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ABSTRACT 

Introduction: Repeat infections with influenza A occur because of the continual evolution of the 

virus. A specific humoral response occurs after each infection and this develops into an 

immunological profile for each individual based on their prior exposure history and the cross-

reaction between antigenically similar viruses. Understanding how this profile changes following 

acute infection is important for interpretation of seroepidemiological studies. 

Methods: This observational study was designed to investigate non-severe influenza and influenza 

like illness in a tropical, urban primary care setting. A prospective, observational study of patients 

with ILI in Ho Chi Minh City, Vietnam has been running since August 2013.  Influenza A & B PCR and 

antibody testing to a panel of 11 human and 5 avian strains is performed using a novel protein 

microarray technique.  A subset of subjects are followed up clinically and serologically for 7 months. 

This doctoral research is designed to address questions around the effect of cross-immunity from 

previous influenza infection on susceptibility to currently circulating strains, understand the short 

term antibody dynamics of both current and historical strains post infection and determine optimal 

serological determinants of recent infection. 

Results: 953 ILI patients were recruited between August 2013 & May 2015. 274 and 136 subjects 

had influenza A and B respectively.  Three peaks of influenza activity were detected, H3N2 peak 

between April and June 2014, influenza B peak in July to December 2014 and mixed H3N2 and H1N1 

peak March to May 2015.   Lower baseline titre was associated with higher risk of influenza but 

response to H3N2 2005 and 2009 were most predictive of current susceptibility even when original 

antigenic sin was taken into account. Levels of protection offered by a fixed titre changed depending 

on force of infection. 

186 ILI patients were recruited to the longitudinal study.   The largest response was within subtype 

which peaked at around 30 days. A boosting of historic response was also seen. The response in 

historic strains waned quicker than response to recent strains. A smaller but significant between 

subtype increase in titre was also detected. Following an acute rise after infection within six months 

most individuals had returned to a standard rate of decline of 1 log2 titre unit each one to two years.   

The optimal serological marker of recent infection was investigated using 470 sample. For the most 

recent H3N2 2011 strain the optimal threshold was greater than log2 5.5 for all age groups at all 

time points. Sensitivity was greater than 90% for all thresholds but specificity was poor. Specificity 

was improved by using a multi-strain approach as measured by diversity index. The measured 
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sensitivity and specificity will lead to a significant over estimation of influenza sero-prevalence unless 

test accuracy is adjusted for. 

Conclusion:  Influenza in southern Vietnam has complex transmission dynamics including periods of 

intense influenza activity. Titre rise is seen within and across subtypes which would lead to repeat 

boosting of titre levels across many years. Further work should be performed to establish if this titre 

rise is accompanied by a change in neutralisation activity.  Seroepidemiology of influenza is 

challenging because of cross-reaction. Methods exist to improve the estimation from these methods 

and should be employed for non-pandemic influenza serosurveillance.  
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1 INTRODUCTION AND LITERATURE REVIEW 

1.1 INFLUENZA BACKGROUND 

Influenza viruses circulate globally and seasonal epidemics are thought to be associated with 3-5 

million severe clinical infections and 250,000 to 500,000 deaths each year (World Health 

Organisation, 2014c, Global Burden of Disease 2013 Mortality and Causes of Death Collaborators, 

2015, Global Burden of Disease Study 2013 Collaborators, 2015). Morbidity and mortality are highest 

in the extremes of age (Cohen et al., 2010, Nair et al., 2011) but all ages are affected with repeat 

infections throughout an individual’s lifetime. In temperate countries predicable winter epidemics 

occur with annual incidence concentrated into a two to three month peak of activity with limited or 

no activity recorded between these annual peaks (Finkelman et al., 2007, Nelson and Holmes, 2007, 

Rambaut et al., 2008) .  For many decades influenza was thought not to be a disease of importance 

in tropical countries due to a lack of observable peak in activity and poor availability of routine 

surveillance. This has changed considerably in the last 10 years with influenza now recognised to be 

at least as big a health problem in tropical countries as it is in temperate countries (Yang et al., 2011, 

Fischer II et al., 2014, Ng and Gordon, 2015).  In contrast to the predictable peaks in temperate 

countries, influenza transmission in tropical areas is less predictable with asynchronous peaks of 

activity, co-circulation of strains and apparent year round transmission (Moura, 2010, Cheng et al., 

2013, Le et al., 2013, Nelson et al., 2014) with the drivers for this difference not yet being fully 

understood (Tamerius et al., 2011, Paynter, 2015).  

Global movement of influenza A viruses can be tracked using phylogenetic analysis. Results to date 

have been far from conclusive although East and South-East (SE) Asia are likely to play a major role 

in influenza evolution and persistence (so called ‘SE Asian source-sink’ model) (Figure 1) (Cox and 

Subbarao, 2000, Nelson and Holmes, 2007, Rambaut et al., 2008, Russell et al., 2008, Bahl et al., 

2011, Kenah et al., 2011). Influenza evolution occurs through a series of ‘shifts’ and ‘drifts’, with 

gradual antigenic changes occurring each year and larger jumps occurring every three to five years 

(Smith et al., 2004, Bedford et al., 2014). In addition to these changes the sporadic emergence of 

novel subtypes occur with a subsequent rapid spread globally. These pandemics are known to have 

occurred in 1918, 1957, 1968, 1977 and 2009. Prior to 1977 these pandemic strains replaced the 

previously dominant circulating subtype; however, since 1977 H1N1 and H3N2 have both continued 

to circulate in the human population (Webster, 2013).  Influenza B types also circulate globally 

although will not be covered in depth in this review. The interaction between these two influenza 
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types are under researched and likely to be an important determinant in our overall understanding 

of influenza (Caini et al., 2015). 

 

Figure 1 Transmission Routes of Influenza Viruses determined by phylogenetic analysis 

Global influenza transmission dynamics are a complex system thought to be the result of interplay 

between the virus, immunity in the human population and environmental factors (Figure 2). In order 

for individuals to have repeat infections during the course of their life influenza viruses must 

continually evolve to evade the human immune system (Ferguson et al., 2003). Infants are generally 

protected by maternal antibodies in the first six months of life and in temperate regions most 

children have had their primary infection by six years of age (Bodewes et al., 2011). At the other end 

of the age spectrum older individuals have a general decline in immune function, a phenomenon 

known as immunosenescence (Sasaki et al., 2011, Pera et al., 2015), which could partly explain 

higher rates of morbidity and mortality in this age group. It is worth noting that advancing age is not 

always detrimental with older individuals being protected in the first wave of the 2009 pandemic 

due to preexisting antibodies (Van Kerkhove et al., 2013b). That antibodies to strains encountered 

many years prior to testing exist has been known almost as long as our ability to test for antibodies 

to influenza (Davenport et al., 1953, Hennessy et al., 1955, Hilleman et al., 1958). The ‘original 

antigenic sin’ hypothesis stated that the first infection an individual encountered left the most 

significant impact on the humoral immune system and could result in a deminished response to 

future infection. This now appears to be a simplification and work to understand this in the context 

of both individual susceptibility and population immunity continues to be explored (Kim et al., 2009, 
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Kucharski and Gog, 2012, Lessler et al., 2012, Miller et al., 2013, Fonville et al., 2014).    

 

Figure 2 Ongoing influenza transmission and factors thought to play a role in global circulation. 

Influenza is a vaccine preventable disease and the WHO recommends all countries consider 

vaccination of young children, pregnant women, those with chronic medical conditions and the 

elderly (World Health Organisation, 2012). Due to the continual evolution of the influenza virus the 

composition of the influenza vaccine must be updated regularly.  WHO makes recommendations 

approximately eight months prior to the winter season for Northern and Southern temperate 

regions (World Health Organisation, 2015c) to allow time for vaccine manufacture, distribution and 

administration before the onset of the annual epidemic.  These recommendations are based on 

international surveillance systems looking at the rate of evolution of the virus and analysis of the 

antigenic characteristics of most recently circulating viruses (World Health Organisation, 2007).  This 

is a complex process which does not always identify the ideal vaccine composition, as seen during 

the 2014-2015 northern winter season with a mismatch between H3N2 vaccine component and the 

circulating H3N2 strain, which resulted in reduced vaccine efficacy (<25%) and an increase in severe 

cases (Broberg et al., 2015, Molbak et al., 2015, Pebody et al., 2015). Current global vaccination 

planning is designed around the timing of temperate-zone winters and previous advice for tropical 

countries had recommended following the nearest temperate season nevertheless this has proven 

to be inadequate (Mello et al., 2009, Luna and Gattás, 2010). Increasingly novel strategies are being 

considered to provide vaccine for regions with year round transmission (Lambach et al., 2015). Work 

is ongoing to develop a vaccine which can induce broadly protective antibodies which would not 

require annual updates (Wei et al., 2010, Jegaskanda et al., 2014, Lu et al., 2014, Lee and Wilson, 

2015); however, this is many years from large scale human trials or routine use in public health.  We 

therefore must maximise our use of existing vaccine technologies through better understanding of 

global influenza dynamics and as a result improve our ability to anticipate the best vaccine 

composition through the consideration of novel vaccine administration strategies. 
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Despite being recognised for over 70 years, there are a number of unanswered questions regarding the 

role of cross immunity in susceptibility to influenza. These include the duration of protection offered 

by previous influenza infection, the role of infections contracted early in life and the impact that cross 

immunity has on the transmission dynamics of influenza.   The emergence of the H1N1 2009 pandemic 

strain led to a re-examination of the role of serological studies in outbreak description and how, by 

means of additional techniques such as mathematical modelling, results of these studies can be used in 

policy decisions (Van Kerkhove and Ferguson, 2012, Van Kerkhove et al., 2013a, Van Kerkhove et al., 

2013b).  A lack of data from tropical settings, and the need for better understanding of the effect of 

recent infection and cross immunity on serological profiles, was recognised. This thesis is designed, 

within the parameters of the study data, to address some of these deficiencies. 

