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Sequential Projection Pursuit with Kernel Matrix
Update and Symbolic Model Selection
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Abstract—This work proposes a novel way for generating reliable low-dimensional features with improved class separability in a
kernel-induced feature space. The feature projections rely on a very efficient sequential projection pursuit method, adapted to support
nonlinear projections using a new kernel matrix update scheme. This enables the gradual removal of structure from the space of
residual dimensions to allow the recovery of multiple projections. An adaptive kernel function is employed to unfold different types of
data characteristics. We follow a holistic model selection procedure, that together with the optimal projections, dimensionality and kernel
parameters, it additionally optimizes symbolically the projection index that controls the actual measurement of the data interestingness
without user interaction. We tackle the underlying complex bi-level optimization model as a mixture of evolutionary and gradient search.
The effectiveness of the proposed algorithm over existing approaches is demonstrated with benchmark evaluations and comparisons.

Index Terms—supervised dimensionality reduction, projection pursuit, kernel matrix update, evolutionary optimization.
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1 INTRODUCTION

THE extraction of compact, highly informative fea-
tures is very important in machine learning systems,

as it can improve both the discriminating performance
of the classification task as well as its computational
efficiency. Techniques to achieve this, have been success-
fully applied to various domains for processing high-
dimensional data, such as face recognition, text mining,
signal processing, gene profile and protein analysis, and
image retrieval.

According to their mapping capabilities, feature ex-
traction methods can be categorized to linear and non-
linear. Examples of commonly used linear methods are
the principal component analysis (PCA) [1], indepen-
dent component analysis (ICA) [2], Fisher discriminant
analysis (FDA) [3] and locality preserving projections
(LPP) [4]. These translate the original samples to a
lower-dimensional representation by deriving a projec-
tion matrix according to pre-designed optimizing cri-
teria. However, despite their efficiency and suitability
to many datasets, these methods fail to preserve or
improve the separability of high-dimensional data that
possess nonlinear structure. Therefore, the incorpora-
tion of handling nonlinearities becomes necessary. Com-
monly used nonlinear techniques are either based on the
standard kernel trick (SKT) [5], or the empirical kernel
mapping (EKM) [6] which is also known as mapping
based on (dis)similarity or relation features [7]–[10]. SKT
transforms the input space to a non-observable high
or possibly infinite dimensional feature space accessible
only through its dot-product computed with a kernel
function. EKM transforms the input space to an explicit
feature space with finite dimensionality, within which
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each feature represents the (dis)similarity between an
original data sample and a selected prototype sample
evaluated with a certain (dis)similarity measure. For
some algorithms, their SKT and EKM extensions possess
identical mathematical forms, e.g., FDA, whereas for
some others not, e.g., PCA [8], [11]. Apart from handling
nonlinearities, another advantage of SKT and EKM is
that their computational efficiency is not burdened by
the high dimensionality of the data, as they operate on
a kernel matrix or a (dis)similarity matrix, respectively.

In this work, we aim at the generation of low-
dimensional features with improved class separability.
To increase the robustness of the feature extraction pro-
cess, we make use of a kernel-induced space through
SKT, based on a carefully designed kernel function and
then calculate the best projections within that space.
Popular frameworks for modeling optimal projection
recovery are based on strategies that: i) preserve certain
proximity structure of the data in the projected space [9]
(this gives rise to many spectral embedding algorithms,
such as LPP and hypergraph spectral learning [12]),
ii) reduce or accentuate correspondingly the distances
between the intra-class and inter-class samples [10], [13]
(as various discriminant embedding algorithms such as
FDA and maximum margin criterion (MMC) [14] do),
and iii) optimize certain statistical measures of the data
(such as, the statistical correlation or dependence as PCA
and ICA respectively do). Frequently, an algorithm, e.g.,
PCA and MMC, can be interpreted with more than one
framework [9], [10].

By analyzing the commonalities and differences be-
tween different projection and embedding algorithms,
it can be realized that the basic idea of projection pur-
suit (PP) can support a more generic framework for
designing projection recovery procedures. PP is an estab-
lished technique for exploratory analysis, feature extrac-
tion and dimensionality reduction of large multivariate
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datasets with complex characteristics [15]–[19]. It was
firstly suggested as a technique that generalizes linear
feature extraction by means of an iterative optimization
procedure, where a predefined cost function referred to
as the projection index is optimized. Because this index
is designed to measure a specific geometric or statistical
data property of interest, maximizing its response over
possible different projections of the raw data, allows the
discovery of lower dimensional subspaces that capture
best the desired data properties. These properties define
the interestingness of the dataset in terms of the way
the projection index was designed. Various well-known
methods are special cases of PP. For example, PCA and
ICA derive projections from data which can be calculated
using projection indices that correspond to second- and
higher-order statistics, respectively (see also Section 3).

Most projection algorithms, such as those fitting the
aforementioned three frameworks for modeling optimal
projection recovery, can be unified or approximated via
formulating an appropriate PP index. This gives PP
the advantages of expressive power and generic data
exploratory capability that enable feature extraction to
adapt better to the inherent data properties and the
learning task at hand. Considering this, we convert
the feature extraction problem to one of discovering
symbolically a globally useful PP index in the kernel-
induced space. We propose an efficient structure removal
process to produce multiple projections in a sequential
manner. This offers a convenient mathematical operation
by reducing the determination of the nonlinear resid-
ual subspace to the computation of an updated kernel
matrix. To enhance the flexibility of the feature extrac-
tion process, we design an adaptive kernel function for
conducting SKT. It encompasses the most commonly
used kernel types, such as the dot-product, Gaussian
and polynomial, so that the induced space is capable of
unfolding different types of nonlinear structures in the
dataset and preserving salient characteristics from the
original space.

The concept of adaptive kernels has also been used in
different context. Examples include the object tracking
work of [20] that defines contours on the object of
interest using multiple kernels with adaptive weights.
[21] is an extensive review on online learning algorithms
that rely on the automatic adaptation of kernels for
processing new samples. The work in [22] proposes a
robust feature extraction technique for invariant iris rep-
resentation using kernel-based classification. Our work
also introduces an adaptive method, but it is not based
on a specific application or any specific classification
technique. It is rather a generic adaptive kernel-based
feature extraction framework using multiple projections.

Unlike existing PP methods which were originally
designed with fixed projection indices, our approach is
capable of symbolically generating the algebraic form
of the unknown index based on the characteristics of
the dataset given by the user. This relies on discov-
ering an index which, in turn, can be optimized to

produce projections that enhance the discriminability
of the data. The actual model training we employ, is
based on an evolutionary optimization procedure that
can simultaneously find the optimal model as well as
the kernel parameters and optimal dimensionality. In
the past, a wide spectrum of evolutionary optimization
methodologies were used for the solution of complex op-
timization problems. Examples include Pareto solution
discovery for multi-objective problems [23]–[25], global
continuous optimization [26], automated manufacturing
systems and scheduling [27], model selection in ma-
chine learning [15], [28], feature selection [29], classifier
fine-tuning [30], [31], automatic design of classification
systems [32], fuzzy rule-based systems [33], and neural
networks for time series prediction [34].

