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Abstract

In this paper, a novel variational image registration model using a second-order functional as regu-
larizer is presented. The main motivation for the new model stems from the LLT model (see [1]). In
order to avoid mesh folding, inequality constraint on the determinant of the Jacobian matrix J of the
transformation is also proposed. Furthermore, a fast solver is provided for numerical implementation of
registration model with inequality constraints. Numerical experiments are illustrated to show the good
performance of our new model according to the registration quality.
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1 Introduction

Image registration which is also called image matching is one of the most useful and fundamental tasks in

imaging processing domain. It is often encountered in many fields such as astronomy, art, biology, chemistry,

medical imaging and remote sensing and so on. For an overview of image registration methodology see

([2, 3, 4, 5]). Here we focus on deformable image registration in a variational framework.

Usually, a variational image registration model can be described by following form: given two images,

one kept unchanged is called reference R and another kept transformed is called template image T . They

can be viewed as compactly supported function, R, T : Ω → V ⊂ R+
0 , where Ω ⊂ Rd be a bounded convex

domain and d denotes spatial dimension of the given images. Without loss of generality, here we focus on

d = 2 throughout this paper, but it is readily extendable to d = 3 with some additional modifications. Let

x = (x, y)⊤, then dΩ = dxdy. The purpose of registration is to look for a transformation φ defined by

φ : R2 → R2,

such that transformed template image Tφ(x) := T (φ(x)) is similar to R as much as possible. To be more

intuitive to understand how a point in the transformed template T (φ(x)) is moved away from its original

position in T , we can split the transformation φ into two parts: the trivial identity part and displacement

u, u : R2 → R2, u : x 7→u(x) = (u1(x), u2(x))
⊤, that is to say

φ(x) = x+ u(x),
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thus it is equivalent to find the transformation φ and the displacement u. The transformed template

image T (φ(x)) = T (x + u(x)) can be denoted T (u). The image intensities of R and T are assumed to be

comparable (i.e. in a monomodal registration) throughout this paper. In summary, the desired displacement

u is a minimizer of the following joint energy functional

min
u
{Jα[u] = D(u) + αS(u)}, (1)

where

D(u) = 1

2

∫
Ω

(T ((x) + u(x))−R(x))2dΩ (2)

represents similarity measure which quantifies distance or similarity of transformed template image T (u) and

reference R and other choice is discussed in [3], S(u) is regularizer which rules out unreasonable solutions

during registration process, and α > 0 is a regularization parameter which balance similarity and regularity

of displacement.

And non-surprisingly, different regularizer techniques can produce different registration model, and the

choice of regularizer techniques is very crucial for the solution and its properties, more details see [3]. At

present, a great number of regularization functionals have been proposed, such as first order derivatives-based

on total variation-, diffusion- and elastic regularizer registration models and higher order derivatives-based

on linear curvature, mean curvature and Gaussian curvature ones, we can refer to [3, 6, 7, 8, 9, 10, 11, 12].

As is well known, it is easy to implement for low order regularizations while they are less effective than

high order ones in producing smooth displacement fields which are important in some applications including

medical imaging. Although some of them high order regularizations generate more satisfactory registration

results, more computational time is required owing to complexity of their regularization functional. In

addition, mesh folding has not been taken into account. Searching for a model suitable for large and smooth

deformation field with low computing time and no mesh folding is still a challenge. In this paper, a novel

variational image registration model with inequality constraint is proposed.

The outline of the paper is organized as follows. In Section 2, we propose a new second-order functional

based image registration model with inequality constraint then discuss its numerical method using a com-

bination of the multiplier method and Gauss-Newton scheme with Armijos Line Search for solving the new

model and further to combine with a multilevel method to achieve fast convergence in Section 3. Some

experimental results including comparisons are illustrated in Section 4. Finally, conclusions and future work

are summarized in Section 5.

2 The proposed new image registration model

In [1], Lysaker, Lundervold and Tai (LLT) proposed a second-order regularizer which has proved to be rather

robust in image denoising, however, it hasn’t been studied thoroughly yet for the registration problem (1). In

addition, motivated by the fact that TV regularizer is much weaker than diffusion one in producing smooth

displacement fields in image registration, we propose a new regularizer functional given by

Snew(u) = 1

2

2∑
l=1

∫
Ω

|D2(ul)|2dΩ (3)

where |D2(ul)| =
√

((ul)xx)2 + ((ul)xy)2 + ((ul)yx)2 + ((ul)yy)2 =
√
▽(ul)x · ▽(ul)x +▽(ul)y · ▽(ul)y is

a convex functional, here symbol · denotes the inner product of the vectors, then equation (1) takes the
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following form

min
u

{
Jα[u] =

1

2

∫
Ω

(
T (u)−R

)2
dΩ +

α

2

2∑
l=1

∫
Ω

(▽ulx · ▽ulx +▽uly · ▽uly)dΩ
}
. (4)

