|Ai|
n

gmax
j=1

(1 + β2)PrecisionijRecallij
β2Precisionij + Recallij

, (18)

where | · | denote the number of documents in the input set, and the precision and recall are defined as

Precisionij = |Ai ∩ Uj |
|Uj |

, Recallij = |Ai ∩ Uj |
|Aj |

. (19)

The parameter β is used to control the weights of precision and recall, set according to the need of the

given application, e.g., an F0.05 score gives more emphasis on precision over recall, and an F1 score puts

equal weight on them leading to the traditional f-score. The purity of the jth cluster is defined by

Pj = hmax
i=1

|Ai ∩ Uj |
|Uj |

. (20)

The overall purity is computed as the average of Pj , given as P = 1
g

∑g
j=1 Pj . The entropy is defined as

E = −
h∑
i=1

|Ai|
n log g

g∑
j=1

|Ai ∩ Uj |
|Uj |

log
(
|Ai ∩ Uj |
|Uj |

)
. (21)

It can be seen from Eqs. (18), (20) and (21) that these three measures are linked to each other in that they

all rely on precisions between the computed clusters and their dominating ground truth topics, which

encourages documents from the same ground truth topic to be grouped into the same cluster. Additionally,

the f-measure also relies on the quantity of recall, which prevents a complete ground truth topic from being

split to different clusters. The contamination measure is defined in a slightly different way, which computes

a degree of closeness from the computed clusters to the worst grouping situation, given for the jth cluster

as follows

Cj =
∑h
i1=2

∑i1−1
i2=1 |Ai1 ∩ Uj ||Ai2 ∩ Uj |∑h
i1=2

∑i1−1
i2=1 hi1jhi2j

, (22)

where the quantity hij is defined as

hij =


⌊∑h

t=1
|At∩Uj |
g

⌋
+ 1, if i <

∑h
t=1 |At ∩ Uj | mod g,⌊∑h

t=1
|At∩Uj |
g

⌋
, otherwise,

(23)
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where b·c denotes the largest integer less than or equal to the input number. According to their definitions,

all these four measures range from 0 to 1. Higher values of f-measure and cluster purity, and lower values of

entropy and cluster contamination indicate better cluster quality.

For evaluation purpose we created six document subsets from the three databases, which are referred

as CT1, CT2, Reuters1, Reuters2, Reuters3 and EEP1, respectively. The ground-truth topics contained

within each document subset and the number of documents included for each topic are listed in Table 2.

We include topics containing almost equal numbers of documents (e.g., CT1 and EEP), as well as topics

containing quite different numbers of documents (e.g., CT2). To analyse and verify the class

discriminability between the ground truth topics, we formulated a separate classification-based evaluation

for each document subset by using its topic tags as the document categories. The tf-idf values of the

uni-gram words were used as the input features. Two classifiers were used to observe the classification

performance; the linear support vector machine (LSVM) (Cristianini & Shawe-Taylor, 2002) and the linear

Fisher’s discriminant analysis (LFDA) combined with the cosine-based relation features (Mu, Goulermas,

Tsujii, & Ananiadou, 2012; Mu, Jiang, et al., 2012). Ten permutations of 5-fold cross validation (CV) were

executed to determine the ground truth quality for each document set. The averaged CV classification

accuracies of LFDA and LSVM are recorded in the last row of Table 2. Ideally, document sets with higher

classification accuracies contain more distinguishable document topics, e.g., CT1 has more distinct topics

compared to EEP1.

We compare the proposed CEDL with two other state-of-the-art descriptive clustering methods of

DKM and Lingo. To achieve an objective comparison under the same environment, we let the three

methods extract cluster labels from the same pool of candidate phrases. In order to keep balanced sizes

between the three similarity matrices Sdd, Spp and Sdp and avoid unexpected bias, we maintain equal

document and candidate phrase sizes by including only the top m = n terms extracted by Termine as the

candidates. To set the two parameters h1 and h2 of CEDL for nearest neighbour search, we test neighbour

numbers ranging from 5% to 90% of the total object number n+m with a 10% step size. Experiments

showed that as the neighbour number increases, the clustering performance first gets better, and then

stabilises without obvious performance change after 15%. To maintain a good sparsity of the composite

matrix, the 15% level was used by CEDL so that h1 = h2 = b15%× (n+m)c, where b·c denotes the floor

function. To set the snippet assignment threshold parameter for Lingo, we test the recommended range of

[0.15, 0.3] obtained through empirical verifications by Osiński and Weiss (2005), and observe that the

clustering performance does not vary obviously within this range, and around the middle point of the range

0.2 was used as the threshold. According to the design, the number of document clusters is directly

controlled by the integer number k of k-means clustering for CEDL and DKM, and via the number of
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remaining singular vectors k for Lingo. We set k as the same value for the three methods so that they can

produce similar numbers of document clusters; however, due to the cluster post-processing all methods

perform the final number of clusters may be less than k. All experiments reported here were conducted

using MATLAB R2011a, running on a 3.4 GHz Intel i7 CPU with 8 GB memory machine, under Mac OS

X 10.7.4.