A very popular type of evolutionary optimization
algorithms used in the current work is genetic program-
ming (GP). This type is capable of discovering solutions
for entire classes of problems, in the sense of discov-
ering the symbolic form of mathematical expressions,
formulae or computer programs. GP was previously
applied to feature extraction in various ways, such as
finding linear projections for feature extraction through
optimal projection pursuit indices [15], and feature se-
lection and classifier design for multi-class datasets [35].
More examples include the work in [36] which used GP
with comparative partner selection to combine subset
of features selected and ordered by statistical tests, and
[37] which employed different statistical moments from
signals arithmetically combined using GP for automatic
modulation classification. A mutli-objective GP was also
used in [38] to evolve optimal feature extractors that
transform the original features to a decision space with
high class separability. More examples of GP uses in
feature extraction and classification are given in the
reviewing article of [39].

The structure of the paper is as follows. Section
2 presents the different components of the proposed
model, such as the kernel design, the data pre-processing
and the novel matrix updating scheme. Section 3 de-
scribes the model selection and learning procedure, as
well as the chromosome encoding scheme, the fitness
evaluation, and the function and terminal sets of the evo-
lutionary setup. Section 4 contains the experimental re-
sults, evaluations and comparisons with different state-
of-the-art algorithms using various high-dimensional
classification datasets, while Section 5 concludes the
work.

2 PROPOSED MODEL CONSTRUCTION

We propose an evolutionary feature extraction system,
for transforming a data point x of dimension m to a
lower dimensional space Rb (b << m), via a process that
comprises the two mapping stages

x 2 Rm ! �(x) 2 H| {z }
mapping 1

! V⇤
�(x) 2 Rb

| {z }
mapping 2

. (1)



3

The first mapping transforms the input space Rm to a
non-observable space H through SKT, using the map-
ping function denoted by �. The second mapping con-
sists of a linear transformation V⇤ that collapses points
in H to the resulting space Rb through the whitening and
PP procedures discussed later. This generates the space
of the extracted feature vectors. The method relies on a
given dataset D = {(xi, yi) : xi 2 Rm, yi 2 {1, . . . , c},
i = 1, . . . , n} containing a total of n samples. This is
associated with an n ⇥ m feature matrix X = [xij ], and
a label vector y = [y1, . . . , yn]T having each sample cor-
responding to a class label from the c available ones. In
the following sections, we explain the proposed system
step by step.

2.1 Adaptive Kernel Design
The first stage of mapping results in a kernel-induced
space H accessible only through its dot-product. We
design this through an adaptive kernel function defined
as

K(xi,xj) ⌘ �

T
(xi)�(xj) (2)

=

�
✓1 + x

T
i xj

�✓2 exp
✓
�kxi � xjk2

✓3

◆
.

The parameter set ✓ = [✓1, ✓2, ✓3], with ✓1, ✓2 � 0, ✓3 > 0,
controls the kernel behavior. When ✓3 ! 1, Eq. (2)
takes the form of a polynomial kernel, which becomes
a homogeneous one for ✓1 = 0. When ✓2 ! 0, Eq.
(2) resembles a Gaussian kernel with ✓3 controlling the
kernel width. A simple dot-product kernel can also be
obtained with ✓1 = 0, ✓2 = 1 and ✓3 ! 1. We adopt this
compositional kernel formulation to adapt to varying
degrees of linear and nonlinear data characteristics and
avoid strong assumptions regarding the structure within
the available datasets.

2.2 Kernel-Induced Whitening
The feature extraction is based on the combination
of whitening and PP. Whitening is one of the most
commonly used feature pre-processing approaches and
decorrelates the data by firstly performing PCA. We
apply the whitening process prior to applying sequential
PP [16]. The eigen-decomposition of the input data co-
variance matrix is used to linearly project the centered
data along the more dominant eigenvectors. The new
diagonalized covariance is subsequently turned to an
identity one via data scaling. The final whitening pro-
jection matrix applied to the centered data is

W = L� 1
2 MT , (3)

where L and M are the eigenvalue and eigenvector
matrices of the covariance matrix corresponding to non-
zero eigenvalues. Given a set of n input data points in
the original feature space in Rm, the whitened data can
be computed by

Xw = XcWT
= XcML� 1

2 , (4)

where Xc = (In � 1nn)X denotes the centered data
matrix, In an identity matrix of size n, and 1nn an n⇥n
matrix with all elements set to 1

n . Similarly, given a set
of data points in the kernel-induced space H, the feature
representation of the whitened data becomes

�w = �cWT
= �cML� 1

2 , (5)

where �c denotes the centered data matrix in H and
M and L are calculated from its covariance matrix.
However, the expression in Eq. (5) is not implementable
due to the inaccessibility of the centered data in H and
because it involves the eigen-decomposition of the non-
observable data covariance matrix in H.

A common technique for addressing this, is to approx-
imate the eigenvalue and eigenvector matrices of the
covariance matrix by those of the dot-product matrix
of the centered data [5]. Specifically, each eigenvector
mj in M is approximated by the linear combination
mj =

Pn
i=1 �ij�c(xi) of the centered data patterns

{�c(xi)}ni=1. This leads to the redefined matrix repre-
sentation

M = �

T
c MK, (6)

where MK = [�ij ] denotes the coefficient matrix. Letting
K = [kij ] with kij = K(xi,xj) denote the dot-product
matrix of the data in H, known as the kernel matrix, the
dot-product matrix Kc of the centered data, known as
the centered kernel matrix, can be computed from K via

Kc = K � 1nnK � K1nn + 1nnK1nn. (7)

Eigen-decomposition of the non-observable covariance
matrix ⌃c in H can be then tackled as follows

⌃cM = ML , 1

n
�

T
c �cM = ML

, 1

n
�

T
c �c�

T
c MK = �

T
c MKL

, 1

n
�c�

T
c �c�

T
c MK = �c�

T
c MKL

, KcMK = nMKL. (8)

From Eq. (8), we can observe that the coefficient matrix
MK is actually the eigenvector matrix of Kc. Also, the
connection between the eigenvalue matrix LK of Kc and
the eigenvalue matrix L of the covariance ⌃c is

L =

1

n
LK. (9)

Those eigenvectors in M satisfy the orthogonality
condition but not orthonormality, because

MT M = MT
K�c�

T
c MK = MT

K KcMK = LK. (10)

To further impose orthonormality and have MT M = In,
the eigenvectors in Eq. (6) need to be further scaled by
L� 1

2
K . This results to

M = �

T
c MKL� 1

2
K . (11)

Finally, by incorporating Eqs. (9) and (11), as well
as the eigen-equation KcMKL�1

K = MK, into Eq. (5),
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the whitened data matrix �w for patterns in H can be
written as

�w = �c�
T
c MKL� 1

2
K

✓
1

n
LK

◆� 1
2

=

p
n�c�

T
c MKL�1

K

=

p
nKcMKL�1

K

=

p
nMK (12)

The dot-product matrix of the whitened data, referred to
as the whitened kernel matrix, is computed as

Kw = �w�
T
w = nMKMT

K . (13)

Following this, projections can be computed based on
Kw, instead of the whitened feature representation �w.