In order to avoid mesh folding, an inequality constraint on the determinant of the Jacobian matrix J of

the transformation φ is imposed on the objective function (4). Thus, the new registration model has the

following form:

min
u

{Jα[u] = 1
2

∫
Ω
(T (u)−R)2dΩ + α

2

2∑
l=1

∫
Ω
(▽(ul)x · ▽(ul)x +▽(ul)y · ▽(ul)y)dΩ},

s.t. F(u) > 0,
(5)

where
F(u) = det(J(φ(x)))]

=

∣∣∣∣1 + (u1)x (u1)y
(u2)x 1 + (u2)y

∣∣∣∣
= (1 + (u1)x)(1 + (u2)y)− (u1)y(u2)x

(6)

Our proposed new model has the following advantages. Firstly, the new regularizer is rotational invariant.

Secondly, the new registration model with regularizer Snew(u) doesn’t require additional affine linear pre-

registration step, we can refer to the following numerical experiment part. Thirdly, a visually pleasing

registration result can be obtained by using our new model with low computing time. Finally, there is no

mesh folding for the deformed grids. Next we give numerical solution of new registration model (5).

3 Numerical solution of image registration model (5)

In general, the optimization problem (5) cannot be solved analytically, thus numerical schemes and appro-

priate discretizations are required. In this paper, we adopt the discretize-optimize method which aims to

discretize the joint functional (5) and then solve the discrete minimization problem with inequality constrain-

t by standard optimization methods. Although our work is related to previous work [13], they are totally

different on their regularizer techniques and discrete method. Elastic regularizer with first order derivative

was considered in [13], however, our new regularizer is second-order functional. Below we shall first briefly

introduce the discretization we use and then specifically describe the details of numerical algorithms.

3.1 Finite difference discretization

Let given discrete images have n1 × n2 pixels. For the sake of simplicity, we also assume further that image

domain Ω = [0, 1] × [0, 1] ⊂ R2, then each side of these n1×n2 cell-centered has width hi = 1/ni, i = 1, 2.

Let the discrete domain be denoted by

Ωh = {x ∈ Ω|x = (xi, yj)
⊤ = ((i− 0.5)h1, (j − 0.5)h2)

⊤, i = 1, 2, · · · , n1; j = 1, 2, · · · , n2}.

3.1.1 Discretizing displacement field u and new regularizer Snew(u)

Let the discrete form of the continuous displacement field u = (u1, u2)
⊤ be denoted by uh = (uh1 , u

h
2 )

⊤,

where uh1 and uh2 are denoted grid function and are discretized on the discrete domain Ωh. For simplicity,
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let (uhl )i,j = uhl (xi, yj), i = 1, 2, · · · , n1; j = 1, 2, · · · , n2 and l = 1, 2. Below we define discrete gradient

operator ∇h at each pixel (i, j) by

(∇huh)i,j = ((∇huh1 )i,j , (∇huh2 )i,j)
⊤

with

(∇huhl )i,j = (((uhl )x)i,j , ((u
h
l )y)i,j)

⊤

((uhl )x)ij =

{
(uhl )i+1,j − (uhl )i,j , if i < n1

0 , if i = n1

((uhl )y)ij =

{
(uhl )i,j+1 − (uhl )i,j , if j < n2

0 , if j = n2.

Here homogeneous Neumann boundary conditions on u are assumed:

∂ul
∂ν

= 0, l = 1, 2 on ∂Ω.

For a comparison, we also solved the same problem using the Dirichlet boundary conditions on u i.e.

uhl = 0, l = 1, 2 on ∂Ω.

The registration results using above two kinds of boundary conditions for processing three test images shown

in Figure 1 (a) and (b), Figure 3 (a) and (b) and Figure 5 (a) and (b) are recorded in Table 1. We find that

homogeneous Neumann boundary conditions are more suitable for our new model.

hhhhhhhhhhhhExample Nos.
Condition Neumann Dirichlet

α ε(%) M α ε(%) M
1 0.16 7.42 0.0345 0.16 7.83 0.0199
2 2.3e-4 0.007 0.0465 2.3e-4 0.008 -0.2639
3 2 34.23 0.1826 2 34.82 -0.0296

Table 1: Comparisons of the registration results by the homogeneous Neumann boundary condition and the
Dirichlet boundary condition for processing three test images shown in Figure 1 (a) and (b), Figure 3 (a) and
(b) and Figure 5 (a) and (b). Here ε represents the relative reduction of the dissimilarity,M > 0 indicates
that the deformation doesn’t consist of folding and cracking of the deformed grid.