1.2 SEARCH STRATEGY AND SELECTION CRITERIA 

References for this review were identified through searches of PubMed for articles published from 

January 1930 to February 2016, by use of the terms "influenza", “transmission”, "serology" (and 

related terms through wild card searches “sero*”), "humoral immunity" and "Vietnam". Articles 

resulting from these searches were narrowed down by review of abstract.  Older papers without 

abstracts were reviewed in full. Articles published in English were included.  Appropriate articles 

focusing on the role of humoral immunity in the evolution of influenza were included. Relevant 

references cited in included articles were reviewed and included as appropriate.  

1.3 INFLUENZA VIROLOGY 

Influenza viruses are enveloped, single-stranded RNA viruses belonging to the orthomyxoviridae 

family (Webster, 2013).  They circulate in mammalian and avian hosts, transcribing and replicating 

their genome within the nucleus of infected cells meaning that host to host transmission is required 

for ongoing survival.  Influenza can be divided into three types (A, B and C), all of which can infect 

humans, although A and B are the predominant circulating types.  Influenza is typically spherical in 

shape measuring ~100nm in diameter.  It is made up of 3 components (Figure 3) i. Lipid bilayer 

envelope with the 3 transmembrane proteins haemagglutinin (HA), neuraminidase (NA) and ion 

channel (M2); ii) matrix layer with abundant sub-membrane protein M; iii) virus core with helical 

ribonucleoproteins (RNPs) which house the negative stranded genomics viral RNAs and nuclear 

proteins (NP) (Horimoto and Kawaoka, 2005, Webster, 2013). Haemagglutinin (HA) and 

neuraminidase (NA) surface glycoproteins are the key surface proteins responsible for the antigenic 

variation which allows continual transmission in humans and are also the primary targets of the 

human humoral immune response (Ferguson et al., 2003, Knossow and Skehel, 2006).  
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Figure 3 Schematic of influenza viral structure. From (Horimoto and Kawaoka, 2005) Two surface glycoproteins, 
haemagglutinin (HA) and neuraminidase (NA), and the M2 ion-channel protein are embedded in the viral 
envelope, which is derived from the host plasma membrane. The ribonucleoprotein complex comprises a viral 
RNA segment associated with the nucleoprotein (NP) and three polymerase proteins (PA, PB1 and PB2). The 
matrix (M1) protein is associated with both ribonucleoprotein and the viral envelope. A small amount of non-
structural protein 2 is also present, but its location within the virion is unknown.  

Briefly, the viral life cycle is as follows (Skehel and Wiley, 2000, Lakadamyali et al., 2003, Rust et al., 

2004, Webster, 2013): i) HA binds virus to cell-surface sialylated glycoproteins from which the bound 

virus is taken into cells by endocytosis mainly via clathrin-coated pits (Rust et al., 2004).  NA aids cell 

entry by causing virus elution.  ii) Following viral endocytosis an acidic environment is generated 

allowing the activated HA to mediate membrane fusion (Skehel and Wiley, 2000).  The fusion 

process requires proximity between viral and cell membranes, for this to occur HA must undergo 

major structural changes.  The cleavage of HA0 to HA1 and HA2 brings the surfaces together while 

preserving the globular head structure of the HA protein (Figure 4).  iii) Following fusion processes 

M1- ribonucleoprotein (RNP) complexes are separated releasing RNP. The acidic environment opens 

the M2 ion channel allowing the free RNPs to be transported into the host nucleus for transcription 

and replication of viral RNA (Ye et al., 1999).  iv) After transcription and replication the viral 

components are brought and assembled at the budding site, a step which involves the 

transmembrane envelope proteins being brought to that site (Palese et al., 1974, Nayak et al., 2009). 

Current anti-influenza viral drugs act on the processes of uncoating and releasing of RNP by blocking 

the M2 proton channel (amantadine and rimantadine) or by preventing the spread of virus particles 

budding by inhibiting the enzymatic activity of NA (oseltamivir and zanamivir).  
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Figure 4 Haemagglutinin Structure of Influenza A/PR8/34 (H1N1). Figure from (Chiu et al., 2015).  A. Depiction 
of hemagglutinin as a trimer (with one monomer colored blue) and B. the monomer. Each monomer is 
composed of two subunits: HA1 (yellow) and HA2 (blue). Within the HA1 subunit, well-defined neutralizing 
epitopes within the globular head region (Sa, Sb, Ca, and Cb) are shown in magenta. The receptor-binding 
domain (RBD) is shown in green. The HA stalk domain is formed by the N- and C-terminal domains of HA1 plus 
the ectodomain part of HA2.  

Haemaggultinin is the most abundant of the envelope proteins accounting for more than 80% of the 

viral proteins on the virus’s surface (Wilson and Cox, 1990), it forms trimetric spikes with receptor 

binding sites and epitope for neutralising antibody (Figure 4).  Neuraminidase is the second most 

abundant envelope protein (~17%) and tends to group in clusters surrounded by HA for reasons that 

are currently unclear.  Differences in the HA and NA protein sequence are what determine the 

subtype of influenza A and give rise to the subtype nomenclature (e.g. H1N1, H3N2).  18 different HA 

groups have been identified and 11 NA groups (Schrauwen and Fouchier, 2014). Originally this 

subtype classification was performed using hyper-immune sera and viral solution (World Health 

Organisation, 1980) but is now performed using gene sequencing and phylogenetic analysis (Rohm 

et al., 1996). 

Both HA and NA subtypes can be classified into one of two groups phylogenetically with a further 

categorisation into five and two clades respectively (Nobusawa et al., 1991). Group 1 HA viruses 

included H1, H2 and H5 whereas H3, H7 and H9 belong to group 2.  The most diverse range of 

combinations is found in avian species, with human epidemics being restricted to H1N1, H2N2 and 

H3N2, with rare transmissions of avian subtypes such as H5N1 and H7N9 (Dugan et al., 2008, 

Schrauwen and Fouchier, 2014).  This host restriction of subtypes is related to receptor specificity of 

HA and NA when binding host cells.  Influenza binds to sialic acid containing either α2,3 or α2,6 

linkages, with avian subtypes preferentially binding the former and human and other mammalian 

subtypes the later (Kobasa et al., 1999) . The significance of this is clear when you consider the 
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primary route of infection (and onward transmission) for each species; the human upper respiratory 

tract (nasal and trachea) cells express predominantly α2,6 linked sialic acid and the gastrointestinal 

tract of birds express predominantly α2,3 (Rogers and Paulson, 1983).  When a species jump of a 

subtype has occurred (normally through reassortment with avian strains) such as in 1957 (H2N2) or 

1968 (H3N2) there has been an accompanying shift in receptor specificity from avian α2,3 to human 

α2,6 preference. This occurs rapidly in the HA receptors, more slowly in the NA (Kobasa et al., 1999).  

This receptor specificity is the reason that avian subtypes, which make repeated incursions into the 

human population such as H5N1 and the recent H7N9, outbreak have yet to result in sustained 

human to human transmission.  Nonetheless, it is also likely to be a contributing factor to high rates 

of severe disease and mortality as the lower respiratory tract in humans (bronchiolar and alveolar 

tissues) expresses a roughly equal proportion of α2,3 and α2,6-linked cells meaning that any 

infection with α2,3 tropism is more likely to result in lower respiratory disease, which is generally 

more severe than upper respiratory tract symptoms (Peiris et al., 2007). 

1.4 IMMUNITY TO INFLUENZA 

As the first line of defence, the innate immune system produces a range of responses which aims to 

stop viral entry into respiratory epithelial cells.  This includes the production of mucus and collectins 

on the epithelial mucosa surface of the upper and lower respiratory tract (Webster, 2013).   If this 

physical barrier is breached and epithelial cells are infected then the innate immune system is key to 

detecting the presence of viral RNA within the host cell. Pattern recognition receptors such as toll 

like receptors recognise and bind to viral RNA and produces pro-inflammtory cytokines and type 1 

interferon (Pang and Iwasaki, 2011).  These pathways have direct viral neutralising activity but are 

also important for stimulation of the adaptive immune system including dendritic cells stimulation 

and recruitment of B cells to regional lymph nodes early in infection. 

Once viral products have entered peripheral dendritic cells then they migrate via the lymphatic 

system to the local draining lymph node. Viral proteins are degraded within the dendritic cells and 

immune-peptides (epitopes) are then presented by MHC class I or class II antigen presenting cells to 

CD4 and CD8 T helper cells (GeurtsvanKessel et al., 2008, Braciale et al., 2012).  Stimulation of CD4 

and CD8 T helper cells then result in activation of B and T cell immune cascades. Once stimulated, B 

cells can then undergo clonal expansion and the differentiate to plasmablasts which are relatively 

short lived or the stimulation of germinal centres which are full formed within a week and then last 

for weeks to month (Paus et al., 2006). In addition to the peripheral dendritic cells, there is 

increasing evidence that a specialised area within the germinal centres of lymphatic tissues (follicular 

dendritic cells; FDC) also presents antigen to B cells. Although not mobile, these FDC foci do not 
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appear to be permanent with increase in the size and expression of these centres after stimulation 

with inflammatory mediators. There is mounting evidence that FDC also stimulate B cells through 

direct antigen presentation and through activation of secondary lymphoid tissues within the 

respiratory tract (bronchus-associated lymphoid tissue). These germinal centres can still be detected 

up to 5 months post infection and it is postulated that ongoing antigen presentation by FDC is the 

driver for this, helping to invoke long lasting immune responses.  Longer lasting plasma cells are 

generated in the lungs and bone marrow during this time and persist for years.  It is this memory 

response which is relied upon in the event of re-exposure to influenza.  The rapid response of 

memory B cells has been demonstrated with responses often detected within days of infection with 

a homotypic virus (Wrammert et al., 2008).  Memory B cells demonstrate high affinity for antigen 

and rapidly differentiate to antibody secreting cells after exposure to these antigens and are thought 

to be a significant part of the early plasmablast wave seen in the days after infection. As well as 

being a specific immune response on exposure to homotypic virus, there is increasing evidence of 

broadly protective responses in both seasonal and pandemic situations (Ekiert et al., 2009, Li et al., 

2012). 