2.3 Sequential PP via Kernel Matrix Updating
In this section, we introduce the proposed processing
component, which is the sequential PP procedure based
on an iterative update of the kernel matrix. First, we
start from the simplest case, that is to seek a single
projection vector p in H, relying on a predefined PP
index = : Rn ! R, that measures the degree of data
interestingness along the projection. This can be formu-
lated as the optimization problem

p

⇤
= argmax

kpk=1
= (�wp) , (14)

where �w denotes the feature matrix of the whitened
data in H. Although �w does not possess explicit form,
its dot-product matrix Kw = �w�

T
w can be computed

with Eq. (13). To enable this, we approximate the non-
observable space H with a subspace spanned by a set
of whitened training data samples. Thus, the projection
vector can be expressed as

p = �

T
w�, (15)

where � 2 Rn represents a set of mixing coefficients.
By substituting Eq. (15) into Eq. (14), the computation
of the optimal projection vector p

⇤ can be converted to
the determination of an optimal coefficient vector �

⇤,
according to

�

⇤
= argmax

�

T Kw�=1
= (Kw�) . (16)

Nevertheless, the above one-dimensional projection is
frequently inadequate to fully capture the underlying
data structure with regards to =(·). In order to enable
the PP procedure to produce b multiple projections
P = [p1, . . . ,pb], there exist two general approaches. One
is the parallel PP (PPP), which jointly optimizes every
component of P by solving

P⇤
= argmax

PT P=I
=P (�wP) , (17)

using symmetric orthogonalization procedures [17], and
a suitably defined index =P : Rn⇥b ! R. The other
approach is the sequential PP (SPP), which optimizes

each jth projection pj separately, and then removes its
contribution from the search space by projecting the sam-
ples onto the orthogonal complement of the projections
found so far [18]. It has to be noted, that the PPP index
=P of Eq.(17) can be more generic than the SPP index
= as it acts simultaneously on all b dimensions of the
n projected samples. For example, while = applies the
same statistic on each projection, =P can in theory apply
different statistical functions for different dimensions
and with more complex interactions between them. The
two procedures are, however, identical when =P is a
decomposable index equivalent to examining each sepa-
rate dimension independently, which is often the case.
Despite the generality of PPP, the optimization of all
b projections becomes more computationally expensive
and unnecessarily complicated, and therefore, in this
work we follow the SPP scheme described below.

Letting P⇤
j = [p

⇤
1, . . . ,p

⇤
j ] denote the matrix of the j

optimal projections (with 1  j < b) obtained incremen-
tally during the previous j steps, the subsequent step
is to obtain the (j + 1)th optimal projection p

⇤
j+1. The

proposed scheme relies on the following optimization
problem

p

⇤
j+1 = argmax

kepk=1
P⇤T
j ep=0j⇥1

= (�wep) . (18)

In this problem, in addition to the scale constraint on
the sought e

p, we also have j orthogonality constraints
imposed between e

p and each of the previous projections
in P⇤

j . To facilitate this constrained optimization, we
can perform a substitution of the second constraint, by
observing that e

p lies on the orthogonal complement
P?
j of the subspace Pj spanned by the basis {p⇤

k}jk=1.
Thus, the constraint can be reformulated as e

p 2 P?
j and

therefore expressed as e
p = P⇤?

j p. The quantity

P⇤?
j = I � P⇤

j (P
⇤T
j P⇤

j )
�1P⇤

j
T
= I � P⇤

jP⇤
j
T . (19)

is the orthogonal projector onto P?
j (the second equality

in Eq. (19) holds due to the orthonormality of the basis,
that is P⇤T

j P⇤
j = I).

Following the above, Eq. (18) can be finally expressed
equivalently as

p

⇤
j+1 = P⇤?

j argmax

kpk=1
=
⇣
�wP⇤?

j p

⌘
, (20)

where the search for the optimum projection p

⇤
j+1 is un-

constrained within Pj�P?
j ignoring scale. The rationale

behind the formulation of Eq. (20) can also be seen as
follows. The whitened samples in H contained in the
rows of �w are projected as �wP⇤?

j onto the residual
subspace P?

j along the already processed Pj . In this
way, the content of the =-dependent data interestingness
captured by all the previous j projections is removed,
the remaining analysis is confined within the residual
subspace, and at the same time the orthonormality of
the basis {p⇤

k}bk=1 is maintained.
To realize the implementation of Eq. (20) we have to

take into account that �w does not have an explicit
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form. Towards this we employ Eq. (15) and define
�

⇤
j = [�

⇤
1, . . . ,�

⇤
j ] to be the optimal coefficient matrix

computed for the j previous projections. Combining
these, we have

�wP⇤?
j p = �w(I � P⇤

jP⇤
j
T
)�

T
w� (21)

= (�w�
T
w ��w�

T
w�

⇤
j�

⇤
j
T
�w�

T
w)�

= (Kw � Kw�
⇤
j�

⇤
j
T Kw)�, (22)

since p

⇤
k = �

T
w�

⇤
k for 1  k  b and Kw = �w�

T
w.