For convenience, we change the grid functions uh1 and uh2 into the columns vectors uh
1 and uh

2 according

to lexicographical ordering, respectively

uh
1 = (uh11,1 , u

h
12,1 , · · · , u

h
1n1,1

, uh11,2 , u
h
12,2 , · · · , u

h
1n1,2

, · · · , uh11,n2
, uh12,n2

, · · · , uh1n1,n2
)⊤,

uh
2 = (uh21,1 , u

h
22,1 , · · · , u

h
2n1,1

, uh21,2 , u
h
12,2 , · · · , u

h
2n1,2

, · · · , uh21,n2
, uh22,n2

, · · · , uh2n1,n2
)⊤,

then uh
1 ∈ RN , uh

2 ∈ RN and Uh = (uh
1 ;u

h
2 ) ∈ R2N , where N = n1n2. The discrete gradient (∇huhl )i,j can

also be represented by the product of the matrix A⊤
k ∈ R2×N (k = 1, 2, · · · , N) and the vector uh

l (l = 1, 2):

A⊤
k u

h
l =



((uh
l )k+1 − (uh

l )k; (u
h
l )k+n2 − (uh

l )k), if k mod n1 ̸= 0 and k + n2 ≤ N

(0; (uh
l )k+n2 − (uh

l )k), if k mod n1 = 0 and k + n2 ≤ N

((uh
l )k+1 − (uh

l )k; 0), if k mod n1 ̸= 0 and k + n2 > N

(0; 0), if k mod n1 = 0 and k + n2 > N .
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Let

A = (A1, A2, · · · , AN ) = (A1,1, A1,2, · · · , AN,1, AN,2) ∈ RN×2N ;

Ax = (A1,1, A2,1, · · · , AN,1) ∈ RN×N ,

and

Ay = (A1,2, A2,2, · · · , AN,2) ∈ RN×N .

In this notation, we can get

∇huh
1 =

[
A⊤

x

A⊤
y

]
uh
1 , Buh

1 , ∇huh
2 =

[
A⊤

x

A⊤
y

]
uh
2 , Buh

2 . (7)

Let B1 = BA⊤
x ; B2 = BA⊤

y ; C = B⊤
1 B1 +B⊤

2 B2, C =

[
C 0
0 C

]
and

B[u] = ▽(ul)x · ▽(ul)x +▽(ul)y · ▽(ul)y (8)

Thus, we can get the discretization of (8) as following

Bh[Uh] = (BA⊤
x u

h
1 )

⊤(BA⊤
x u

h
1 ) + (BA⊤

y u
h
1 )

⊤(BA⊤
y u

h
1 )

+ (BA⊤
x u

h
2 )

⊤(BA⊤
x u

h
2 ) + (BA⊤

y u
h
2 )

⊤(BA⊤
y u2)

= (B1u
h
1 )

⊤(B1u
h
1 ) + (B2u

h
1 )

⊤(B2u
h
1 )

+ (B1u
h
2 )

⊤(B1u
h
2 ) + (B2u

h
2 )

⊤(B2u
h
2 )

= (uh
1 )

⊤(B1
⊤B1)u

h
1 + (uh

1 )
⊤(B2

⊤B2)u
h
1

+ (uh
2 )

⊤(B1
⊤B1)u

h
2 + (uh

2 )
⊤(B2

⊤B2)u
h
2

= (uh
1 )

⊤Cuh
1 + (uh

2 )
⊤Cuh

2

= ((uh
1 )

⊤, (uh
2 )

⊤)

[
C 0
0 C

] [
uh
1

uh
2

]
= (Uh)⊤CUh

Thus by a midpoint quadrature rule, the new regularizer Snew(u) = 1
2

∫
Ω
B[u]dΩ is descretized as

Sh(Uh) =
1

2
hd(U

h)⊤CUh (9)

where hd = h1h2.

3.1.2 Discretizing template image T and reference image R

For given discrete image, an image interpolation is needed to assign image intensity values for any spatial

positions which are not necessarily grid points. Although linear interpolation is a reasonable tool in image

registration due to its low computational costs, it isn’t differentiable at grid points. In order to make

full use of fast and efficient optimization method, a smooth interpolation is required. Thus a cubic B-

spline approximation is used in our implementation. Further influence of higher or lower order B-spline

interpolation to the quality of registration, see [14]. The continuous smooth approximations for template T

and reference R are denoted by T and R, respectively. Next we derive discrete analogues for the particular

building blocks . Let

xc = [x1,1, x2,1, · · · , xn1,1, x1,2, x2,2, · · · , xn1,2, · · · , x1,n2
, x2,n2

, · · · , xn1,n2
]⊤,



6

yc = [y1,1, y2,1, · · · , yn1,1, y1,2, y2,2, · · · , yn1,2, · · · , y1,n2 , y2,n2 , · · · , yn1,n2 ]
⊤,

and Xh
c = [xc;yc].