Once antibodies have been produced they have a number of targets. HA-specific antibodies bind to 

the globular head of the HA protein stopping viral attachment and cell entry.  Immunogenic sites 

have been identified in the region surrounding the receptor binding sites (Whittle et al., 2011, Koel 

et al., 2013). Anti-HA antibodies have also been implicated in antibody dependent cell cytotoxicity 

(ADCC) where cells which have viral envelope proteins present on the cell surface (e.g. during 

process of cell fusion) can be bound by antibody and natural killer cells induce phagocytosis via Fc 

receptor expressing cells (Jegaskanda et al., 2013).  Anti-HA antibodies have also recently been 

detected against the conserved stalk region which is formed through cleavage of part of the HA1 and 

all of the HA2 polypeptides (Figure 4). Antibodies targeted at this region are able to prevent viral 

fusion with the human cell membrane (Lu et al., 2014).  Antibodies to other viral proteins have also 

been identified but tend to get less attention compared to HA antibodies. NA specific antibodies 

stop the cleavage of the newly formed virus particle from the cell surface preventing the release and 

spread of the virus (Marcelin et al., 2012).  NA antibodies also facilitate ADCC and may have a role in 

limiting disease severity.  Antibodies to NP and M2 proteins of the influenza virus appear to have a 

role in limiting replication efficiency rather than stopping altogether (Song et al., 2011).  However 

both of these antigens are important targets for the cellular immune system 
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1.5 SEROEPIDEMIOLOGY BACKGROUND 

Serological surveys are a long standing method of investigating infectious disease epidemiology with 

two major goals i) determination of disease incidence and ii) assessment of susceptibility to disease 

(Van Kerkhove et al., 2013a). However, many of the existing statistical methods rely on assumptions 

of life-long immunity following infection which does not hold in influenza in non-pandemic situations 

(Hens et al., 2012). Following the emergence of H1N1 2009 pandemic strain, age-specific 

seroprevalence studies were widely performed demonstrating both differences in attack rates in 

different age groups and different levels of pre-existing immunity (Van Kerkhove et al., 2013b). In 

the post-pandemic period there has been review of the methods used and discussions around how 

this can be improved for future pandemic preparedness, as well as in relation to seasonal influenza 

(Cauchemez et al., 2012, Wu et al., 2014). Understanding of the humoral immune response is vital to 

achieving these aims both in the context of recent infection and lifetime of infections.   

Measuring the type and strength of an individual’s immune response forms the basis of the 

population-level measurements that result from seroepidemiological studies.  Neutralisation Titres 

(NT) and Haemagglutination Inhibition (HI) assays are WHO reference standards with recognised 

correlates of protection (HI ≥ 40 gives 50% protection against infection) or diagnosis (4-fold increase 

in paired samples) (World Health Organisation, 2011).  However, they have a number of limitations, 

including lack of reproducibility between laboratories, because of inter–observer differences in 

reading of HI and quality and type of animal red blood cells used in the process (Laurie et al., 2015a).  

In order to test for multiple subtypes and strains a large volume of serum is required along with the 

storage and usage of multiple viruses.  Enzyme Linked Immunosorbent Assay (ELISA) has been 

investigated as a virus free approach however it has had problems with cross reactivity which limited 

its usefulness (Murphy et al., 1981). With these limitations of existing techniques in mind a novel 

protein microarray was developed by the Dutch Institute of Public Health (RIVM) to measure 

antibodies to the HA1 subunit of the influenza virus. This method benefits from high throughput 

testing to multiple strains using only minimal volume of serum. Published work to date has focused 

on response to the pandemic H1N1 2009 (Koopmans et al., 2011, Baas et al., 2013, Huijskens et al., 

2013, de Bruin et al., 2014, te Beest et al., 2014a, te Beest et al., 2014b). 

Seroepidemiology employs a number of study designs to assess immunity at either the individual or 

population level. These include large cross sectional surveys at the end of a winter season in 

temperate countries (Fragaszy et al., 2015) or through longitudinal serological sampling, either in a 

specific observational cohort (Chen et al., 2010, Horby et al., 2012) or convenience sampling of 

repeat blood donors (McVernon et al., 2010, Wu et al., 2010, Sauerbrei et al., 2014).  These methods 
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have often been developed and employed in the face of an emerging pandemic where there is 

limited prior immunity and therefore most of the population have undetectable antibodies making 

seroprevalence curves easier to estimate (Van Kerkhove et al., 2013b). During the most recent 

pandemic in 2009, there was suggestion that the standard threshold of 1:40 was too high and was 

underestimating the true community attack rate (Cauchemez et al., 2012, Wu et al., 2014). However, 

most influenza infections do not occur during a pandemic period and most seroepidemiology studies 

are performed to assess attack rates of subtypes which have caused multiple infections during a 

lifetime. 

1.6 INFLUENZA IN VIETNAM 

Vietnam is a low middle income country in SE Asia. With a population of over 93 million, the majority 

of whom are working age, and increasingly living in urban environments, it has undergone massive 

cultural and economic change in the last 20 years (CIA World Factbook, 2015).  Health expenditure 

accounts for 6% of GDP and public provision of healthcare is structured around strict institutional 

hierarchies (World Health Organisation & MOH Vietnam, 2012). In addition to public healthcare 

provision there is a private market which mostly consists of small clinics which many urban 

Vietnamese use as the first point of healthcare contact. A National Influenza Surveillance System 

(NISS) has been running since 2006 and is coordinated by the National Institute of Hygiene and 

Epidemiology (NIHE) within the Ministry of Health. This operates using sentinel sites across the 

country, within the public healthcare system, four central hospitals, two provincial hospitals, seven 

district hospitals, and two polyclinics. Symptomatic surveillance for ILI and SARI is conducted 

(Nguyen et al., 2009, Nguyen et al., 2013) along with virus subtyping and sequencing as part of the 

WHO Global Influenza Surveillance Network (Le et al., 2013).   

Year round transmission of influenza has been detected in Vietnam through both national 

surveillance and other epidemiological studies. Simultaneous circulation of multiple influenza strains 

and types has been documented (Nguyen et al., 2007, Li et al., 2008, Nguyen et al., 2009, Horby et 

al., 2012, Le et al., 2013) along with patients having more than one influenza infection in one season 

(Horby et al., 2012).  Previous serological work in Vietnam has included small scale serological surveys 

looking for evidence of avian influenza exposure (Liem and Lim, 2005, Uyeki et al., 2012, Boni et al., 

2013, Todd et al., 2014) and a larger prospective cohort (Cauchemez et al., 2012, Horby et al., 2012, 

Fonville et al., 2014).  

15-20% of patients presenting to hospitals with influenza-like illness (ILI) have virologically confirmed 

influenza (Nguyen et al., 2009, Yoshida et al., 2010, Nguyen et al., 2013) and influenza is thought to 
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be associated with up to 14% of community acquired pneumonia presenting to hospital (Takahashi 

et al., 2013). However, complementary data on community ILI is limited.  As national surveillance 

programmes and previous research have focused largely on hospital sites, incidence and burden 

estimates from these studies are likely to underestimate true clinical burden and attack rates in the 

community. 

Seasonal influenza vaccine is not currently recommended in Vietnam (United Nations in Vietnam, 

2009) and there is minimal, although increasing, use in the private sector (Palache et al., 2014).  

Vaccine production capacity has been developed over the past decade in Vietnam, due to the great 

risk posed by highly pathogenic avian influenza H5N1 (HPAI) (Monto et al., 2011).  To date work on 

Vietnamese influenza vaccination strategies has focused on regional distribution of poultry vaccines 

based on prevalence and localized outbreaks of HPAI.  Research and production capacity has been 

expanded to produce human pandemic influenza vaccines in Vietnam, although regular production is 

yet to begin (Hoa et al., 2011, PATH, 2012). The optimal vaccination strategy for seasonal influenza 

in Vietnam is still to be established (Vuong et al., 2012a).   

1.7 THESIS AIMS AND OBJECTIVES 

The work presented in this thesis is part of a wider body of research which aims to understand the 

effect of cross-immunity from previous infections on susceptibility now and how this impacts on 

transmission of influenza at the population level within Vietnam.  This thesis presents the results of 

an observational study of individuals presenting with influenza-like-illness to primary care clinics in 

Ho Chi Minh City, Vietnam.  

As discussed, there are challenges involved with the use of serology for epidemiology in conditions 

where you have repeat infections. In order to address these we need to separate the two major aims 

of seroepidemiology, i) identifying recent infection and ii) making an assessment of population 

immunity. The second of these aims can again be separated into a knowledge of i) what levels of 

serological titre are associated with increased risk of infection and ii) after recent infection how does 

antibody decline to reach susceptibility again. All of this is to be in the context of recent and 

historical strains. The primary aims of the doctoral research presented in this thesis is therefore to 

address questions around the effect of cross-immunity from previous influenza infection on 

susceptibility to currently circulating strains, understand the short term antibody dynamics of both 

current and historical strains post infection and determine optimal serological determinants of 

recent infection. 
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2 COMMON METHODS 

2.1 BACKGROUND 

As detailed in Chapter 1, this doctoral research is designed to address questions around the effect of 

cross-immunity from previous influenza infection on susceptibility to currently circulating strains, 

understand the short term antibody dynamics of both current and historical strains post infection 

and determine optimal serological determinants of recent infection.  This chapter will detail the 

common methods used throughout this work, principally the prospective observational studies and 

the laboratory techniques for virological and serological testing.  Analytical and statistical methods 

will be described in each of the subsequent data chapters.  

The work presented in this thesis is part of a wider body of work designed to address questions 

around influenza A transmission in central and southern Vietnam and the role of serology (Figure 5).  

A combination of research methodologies are being utilised including i) spatio-temporal analysis of 

influenza serology at a population-level; ii) a clinical observational study of influenza-like-illness; iii) 

mathematical modelling of influenza transmission dynamics.  The clinical observational study which 

is the predominant source of work presented in this thesis was designed, implemented and analysed 

by myself with the exception of laboratory analysis detailed in the ‘Acknowledgements’. The 

seroepidemiology study was designed by my supervisor Dr Maciej Boni in conjunction with Prof 

Jeremy Farrar and Prof Marion Koopmans following the emergence H1N1 2009 pandemic strain. This 

dataset was used in the development of the study design and sample size calculation of the clinical 

observational study. I conducted the primary analysis of the seroepidemiology dataset for this 

purpose.  
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Figure 5 Influenza Clinical Research at OUCRU-Vietnam. Methodologies shared across studies conducted 
through Ho Chi Minh City are detailed. This thesis comprises work produced through the 10FL study highlighted 
in red. 