Consequently, the optimization problem in Eq. (20) can
be solved using the iterative scheme

�

⇤
j+1 = (I � �

⇤
j�

⇤T
j Kw) e

�

⇤
j+1, (23)

e
�

⇤
j+1 = argmax

�

T Kw�=1
=
⇣

K(j+1)
w �

⌘
, (24)

K(j+1)
w = Kw � Kw�

⇤
j�

⇤
j
T Kw. (25)

The parenthesized term in Eq. (23) is produced by the
constraint transformation of Eq. (20). This is because the
projection p

⇤
j+1 is obtainable from �

⇤
j+1 via

p

⇤
j+1 = P⇤?

j �

T
we�

⇤
j+1 (26)

= (I � P⇤
jP⇤

j
T
)�

T
we�

⇤
j+1

= (I ��

T
w�

⇤
j�

⇤
j
T
�w)�

T
we�

⇤
j+1

= �

T
w(I � �

⇤
j�

⇤
j
T Kw)e�⇤

j+1

= �

T
w�

⇤
j+1. (27)

The proposed kernel updating scheme starts at step
j = 0 to recover �

⇤
1. To support this, we allow the initial

conditions �

⇤
1 =

e
�

⇤
1 for Eq. (23), and K(1)

w = Kw for
Eq. (25). The procedure iterates until all b components
are found. The iterations reduce the determination of
the residual subspace at the (j + 1)th projection to the
update of the kernel matrix K(j+1)

w , providing a more
convenient and efficient mathematical operation. Com-
paring the objective functions of Eq. (24) and Eq. (14),
we can see that in each iteration the optimization in Eq.
(24) can actually be viewed as a standard PP process
seeking projections in an n-dimensional feature space
with K(j+1)

w being its n ⇥ n input feature matrix, but
employing the scale constraint �T Kw� = 1 with respect
to Kw.

2.4 Out-of-Sample Extension
To make the above applicable to real situations where
separate training and testing datasets are available, we
assume a set {¯xi}li=1 of l query samples. Then, the pro-
jected feature vector for each query ¯

xi can be computed
as

V⇤
�(

¯

xi) = P⇤T
b W�c(¯xi) = �

⇤T
b �w�w(¯xi) = �

⇤T
b

¯Ki
w, (28)

where P⇤
b and �

⇤
b are the optimal projection and coeffi-

cient matrices, �w(¯xi) = W�c(¯xi) the whitened feature
vector of query ¯

xi in H, and ¯Ki
w an n⇥ 1 vector formed

by the ith row of ¯Kw. The l ⇥ n matrix ¯Kw is the dot-
product matrix between the whitened l query and n

training samples. It can be computed similarly to Eq.
(13), according to

¯Kw = n¯KcMKL�1
K MT

K , (29)

where ¯Kc is the dot-matrix between the centered query
and training samples. This is obtained by

¯Kc =
¯K � 1lnK � ¯K1nn + 1lnK1nn. (30)

¯K is the kernel matrix between the query and training
samples computed with the adaptive kernel of Eq. (2).
Consequently, the projected l⇥ b feature matrix ¯Z for all
the query samples, is given by

¯Z =

¯Kw�
⇤
b . (31)

3 MODEL OPTIMIZATION

To put the proposed method of Section 2 into practice,
two possibilities exist. One is to use a fixed PP index
= : Rn ! R to pre-specify the way by which data in-
terestingness is measured. Examples for indices used for
classical types of PP include the variance =(x) = E[x

2
]

used for PCA [2], and the skewness =(x) = E[x3]
E[x2]3/2

and

kurtosis =(x) =

E[x4]
E[x2] � 3 for ICA [19]. Although Eqs.

(23)-(25) can be used to implement efficiently the kernel
version of any existing PP index, in this work we adopt
the alternative design of not fixing =, but making it part
of our model selection procedure. This enables a data-
driven approach that adapts better to the task at hand.
For example, when classification in the space of reduced
dimensionality is the needed task, the selection of = can
be driven by the discovery of projections that are optimal
with respect to well discriminating features.

The model parameters to be selected by the proposed
method are: the symbolic form of =, the discrete di-
mensionality b, and the continuous parameters ✓ of the
adaptive kernel in Eq. (2). Model training relies on min-
imizing the classification error using a training dataset
and a standard classifier based on linear discriminant
analysis. We denote this classifier by the function C(·, ·, ·)
which returns the predicted class labels of a given set
of query samples. The first input to C is the feature
matrix of the query samples, and the remaining two
are the feature matrix and the class label vector of
the training samples. To support model generalization,
given a training dataset, we split it into k partitions for
actual training and validation, with yi and ¯

yi denoting
their corresponding class vectors for i = 1, . . . , k. Then,
the entire model selection procedure we use can be
expressed as

min

=,b,✓

kX

i=1

��
¯

yi � C
�
¯Kw(i,✓)�

⇤
b , Kw(i,✓)�

⇤
b , yi

���
H

(32)

s.t. �

⇤
b = [

e
�

⇤
1,�

⇤
2, . . . ,�

⇤
b ], (33)

e
�

⇤
j = argmax

�

T Kw(i,✓)�=1
=
⇣

K(j)
w (i,✓) �

⌘
, j = 1, . . . , b,

�

⇤
j =

⇣
I � �

⇤
j�1�

⇤T
j�1Kw(i,✓)

⌘
e
�

⇤
j , j = 2, . . . , b.
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The quantities Kw(i,✓), K(j)
w (i,✓) and ¯Kw(i,✓) notation-

ally correspond to the previous quantities Kw, K(j)
w and

¯Kw, defined in Eqs. (13), (25) and (29), but now act on
the ith partition of the training and validation sets using
the kernel parameters ✓. kskH represents the Hamming
distance and for a vector s it returns the number of its
nonzero elements.

Eqs. (32) and (33) comprise a complex bi-level opti-
mization problem, whose search space not only spans a
mixture of continuous ✓ and �

⇤
b , and integer variables

b, but also symbolic expressions for the syntactic and
semantic components of the PP index =. The first-level
optimization searches for the optimal model, that is
optimal model parameters =, b, and ✓. The minimand
of Eq. (32) is the overall classification error accumulated
from the predictions of the classifier C on the validation
samples ¯Kw(i,✓)�

⇤
b from each ith partition. However,

for this first-level optimization to function, the entire
coefficient matrix �

⇤
b needs to be known. This is ensured

in the second-level in Eq. (33), with a procedure that
iteratively estimates each of the b individual columns �

⇤
j

of the matrix �

⇤
b . This procedure follows directly Eqs.

(23)-(25), and is further described in Table 1 and Section
3.2.

Because the first-level optimization in Eq. (32) searches
for a mixture of continuous and discrete numerical as
well as symbolic parameters =, b, and ✓, we cannot
rely on classical optimization techniques. Instead, we
use a highly expressive GP module to simultaneously
evolve the index = and the model variables b and ✓. The
implementation of this module is based on the previous
work of [15], because it supports a syntactically rich
search space with sufficient expressive power to generate
robust PP indices. Table 2 outlines the main steps of
the GP-based search. Its main components, that is the
chromosome encoding, the fitness function evaluation
and the function and terminal sets are described in
the following subsections. We refer to our proposed
algorithm as evolutionary kernel sequential projection
pursuit (EKSPP). Figure 1 presents an overview of the
sequencing of the main operations supported by EKSPP,
including model identification using training data and
the final classification task using unseen data.