We can get discrete reference image

R⃗ = R(Xh
c ) (10)

and discrete transformed template image

T⃗ (Uh) = T (Xh
c +Uh), (11)

here T⃗ (Uh) is the discrete analogue of the transformed template image T (x + u(x)) as a function of dis-

placement u. The Jacobian of T⃗ can be denoted by

T⃗Uh =
∂T⃗

∂Uh
(Uh) =

∂T
∂Uh

c

(Uh
c )

where Uh
c = Xh

c +Uh, and the Jacobian of T⃗ is a block matrix with diagonal blocks.

3.1.3 Discretizing distance measure D

In the discrete analogue, the integral is approximated by a midpoint quadrature. According to (10) and (11)

our discretization of distance measure D (2) is straightforward:

Dh(Uh) =
1

2
h1h2(T⃗ (U

h)− R⃗)⊤(T⃗ (Uh)− R⃗)

and the derivative of the discretized functional Dh(Uh) with respect to Uh can still be computed

dDh(Uh) = h1h2(T⃗Uh)⊤(T⃗ (Uh)− R⃗) .

In addition, the second derivative d2Dh(Uh) of the distance measure D can also be calculated straightfor-

wardly,

d2Dh(Uh) = h1h2(T⃗Uh)⊤T⃗Uh + h1h2

N∑
i=1

di(U
h)∇2di(U

h) ,

where d(Uh) = T⃗ (Uh) − R⃗ ∈ RN . On one hand, it is consuming and numerically unstable to compute

higher order derivatives in registering two images for practical applications; On the other hand, the difference

between T⃗ (Uh) and R⃗ will become smaller if template image is well registered. To have an efficient and

stable numerical scheme as proposed by several works ([3],[15]), we approximate d2Dh(Uh) by the following

form

d2Dh(Uh) = h1h2(T⃗Uh)⊤T⃗Uh . (12)

3.1.4 Discretizing inequality constraint functional F(u)

Because the discrete gradient operator ∇h can be expressed as the product of the matrix and the vector,

based on the above analysis, the discrete form of the partial derivative of the continuous displacement field

component ul can be expressed as the following form:

(uh
l )x = A⊤

x u
h
l , ml ; (uh

l )y = A⊤
y u

h
l , wl , l = 1, 2 .

Obviously, ml ∈ RN , wl ∈ RN , where N = n1×n2 . Let

e = (1 , 1 , · · · , 1)⊤ ∈ RN
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and

f = (e+m1)~ (e+ w2)− w1 ~m2

where symbol ~ denotes element-wise multiplications of vectors. Therefore, the discrete form of the contin-

uous inequality constraint function F(u) can be represented by

Fh(Uh) = (f1, f2, · · · , fN )⊤ . (13)

Because the first order variational of the continuous inequality constraint function F(u) with respect of

continuous displacement field u has the following form

dF(u) = ((u2)xy − (u2)yx , (u1)yx − (u1)xy)
⊤ ,

we can get the discrete form of first order variational of F(u) is

dFh(Uh) =

[
0 A⊤

y A
⊤
x −A⊤

xA
⊤
y

A⊤
xA

⊤
y −A⊤

y A
⊤
x 0

] [
uh
1

uh
2

]
, AUh , (14)

obviously , dFh(Uh) ∈ R2N , 0 ∈ RN×N , A ∈ R2N×2N .

3.2 Solving the discrete optimization problem

The discretized inequality constrained optimization (5) reads as follows:

min
Uh
{Jα(Uh) = Dh(Uh) + αSh(Uh)}.

s.t. Fh(Uh) > 0,
(15)

To solve the above inequality constrained optimization problem (15) numerically, multiplier scheme which

solves the constrained minimization problem by solving a sequence of unconstrained problem while estimating

the Lagrange multipliers is used. For multiplier scheme solving inequality constrained optimization problems,

more details see [16, 17, 18]. Before solving equation (15), we give the following two Lemmas and one theorem.

Lemma 1. Let x∈R, then function f(x) = x|x| is continuously differentiable.