2.2 CLINICAL OBSERVATIONAL STUDY OF INFLUENZA-LIKE ILLNESS IN HO CHI MINH CITY, 

VIETNAM (10FL) 

2.2.1 Summary of Study Design 

This observational study (10FL) enrolled subjects aged between 10 and 70, attending outpatient 

clinics and community medical practitioners in Ho Chi Minh City (HCMC) with influenza like 

symptoms to provided epidemiological, virological and immunological data.   

Patients with ILI symptoms (as defined in section 2.2.3.2) were invited to participate in the study.  

Interested patients went through an informed consent process prior to any study interventions 

being performed.  Once informed consent was obtained, nose and throat swabbing (respiratory 

sampling) was performed to test for influenza A & B PCR (by subtype) and 5ml venous blood was 

collected to test for 16 historical influenza antigens by protein microarray (Table 2.4).  A baseline 

questionnaire collecting information on current illness, chronic medical problems and socio-

demographic factors including household structure, occupation and exposure to animals was 

collected for each recruited subject.  Information on participant’s social contacts from the previous 

day was collected; this anonymised contact information was restricted to the number of contacts 
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made in particular age categories. Copies of the Case Record Forms (CRF) used in the study can be 

found in Supplementary Appendices. 

A subset of patients were invited to join a longitudinal sub-study. Subjects attended for repeat 

serum sampling at 30, 90, 150 and 210 days (+/- 5 days) after recruitment. Active respiratory 

symptom surveillance was conducted during the follow-up period with telephone follow-up at 60, 

120 and 180 days (+/- 5 days). Subjects were asked to attend clinic within five days of onset of new 

ILI symptoms where repeat nasal and throat swabbing was performed if they met ECDC ILI case 

definition. 

Clinical characteristics of the ILI episode was reported by subjects to study staff, any subsequent 

medical or hospital attendance were reported by subject at next visit. No inpatient data was collect 

on subsequent hospitalisation. Contact data relied on participant’s recollection of the previous day. 

No additional objective information was available from the subject’s usual treating clinician. 

2.2.2 Collaborating sites 

Primary healthcare services within Vietnam are still developing and most provision is delivered by 

hospital outpatient departments and private clinics (World Health Organisation & MOH Vietnam, 

2012). Study sites were identified through an existing General Practitioner ILI Surveillance Network 

and existing hospital collaborations within HCMC (Lam et al, Manuscript in Review; (Oxford 

University Clinical Research Unit, 2015)). The two hospital outpatient sites (Hospital for Tropical 

Diseases and Cho Ray Hospital) recruited patients attending for review of acute ILI symptoms that 

did not require admission. Four private clinics recruited outpatients attending with acute ILI.  All 

collaborating sites and staff were trained in study protocol and procedures as well as receiving ICH 

GCP training. 

2.2.3 Study Participants 

2.2.3.1 Overall Description of Study Participants 

Participants with influenza like illness (ILI) between the ages of 10 and 70 inclusive were recruited 

from collaborating sites in HCMC.  Study participants were identified in three ways: 

i. Individuals who attend clinic for medical advice who fulfil the ILI case definition 

ii. Relatives/Guardians of individuals who attend clinic for medical advice who also 

fulfil the ILI case definition 

iii. Contacts of study participants who subsequently develop symptoms which fulfil the 

ILI case definition 
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Participants in groups i) and ii) were identified by treating clinicians at the recruiting clinics and 

referred to our study team.  Participants in group iii) contacted the study team through a telephone 

number provided to original study participants.  There was no obligation for participants to recruit 

household members and written information regarding this process was provided at the time of 

enrolment. 

A subset of patients were recruited to the longitudinal sub-study. All subjects testing positive for 

influenza A were eligible to join the sub-study. Negative control subjects were matched by age (+/- 5 

years) and gender to influenza A positive subjects included in the follow-up study. Those who were 

agreeable and able to commit to the follow-up visits were invited by the study team to return for 

follow up.   

2.2.3.2 Inclusion Criteria 

• Age 10-70 years of age inclusive 1 

• European CDC Influenza Like Illness (European Centre for Disease Prevention and 

Control (ECDC), 2015): 

o Sudden onset of symptoms 

o At least one of: Fever or feverishness (chills); Malaise; Headache; Muscle 

pain 

o At least one of: Cough; Sore throat; Shortness of breath 

• Illness onset within the previous 72 hours   

• Willing to participate in the study 

• Written informed consent 

 
1 Recruitment was originally restricted to ages 10–50. The original upper age bracket was selected 

because of concerns regarding interpretation of the protein micro-array in older age groups. 

Subsequent analysis of the complementary seroepidemiology population data set which was using 

the same protein microarray revealed that this was unlikely to be an issue. Increasing our age band 

allowed an increase in overall study numbers. The upper band was increased in March 2014. The 

lower age band was selected to ensure that individuals had at least one  previous influenza infection 

(Bodewes et al., 2011). 

ECDC definition of ILI was used as the inclusion criteria for this study as this was already in use at 

several study sites which were part of an existing GP ILI Surveillance Network (Figure 5).  This 

surveillance project reported cases of ILI and overall attendances via mobile phone networks. The 

major difference in the ECDC definition compared with WHO or CDC definition is the lack of a 

defined temperature threshold, instead relying on self-reported fever.  This improves the sensitivity 

of the clinical criteria but with an expectant drop in specificity. There is an ongoing international 
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discussion on which is the optimal definition but an important consideration is the need for 

consistency in case identification and reporting (Jiang et al., 2015, Priest and Kelly, 2015). In order to 

have consistency between the studies being conducted within our research group it was agreed to 

continue using ECDC definition.   

2.2.3.3 Exclusion Criteria 

• Use of long term immunosuppressive drugs as reported by the patient. 

2.2.4 Study Procedures 

STUDY VISITS DESCRIPTION STUDY PROCEDURES 

ESTIMATED 

NUMBER OF 

PARTICIPANTS 

APPROX 

TIME 

Visit 1  Patients with ILI 

Symptoms 

1. Informed Consent 

2. Enrolment Questionnaire 

3. 1x Nasal Swab & 1x Throat 

Swab for Influenza A & B PCR 

4. 1x 5ml Venous Blood 

Collection 

1500-1600 15 min 

Visit 2 (Day 30) 

Visit 3 (Day 90) 

Visit 4 (Day 150) 

Visit 5 (Day 210) 

All subjects 

recruited to follow 

up sub study  

1. 1x 5ml Venous Blood 

Collection 

2. Follow-up Questionnaire 

250 15 min 

Respiratory 

Surveillance 

Telephone Call 

(Day 60, 120 & 

180) 

All subjects 

recruited to follow 

up sub study 

1. Surveillance Questionnaire 250 5 min 

Unscheduled Visit 

(between Day 30 

– 210) 

Subjects recruited 

to sub study with 

new ILI symptoms  

1. 1x Nasal Swab & 1x Throat 

Swab for Influenza A & B PCR 

2. Follow-up Questionnaire 

20 15 min 

Table 2.1 Summary of Study Procedures 

Study documentation (Informed Consent Form, Clinical Record Form) is included in Appendix A. 

2.2.5 Statistics and Analysis 

Details of statistical analysis methods used in this thesis are detailed in appropriate chapter methods 

sections.  

2.2.5.1 Sample Size Calculation – Primary Study 

The sample size required to meet the primary objective (risk of current infection with influenza A 

given previous infection history) was calculated using multinomial likelihood.  From preliminary work 

on the 02FL seroepidemiology data (see section 2.3), H3N2 strains (Table 2.4) appear to cluster in to 

three groups according to year of emergence a) 2003 & 2005, b) 2007 and c) 2009 & 2011 using 
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visual inspection of titre response, Pearson’s correlation and basic Principle Components Analysis of 

titre response. From these clusters it was decided to define five categories based on magnitude of 

titre response across these groupings: 

i) No evidence of recent infection (a, b & c all low) 

ii) 2003 & 2005 only (a only) 

iii) 2007 only (b only) 

iv) 2009 & 2011 only (c only) 

v) (2003 & 2005) & (2007) OR (2009 & 2011) (2 from a, b or c)  

 

It is presumed that group (i) should be the most susceptible to influenza infection in 2013-2015, 

while group (v) should be the least susceptible.  The null hypothesis is that each of these groups is 

equally susceptible, and this corresponds to assigning each group a relative probability of 20% of 

being infected (relative to the other groups).  Four alternative hypotheses (H1:1 to H1:4) in which the 

relative susceptibilities are highest in group (i) and lowest in group (v).  In other words, for each of 

these groups, a prior probability for the likelihood of acquiring influenza A was defined as an 

alternative hypothesis (Table 2.2).  For each of the alternative hypotheses and a given sample size 

(tested between 100 and 450) the Chi Square Test Statistic was calculated by sampling from a 

multinomial distribution with the five probabilities listed in Table 2.2, and a likelihood ratio test was 

used to determine if the null hypothesis could be rejected in favour of the alternative hypothesis H1:j.  

This simulation was repeated 1000 times.  A cut off χ2 statistic for significance was defined as 13.28 

(99% significance, df=4), the proportion of simulated runs which reached significance was recorded 

for each sample size.   