Results and Analysis

Experiment 1. We first examine whether and how well the three competing methods CEDL,

DKM and Lingo can discover the ground truth topics as listed in Table 2. To achieve this, we initially set

the cluster parameter k of the three methods equal to the total number of topics contained in each

document subset, which is 5 for CT1, 8 for CT2, 3 for Reuters1, 6 for Reuters2, 10 for Reuters3 and 2 for

EEP1. Table 3 compares the clustering performance with the aforementioned four quality measures of

f-measure (F1 score), cluster purity, entropy and cluster contamination.

From Table 3, it can be seen that CEDL provides the best performance for all the document sets

yielding the highest cluster purity and f-measure scores, as well as the lowest cluster contamination and

entropy values. For many datasets, CEDL performs significantly better than DKM. DKM performs

comparable to CEDL for only the CT1 dataset, which is easier to be clustered than the other sets, as it

contains more distinguishable document topics indicated by its higher LFDA/LSVM classification

accuracies as shown in Table 2. As for Lingo, it exhibits worse clustering performance than both CEDL

and DKM for all the document sets in terms of the four employed measures. Considering the fact that

Lingo is designed for clustering short documents, the lengths of the CT and Reuters documents may

exceed its processing capability. We did not apply Lingo to EEP1 (see N/A in Table 3), because the EEP1

documents are much longer than the CT and Reuters ones and lead to worse performance and very long

processing times.

We can investigate the better clustering performance of CEDL over DKM and Lingo, as follows. As

explained in previous sections, DKM discovers an initial structure of document clusters using k-means

clustering, but only utilises this discovered structure for label generation and re-assigns new member

documents for each cluster based solely on the occurrences of the generated label (including its distorted or

synonymous versions) in the documents. As for Lingo, it first generates cluster labels according to a set of

assumed similarities between candidate phrases and latent topics computed based on matrix factorisation.

Then, it discovers member documents for each cluster label using a similar procedure to the one of DKM

by examining common words shared between the label phrases and documents. The motivation behind
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such determination procedure of the cluster member documents used by DKM and Lingo is the

expectation for the user to be able to tell which elements of this description label can be found in the

corresponding cluster’s documents (Weiss, 2006). Although this creates a clear and evident relationship

between a cluster label and its member documents which is beneficial, in reality the connections between

documents and cluster topics are not necessarily based only on the occurrences of a certain phrase or the

number of common words shared between a phrase and a document. Such operation has high chances of

ignoring latent semantic connections between documents and topics, and can thus produce inaccurate

document clusters. Apart from this, the validity of the similarity assumption used by Lingo may not be

reliable for long documents. Consequently, its generated cluster labels may represent an inappropriate

cluster structure from the beginning, which thus may lead to even worse clustering performance. This is

partly evidenced by its poorer performance than DKM in Table 3. Differently, CEDL does not follow such

label-driven determination procedure of cluster member documents. It first constructs an initial cluster

structure and then refines such structure other than abandoning it. To obtain good initial cluster

structure, CEDL carefully designs a composite similarity matrix based on second-order local

neighbourhood links so that it not only captures the latent semantic information of the document contents

better, but also provides sharper proximity structure with reduced noise. This offers the k-means clustering

algorithm higher quality of input information. Because of these reasons, the document clusters generated

by CEDL are more accurate than the ones obtained by DKM and Lingo, as presented in Table 3.

As mentioned above, an important component in the design of CEDL is the composite similarity

matrix S used by CEDL for co-embedding generation. This directly affects the quality of the generated

document clusters and their descriptive labels. Here, we demonstrate its effectiveness by visualising this

proposed matrix S based on second-order neighbour-based similarities in Figures 3(a), 3(b) and 3(c) using

the CT1, Reuters2 and EEP1 document sets, respectively. We compare it directly with the first-order

matrix S0 in Eq. (5), which is a simple combination of the three input similarity matrices of Sdd, Spp and

Sdp without any processing, in Figures 3(d), 3(e) and 3(f) for the corresponding document sets. It is

apparent that the proposed similarity matrix can reveal much more distinct block patterns than S0,

indicating clearer and more informative topic structures. Thus, the embeddings generated from S are more

promising and effective and, as our experimentations confirmed, can subsequently lead to much higher

document cluster quality.