Proof. f(x) =

{
x2, x ≥ 0
−x2, x < 0

,

when x>0, f ′(x) = 2x; when x < 0, f ′(x) = −2x. Obviously, lim
x→0+

f ′(x) = lim
x→0−

f ′(x) = 0, so f(x) is also

differentiable at x = 0. We can draw the conclusion function f(x) is continuously differentiable in R.

Lemma 2. Let g(x) = f(x)|f(x)|, where x∈R, if f(x) is continuously differentiable, then g(x) is also

continuously differentiable.

In fact, the proof of lemma 2 is similar to the one of lemma 1.

Theorem 1. Let h(x) = min{0, f(x)}, x∈R, if f(x) is continuously differentiable, then [h(x)]2 = [min{0, f(x)}]2

is also continuously differentiable.

Proof. h(x) can be written in the following form

h(x) = min{0, f(x)} = f(x)− |f(x)|
2

,

so

[h(x)]2 =
[f(x)]2 − f(x)|f(x)|

2
,

because f(x) is continuously differentiable, according to lemma 2, we know that Theorem 1 is correct.
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Next, we construct the multiplier method for solving (15). Now, it’s easy to derive the Augmented

Lagrangian function of (15) :

ψ(Uh, λ , σ) = Jα(Uh) +
1

2σ

N∑
i=1

([min{0, σFh
i (U

h)− λi}]
2 − λ2i ) (16)

The formula for multiplier iteration is the following form

(λk+1)i = max{0, (λk)i − σFh
i (U

h(k))} (17)

Let

βk = (
N∑
i=1

[min{Fh
i (U

h(k)),
(λk)i
σ
}]2) 1

2 (18)

Then the stopping criterion is

βk ≤ ε.

Note that despite including min function in equation (16), by Theorem 1, we know that the augmented

Lagrangian function is still continuously differentiable. The above detailed steps of the multiplier scheme is

summarized in Algorithm 1.

Algorithm 1: Multiplier scheme: [u, λ]← multiplier(Jα(u), dJα(u),F(u), dF(u),u0)

Input : initial value u0∈RN ; the objective function Jα(u) and its gradient dJα(u); the inequality
constraint vector F(u) and its transpose of matrix Jacobian dF(u) ;
Set maxk← 10, σ1 ← 1, ε←10−5, ϑ←0.3, η←0.2 and k ← 0;

Set λ1←(10−3, 10−3, · · · , 10−3)⊤∈RN and βk←10;
while βk > ε and k < maxk do

Solving unconstrained subproblem (16) by using Gauss-Newton scheme with Armijo line search ;
[u]←GNIRArmijo(α,u0,Jα(u),F(u), dJα(u), dF(u),λ1, σ);
Computing βk defined by (18);
if βk > ε;
break then

end
Otherwise;
if k ≥ 2 and βk ≥ ϑβk−1;
Set σ ← ησ then

end
Updating the multiplier vectors. Computing λk+1 by using (17);
Set k ← k + 1;
Set βk−1 ← βk

end
.

In Algorithm 1, to solve the above unconstrained subproblem (16), standard optimization technique

Gauss-Newton scheme is used. The main idea is to linearize ψ which is replaced by a quadratic ψ̂ near the

previous iterative value Uh(k) by the Taylor expansion given by

ψ(Uh(k) + δUh) ≈ ψ̂(Uh(k) + δhU ) = ψ(Uh(k)) + dψ(Uh(k))δUh +
1

2
δ⊤UhHδUh ,

where dψ(Uh(k)), H are the Jacobian and the approximation of the Hessian of ψ at Uh(k). For d2Dh(Uh(k)

)

, C and (M(Uh(k)))⊤M(Uh(k)) are both positive semi-define, we know that H is also positive semi-definite.

Hence, ψ̂ is convex. see [18] for an extended description. Next we describe the specific steps.
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Given initial value Uh(k), we compute Jacobian dψ(Uh(k)) and Hessian H at each outer iteration step

by the following form, respectively

dψ(Uh(k)) = dDh(Uh(k)) + αhd C Uh(k) + (M(Uh(k)))~(σFh(Uh(k))− λ) (19)

and

H = d2Dh(Uh(k)) + αhdC+ (M(Uh(k)))(M(Uh(k)))⊤, (20)

where M(Uh(k)) = dFh(Uh) ∈ R2N . Then perturbation δUh can be obtained by solving linear equation

HδUh = −dψ(Uh(k)) . (21)

Usually, H is positive definite, thus we can solve (21) using a preconditioned conjugate gradient method.