3.1 Chromosome Encoding

Each chromosome encodes three parts, that is a tree
structure = representing the projection index, a real-
valued array ✓ for the parameters of the adaptive kernel,
and an integer variable b for the dimensionality of the
extracted features. Thus, each ith member in the popu-
lation of the GP module (see Table 2), is represented as
the triplet ⇠i = [=i, bi,✓i]. This representation facilitates
simultaneous evolution of both numeric and symbolic
variables and, along with the function and terminal sets,
it provides a highly expressive representation mecha-
nism that enables the search to reach areas of the solution
space that contain effective models.

TABLE 1
Description of the main steps for the computation of the
classification error E(⇠) of a given model ⇠ = [=, b,✓].
1) Input: Training set D, cross-validation partition size k, tentative

model parameters =, b, and ✓.
2) Initialization:

a) Partition D to k different folds, each containing a subset
Di for training and its complement D̄i for validation, for
i = 1, . . . , k.

b) Set i = 1.
3) Main loop: While i  k do:

a) Compute dot-product matrices Kw(i,✓) and K̄w(i,✓) with
Eqs. (13) and (29), respectively.

b) Set K(1)
w (i,✓) = Kw(i,✓), and j = 0.

c) While j  b do:
i) Use constrained optimization to find e�⇤

j+1 in Eq. (24).
ii) Update �⇤

j+1 using Eq. (23) (or set �⇤
1 = e�⇤

1 when
j = 0).

iii) Update matrix K(j+1)
w using Eq. (25), and set j = j+1.

d) Compute the projected features Zi = Kw(i,✓)�⇤
b of train-

ing set Di, and Z̄i = K̄w(i,✓)�⇤
b of validation set D̄i.

e) Train the classifier C using Zi and their class label vector
yi.

f) Apply C on the validation features Z̄i to predict their labels
ŷi.

g) Estimate the classification error Ei = kȳi � ŷikH .
h) Set i = i+ 1.

4) Output: Return the overall validation error E ([=, b, ✓]) =
Pk

i=1 Ei.

Fig. 1. Overall description and flow of operations and data
in the proposed system.

3.2 Fitness Evaluation

Given a specific model created either during population
initialization or through an operator such as crossover
or mutation, its fitness value has to be computed. The
fitness evaluation of a given individual ⇠i = [=i, bi,✓i]

first needs the calculation of the optimum projection
coefficients �

⇤
b as described in Eq. (24) of Section 2.3

and Eq. (33). Then, it estimates the projected features
and subsequently the classification accuracy using the
validation partitions. As outlined in step 3.c of Table 1,
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TABLE 2
Description of the main GP operations of EKSPP.

1) Input: Set training set D, number of generations GPgen, popu-
lation size GPpop.

2) Initialization:
a) Create random and hybrid individuals encoded by the

chromosomes ⇠i = [=i, bi,✓i], for i = 1, . . . , GPpop.
b) Compute the fitness value E(⇠i) for each chromosome.
c) Set t = 1.

3) Main loop: While t  GPgen do:
a) Select stochastically parents, and apply crossover and mu-

tation to produce children ⇠ci , for i = 1, . . . , GPpop.
b) Compute the fitness value E(⇠ci ) for each child, and insert

it into the population.
c) Keep the best GPpop individuals from the expanded pop-

ulation to be the new generation of individuals ⇠i.
d) Set t = t+ 1.

4) Output: Locate the fittest individual ⇠⇤ in the population, and
extract its corresponding parameters =, b, and ✓ to be the
optimum model.

the coefficients are obtained with a constrained nonlinear
optimization method. Any such method can be used in
this step, because the index function and its parameters
are known from the encoded chromosome. Here, we
employ of a penalty function based on the objective
=(K(j+1)

w �) and the constraint �T Kw� = 1, and optimize
it with a standard Broyden-Fletcher-Goldfrab-Shanno
(BFGS) method [40]. This is based on a quasi-Newton
iterative update scheme �(t+1) = �(t)�↵tH

�1
t rF (�(t)).

At each iteration t, ↵t is an optimizing length along an
optimum direction, rF (·) the gradient of the penalty
function, and Ht a rank-two approximation of the Hes-
sian matrix, so that an explicit computation is not
needed.

3.3 Function and Terminal Sets
The function and terminal sets provide the building
blocks to construct potential indices for the tree structure
part of the chromosome. The expressive power achieved
by rich function and terminal sets enables EKSPP to
create not only most of the existing PP indices, such
as PCA or ICA, but also new ones not considered
before. The function set we use is summarized in Ta-
ble 3. These functions are selected because of certain
advantages. Basic arithmetic operands are very useful
to combine more complex functions. The inclusion of
Rényi divergence, in conjunction with the generalized
extreme value (GEV) and Student-t distributions, enables
the GP module to potentially discover what can be
considered as an interesting projection. Rényi entropy
is included as a generalization of the Shannon entropy,
and together with Rényi divergence provides a good
approximation of the most popular unsupervised pro-
jection indices. Furthermore, with suitable combinations
of sample central moments, the evolutionary framework
could potentially build any unsupervised moment-based
index previously considered. Class means and variances,
quartiles and within/between-scatters are included to
build supervised indices.

TABLE 3
Proposed function set, where z = Kw� is the projection

of the training data with label vector y = [y1, . . . , yn]T that
associates each sample zi with a class label yi from the

c available ones.
Function Arity Description

+, -, *,
/, pow

2 Addition, subtraction, multiplication, divi-
sion, and exponentiation

ms 2 s-th sample central moment
ms(z) = E [(z � E(z))s]

D 5

Rényi divergence

D(̂f, g; ⇢) =
1

⇢� 1
log

 

d
X

i=1

f̂⇢
i

g⇢�1
i

!

⇢ > 0,

where g = [g1, . . . , gd] and f̂ = [f̂1, . . . , f̂d]
denote d bins of a reference pdf J(t) and of
the projected data pdf, respectively.
It defines what could be considered as an
uninteresting projection by means of J(t).

H 2

Rényi entropy

H
⇣

f̂ ; ⇢
⌘

=
1

1� ⇢
log

 

d
X

i=1

f̂⇢
i

!

⇢ � 0.

It has unique properties conferred by its
⇢ coefficient, for example it can potentially
deliver the Hartley entropy of z when ⇢ = 0
and it converges to the Shannon entropy as
⇢ ! 1.

Qj
i 4

Quartiles
They provide a robust alternative to get
the dispersion and overall central tendency
within each class, defined as

Qj
i ⌘ Q (i, j, y, z) = zl : l = |0.25 · i · nj |,

where Qj
i represents the ith quartile of class

j, nj is the number of projected samples
with class label j, and zl is the lth sample
in the ordered set.