  Titre Response Category 

  i) ii) iii) iv) v) 

EQUALLY LIKELY TO 
ACQUIRE THIS CURRENT 
INFECTION REGARDLESS OF 
PREVIOUS INFECTION 
PATTERNS 

 

H0 

 

0.2 

 

0.2 

 

0.2 

 

0.2 

 

0.2 

MORE LIKELY TO ACQUIRE 
THIS CURRENT INFECTION 
GIVEN PREVIOUS 
INFECTION PATTERNS 

H1:1 0.3 0.25 0.2 0.15 0.1 

H1:2 0.25 0.2 0.2 0.2 0.15 

H1:3 0.25 0.25 0.2 0.2 0.1 

H1:4 0.25 0.25 0.2 0.15 0.15 

Table 2.2 Prior Probability for Likelihood of Acquiring Influenza A 
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A sample size of 350 is sufficient to give 80% power to reject the null hypothesis with probabilities 

H1:1, H1:3 and H1:4 (Figure 6).  Hypothesis H1:2 is very close to the null hypothesis and would need a 

very large sample size to be rejected.  In order to recruit 350 participants with confirmed influenza A, 

we estimate approximately 1500-1600 participants with ILI need to be recruited.  This is based on 

previous results from Vietnam where 15-20% of ILI cases test positive for influenza (Horby et al., 

2012).  Sample size calculations were performed using R Statistical Software v2.15.2 (R Core Team, 

2015).  

 

Figure 6 Sample Size Calculation for Observational Study 

2.2.5.2 Sample Size Calculation – Longitudinal Sub Study 

The longitudinal sub-study was designed to measure the rate of waning for antibody responses 

boosted by recent infection; this will be particularly relevant for the most recent H1 or H3 strains 

present on the microarray.  Sample size estimates were performed using simulated data sets and 

maximum likelihood methods based on preliminary work on the 02FL seroepidemiology data (see 

section 2.3) and in-house comparisons between protein microarray titres and HI tests.  We assumed 

a 100-day ‘titre half-life’, which is in line with VN-MOP data obtained during the 2009 pandemic 

(unpublished). A minimum sample size of 50 will allow the statistical identification of the titre half-

life with a 95% confidence width range of between 42 – 61 days. This is robust to variation in 

assumed titre half-life up to 150 days. A sample size of 75 gives a titre half-life estimate with a 95% 

CI width between 39 and 42 days. A sample size of 75 was selected for the sub study to allow for loss 

to follow-up and improved precision. 
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The longitudinal study was expanded after six months recruitment (March 2014).   Analysis of 02FL 

study (see section 2.3) which utilised the same protein micro-array for antibody measurement 

demonstrated marked heterogeneity in response (unpublished). This included broad responses 

where titres are similar across the majority of strains and other narrower responses with high titre 

to one or two strains only. It was not known if this represented a difference in time since last 

infection, a difference in individual host response or other factors.   The extension to the sub study 

was designed to help address some of this uncertainly.  An influenza A & B negative control group 

was added which was age and sex matched to the influenza A positive arm of the extended sub 

study (birth year +/- 5 years).  The sample size was been increased from 75 to 125 to maintain 

statistical power to detect titre half-life in the event that the different antibody response groups 

have different waning rates. 

2.2.6 Ethics and Funding 

Both studies were approved by the Scientific and Ethical Committee of the Hospital for Tropical 

Disease, Ho Chi Minh City, Vietnam and Liverpool School of Tropical Medicine Research Ethics 

Committee, UK.  Letters of agreement supporting the involvement of the community medical clinics 

were obtained from the Ho Chi Minh City Department of Health. 

This study was funded by the Wellcome Trust Clinical PhD Fellowship awarded to Stacy Todd and 

Liverpool School of Tropical Medicine (Award 097465/B/11/Z). 

2.3 SEROEPIDEMIOLOGY OF INFLUENZA A IN SOUTHERN AND CENTRAL VIETNAM (02FL STUDY) 

As discussed in the chapter background, this thesis is part of a series of integrated studies aiming to 

address questions around the transmission of influenza A in central and southern Vietnam (Figure 5).  

Although no results from the population seroepidemiology study are presented in this thesis 

provisional results were used in the development of the study methods for the clinical observational 

study. An overview of the study methods of the population study are therefore given here. 

2.3.1 Summary of Study Design 

Since 2009, age-stratified sera from 10 hospitals in central and southern Vietnam were prospectively 

collected for the purpose of measuring influenza antibody titres. 200 samples were collected every 

two months from each site, simplified demographic information are available for each sample (age, 

sex, date of collection, hospital department).  
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2.3.2 Collaborating Sites 

Data from four sites was used for the analysis contained in this thesis, Hospital for Tropical Diseases 

(Ho Chi Minh City), and Khanh Hoa, Dak Lak and Hue Provincial Hospitals.  These sites covered a 

range of geographic regions from urban (Ho Chi Minh City), coastal semi-urban (Khanh Hoa), Central 

Highlands (Dak Lak) and Central Coast (Hue) with associated differences in socioeconomic status, 

living conditions, population density, access to healthcare, and potential exposure to avian influenza 

viruses. 

2.3.3 Study Participants 

Residual samples from routine biochemistry and haematology laboratories were included. The 

serum samples were intended to represent the general population in each hospital’s catchment 

region. For each collection period each site provided a minimum of 50 samples in each age bands  i) 

0-19, ii) 20-39, iii) 40+.  Samples from wards dedicated to HIV care were excluded from this study.  

Samples from dedicated respiratory wards as well as general wards were included in this study. 

Seasonal influenza vaccination in Vietnam was thought to be uncommon at the commencement of 

the study (<0.5% (Palache et al., 2014)) based on confidential sales data from Sanofi-Pasteur and 

GlaxoSmithKline who provide the human influenza vaccine available at private clinics in Vietnam. All 

samples were anonymized and unlinked to original hospital ID. 

2.3.4 Ethics and Funding 

The research protocol was approved by the Oxford Tropical Research Ethics Committee at the 

University of Oxford, and the Scientific and Ethical Committee of the Hospital for Tropical Diseases in 

HCMC. 

This work was supported by the Wellcome Trust (098511/Z/12/Z, 089276/B/09/7, 084368/Z/07/Z), 

the British Medical Association (HC Roscoe 2011) and the Dutch Ministry of Economic Affairs, 

Agriculture, and Innovation, Castellum Project. 

2.4 VIROLOGICAL TESTING FOR INFLUENZA A & B 

Virological testing was performed by two laboratory technicians, Nguyen Thanh Hung and Nguyen 

Ha Thao Vy. 

Molecular diagnostic techniques are commonly used for clinical detection and identification of 

infecting influenza viruses. Reverse-transcription polymerase chain reaction (RT-PCR) was utilised in 

this study for i) identification of influenza A or B infection and ii) subtyping of identified influenza A 

viruses. Respiratory samples were collected at the time of clinical symptoms in viral transport 
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medium (VTM), initially stored at -20oC within 24 hours of collection and then and stored at -80oC 

after initial PCR testing. RT-PCR was performed in accordance with international protocols (World 

Health Organisation, 2014b). Positive and negative controls were provided in house at OUCRU, 

Vietnam. 

In brief, Viral RNA extraction was performed using commercial kit (MagNA Pure 96 DNA and Viral NA 

Small Volume Kit). Commercially available PCR Master Mix (LightCycler 480 RNA Probe Master, 

Roche, USA) and primers were used (Table 2.3). All laboratory staff had appropriate technical and 

ICH-GLP training. 

Timing Type/Subtype Primer 

Initial RT-PCR 

Testing 

FluA_F (CDC) GACCRATCCTGTCACCTCTGAC 

FluA_R (CDC) AGGGCATTYTGGACAAAKCGTCTA 

FluA_probe (CDC) TGCAGTCCTCGCTCACTGGGCACG 

FluB_F  (CDC) TCC TCA ACT CAC TCT TCG AGC G  

FluB_R (CDC) CGG TGC TCT TGA CCA AAT TGG  

FluB_Probe (CDC) CCA ATT CGA GCA GCT GAA ACT GCG GTG 

Secondary 

Subtype 

Testing 

H3_F (CDC) AAGCATTCCYAATGACAAACC 

H3_R (CDC) ATTGCRCCRAATATGCCTCTAGT 

H3_Probe (CDC) FAM-CAGGATCACATATGGGSCCTGTCCCAG 

SwPanH1_F GTTACCCAGGAGATTTCATCGA 

SwPanH1_R CATGCTGCCGTTACACCTTTG 

SwPanH1_Probe AAGTTCATGGCCCAATCATGACTCGA 

Table 2.3 Influenza RT-PCR Primers 

2.5 SEROLOGICAL TESTING FOR INFLUENZA A 

2.5.1 Background 

Serology for influenza has been a cornerstone of clinical diagnosis and epidemiology for over 50 

years. Neutralisation Titres (NT) and Haemagglutination Inhibition (HI) assays are WHO reference 

standards with recognised correlates of protection (HI ≥ 40 gives 50% protection against infection) or 

diagnosis (4-fold increase in paired samples) (World Health Organisation, 2011).  However these 

longstanding methods have a number of limitations has led to the development of a novel protein 

micro array method to allow the measurement of titre response to multiple strains using only 

minimal volume of serum (Koopmans et al., 2011, Baas et al., 2013, Huijskens et al., 2013).  This 

technique was developed by the Dutch Institute of Public Health (RIVM) who custom produced the 

slides used in this and the 02FL study.  
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2.5.2 Protein Microarray Slide Printing and Preparation 

Microarray slides were printed for this project by Erwin de Bruin at the Dutch Institute for Public 

Health and the Environment (RIVM). 

Commercially available HA1 proteins of 16 influenza strains (Table 2.4) were produced in human 

embryonic kidney cells (HEK293) and purified by HIS-tag purification as per manufacturer instruction 

(Immune Technology, New York, NY, USA). Recombinant proteins were spotted in 2 drops of 333 pL 

in protein array buffer (Whatman, Maidstone, Kent, UK) using a non-contact spotter (PerkinElmer, 

Waltham, MA, USA)  on a 64 pad nitrocellulose pad (Oncyte acid, Grac biolabs, Bends, OR, USA). 

Antigens were spotted in duplicate on each array. Slides were custom prepared for this study at 

RIVM laboratories, Netherlands and shipped in batches to Vietnam. They were stored at ambient 

temperature in a humidity and light controlled environment prior to processing. 

Antigen Influenza Virus Strain Manufacturer 

H1N1 1918 A/South Carolina/1/1918 Immune Technology Corp. 
H1N1 1977 A/USSR/92/1977 Immune Technology Corp. 
H1N1 1999 A/New Caledonia/20/1999 Immune Technology Corp. 
H1N1 2007 A/Brisbane/59/2007 Immune Technology Corp. 
H1N1 2009 A/California/6/2009 Immune Technology Corp. 