Experiment 2. In this experiment, we increase the value of k to observe how well the three

methods can discover more and finer topics from the input documents. First, we initially set the cluster

parameter k of the three methods as 18 for CT1, 15 for Reuters2, and 12 for EEP1, which are much higher

than the numbers of ground truth topics of these three document sets that are 5, 6 and 2, respectively. The
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obtained document clusters and their corresponding descriptive labels are displayed in Figures 4(a), 4(b)

and 4(c) for CEDL, DKM and Lingo, respectively, with the CT1 document set, Figures 5(a), 5(b) and 5(c)

for CEDL, DKM and Lingo, respectively, with the R2 document set, and Figure 6 for CEDL and DKM

with the EEP1 document set. In these figures, each bar corresponds to a single document cluster. The

descriptive label for summarising the content of each cluster is displayed on the horizontal axis under its

corresponding bar, along with its cluster purity value. Each colour encodes the original topic tag of the

documents. The vertical axis measures the number of documents in the clusters. Ideally, a coherent cluster

should include only documents with the same topic tag, that is, correspond to a bar of one solid colour

with its cluster purity reaching the upper bound of 100%. Second, in addition to the comparison with fixed

values of k, we also compare variations of the clustering performance of CEDL, DKM and Lingo with

increasing values of k in Figures 4(d) and 5(d), with the CT1 and Reuters2 document sets, respectively, in

terms of the f-measure and cluster contamination. The experiment examines how well a ground truth topic

can be split into small clusters, and the more and finer topics it finds, the lower the recall becomes. So, in

order to dilute the effect of recall so that it does not interrupt the observation, a small value of β = 0.05 is

used to compute the f-measure.

As can be seen from Figures 4(a) to 4(c), 5(a) to 5(c) and 6, CEDL produces purer clusters than

DKM and Lingo, while Lingo generates the least pure clusters. The plots in Figures 4(d) and 5(d) show

that, no matter how the parameter k for controlling the cluster number changes, CEDL consistently

generates document clusters possessing the highest f-measure and least contamination. As discussed in

previous sections, the superior clustering performance of CEDL is obtained through its multi-stage design

that first constructs an accurate initial cluster structure and then enhances it further.

Judging from the descriptive labels as shown in Figures 4 to 6, CEDL discovers more reasonable

subtopics than DKM and Lingo. For instance, for the CT1 document set, CEDL groups those documents

related to the “cardiovascular” topic to the three subtopics of “coronary artery disease”, “blood pressure

measurement” and “health care use”, whereas DKM finds only two main subtopics of “cardiovascular

disease risk” and “cardiovascular risk marker” that are very similar to each other. As for Lingo, the first

five bars in Figure 4(c) all contain quite a lot of documents from the “cardiovascular” topic, but their

descriptive labels indicate subtopics spanning other topic tags as well, e.g., “lung cancer patient” and

“breast cancer risk”. For the Reuters2 document set, examining the descriptive labels generated for

documents from the “money-fx” topic, it shows that CEDL discovers three main subtopics of “currency

exchange rate”, “mln stg late assistance” and “new zealand banking group” from them. DKM discovers the

two main subtopics of “common currency exchange rate” and “mln stg bank”, and Lingo discovers only one

main subtopic of “currency exchange rate”. For the EEP1 document set, both CEDL and DKM discover
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six subtopics for articles related to “work based learning” and six subtopics for those on “primary

education”. However, the two subtopics of “primary school child” and “primary school pupil” found by

DKM seem too similar to each other. Finally, we also observe that, although the three methods result in

quite different clusters and descriptive labels, there exist commonalities between the subtopics discovered

by them. For example, from CT1 documents related to “lung cancer”, CEDL, DKM and Lingo all discover

subtopics related to “nonsmall cell lung cancer”. Both CEDL and DKM discover subtopics related to

“small cell lung cancer”. One common subtopic related to “currency exchange rate” is found by all three

methods from the Reuters2 documents.

We can analyse why CEDL is able to discover more reasonable subtopics than DKM and Lingo, as

follows. Both CEDL and DKM share the same strategy of generating topic descriptions based on an initial

cluster structure produced by k-means clustering. However, one main difference is the similarity

information that drives the k-means algorithm. Specifically, DKM clusters the documents employing

simple cosine similarities between documents based on word occurrences, while CEDL works on a more

sophisticated composite similarity matrix representing a sharper and noise reduced proximity structure

between documents. Thus, CEDL has higher chances of producing a better initial cluster structure than

DKM. Another difference is the label generation procedure given the derived initial cluster structure.

Specifically, DKM directly finds the best matched label phrase according to one single query score, while

CEDL follows a more sophisticated procedure by gradually narrowing down the search range of the best

label, e.g., from the whole candidate pool to a small set of topic phrases, then to a smaller set of final

candidates, and finally to the single selected label, based on multiple assessment scores characterising

different properties of the phrases. Compared to CEDL and DKM, Lingo works upon a very different

routine. As explained in previous sections, it generates cluster labels by assuming an SVD based similarity

score between phrases and latent topics, which may become unreliable for long documents, thus leading to

the least reasonable topic descriptions among the three methods.