µj 3 Class means
µ (j, y, z) = E [{zi : yi = j}]

�j 3
Class variances
� (j, y, z) = E

hn

(zi � µj)
2 : yi = j

oi

SW 2
Within-class scatter
SW (y, z) =

Pc

j=1

Pnj
i=1 (zi � µj)

2

SB 2
Between-class scatter
SB (y, z) =

Pc
j=1 (µj � µ)2

The terminal set consists of the projected data z =

Kw�, the class-vector y, and an ephemeral random
constant ⌘ whose role is to provide a mechanism for
changing the values of several scalar parameters at the
leaves of each potential projection index =. These scalar
parameters are summarized in Table 4 and they are
initialized to random values by different instances of ⌘
when an index function is built. Subsequently, during
evolution they can be modified through the application
of genetic operators.
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TABLE 4
Scalar terminal parameters (top) and GP parameters

with their values (bottom).

Parameter description
Reference pdf selector ⌧ for the Rényi divergence.
Degrees of freedom % for the Student-t distribution.
Shape parameter ⇠ for the GEV distribution.
Coefficients ⇢ for the Rényi entropy and divergence.
Order s of the moment ms.
Quartile number i.
Class index j for the class mean µj , class variance �j ,
and nth quartile Qj

n.

Maximum generations GPgen =50 for the evolution.
Total population individuals GPpop = 20.
Crossover rate GPxover = 90%.
Mutation rate GPmut = 10%.
Tree depth for initialization GPtree = 8.

4 EXPERIMENTATION AND RESULTS

4.1 Experimental Setup
Seven datasets (summarized in Table 5) are used to
benchmark the proposed EKSPP. These include the
arcene, dexter, dorothea and madelon datasets provided
by the NIPS’03 challenge [41], also the duke data from
[42], PIE data from the CMU PIE database as used in [43],
and Reuters data from the “Reuters-21578 Text Catego-
rization Test Collection” including samples possessing
unique class labels. These datasets are chosen because
of their high dimensionality. We compare EKSPP with
two linear feature extraction methods including PCA
and our previously proposed EPP [15], as well as the
three popular nonlinear feature extraction methods of
kernel PCA (KPCA), kernel LPP (KLPP) and kernel FDA
(KFDA). The adaptive kernel in Eq. (2) is used for all
competing kernel methods.

The four nonlinear methods of KPCA, KLPP, KFDA
and EKSPP work in the non-observable space H in-
duced by a kernel which equips them with a better
capability for handling data nonlinearities compared to
the linear methods of EPP and PCA. To further map
the data from H to a low-dimensional space Rb, KPCA
attempts to highlight the global data statistics in the
resulting space by maximizing the data variance along
each data projection. KLPP attempts to preserve the local
data geometry by minimizing the distances between
closely related points defined based on the aggregate
pairwise proximity information of the underlying lo-
cal neighborhood graph. Both KPCA and KLPP are
able to provide a compact representation of the data.
However, as they work in an unsupervised manner
that takes into account feature information only, the
reduced features may not boost the final classification
performance when there exists incompatibility between
the original features and the class labels; for example,
in many real-world classification applications, samples
from different classes (or the same class) may be located
closely (or distantly) in the feature space. To overcome
this, the supervised method KFDA attempts to improve
the separability between classes in the resulting space

TABLE 5
Cardinalities of the testing, training and validation

datasets, number of features and classes, as well as
median BER values for each set based on 10-fold CV.

Dataset information: Median BER values:
Dataset Test Train Validation Features Classes l-SVM g-SVM MI+g-SVM
arcene 20 120 60 10,000 2 27.94 23.94 12.26
dexter 60 360 180 20,000 2 18.46 13.46 17.70
dorothea 115 690 345 100,000 2 37.23 23.12 18.86
madelon 260 1560 780 500 2 41.10 24.87 51.23
duke 4 26 14 7129 2 12.26 8.33 19.0
PIE 1155 6933 3466 1024 68 51.03 43.12 46.37
Reuters 296 1775 891 2959 11 20.37 13.27 23.30

by arranging samples from the same class proximaly,
while those from different classes apart. Nevertheless,
this may distort the intrinsic geometry of the original
space and lead to an overfitted situation of the labeled
samples. Differently, the proposed EKSPP combines both
advantages of KFDA (utilization of label information)
and KPCA/KLPP (avoidance of overfitting) by evolving
an optimal PP index from a very diverse function pool
designed to characterize both the feature-driven data
statistics and geometry as well as the label-driven class
scatters (see Table 3). In the following experiments, we
compare these methods to examine how they contribute
to different classification tasks.

We employ 10-fold cross validation (CV) to evaluate
the classification performance. For each partition, the
dataset is split into two mutually exclusive sets. The
training set is used for complete model selection using
Eqs. (32), (33) (with k = 3, to further partition it to
training and validation). Once the optimal model is
determined, the other set is used to test its generalization
ability based on the accumulated balanced error rate
(BER). This is the average of the false positive rates of
difference classes computed as

BER ⌘ 1

c

cX

i=1

FPi

ni
, (34)

where FPi and ni denote the number of false positives
and the class size, respectively, for the ith class. This
procedure is repeated ten times in total, and the medi-
ans and interquartile ranges (IQR) of the recorded BER
values are reported as the final classification results.

4.2 Implementation of the Evolutionary Optimization

Since both EKSPP and EPP methods rely on symbolically
selecting the PP index =, they require GP-assisted opti-
mization. We implement this using the GPLAB library
[44], and the parameters and values shown in Table 4.
The genetic operators handle the different parts of each
chromosome independently. Whenever crossover is se-
lected during the reproduction stage, standard one-point
crossover is applied to the tree part of the chromosome
that encodes the index =, while arithmetic crossover is
applied to each component of the numerical part that
encodes b and ✓ = [✓1, ✓2, ✓3]. The mutation operator
acts similarly. For the tree structure, it randomly selects
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TABLE 6
Comparison of the median and IQR of BER over a 10-fold CV for different feature extraction algorithms. The best

performance within each dataset is underlined.

arcene dexter dorothea madelon duke PIE Reuters
Method Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR Median IQR
PCA 25.83 18.66 35.26 5.62 41.19 4.63 43.13 5.62 7.21 3.21 40.54 8.23 17.57 8.52
EPP 16.67 12.49 32.18 3.47 18.27 7.10 29.57 3.47 7.01 4.72 36.44 2.72 12.24 3.31
KPCA 23.14 28.28 33.15 11.25 27.42 7.14 31.21 6.56 6.98 6.10 35.82 7.14 10.11 2.03
KLPP 20.44 6.52 19.94 7.08 17.10 11.36 24.83 3.11 9.63 6.98 53.81 10.26 45.66 2.31
KFDA 16.38 19.49 18.86 22.48 20.08 5.37 24.74 1.12 4.87 3.83 27.85 12.47 23.69 7.09
EKSPP 10.10 4.32 11.40 5.83 11.92 8.36 23.20 4.92 5.43 2.71 27.17 7.06 9.75 0.85