H3N2 1968 A/Aichi/2/1968 Sino Biological 
H3N2 2003 A/Wyoming/3/2003 Immune Technology Corp. 
H3N2 2005 A/Wisconsin/67/2005 Sino Biological 
H3N2 2007 A/Brisbane/10/2007 Immune Technology Corp. 
H3N2 2009 A/Victoria/210/2009 Immune Technology Corp. 
H3N2 2011 A/Victoria/361/2011 Immune Technology Corp. 

H9N2 1999 A/Guinea Fowl/Hong Kong/WF10/1999 Immune Technology Corp. 
H7N7 2003 A/Chicken/Netherlands/1/2003 Immune Technology Corp. 
H5N1 2004 A/Vietnam/1194/2004 Immune Technology Corp. 
H5N1 2007 A/Cambodia/R0405050/2007 Sino Biological 
H5N1 2010 A/Hubei/1/2010 Immune Technology Corp. 

Table 2.4 HA1 Antigens and Manufacturers on Protein Microarray 

2.5.3 Protein Microarray Laboratory Methods 

Serum samples from the 02FL and 10FL studies were processed in the laboratory by Tran Thi Nhu 

Thao and Nguyen Ha Thao Vy. 

Fifteen serum samples and one positive control serum can be tested on one slide. Samples are heat 

inactivated at 56oC processed in BSL-2 laboratory conditions. Fourfold dilutions of sera (1:20, 1:80, 

1:360, 1:1280), four-fold dilutions of positive control (1:40, 1:160, 1:640, 1:2560), blocking agent 

(Blotto blocking buffer in TBS, 5% (w/v) non-fat powdered milk (Pierce 37530), and Surfact Ampt 

(Pierce, 28320)) were pipetted onto the slides and washed off according to the protocol (Koopmans 

et al., 2011). Briefly, slides are incubated in Blotto solution (as above) then washed six times with 

wash buffer (Protein Array Wash Buffer, Maine Manufacturing, USA, 10485330). Prepared serum 
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dilutions are then added to slides and incubated for one hour at 37oC. After this time they are 

washed then immunofluorescent conjugate added (Alexa Fluor 647 – AffiniPure Goat Anti-Human 

IgG, Fcᵞ Fragment Specific (Jackson Immunoresearch, 109-605-008). These are incubated for one 

hour at 37oC and then washed thoroughly. After washing, slides are hand dried then stored in an 

ambient temperature humidity and light controlled environment. Slides are shipped in batches to 

RIVM laboratories for scanning using ScanArray GX Plus microarray scanner (PerkinElmer), scanned 

images are then sent electronically to Vietnam for further processing. 

2.5.4 Protein Microarray Luminescence and Titre Calculation 

Slides were read in with ScanArray software by Tran Minh Quan.  Titre calculations and assay 

standardization to the positive control were designed and calibrated by Nguyen Thi Duy Nhat. 

Spot fluorescence intensity was measured using ScanArray Express software (version 4.0, 

PerkinElmer) and optimal positioning for spot luminescence reading was performed manually (Figure 

7). For each sample tested, eight luminescence values are available and these are mapped to a single 

protein microarray titre by a curve fitting process adapted from log-logistic dose-response curve 

used commonly in pharmacokinetics.  

 

Figure 7 ScanArray Image of Scanned Slide 

The median luminescence score for each of the four dilutions were regressed by a four-parameter 

log-logistic curve. The limits of detection of the scanning equipment are 3000 and 65536 and the 

titre value was defined as the x-value of the inflection point at the median luminescence (34268) 

between the limits of detection. Least squares fitting was used to identify the best-fit the logistic 
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curve, and the inflection point was taken from the best-fit curve (Figure 8). If the luminescence score 

at dilution 1:20 was less that the inflection point (34268) the sample was assigned a titre of less than 

20. If the score at 1:1280 was greater than the inflection point the sample was assigned a value 

greater than 1280. For data processing these were assigned values of 10 and 1810 respectively, 

 

 

Figure 8 Luminescence and Sample Dilution fitted to four-parameter log-logistic curve; Lumi: luminescence at 
dilution i, c=minimum luminescence (3000), d=maximum luminescence (65535), titre=dilution at inflection 
point, b=slope at inflection point 

Standardisation of the assay is performed using the ISH-1 positive control included on each slide. This 

is designed to correct for inter-laboratory, inter-technician and across slide variation. The H1N1 2009 

strain is used as the reference antigen for correction as it has the smallest standard deviation on 

repeated testing. Slides were produced in “batches" and “series” and differences in antigen spot 

quality were noted between these. Standardisation therefore occurs within series (i.e. across batches) 

and then across series. For within series titre correction, all titres on a single slide are normalized 

based on the mean H1N1 2009 titres within the series that the slide belongs to. The within-series 

normalization factor for all samples (s) on slide i in series k is calculated as:   

𝐶𝐹𝑖𝑘 =
𝐺𝑀𝑇𝐼𝑆𝐻1,𝐻1_09

𝑇𝐼𝑆𝐻1,𝑖,𝐻1_09
 

in which 𝐺𝑀𝑇𝐼𝑆𝐻1,𝐻1_09is the geometric mean of  ISH-1 titres for H1N1 2009 antigen in series k. This 

correction factor is the same for all antigens 𝑎 and all samples s on the same slide. This correction 
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factor also acts as a quality control criterion as slides are rejected when the H1N1 2009 titre of the 

positive control differs by more than 1.2 dilutions from the series GMT of H1N1 2009. To correct for 

the inter-series variation, the mean titre of antigen 𝑎 in series k is inflated/deflated over its 

corresponding mean from series 1:  

𝐶𝐹′𝑎𝑘 =  
𝐺𝑀𝑇𝐼𝑆𝐻1,𝑎,1

𝐺𝑀𝑇𝐼𝑆𝐻1,𝑎,𝑘
 

Individual titre of antigen 𝑎 for all samples s on slide i in series k is then corrected as: 

𝑇𝑖𝑡𝑟𝑒𝑠𝑠𝑎𝑖𝑘 = 𝐶𝐹𝑖𝑘 ∗ 𝐶𝐹′𝑎𝑘 ∗ 𝐹𝑖𝑡𝑡𝑒𝑑_𝑇𝑖𝑡𝑟𝑒𝑠𝑎𝑖𝑘 
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3 INFLUENZA IN HO CHI MINH CITY 2013-2015 

ABSTRACT 

Background: Year round transmission of influenza has been detected in Vietnam through both 

national surveillance and other epidemiological studies. Understanding the demographic and clinical 

features of influenza-like-illness (ILI) presenting to primary care in urban Vietnam is vital to 

understand these transmission dynamics. This impact of humoral immune response to current and 

historic strains on susceptibility will be explored.  

Methods: A prospective, observational study of patients with ILI in Ho Chi Minh City, Vietnam has 

been running since August 2013.  Influenza A & B PCR and antibody testing to a panel of 11 human 

and 5 avian strains is performed using a novel protein microarray technique.  A subset of subjects 

are followed up clinically and serologically for seven months.  

Results: 953 ILI patients were recruited between August 2013 & May 2015. 274 and 136 subjects had 

influenza A and B respectively.  Three peaks of influenza activity were detected, H3N2 peak between 

April and June 2014, influenza B peak in July to December 2014 and mixed H3N2 and H1N1 peak 

March to May 2015.   Study subjects were younger than the general Vietnamese population but 

there was no difference between influenza and non-influenza ILI. Lower baseline titre was 

associated with higher risk of influenza but response to H3N2 2005 and 2009 were most predictive 

of current susceptibility even when original antigenic sin was taken into account. Levels of 

protection offered by a fixed titre changed depending on force of infection.   

Conclusion: Influenza in southern Vietnam has complex transmission dynamics including periods of 

intense influenza activity. Serological techniques can be used to give insight into fundamental 

questions regarding the role of population level susceptibility.  

3.1 BACKGROUND 

Influenza viruses circulate globally and seasonal epidemics are thought to be associated with 3-5 

million severe clinical infections and 250,000 to 500,000 deaths each year (World Health 

Organisation, 2014c, Global Burden of Disease 2013 Mortality and Causes of Death Collaborators, 

2015, Global Burden of Disease Study 2013 Collaborators, 2015). Morbidity and mortality are highest 

in the extremes of age (Cohen et al., 2010, Nair et al., 2011) but all ages are affected with repeat 

infections throughout an individual’s lifetime. In temperate countries predicable winter epidemics 

occur however transmission dynamics in tropical settings are much more complex.  For many 
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decades influenza was thought not to be a disease of importance in tropical countries (Viboud et al., 

2006) likely due to a lack of observable peak in activity or poor availability of routine surveillance. 

This has changed considerably in the last 10 years with influenza now recognised to be at least as big 

a health problem in tropical countries as it is in temperate countries (Yang et al., 2011, Fischer II et 

al., 2014, Ng and Gordon, 2015). Research efforts are ongoing to increase knowledge and 

understanding of how this feeds into the global drivers of influenza transmission.  Vietnam is a 

potentially globally important site for influenza dynamics both from its possible contribution to 

global virus evolution through the ‘Southeast Asian Source-Sink’ hypothesis (Rambaut et al., 2008, 

Russell et al., 2008) as well as being considered risk for the emergence of novel pandemic strains 

such as highly pathogenic avian influenza H5N1. 