In Table 4, we display 15 subtopics discovered by CEDL and DKM, from 600 EEP documents that

are related to “management, governance and finance”, and in Tables 5 and 6 we display 6 subtopics

discovered by CEDL, DKM and Lingo from the top 200 CT documents retrieved from each of the nine

queries. It can be observed from Tables 5 and 6 that the sizes of the clusters generated by CEDL are more

uniformly distributed than those generated by DKM and Lingo. For example, CEDL groups the 200

clinical trials, retrieved via the “HIV” query, to six clusters with their sizes varying between 19 to 54.

However, for the same set of clinical trials, the largest cluster obtained by DKM includes as many as 144

documents, whereas the smallest cluster merely 6 documents. Lingo creates even more dramatic

discrepancies between cluster sizes, e.g., from 3 to 200. Usually, more uniform distribution of cluster sizes
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is preferred by the users. It is not very typical for the user to accept very large subtopics including almost

all the targeted documents, while at the same time be comfortable with very small subtopics of very few

documents. We also asked domain experts from the EPPI-Centre for their degree of satisfaction on the

subtopics obtained for the EEP documents, and physicians to examine whether the subtopics obtained for

the CT documents are reasonable. Based on their subjective and qualitative feedback, the subtopics

discovered by CEDL were deemed more sensible than DKM and Lingo.

Other Tests. CEDL is a sophisticated text analysis framework, including multiple processing

stages such as co-embedding, clustering, classification and ranking. In addition to the clustering and

ranking operations that constitute the main processing procedures of DKM, CEDL also requires the

neighbour search and matrix decomposition operations for computing co-embeddings, and the classification

operation for determining topic phrases. Computational cost of these additional operations are dominated

by the number of documents. It is worth to mention that, although CEDL requires additional effort on

computing co-embeddings, it can effectively save computational cost in the later clustering stage. This is

because CEDL improves the quality of its similarity computation between documents, especially when

processing documents containing hidden cohort structure that cannot be directly captured by simple

similarity measures based on word co-occurrences, e.g., the cosine similarity measure used by DKM. Such

an improvement can lead to faster convergence in the clustering stage. As for Lingo, it involves two main

operations of matrix decomposition by SVD and ranking, of which the cost is dominated by both document

number and the total number of uni-gram words (d) used to characterise the documents; the longer the

documents are, the higher the value of d.

To investigate how running time of these three methods changes with increasing input data sizes,

e.g., increasing number and length of documents, we conduct two sets of tests using the Reuters document

set with medium length documents and the EEP set containing very lengthy documents. In Figure 7(a),

the running time variations of the three methods are compared using from 150 to over 6000 Reuters

documents, of which the total number of words used to characterise the documents increases from around 4

to 46 thousands. It can be seen from the figure that the computational costs of the three methods are

comparable when processing comparatively small number of documents. As the input document number

increases, the computational cost of Lingo increases much more rapidly than CEDL and DKM. For CEDL,

it takes around seven minutes to process over 6000 documents containing over 46 thousands of words,

which is within the scalable range. In Figure 7(b), comparisons are conducted using 331 EEP documents

characterised by increasing number of words from 8 to 218 thousands. A similar observation is made that

the computational cost of Lingo increases much steeper than CEDL and DKM. Also, CEDL is around nine

times faster than DKM. As previously explained, this is because CEDL improves the computation of
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between-document similarities that drive the k-means clustering, so that they better highlight the cohort

structure hidden in the EEP documents, thus leading to much less iterations for the clustering algorithm to

converge, and consequently, less running time than DKM. The advantage of CEDL being less sensitive to

document length makes it suitable for analysing lengthy document containing complex information, as

opposed to Lingo that is developed for processing short text snippets.

Finally, we provide an example of how CEDL can be extended to create hierarchical cluster

structures. Sometimes, in a document browsing service this is more practical than using flat clusters. To

achieve hierarchical clustering, the input preparation and co-embedding generation stage of CEDL remain

the same, while in the cluster exploration stage, the k-means clustering is simply replaced by a hierarchical

clustering algorithm, e.g., hierarchical k-means (Arai & Ridho, 2007) as used in our experiment. The

obtained hierarchical cluster structure is then a dendrogram. For each of those node clusters having the

root as its parent, the whole candidate phrase pool is used as its candidate phrases, while for the remaining

node clusters (excluding the root one) all the topic phrases determined for their parent node are used as

the candidate phrases, but excluding the chosen phrase as the descriptive label for the parent node. Then,

we follow exactly the same procedures as in Stages 3 to 5 to determine the descriptive label for each node

cluster. The extended CEDL is applied to group clinical trial documents retrieved based on the four

queries of “asthma”, “prostate cancer”, “breast cancer” and “cardiovascular”. The obtained hierarchical

document clusters are illustrated in Figure 8. Four clusters of “mild persistent ashma”, “permanent

prostate cancer”, “breast cancer treatment” and “cardiovascular disease” are discovered, which match the

four ground truth topics. Under these clusters, sub-clusters are discovered representing relevant sub-topics,

which are shown in different colours of tree structures in Figure 8. We compute the average cluster purity

and f-measure for the obtained clusters, which are both over 0.96.