To guarantee the reduction of the objective function ψ(Uh), a standard Armijo line search scheme is used

, details see [18]. Detailed algorithm is summarized in Algorithm 2. The above Gauss-Newton scheme is

Algorithm 2: Armijo Line Search: u← Armijo(α, δu,u)

Compute ψ(u) and dψ(u) using (16) and (19), respectively;
Set t← 1, MaxIter← 10, and η ← 10−4;
for k = 1 : MaxIter do

Set ut ← u+ tδu;
Compute ψ(ut) using (16);

if ψ(ut) < ψ(u) + tη(dψ(u))⊤δu;
break then

end
Set t← t

2 ;

end
Set u← ut.

summarized in Algorithm 3.

Algorithm 3: Gauss-Newton scheme with Armijo Line Search for image registration: u ←
GNIRArmijo(α,u,Jα(u),F(u), dJα(u), dF(u),λ, σ)
Set k ← 0, maxIter←10;
while true do

Compute ψ(u), dψ(u) and H using (16), (19) and (20), respectively;
Update iteration count: k ←k + 1;
Check the stopping rules: k > maxIter;
Solve quasi-Newton’s equation: Hδu = −dψ(u) by using a preconditioned conjugate gradient
method;
if ∥δu∥ < tol;
break then

end
Perform Armijo Line Search: ut ← Armijo(α, δu,u) ;
if line search fail;
break then

end
Update current values: u← ut;

end

In order to save computational work and to speed up convergence, we combine Gauss-Newton method

with multilevel scheme to solve (16). First, on the coarsest level we solve (16) by using Gauss-Newton method
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with Armijo Linear Search with initial valueUh(0) = 0. Second, we interpolate the coarse solution to next fine

level as a initial value, then solve (16) on fine level by using the same scheme. Third, repeating the process,

until the loop terminates. There are two major advantages in using multilevel scheme. Firstly, computing

a minimizer need less iterations to solve optimization problems on the coarser levels. Secondly, the risk of

getting in the trap of unwanted minimizers is highly reduced. Note that every part of the discrete problem

(16) is required to be continuously differentiable to make full use of efficient optimization techniques. Thus

multilevel representation of given images is necessary. The objective of multilevel representation is to derive

a family of continuous models for given images. Next the multilevel scheme is summarized in Algorithm 4.

Where bi-linear interpolation operator is denoted by IhH .

Algorithm 4: Multilevel Image Registration: u← MLIR(MLData)

Maxlevel← ceil(log2(min(m1,m2))), % The finest level;
Minlevel← 3, % The coarsest level;
MLData, % Multilevel representation of given images R and T ;
for l = Minlevel:Maxlevel do

if l = Minlevel;
u0 = 0;
else;

u0← IhH(u) then

end
u← GNIRArmijo(α,u0,Jα(u),F(u), dJα(u), dF(u),λ, σ) ;

end

4 Numerical experiments

To illustrate the good performance of our new model, we compare it with three representative higher mod-

els based on linear curvature [10], mean curvature[11] and Gaussian Curvature [12] using three numerical

examples. We use the relative reduction of the dissimilarity which is given by [3, 11]

ε =
D(u)
Dstop

× 100%

and the minimum valueM of the determinant of the Jacobian matrix J of the transformation φ used in [12]

J =

[
1 + u1x u1y
u2x 1 + u2y

]
, M = min(det(J))

to measure the quality of registered images.

4.1 Test 1: A Pair of Brain MR Images

A pair of real medical images of size 256×256 are used in the first experiment. The test images and

registered results using our new model are shown in Figure 1. The transformed template images for other

three representative high models are shown in Figure 2. In Table 2, we record the values of the quantitative

measurements for Example 1 using our new model and other three high order models at several layers.

Although these four high order models can produce satisfactory registration results, mean curvature-, and

Gaussian curvature-based image registration models require more computational time due to complexity of
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(a) R (b) T (c) T −R (ε = 100%)

(d) T and x+ u(x) (e) T (x+ u(x)) (f) T (x+ u(x))−R (ε = 7.42%)

Figure 1: Registration results for a pair of Brain MR Images using our new model. (a) reference image,
(b) template image, (c) difference before registration, (d) template and transformation x + u(x), (e) the
transformed template image using our new model, (f) difference after registration.

their regularization functional. In table 2, we can see that our new model gives more registration quality

with less time.

To assess how our new model is affected when varying regularize parameter α, Algorithm 4 was tested

on Example 1 (See figure 1 (a) and (b)) with the results shown in Table 3. Here α is varied from 0.16 to

1000. In Table 3, we find that the transformation become poor when α become large, while α is greater

than or equal to 0.16, the corresponding transformation x+u(x) is one to one. The selection of appropriate

α is a separate but important matter for it is generally unknown a priori and it appreciably affects on the

qualities of registered images and the Algorithm 4 performance. Nevertheless, for the range of tested α in

Table 3, our proposed new model still deliver better registration results in a appropriate range of α, thus for

this example, the exact value of α isn’t required as any α between 0.16 and 0.5 can give satisfactory results.