Year round transmission of influenza has been detected in Vietnam through both national 

surveillance and other epidemiological studies. Simultaneous circulation of multiple influenza strains 

and types has been documented (Nguyen et al., 2007, Li et al., 2008, Nguyen et al., 2009, Horby et 

al., 2012) along with patients having more than one influenza infection in one season (Horby et al., 

2012).  There are differences in transmission dynamics within Vietnam with the northern subtropical 

regions having a more predictable seasonality than the tropical central and southern regions (Thai et 

al., 2015). 15-20% of patients presenting to hospitals with influenza-like illness (ILI) have virologically 

confirmed influenza (Nguyen et al., 2009, Yoshida et al., 2010, Nguyen et al., 2013) and influenza is 

thought to be associated with up to 14% of community acquired pneumonia presenting to hospital 

(Takahashi et al., 2013). However complementary data on community ILI is limited.  As national 

surveillance programmes (Nguyen et al., 2009, Nguyen et al., 2013) and previous research have 

focused largely on hospital sites, incidence and burden estimates from these studies are likely to 

underestimate true clinical burden and attack rates in the community.  Seasonal influenza vaccine is 

not currently recommended in Vietnam (United Nations in Vietnam, 2009) and there is minimal, 

although increasing, use in the private sector (Palache et al., 2014).  The optimal vaccination strategy 

for seasonal influenza in Vietnam is still to be established (Vuong et al., 2012b).   

In addition to human strains of influenza, Vietnam is considered to be an important area for human 

infection with non-human influenza (avian and swine). This cross species transmission is a potential 

source of new pandemic strains of influenza.  Since 2003 there have been 844 confirmed human 

cases of avian influenza A H5N1 globally (World Health Organisation, 2015b). Vietnam has the third 

highest attack rate (after Indonesia and Egypt) with 127 confirmed cases.  Case fatality rate in 

confirmed cases is 53.2% globally (449/844) and 50.2% within Vietnam (64/127).  However, the 

reported frequency and severity is thought to be heavily biased by the under-detection of mild and 

asymptomatic cases.  Serological surveys have been performed to try and better estimate the total 
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case numbers but have been plagued by a number of issues. Existing serological techniques for H5N1 

are affected by low sensitivity where even virologically confirmed cases have minimal serological 

response (as defined by WHO).  Several high profile publications in 2012 resulted in controversy 

regarding the extrapolation of results and whether existing surveillance is ‘missing millions’ of H5N1 

cases (Osterholm and Kelley, 2012, Palese and Wang, 2012a, Palese and Wang, 2012b, Van Kerkhove 

et al., 2012, Wang et al., 2012).  Despite this controversy, serological surveys have remained a key 

part of the response to the recent emergence of H7N9 in China (Liu et al., 2014, Wang et al., 2014). 

Recent studies have suggested that seropositivity to avian strains in humans may be related to cross 

reaction to previous infection or vaccination with human strains (Boni et al., 2013, Molesti et al., 

2014, Oshansky et al., 2014, Todd et al., 2014) and that these cross reactions can provide 

neutralizing ability against those avian strains (Henry Dunand et al., 2015). 

Repeat infection with influenza is possible due to the continual evolution of the influenza virus which 

means that specific immunity generated to one strain is no longer protective when the circulating 

virus is sufficiently different (Ferguson et al., 2003). Since its emergence in 1968 H3N2 has 

demonstrated continual change in the haemagglutinin surface protein (HA) termed antigenic drift. In 

recent years it has been demonstrated that although this accumulation of mutations is a continual 

process, antigenic evolution is not in parallel to genetic evolution (Bedford et al., 2014). Antigenically 

similar viruses group into clusters and see a step change to antigenically dissimilar strains every few 

years (Smith et al., 2004). These cluster changes are the result of amino acid substitutions 

immediately adjacent to the HA receptor binding site (Koel et al., 2013).  All of these changes mean 

that in order to understand pattern of humoral response we need to take into account the specific 

response generated by exposure to a virus during infection and the cross reaction that could occur 

when testing for antibodies to strains which, although the individual has not been infected by, are 

antigenically similar to one they have previously been infected by. The ‘original antigenic sin’ 

hypothesis was generated from the observation that antibody responses to infections early in life 

‘dominate’ the immune response to subsequent infections, and that this ‘lesser’ response to 

currently circulating strains resulted in a negative impact for the individuals immune response 

(Francis et al., 1953). However, more recent work has suggested that response from older strains 

generated by memory B cells may reduce the viral load, with the resultant new (specific) response 

being lower because of this (Kim et al., 2009). Key to understanding this, is increasing the number of 

studies which look at multiple influenza strains and use these to describe not only the pattern of 

antibody response by age but also to understand the impact that this has on susceptibility to 

infection and how this response changes after acute infection. 
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HI testing has traditionally been the gold standard in measuring humoral immunity to influenza 

because of its correlation with neutralisation assays.  The seroprotection threshold of HI titres is 1:40 

corresponding to a 50% reduction of the risk of contracting influenza in a susceptible adult 

population and was originally defined for use in vaccine licensing studies (Hobson et al., 1972).  It 

remains the assumed level of protection in studies looking at population immunity (both vaccine and 

natural infection induced) despite several studies demonstrating that seroprotection is likely to be 

on a continuous scale rather than a fixed threshold (Nauta et al., 2009, Coudeville et al., 2010, Ohmit 

et al., 2011) as well as containing mechanisms beyond purely the inhibition of receptor binding.  

Another challenge is that levels of seroprotection are derived where there is a match between the 

circulating virus and the tested strain. Where there is a mismatch, the influence of cross-reaction 

and response to previous infections are likely to be an important factor. The development of protein 

microarray (PMA) for multiple influenza strains is aimed to improve some of the deficiencies 

associated with HI testing and in particular between laboratory variability and to test in a high 

throughput manner. Although PMA titres are higher than HI titres, there is a good correlation in the 

rise following infection (Koopmans et al., 2011, Huijskens et al., 2013). The ability of PMA to 

measure functional virus neutralization rather than virus binding capacity is still to be fully 

understood.  

3.2 METHODS 

The objectives of this portion of the study was to describe the dynamics of ILI presenting to primary 

care services within an urban setting in Vietnam over a 21 month period and the proportion of 

influenza A and B as a cause of ILI.  To determine the demographic and clinical characteristics of 

individuals presenting with ILI and to determine whether there was any differences in these 

characteristics between influenza and non-influenza ILI.  To describe the antibody response to 

current and historical human strains of influenza A in individuals presenting with ILI, look for 

differences in response by age and determine the risk of current infection with influenza for a given 

antibody response. To describe the antibody response to avian strains of influenza A and look for 

differences in response by age and poultry exposure.  A subset of patients were recruited for 

longitudinal follow-up to determine clinical outcome from acute ILI and to determine rates of repeat 

ILI in the short term following original ILI illness. A summary of study procedures relevant to the 

results of this chapter are included below, a full description of study procedures and laboratory 

testing is given in Chapter 2.  Longitudinal serological response after ILI will be reported in Chapter 4. 
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3.2.1 Summary of Design and Conduct of the Observational Study 

This observational study was conducted between August 2013 and May 2015 at outpatient clinics 

and community medical practitioners in Ho Chi Minh City (HCMC), Vietnam. These clinics were 

considered representative of primary care within Vietnam (World Health Organisation & MOH 

Vietnam, 2012). Individuals were invited to join the study if they were between 10 and 70 years of 

age with symptoms for less than 72 hours and fitting the ECDC ILI definition (European Centre for 

Disease Prevention and Control (ECDC), 2015) One anterior nasal swab and one throat swab were 

collected at recruitment and transported in a single tube of viral transport medium to central 

laboratory before being stored at -20oC within 24 hours. A 5ml serum sample was also collected at 

baseline and stored at -20oC within 24 hours. 

A subset of patients were invited to join a longitudinal sub-study. All subjects testing positive for 

influenza A were eligible to join the sub-study. Negative control subjects were matched by age (+/- 5 

years) and gender to influenza A positive subjects included in the follow-up study. Subjects attended 

for repeat serum sampling at 30, 90, 150 and 210 days (+/- 5 days) after recruitment. Active 

respiratory symptom surveillance was conducted during the follow-up period with telephone follow-

up at 60, 120 and 180 days. Subjects were asked to attend clinic within five days of onset of new ILI 

symptoms where repeat nasal and throat swabbing was performed if they met ECDC ILI case 

definition.  

Clinical characteristics of the ILI episode was reported by subjects to study staff, any subsequent 

medical or hospital attendance were reported by subject at next visit. No inpatient data was collect 

on subsequent hospitalisation. Contact data relied on participant’s recollection of the previous day. 

No additional objective information was available from the subject’s usual treating clinician. 

Both studies were approved by the Scientific and Ethical Committee of the Hospital for Tropical 

Disease, Ho Chi Minh City, Vietnam and Liverpool School of Tropical Medicine Research Ethics 

Committee, UK.  Letters of agreement supporting the involvement of the community medical clinics 

were obtained from the Ho Chi Minh City Department of Health. 

3.2.2 Sample Analysis 

Respiratory samples were batched tested monthly for influenza A & B using standard polymerase 

chain reaction (PCR) techniques (World Health Organisation, 2011). Samples were stored at -20oC 

within 24 hours of collection and then stored at -80oC after initial PCR testing.  Samples positive for 

influenza A were then tested for H3N2 and H1N1 subtypes. All influenza A positive subjects and 

subset of all other subjects (50%) had their baseline serum sample tested against a panel of 16 
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influenza A strains (11 human, 5 avian strains) using a protein microarray technique previously 

described (Koopmans et al., 2011). Negative and influenza B controls were age and sex matched to 

the positive subjects included in serological testing. In brief, serum samples were tested in 4 fold 

seral dilutions from 1:20 to 1:1280 on 64 pad nitrocellulose slides. Each pad was spotted (in 

duplicate) with recombinant HA1 proteins of the 16 strains (Table 3.1). Inter-assay variability was 

monitored by the inclusion of ISH-1 control. Microarray slides were scanned using ScanArray GX Plus 

microarray scanner (PerkinElmer) and spot fluorescence intensity was measured using ScanArray 

Express software (version 4.0, PerkinElmer). Titres were calculated from the inflection point of the 

titration curve. Full methods described in Chapter 2.  