Conclusion

We have proposed a novel descriptive clustering framework CEDL for grouping semantically

interrelated documents and summarising the content of the obtained document clusters with compact and

comprehensive labels. Different from many existing methods, the proposed CEDL treats descriptive

clustering as a heterogeneous data analysis problem, jointly analysing documents and phrases by effectively

combining connections within and between the two object sets. Such strategy effectively improves the

quality of document clusters and cluster labels simultaneously. Technical contributions of this work are

summarised as follows.

First, a unique pre-processing scheme for constructing the three input similarity matrices Sdd, Spp

and Sdp has been proposed. Its ability to take into account both semantic and syntactic connections
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between and within the targeted documents and candidate phrases is very advantageous to the quality of

the resulting document clusters and their labels. The link information contained explicitly and implicitly in

these matrices dominates the later clustering and label generation procedures. In addition to constructing

them based on VSM and tf-idf weighting (Xdw, Xpw and Xdp), the framework is made adequately generic

to accommodate Sdd, Spp and Sdp constructed through alternative ways and information resources. This

offers the users the opportunity to experiment and define their own similarity data structures that could

suit better a particular domain or corpus.

Second, a very effective descriptive clustering algorithm has been introduced through CEDL to

boost the grouping and summarisation performance. The three similarity matrices are effectively blended

so that not only the direct links within, but also the latent interactions across them are taken into account.

The algorithm advances by deriving a co-embedded space from the blended similarities stored in matrix S.

Specifically, by preserving the composite neighbour-based second-order similarity information in S, this

critical component commonly maps both documents and candidate phrases into a co-embedded space

(Stage 1). The resulting co-embeddings are used as an alternative representation of the documents and

phrases, which serves as a convenient platform for simultaneously manipulating heterogeneous objects, and

meanwhile establishing connections between the clustering and label generation procedures to achieve a

more reliable output. Then, each document is assigned into a single cluster by conducting simple k-means

clustering in the co-embedded space (Stage 2), which smoothens out the approximate document cluster

information. Subsequently, a gradual multi-stage process of narrowing down the residual phrase search

range of the optimal descriptive labels is performed to assure the quality of descriptive labels. It first

generates topic phrases through a multi-class multi-label classification procedure to facilitate the

multi-topic nature of phrases, reduce noise interference between object types, and form more robust

relationships between documents and topic phrases (Stage 3). It then discovers a small set of top phrases

from the selected topic phrases according to a ranking procedure based on multiple assessing measures, and

finally selects the descriptive label from the top phrases by combining the assessing measures with

examination of the common words (Stage 4). This gradual search process contributes to the robustness and

stability of the algorithm and reduces the negative effects from noisy candidates. In the end, a trimming

procedure is employed in order to further improve the cluster quality and introduce overlapping between

document clusters to accommodate practical demands (Stage 5). This prevents significant reduction of

cluster separability without breaking the main cluster structure derived from the previous clustering stage.

The effectiveness, accuracy and robustness of the proposed method was demonstrated via

quantitative and qualitative evaluations and comparisons with two state-of-the-art competitors using

document databases from different application fields. It was shown to produce not only higher quality
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document clusters evaluated by various cluster performance measures, such as f-measure, cluster purity,

entropy and contamination, but also more reasonable sub-topics judging from the descriptive labels. Also,

compared to the competing methods, the improved performance of CEDL is not traded by sacrificing its

computational cost.

However, there are still limitations in the proposed system. Given the rapid growth of electronic

literature and media information and the demands of online text mining services for faster analysis of large

amounts of text data, future work will focus on several improvements of CEDL. First, the system can be

enhanced with more scalable data processing capabilities to accommodate large-scale corpora. Second,

document content summarisation can be improved by allowing multi-phrase descriptions and by taking into

account distributional semantics between words to better capture the semantic topics of the document sets.

Third, dynamic and incremental learning ability could be incorporated to process growing text information

more effectively. Also, the system could benefit from active self-improving capabilities through feedback

information from the users, e.g., user-specified document clusters and user-preferred descriptive label

phrases.
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Table 1

Summary of the main variables and quantities used in the various stages of CEDL.

Variable name Range Description

{Di}n
i=1 NA A set of n targeted documents to be clustered.

{Pi}m
i=1 NA A set of m phrases to be used as candidate labels.

Sdd Rn×n Similarity matrix between the n targeted documents.

Spp Rm×m Similarity matrix between the m candidate phrases.

Sdp Rn×m Similarity matrix between the n targeted documents and m candidate phrases.