TABLE 7
Comparison of the reduced feature dimensionality b, and computational times for the model selection (Time1, in

hours) and for the out-of-sample projection (Time2, in seconds), for the different algorithms.

arcene dexter dorothea madelon
b Time1 Time2 b Time1 Time2 b Time1 Time2 b Time1 Time2

PCA 56 0.43 2.16 PCA 6 1.75 3.02 PCA 503 10.12 33.63 PCA 278 5.16 18.59
EPP 20 0.30 16.00 EPP 2 1.21 5.23 EPP 2 3.88 1.27 EPP 163 8.35 19.14
KPCA 15 6.11 23.00 KPCA 7 4.81 11.47 KPCA 447 7.54 31.17 KPCA 7 8.97 9.12
KLPP 116 6.17 22.20 KLPP 86 3.14 7.21 KLPP 329 8.12 23.33 KLPP 124 8.42 11.17
KFDA 1 1.72 10.00 KFDA 1 2.60 5.62 KFDA 1 4.63 1.67 KFDA 1 4.15 1.23
EKSPP 3 6.81 19.00 EKSPP 3 3.22 6.27 EKSPP 3 8.21 16.08 EKSPP 3 10.13 1.43

duke PIE Reuters
b Time1 Time2 b Time1 Time2 b Time1 Time2

PCA 4 4.20 4.14 PCA 250 19.83 42.55 PCA 672 73.19 238.85
EPP 3 3.04 4.01 EPP 211 17.49 31.49 EPP 13 72.14 431.87
KPCA 20 2.15 11.6 KPCA 332 6.31 9.17 KPCA 249 32.66 88.31
KLPP 26 4.63 5.28 KLPP 265 5.23 8.86 KLPP 11 14.36 512.17
KFDA 1 2.23 1.07 KFDA 67 7.06 9.12 KFDA 6 79.27 266.53
EKSPP 8 2.33 5.23 EKSPP 12 11.40 20.53 EKSPP 99 79.14 421.82

a node and substitutes its branch with a newly created
random subtree. For the numerical parts, it replaces
their current values with alternative ones, randomly
taken from valid ranges depending on the variable be-
ing mutated. The initial population is generated with
the ramped half-and-half method. To select parent sets
for mating, we used lexicographic parsimony pressure
tournament as the sampling technique, in order to favor
short trees over competing individuals when fitnesses
were equal. Encouraging parsimony promotes simpler
indices which are easy to interpret. Finally, in order to
accelerate search and afford smaller populations, we also
hybridize the population with some well known sim-
ple models that may perform well for some problems.
Specifically, two of the members of the initial population
are initialized to be those of KFDA and KPCA, while the
remaining are randomly created as stated above.

The three nonlinear algorithms of KPCA, KLPP and
KFDA require the tuning of a set of model parameters,
such as b and ✓. We optimize these parameters using a
genetic algorithm (GA). It should be noted, that a GP is
not needed in this case, as the methods KPCA, KLPP and
KFDA do not have a PP index to evolve symbolically, but
their indices are instead fixed as implied by their original
designs. Because EKSPP, in addition to b and ✓, also
needs the symbolic estimation of an index = that best
suits the given data, its model training is implemented
with the previously described GP module. Nevertheless,
in order to maintain an objective experimental compar-
ison, the GA for KPCA, KLPP and KFDA has identical

setup and parameters with the part of the GP for EKSPP
that optimizes the numerical chromosome components
(that is the crossover, mutation and reproduction opera-
tors, excluding the operations for the symbolic tree part
of the chromosome).

4.3 Comparative Analysis

To investigate the potential separability of the employed
datasets in advance, we perform a preliminary study
using a linear support vector machine (SVM) (l-SVM),
a nonlinear SVM with Gaussian kernel (g-SVM), as well
as the combination of g-SVM and a sequential forward
feature selection based on mutual information (MI+g-
SVM). Their classification performance (median BER) is
recorded in Table 5 along with the datasets information.
From the last three columns of Table 5, it can be observed
that g-SVM always performs better than l-SVM. This
indicates that the used datasets possess nonlinear struc-
tures with classes that cannot be well separated with
linear boundaries. Also, MI+g-SVM does not provide
better performance than g-SVM for most datasets, which
indicates that the classification task does not always
benefit from simple feature selection.

As previously explained, 10-fold CV is used to eval-
uate the classification performance, which tests the gen-
eralization ability of the competing algorithms and the
proposed one. Table 6 reports the corresponding perfor-
mance. First, we compare Table 6 with the last three
columns of Table 5. For many datasets, the projected
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features in the lower dimensional space, especially those
obtained by EKSPP, possess much better class separa-
bilities than the original features or subsets of them.
This demonstrates the effectiveness of dimensionality
reduction via feature extraction. Next, examining Table 6
where performance ranking for the competing methods
differs across the datasets, indicates that none of them
can claim superiority over the rest, while the proposed
EKSPP performs the best for almost all the datasets.
This is because EKSPP sustains a data-driven adapta-
tion of the feature extraction process, which recovers
the kernel parameters and the symbolic form of the
PP index most suitable to the data and the current
classification task. Specifically, between a pair of linear
and nonlinear versions of an algorithm, e.g., PCA vs.
KPCA, or EPP vs. EKSPP, the nonlinear version leads to a
performance improvement between 2% to 20% for most
datasets. This is because linear projections cannot handle
data nonlinearities when they exist, whereas nonlinear
projections can handle diverse linear or nonlinear data
characteristics as controlled by the adaptive kernel.

Among the four nonlinear algorithms of KPCA, KLPP,
KFDA and EKSPP, the unsupervised KPCA and KLPP
are in general weaker than the supervised KFDA and
EKSPP. However, for the dorothea and Reuters datasets,
performance of the supervised method KFDA (around
20% and 24% in BER) is actually worse than the unsuper-
vised performance (around 17% and 10% in BER). This
experimentally supports what we discussed in Section
4.1, that is considering only the label-driven class scatters
but ignoring the feature-driven data statistics may not
lead to good generalization for some datasets. Although
the nonlinear and supervised KFDA is quite competitive
for several datasets, the proposed EKSPP performs sig-
nificantly better with between 6% and 14% improvement
for four out of the seven datasets, and slightly bet-
ter or comparable performance for the remaining three
datasets. For example, the BER of dorothea and Reuters
datasets, for which KFDA possesses poorer performance
than the unsupervised methods, has been improved to
less than 12% and 10%. This shows that by evolving an
optimal PP index which takes into account both feature
and class information, EKSPP is able to offer better
classification control than KFDA when overfitting may
occur.