XXXXXXXXLayer
Model

Linear Curvature Mean Curvature Gaussian Curvature New Model
α = 0.4 α = 0.0001 α = 0.0001 α = 0.16

T ε(%) M T ε(%) M T ε(%) M T ε(%) M
h = 1/256 29.7 11.95 0.0184 830.2 19.98 0.8240 1053.7 10.62 0.0138 53 7.42 0.0345
h = 1/128 8.9 9.94 0.1738 231.3 17.69 0.8349 278.8 8.90 0.1124 11.9 6.06 0.0217
h = 1/64 4.6 7.59 0.1412 59.8 15.54 0.8298 155.3 6.36 0.0786 3.8 5.02 0.0659
h = 1/32 2.9 4.79 0.2849 30.2 13.56 0.8425 107.5 3.80 0.2190 1.6 4.66 0.2039
h = 1/16 2.3 3.94 0.4342 18.9 12.97 0.9249 71.6 3.50 0.3721 0.9 2.09 0.7160

Table 2: Quantitative measurements for all models for processing Examples 1 shown in Figure 1 (a) and
(b). T means the total run-time including image output (in seconds). M > 0 indicates that the deformation
doesn’t consist of folding and cracking of the deformed grid.
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(a) Linear Curvature [10] (ε = 11.95%) (b) Mean Curvature [11] (ε = 19.98%) (c) Gaussian Curvature [12] (ε = 10.62%)

Figure 2: Comparison of registered results of three representative higher models .

α 0.16 0.17 0.18 0.19 0.2 0.4 0.5 1 10 100 1000
ε (%) 7.42 7.56 7.68 7.86 7.90 9.50 10.08 12.20 20.06 28.83 37.73
M 0.0345 0.0443 0.0496 0.0579 0.0657 0.1462 0.1863 0.4111 0.8287 0.9959 1

MFN 0 0 0 0 0 0 0 0 0 0 0

Table 3: Comparisons for the regularizer parameter α-dependence using Example 1 (See figure 1 (a) and
(b)). MFN denotes the mesh folding number of transformation x+ u(x).

4.2 Test 2: A Pair of Synthetic Images

A pair of synthetic images of size 256×256 with piecewise constant for Test 2 need to be aligned. Figure

3 show the effects of using our new model and Figure 4 represent comparisons of transformations from

several high-order regularizers. Table 4 records the results for Test 2 at different layer. In Table 4, for a

much smaller regularization parameter α, we can see all four models work fine in producing satisfactory

registration results, although the registered result by our new model has the best value of ε. However, other

three competitive high order models have mesh folding when the size of the image is larger than or equal

to 32×32. In addition, we can also see the non-physical folding of meshes in Figure 4. For this example,

an accurate regularizer parameter α is also unneeded. In Table 5, we find our proposed new model produce

acceptable registration results for any α between 2.3×10−4 and 0.1.

XXXXXXXXLayer
Model

Linear Curvature Mean Curvature Gaussian Curvature New Model
α = 2.3e− 4 α = 2.3e− 4 α = 2.3e− 4 α = 2.3e− 4

ε(%) MFN M ε(%) MFN M ε(%) MFN M ε(%) MFN M
h = 1/256 0.011 486 -1.8381 0.009 168 -0.6160 0.214 597 -0.1952 0.007 0 0.0465
h = 1/128 0.083 127 -1.5585 0.007 51 -0.6171 0.219 448 -0.1265 0.002 0 0.2787
h = 1/64 0.036 50 -2.3250 0.008 2 -0.6030 0.195 138 -0.2185 0.008 0 0.0669
h = 1/32 0.047 2 -0.0362 0.081 4 -0.1746 0.189 25 -0.1808 0.003 0 0.1856
h = 1/16 0.062 0 0.0729 0.037 0 0.0879 0.163 0 0.1751 0.018 0 0.7796

Table 4: Quantitative measurements for all models for processing Examples 2 shown in Figure 3 (a) and (b).
M > 0 indicates that the deformation doesn’t consist of folding and cracking of the deformed grid. MFN
denotes the mesh folding number of transformation x+ u(x).

4.3 Test 3: A Pair of Medical Images

A pair of pre and post operative brain tumor resection scans images of size 256×256 for test 3 are used. Figure
5 show the test images and registered results using our new model, and the comparisons of transformations
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(a) R (b) T (c) T −R (ε = 100%)

(d) T and x+ u(x) (e) T (x+ u(x)) (f) T (x+ u(x))−R (ε = 0.007%)

Figure 3: Registration results for a pair of synthetic images using our new model. (a) reference image,
(b) template image, (c) difference before registration, (d) template and transformation x + u(x), (e) the
transformed template image using our new model, (f) difference after registration.