Xdw Rn×d Word-based feature matrix of the n targeted documents.

Xpw Rm×d Word-based feature matrix of the m candidate phrases.

Xdp Rn×m Phrase-based feature matrix of the n targeted documents.

Fpd {0, 1}m×n Binary matrix indicating whether a candidate phrase and its distorted or synony-

mous versions appear in a targeted document.

S R(n+m)×(n+m) A composite similarity matrix between the combined set of n targeted documents

and m candidate phrases.

S0 R(n+m)×(n+m) A composite similarity matrix between the combined set of targeted documents and

candidate phrases, computed by simple combination in Eq. (5).

w1, w2, w3 R+ Positive combining parameters for computing S0 in Eq. (5).

N(S0, h1) {0, 1}(n+m)×(n+m) Binary neighbourhood indication matrix by applying h1-nearest neighbour search

to S0 in Eq. (5).

N(S, h2) {0, 1}(n+m)×(n+m) Binary neighbourhood indication matrix by applying h2-nearest neighbour search

to S in Eq. (8).

Z = [zij ] R(n+m)×l Co-embedding matrix of both the n targeted documents and m candidate phrases.

Zd Rn×l Co-embedding matrix of the n targeted documents.

Zp Rm×l Co-embedding matrix of the m candidate phrases.

Σl Rl×l Eigenvalue matrix of S ◦N(S, h2) corresponding to the largest l eigenvalues.

Pl R(n+m)×l Eigenvector matrix of S ◦N(S, h2) corresponding to the largest l eigenvalues.

k Z+ Cluster number used by k-means clustering algorithm.

Y = [yij ] {−1, +1}n×k Binary cluster membership matrix indicating whether a document belonging to a

document cluster.

Yp {−1, +1}m×k Binary cluster membership matrix indicating whether a candidate phrase is relevant

to the topic of a document cluster.

wi Rl The weight vector of the discriminant function for the ith cluster.

W Rl×k Weight matrix W = [w1, w2, . . . , wk].

bi R The bias of the discriminant function for the ith cluster.

b Rk The k-dimensional bias vector b = [b1, b2, . . . , bk]T .

yi {−1, +1}n The ith column of the cluster membership matrix Y for documents.

Yi {0, 1}n×2 Binary matrix computed from yi.{
D

(i)
j

}ni

j=1
NA The set of ni documents belonging to the ith cluster.{

P
(i)
j

}mi

j=1
NA The set of mi topic phrases of the ith cluster.

Z(i)
d

Rni×l Co-embedding matrix of the ni documents of the ith cluster.

Z(i)
p Rmi×l Co-embedding matrix of the mi topic phrases of the ith cluster.

Ŷp Rmi×k Unsigned cluster membership matrix for the mi topic phrases.

a R+ CEDL parameter for modifying the effect of the weight score(i)
2 .

m∗
i Z+ The number of top phrases selected based on the ranking score in Eq. (16).

z
(i)
p R1×l Co-embedding vector of the cluster label of the ith cluster.
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Table 2

Information of the used document sets, including the number of documents (n), the number of uni-gram

words used for characterising the documents (d), and the ground-truth topic information for which the total

number of topics (c) is shown in the third row. The number of documents included for each topic is shown

in parentheses.

Dataset CT1 CT2 Reuters1 Reuters2 Reuters3 EEP1

n 1000 580 443 547 1000 331

d 10231 8038 4244 5492 7649 55253

c 5 8 3 6 10 2

Topic tag asthma (200) depression (125) money-fx (200) iron-steel (47) earn (60) work-based learning (164)

(ground breast cancer (200) leukemia (110) sugar (143) earn (100) acq (100) primary education (167)

truth cardiovascular (200) HIV (95) earn (100) money-fx (100) crude (50)

partition) lung cancer (200) cardiovascular (80) sugar (100) trade (100)

prostate cancer(200) prostate cancer (65) ship (100) money-fx (80)

lung cancer (50) trade (100) interest (200)

breast cancer (35) ship (150)

asthma (20) sugar (100)

money-supply (100)

coffee (60)

Classification LFDA: 0.9728 LFDA: 0.8610 LFDA: 0.9816 LFDA: 0.9372 LFDA: 0.8208 LFDA: 0.8157

accuracy LSVM: 0.9896 LSVM: 0.9596 LSVM: 0.9757 LSVM: 0.9467 LSVM: 0.8808 LSVM: 0.8060
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Table 3

Evaluation of the cluster quality for the competing descriptive clustering algorithms, using the six document

sets and the four measures. The best performance for each measure and test set is marked in bold.