Table 7 records the reduced dimensionalities as well
as the computational times of the model selection phase
and the out-of-sample projection for the proposed and
competing methods across different datasets. By com-
paring the reduced dimensionalities, it can be seen that
for most datasets EKSPP is capable of generating a
small set of features with satisfactory class separability
from the original high-dimensional feature space. For
the binary classification case, EKSPP can never be of
course better than KFDA in terms of its reduction rate,
since KFDA is designed to generate only c � 1 = 1

feature, while for the multi-class classification case it
generates no more than c� 1 features. However, drastic

dimensionality reduction often occurs at the expense of
classification performance. For example, among the six
datasets where KFDA extracts the least number of fea-
tures, four datasets possess poor KFDA performance (6%
and 14% worse than EKSPP). It should also be noted, that
for many real-world applications, e.g., text categorisation
and computer-aided diagnosis, as long as a reasonably
small set of features is extracted, it is not necessary to
further suppress the feature dimensionality to less than
the number of classes c. Moreover, if the imposition of an
upper bound on the resulting dimensionality is critical
for a given application, EKSPP can support this through
the explicit incorporation of this bound by restricting the
search range of b.

By comparing the computational times, it can be seen
that, although the model selection stage of EKSPP is
not the fastest compared to the competing ones, this is
because the method has the most complex model, as
it additionally searches for the best PP index formula
and the best kernel parameters that optimally suit the
classification task. Overall, between the two supervised
methods of EKSPP and KFDA, although KFDA may lead
to better compression for certain cases and requires less
training time, it does not provide as good performance
as EKSPP. EKSPP is suitable for processing challenging
datasets where traditional feature methods based on
fixed model, e.g, KFDA, is not sufficient, and additional
effort for more suitable feature representation formulae
is necessitated.

All the experiments reported here are based on the
GP parameters of Table 4 discussed in Section 4.2. These
control the balance between finding good solutions and
doing so within reasonable processing times, something
directly related to the number of objective function
evaluations. As seen from Table 2, the number of func-
tion evaluations depends on the parameters GPgen and
GPpop. To examine the sensitivity and robustness of the
proposed optimization, we experimented with different
settings for GPgen and GPpop. We found that although
larger values increase significantly the running times,
they did not show notable BER improvement (less than
5%). The currently used small number of GPpop = 20

members evolved for few GPgen = 50 generations are
adequate. This is because of the expressive function
set of Table 3 capable of readily capturing representa-
tive feature characteristics and label related information.
Moreover, the use of hybridization helps to start up
the population with some competent initial solutions
which have the potential to rapidly influence subsequent
generations. Another issue regarding the current param-
eter setting, is the complementary values of GPxover

and GPmut that control the fraction of Gpop offspring
generated via crossover or mutation. These can affect
the balance between exploiting building blocks currently
in the population and exploring new regions of the
solution space. Experimentations showed that as long as
GPmut is within the range [10%,30%] the performance
remains similar. With a rate below 10%, improvement
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Fig. 2. Comparison between the original features of
three synthetic datasets SD1, SD2 and SD3, and the
corresponding features extracted by EPP and EKSPP.
Different patterns/shades indicate different data classes.
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Fig. 3. Comparison of the whitening procedure CPU
times in the original and kernel-induced spaces, using the
dorothea dataset and increasing number of features.

over the late generations stagnates as the search cannot
explore effectively new regions of the solution space.
Conversely, a rate over 30% makes mutation somewhat
too disruptive and requires many more generations to
produce a good model.

Since a primary contribution of this work is to en-
able the evolutionary PP engine to operate in a kernel-
induced space, we additionally demonstrate two advan-
tages with regard to the use of kernels. These are the
capability for handling nonlinear structures within com-
plex data and that of improving the computational effi-
ciency when processing large-scale features. To demon-
strate the former, we compare the two evolutionary
engines of EPP [15] and the proposed EKSPP using three
two-dimensional datasets possessing nonlinear shapes.

These include a classical compound dataset [45], referred
to as SD1, and two path-based synthetic datasets [46],
referred to as SD2 and SD3. The distributions of the
original features and those of the extracted features by
EPP and EKSPP are plotted in Figure 2. Comparing
the original feature distributions in Figures 2(a), 2(b)
and 2(c) with their corresponding EPP generated ones
in Figures 2(d), 2(e) and 2(f), it can be seen that EPP
does not provide any major changes to the data apart
from simple scaling and rotation. This is expected as
EPP applies only linear projections to the original feature
space. The results of EKSPP in Figures 2(g), 2(h) and
2(i), however, show that the nonlinearities of the data
have been unfolded successfully. This is because linear
projections in the kernel-induced feature space are equiv-
alent to nonlinear feature transformations in the original
space. The supported computational efficiency can be
demonstrated with the aid of the whitening procedure.
As explained in Section 2.2, whitening requires the de-
composition of a data matrix with m columns (where m
is equal to the number of original features), whereas in
the kernel-induced space it requires the decomposition
of an n ⇥ n kernel matrix (where n is the number of
training samples). The incurred computational cost for
the former case is around O(m3

) or O(mn2
) depending

on whether eigen-decomposition or singular value de-
composition is used for the PCA, while for the latter
case it is of O(n3

) [47]. Therefore, whitening is very
computationally sensitive to an increased number of
features when applied in the original feature space than
in the kernel-induced space. In Figure 3, we compare
the CPU times for whitening with and without kernels,
based on 800 data samples from the dorothea dataset and
for increasing dimensionalities, running Matlab 7.1 on a
3.4-GHz CPU machine with 16-GB memory under Mac
OS X.8. It can be seen that for low number of features,
such as m < 10

3, the computational costs of both cases
are comparable. However, as dimensions increase, such
as when m > 10

4, the use of kernels greatly reduces
the cost by converting the decomposition of a covariance
matrix to that of a kernel matrix.

5 CONCLUSION

We have proposed a powerful method for feature gen-
eration and dimensionality reduction. It combines var-
ious novel elements, such as an adaptive kernel, an
efficient sequential projection pursuit equipped with a
new kernel matrix update scheme, an out-of-sample
extension and a holistic bi-level optimization procedure
for training. The hybrid optimization exhibits robustness
with respect to the selected parameter setting and does
not require the user to setup any critical parameters. Its
notable advantage is that it is capable of simultaneously
searching for the best kernel, the optimal dimensionality,
and the best symbolic form of the projection index
instead of pre-assuming a fixed one that fits all datasets
and tasks, as currently existing approaches do.
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