(a) Linear Curvature [10] (b) Mean Curvature [11] (c) Gaussian Curvature [12]

Figure 4: Comparison of transformations of three representative higher models .
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α = e−4 2.3 3 5 8 10 50 80 100 103 104 105

ε (%) 0.0068 0.0074 0.0086 0.0101 0.0109 0.0189 0.0225 0.0248 0.0672 0.2854 1.2175
M 0.0465 0.1304 0.2090 0.2266 0.2656 0.2222 0.4380 0.3903 0.5554 0.5765 0.5494

Table 5: Comparisons for the regularizer parameter α-dependence using Example 2 (See figure 3 (a) and
(b)). M > 0 indicates that the deformation doesn’t consist of folding and cracking of the deformed grid.

(a) R (b) T (c) T −R (ε = 100%)

(d) T and x+ u(x) (e) T (x+ u(x)) (f) T (x+ u(x))−R (ε = 34.23%)

Figure 5: Registration results for a pair of Medical Images using our new model. (a) reference image,
(b) template image, (c) difference before registration, (d) template and transformation x + u(x), (e) the
transformed template image using our new model, (f) difference after registration.

from other three high-order regularizers are represented in Figure 6. The results for Test 3 at several layers

are summarised in Table 6. Although the pair of test images are not completely single-modality, we can see

that all four models can also produce basically satisfied registered results in Table 6. However, other three

competing models have mesh folding with the larger pixels, and the non-physical folding of meshes can be

seen in Figure 6. Furthermore, in Table 7, we can see that the exact value of α isn’t also needed for this

example as any α between 2 and 3 can give acceptable registration results.

5 Conclusions

Motivated by the LLT model(see [1]), we proposed a new second-order functional based image registration

model. The discretize-optimize method combining with multilevel scheme is used to solve the new model. For

the ease of comparison, three representative higher models based on linear curvature [10], mean curvature[11]

and Gaussian Curvature [12] are used for mono-modality images. Numerical experiments confirm that our

new model is more effective and flexible than the competing models.
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(a) Linear Curvature [10] (b) Mean Curvature [11] (c) Gaussian Curvature [12]

Figure 6: Comparison of transformations of three representative higher models .

XXXXXXXXLayer
Model

Linear Curvature Mean Curvature Gaussian Curvature New Model
α = 2 α = 2 α = 2 α = 2

ε(%) MFN M ε(%) MFN M ε(%) MFN M ε(%) MFN M
h = 1/256 37.39 969 -0.2417 36.99 297 -0.3513 35.11 209 -0.3580 34.23 0 0.1826
h = 1/128 37.14 224 -0.2629 36.61 79 -0.3770 35.45 63 -0.3855 33.74 0 0.1901
h = 1/64 36.89 54 -0.2871 36.82 19 -0.3243 35.89 18 -0.3303 32.81 0 0.1477
h = 1/32 39.63 10 -0.1398 40.05 3 -0.1444 39.56 3 -0.1273 35.58 0 0.1505
h = 1/16 38.62 0 0.0642 41.59 0 0.1060 42.67 0 0.1507 35.45 0 0.1918

Table 6: Quantitative measurements for all models for processing Examples 3 shown in Figure 5 (a) and (b).
M > 0 indicates that the deformation doesn’t consist of folding and cracking of the deformed grid. MFN
denotes the mesh folding number of transformation x+ u(x).

α 2 2.2 2.3 2.4 2.6 2.8 3 3.5 4 10 100
ε (%) 34.23 34.84 35.12 35.32 35.35 35.85 35.94 36.87 37.74 45.18 57.53
M 0.1826 0.1955 0.2016 0.4006 0.4057 0.4146 0.3117 0.3329 0.3539 0.6327 0.8996

Table 7: Comparisons for the regularizer parameter α-dependence using Example 3 (See figure 5 (a) and
(b)). M > 0 indicates that the deformation doesn’t consist of folding and cracking of the deformed grid.
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[15] H.Köstler, K. Ruhnau, and R.Wienands, Multigrid solution of the optical flow system using a

combined diffusion- and curvature-based regularizer, Numer. Linear Algebra Appl., 15: 201–218, 2008.

[16] A.R.Conn, N.Gould, and P.L. Toint, A globally convergent lagrangian barrier algorithm for opti-

mization with general inequality constraints and simple bounds, Math. Comput.,66(217): 261–288, 1997.
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