f-measure Cluster Purity

CEDL DKM Lingo CEDL DKM Lingo

CT1 0.9780 0.9745 0.5239 CT1 0.9786 0.9749 0.5986

CT2 0.9673 0.8860 0.5556 CT2 0.9614 0.8973 0.4860

Reuters1 0.9435 0.8055 0.5185 Reuters1 0.9363 0.8063 0.6695

Reuters2 0.7856 0.7094 0.4238 Reuters2 0.7828 0.6853 0.5603

Reuters3 0.7603 0.5714 0.3791 Reuters3 0.7803 0.6436 0.3639

EEP1 0.7282 0.7141 N/A EEP1 0.7406 0.7168 N/A

Cluster Entropy Cluster Contamination

CEDL DKM Lingo CEDL DKM Lingo

CT1 0.0702 0.0784 1.8875 CT1 0.0519 0.0605 0.7732

CT2 0.0765 0.1566 1.6633 CT2 0.0845 0.1889 0.7519

Reuters1 0.2001 0.3783 0.9312 Reuters1 0.1762 0.3687 0.6155

Reuters2 0.3454 0.5095 0.9772 Reuters2 0.3686 0.4911 0.6820

Reuters3 0.3268 0.5714 1.7560 Reuters3 0.3649 0.5269 0.8384

EEP1 0.8324 0.9438 N/A EEP1 0.7601 0.7788 N/A
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Table 4

Cluster labels generated for the EEP documents related to the “management, governance and finance”

topic, for k = 15. The actual number of documents included in each cluster is shown in parentheses.

CEDL DKM

secondary school teacher (123) high education student (109)

eligible young people (87) school age child (104)

high education funding (54) primary school teacher (89)

ental health service (50) case study school (85)

student total income (47) family support service (77)

community development learning fund (36) high education course (55)

local authority interviewee (36) ema eligible young people (53)

individual learning account (35) high education qualification (48)

formal childcare provider (29) secondary school teacher (41)

skill development fund (28) sure start local programme area (36)

case study partnership (25) basic skill project (30)

administrative support staf (25) individual learning account centre (25)

sure start local programme (21) pupil teacher ratio (20)

minority ethnic pupil (17) recognition employment sector organisation type (6)
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Table 5

Cluster labels generated for different sets of clinical trial documents retrieved using different input queries,

for k = 6. The number of documents included in each cluster is shown in parentheses.

CEDL DKM Lingo

Query: “asthma”

acute asthma exacerbation (47) stable asthma patient (65) smoking=pack year (158)

self management education(40) moderate persistent allergic asthma (49) chronic obstructive pulmonary disease (157)

chronic inflammatory airway (37) moderate acute asthma exacerbation (39) health care use (151)

symbicort single inhaler therapy (31) childhood asthma management program (34) persistent allergic rhinitis (94)

university asthma clinical (27) house dust mite allergen (13) ragweed allergy season (56)

house dust mite allergen (18) unfavorable Th1/Th2 balance (3)

others (4)

Query: “breast cancer”

upper normal limit (54) metastatic breast cancer patient (129) adjuvant therapy (200)

expanded breast cancer (39) early stage breast cancer patient (71) treatment related fatigue (148)

sentinel lymph node (32) core needle biopsy (70)

behavioral sleep intervention (31) axillary lymph node(41)

random periareolar fine needle aspiration (23) EGFR tyrosine kinase (4)

CD44+/CD24 breast (21)

Query: “lung cancer”

symptomatic sclerodermarelated interstitial small cell lung cancer patient (115) non small cell (165)

lung disease (48)

previous lung cancer (47) stage small cell lung cancer (67) advanced nonsmall cell (165)

nonsmall cell lung (37) limited stage small cell lung cancer (20) extensive stage disease(147)

extensive stage disease small cell (25) stage IIIB/IV (105)

stage IIIB/IV (23) dose thoracic CT (92)

minimum dose CT (20) 5th congressional district (2)

others (8)

Query: “prostate cancer”

resistant prostate cancer (43) prostate cancer patient (121) hormone refractory disease (150)

positive bone scan (42) androgen independent prostate cancer (31) serum PSA level (137)

lycopene supplementation lower serum (33) hormone refractory prostate cancer (28) androgen deprivation therapy (136)

external beam radiotherapy (32) high risk prostate cancer (22) alanine amino transferase (2)

chemotherapy naive hormone (26) others (14)

androgen deprivation therapy (24)

Query: “cardiovascular”

CVD health disparity (41) cardiovascular disease risk (119) ischaemic heart disease (199)

progressive aerobic exercise (38) depressed coronary artery disease patient (39) cardiovascular disease event (199)

coronary artery disease (35) cardiovascular disease event (26) cardiovascular risk factor (190)

control cardiovascular risk (33) minor cardiovascular risk factor (16) peripheral biological mechanism (66)

food guide diet (29) food guide diet (44)

polycystic kidney disease (24) motor incomplete spinal cord (7)
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Table 6

Cluster labels generated for different sets of clinical trial documents retrieved using different input queries,

for k = 6. The number of documents included in each cluster is shown in parentheses.

CEDL DKM Lingo

Query: “HIV”

current antiretroviral regimen (54) HIV infected patient (144) HIV infected patient (200)

VA Long Beach (42) HIV infected person(27) current antiretroviral regimen (156)

sexual health education program (34) HIV infected TB patient (17) coronary artery disease (130)

HIV infected inner city (30) HIV/HBV coinfected individual (7) CD4 cell count (101)

active pulmonary TB (21) eban HIV/STD risk reduction intervention (6) peginterferon alpha 2a (3)

chronic HCV infection (19)

Query: “leukemia”

standard/high risk all (45) chronic lymphocytic leukemia (53) chronic lymphocytic leukemial (198)

Karnofsky performance status (42) acute lymphoblastic leukemia (49) acute myeloid leukemia (198)

bone marrow aspirate (37) early allogeneic stem cell transplantation (35) allogeneic hematopoietic cell transplantation (146)

chronic phase chronic myeloid leukemia (32) lymphoid blast phase chronic myeloid leukemia (35) myeloid blast phase (128)

allogeneic stem cell transplantation (26) philadelphia chromosome positive acute lymphoblastic philadelphia chromosome positive (66)

leukemia (19)

week standard/high risk Low (25) white blood cell transfusion (12) others (25)

Query: “depression”

selective serotonin reuptake inhibitor (53) current depressive disorder (86) antidepressant drug trial (147)

cognitive behavioral intervention (48) current major depressive episode (49) week washout period(144)

poor right hemispheric functioning (34) recurrent major depressive disorder(44) cognitive behavioral therapy (134)

current major depressive episode (31) collaborative depression care management (21) childhood sexual abuse (101)

recurrent major depressive disorder (29) fatty acid ethyl (12)

collaborative depression care management (17) multivariable Cox proportional hazard(5)

others (6)

Query: “schizophrenia”

behavioral social skill (60) schizophrenia/schizoaffective disorder (107) schizophrenia/schizoaffective disorder (200)

total PANSS score (54) risperidone oral tablet (70) substance use disorder (183)

oral atypical antipsychotic (38) routine clinical care (137)

cognitive adaptation training (28) social cognitive deficit (100)

smoking cessation treatment session (28) smooth pursuit eye (4)

electronic schizophrenia treatment adherence (22)
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Figure 1 . The main processing stages and data structures of CEDL. A detailed summary for the notation

of variables and quantities used here can be found in Table 1.
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Figure 2 . Example of the gradual multi-stage process of determining the descriptive cluster label,

generated using the CT2 document set for the leukemia cluster.
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Figure 3 . Comparison of the proposed second-order neighbour-based similarity matrix S used within Eq.

(9), with the first-order S0 of Eq. (5), presented as image matrices in the top and bottom rows,

respectively. The matrices are computed with the CT1, Reuters2 and EEP1 document sets.
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(a) CEDL (ACP=96.6%). (b) DKM (ACP=93.5%).
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(c) Lingo (ACP= 39.4%). (d) Cluster measures.

Figure 4 . The first three figures display the document clusters and their corresponding labels for the CT1

set, obtained from: (a) CEDL, (b) DKM and (c) Lingo. The parameter k for controlling the cluster

number was set as 18. The quality of each obtained cluster is quantified by the cluster purity measures

displayed next to each descriptive label in parenthesis. The averaged cluster purity (ACP) measures are

also displayed. The last figure (d) plots the values of f-measure and cluster contamination for the three

competing methods and increasing values of k that control the number of document clusters.
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(a) CEDL (ACP= 86.1%). (b) DKM (ACP= 75.1%).
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(c) Lingo (ACP= 50.0%). (d) Cluster measures.

Figure 5 . Document clusters and their corresponding labels for the Reuters2 set, obtained from: (a)

CEDL, (b) DKM and (c) Lingo, for k = 15. The individual and averaged cluster purity measures are also

displayed. Figure (d) plots the values of f-measure and cluster contamination for all competing methods

and increasing values of k that control the number of document clusters.
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(a) CEDL (ACP= 85.7%). (b) DKM (ACP= 82.9%).

Figure 6 . Document clusters and their corresponding labels for the EEP1 set, obtained from: (a) CEDL

and (b) DKM, for k = 12. The individual and averaged cluster purity measures are also displayed.
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(a) Increasing document number. (b) Increasing word number.

Figure 7 . Variations of CPU times in seconds from running the three methods of CEDL, DKM and Lingo

with: (a) increasing the number of documents using the Reuters set, and (b) increasing the number of

words characterising a set containing a total of 331 EEP documents.
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Figure 8 . Example of the hierarchical cluster structure along with the descriptive cluster labels generated

by CEDL, for clinical trial documents retrieved based on the four queries of “asthma”, “prostate cancer”,

“breast cancer”and “cardiovascular”.