 
HUMAN INFLUENZA ANTIGENS 

 
AVIAN INFLUENZA ANTIGENS 

H1N1 A/South Carolina/1/1918  H9N2 A/Guinea Fowl/Hong Kong/WF10/1999  

A/USSR/92/1977  H7N7 A/Chicken/Netherlands/1/2003  

A/New Caledonia/20/1999  H5N1 A/Vietnam/1194/2004  

A/Brisbane/59/2007 A/Cambodia/R0405050/2007  

A/California/6/2009  A/Hubei/1/2010  

H3N2 A/Aichi/2/1968   

A/Wyoming/3/2003   

A/Wisconsin/67/2005   

A/Brisbane/10/2007   

A/Victoria/210/2009   

A/Victoria/361/2011   

Table 3.1 HA1 antigens included on microarray 

3.2.3 Statistical Analyses 

The primary outcome was PCR-confirmed influenza A in nasal/throat swabs. This included both 

single influenza A infections and co-infections with influenza B.  

Continuous variables which were normally distributed were compared with t-test or ANOVA as 

appropriate. Tukey’s HSD was used for posthoc testing following ANOVA where appropriate. 

Continuous variables which were non-normally distributed were compared using Wilcox and Kruskal 

Wallis rank sum depending on the number of groups (2 vs more than 2 respectively).  Categorical 

variables were compared using the Fisher exact test, Mann-Whitey test or Chi Square test as 

appropriate. 

Analysis of overall prevalence of influenza as a cause of ILI was performed on the total study 

population. As well as overall prevalence, weekly prevalence was calculated. Weekly influenza 

transmission intensity was categorised by percentage of ILI subjects testing influenza positive using 

WHO thresholds (World Health Organisation, 2015a) as zero (0%), low (1-10%), medium (11-20%), 

high (21-30%), very high (>30%). A peak of influenza activity was defined as four or more consecutive 

weeks where influenza transmission intensity was high or very high. Weeks where no recruitment 
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was performed because of clinic closures were excluded from analysis, weeks where clinics were 

open but no patients were recruited were included in analysis. Repeat ILI episodes during respiratory 

follow-up were not included in the calculation of overall or weekly proportions.  Incidence of 

secondary ILI was calculated on the follow-up cohort as a rate of events per 1000 days of follow-up 

and rate ratio comparisons. Time to repeat ILI was investigated using Cox proportional hazards. 

Demographic, clinical and contact characteristics were compared between predefined groups based 

on influenza infection status. Initial analysis was planned to be performed between three groups; 

influenza A, influenza B and non-influenza ILI. Non-influenza ILI includes those who have influenza A 

or B but test negative by PCR (likely to be a very small number due to sensitivity of molecular 

testing), those infected with a non-influenza respiratory virus and those who have a non-respiratory 

virus cause of their symptoms. As it is currently not possible to distinguish between these groups 

they will be considered as one group referred to as non-influenza ILI or influenza negative.  Analysis 

was planned to be performed between influenza A subtypes (H1N1 and H3N2) if numbers were 

sufficient.   Where appropriate, analysis was stratified by age.  Age was preferentially used as a 

continuous variable, otherwise age was categorised as per recommendations from the Consortium 

for the Standardisation of Influenza Seroepidemiology (5-9, 10-19, 20-44, 45-65, 65+) (Van Kerkhove 

et al., 2013a).   

Logistic regression was used to investigate the effect of household age structure (total number of 

household contacts, total number of household contacts in each CONSISE age class), recent 

household ILI on the risk of any influenza (influenza A or influenza B) compared to non-influenza ILI. 

Age, gender and household size data was compared to national Vietnamese Census Data (General 

Statistics Office of Vietnam, 2009) according to influenza infections status and all study subjects 

combined. Age and gender comparisons were made to both Vietnamese National and Ho Chi Minh 

City census data. Household size comparisons were made to Vietnamese National Urban Average 

census data. For each of the infection status groups the expected proportion was the census point 

estimate, 95% binomial confidence intervals of the expected proportion was calculated using the 

number of subjects in that category. Chi square goodness of fit using the census proportions as 

expected probabilities detected if study distributions were significantly different from the general 

Vietnamese population. Testing whether the national or HCMC census data provided a better fit to 

study data was performed by performing Student’s T-test of the mean Pearson Residual from the chi 

square test.    
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Statistical analysis of baseline serology was performed on all study subjects and then compared 

between influenza infection status groups (influenza A H1N1, influenza A H3N2, influenza B and non-

influenza ILI). Microarray strains were categorised into i) Most Recent Circulating Strains (H1N1 

2009, H3N2 2011), ii) Historical Human Strains (all other human strains), and iii) Avian Strains (Table 

3.1). Titre responses will be categorised as homosubtypic where the infecting subtype and the 

microarray strain match (i.e. infected with H1N1, homosubtypic titre response is H1N1 strains of the 

microarray). Heterosubtypic titres are where the infecting subtype and the microarray strain do not 

match (i.e. infected with H1N1, heterosubtypic titre response is H3N2 strains on the microarray). 

Analysis was performed on log2 transformed titres unless explicitly stated.   

Linear regression and non-parametric general additive models were used to investigate the 

relationship between baseline titre and age at recruitment, gender, pregnancy, chronic respiratory 

disease, smoking and previous influenza vaccination. In addition to calendar age of a subject, age at 

the time of strain emergence would be investigated to look for the effect of original antigenic sin 

and antigenic seniority. 

Univariate logistic regression was performed to investigate level of protection offered by microarray 

titre at baseline. The outcome of this analysis was susceptibility to PCR positive influenza. Analysis 

was performed for H1N1 and H3N2 separately. An indicator variable of 1 was given to individuals 

infected with that subtype, i.e. in H3N2 analysis individuals infected with H3N2 are coded as one and 

individuals not infected (all of H1N1 PCR positive, influenza B positive and influenza A & B negative) 

are coded as  zero. A multivariable logistic regression was performed to investigate the effect of age, 

gender, respiratory disease and smoking on seroprotection.  Study time (week of study recruitment) 

was used as a proxy for the changing force of infection. GAM were used to investigate non-linear 

effects of baseline titre and study time. The goal was to look at how the level of protection offered 

by a fixed titre changed as the force of infection changed. 

Historic human strains were investigated using multivariable logistic regression to investigate the 

effect of combination of strains titres on the predicted risk of developing influenza. All homosubtypic 

strain combinations were tested along with age.  In order to investigate the original antigenic sin 

hypothesis, a variable of “Earliest Strain” was created for the strain which emerged closest to an 

individual’s first 10 years of life. Model comparison was performed using a comparisons of AIC, 

adjusted R2 and percentage deviance of the model fit. Further model testing investigating the effect 

of study time of multi-strain protection to be performed on the best reduced model and the full 

model. 
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All statistical analysis were performed using R Statistical Software v3.2.1 (R Core Team, 2015). 

Packages used for analysis were ggplot2, gamm4, mgcv, Epi, survival and MASS. 

3.3 RESULTS 

953 subjects with ILI were recruited between 8 August 2013 and 31 May 2015. The majority of 

patients were recruited from hospital outpatient settings (655/953, 68.7%). Two subjects were 

relatives who did not attend clinic for a healthcare assessment, all other subjects attended clinics to 

be reviewed by a medical practitioner. Only 20 subjects did not consent to be contacted to join the 

follow-up study. 186 subjects had at least one follow-up visit, 64.5% of these were influenza A PCR 

positive. 

 

Figure 9 Weekly Study Recruitment Timeline by Influenza PCR Result. Study clinics were closed to recruitment 
during national public holidays corresponding to study weeks 26, 27, 81, 82 & 91. 

3.3.1 ILI Dynamics 

42.8% of ILI cases had PCR confirmed influenza (n= 410/953) (Figure 9). Influenza A was detected in 

274 subjects (28.7%) and influenza B in 136 subjects (14.3%).  H3N2 was the commonest circulating 

influenza A subtype (81.4%, n=223/274). H1N1 was detected in 39 subjects (14.2%) and no influenza 

A subtype was detectable in 4.4% of influenza A cases. No recruitment was performed in the five 

weeks where clinics were closed because of public holidays (study weeks 26, 27, 81, 82 and 91).  

Influenza was detected in the majority of weeks where study recruitment was performed (83.5%, 

n=76/90). Influenza A was detected in 50 study weeks (55.6%, n=50/90), with H3N2 present more 

frequently than H1N1 (46 vs 18 weeks, 51.1% vs 20%).  Influenza B was detected in 51 study weeks 

(56.7%, n=51/90). Three periods of sustained high or very high transmission were identified (Figure 

10). An H3N2 peak occurred between 31 March 2014 and 30 June 2014 (study weeks 35 to 48) which 

was immediately followed by an influenza B peak between 07 July 2014 and 22 December 2014 
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(study weeks 49 to 73). Finally a mixed H1N1 and H3N2 peak in activity was detected between 02 

March 2015 and 31 May 2015 (study weeks 83 to 95). 

 

Figure 10 Proportion of ILI caused by PCR confirmed Influenza with Binomial 95% Confidence Intervals.  

3.3.2 Repeat ILI during Follow Up 

Follow up data was available 186 subjects, 64% of which were influenza A positive (n=120/186).  

Median follow up period was 187 days (IQR 66-216 days) and 14 repeat episodes of ILI were 

reported during the follow-up period.  6.6% of subjects from influenza A positive group had a further 

episode of ILI during the follow-up period (n=8/120) compared with 9% of subjects who were 

negative for influenza A & B at original presentation (n=6/66).  Nose and throat swabs for molecular 

testing were available for 10 subjects during these repeat episodes. None of these tested positive for 

influenza A or B so analysis on risk of PCR confirmed ILI could not be conducted. The influenza A 

follow-up cohort had more days of follow-up than the influenza negative group (15496 days vs 
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10597 days). This gave a rate of repeat ILI of 0.516 episodes per 1000 person days following 

influenza A and  0.567 episodes/1000 person days following influenza B;  rate ratio 1.098 (95% CI 

0.381 – 3.164). Subject age or original week of recruitment had no significant effect on rates of 

repeat ILI. There did not appear to be clustering of repeat ILI cases to suggest an outbreak of another 

respiratory infection by visual inspection of follow up timeline (Figure 11). Time to repeat ILI was 

investigated using Cox Proportional Hazards. No significant difference was detected between those 

originally infected with influenza or not. Given the small number of repeat episodes of ILI during the 

follow-up period these results should be interpreted with caution. 

 

Figure 11 Follow-up durations and Repeat ILI Episodes. Darker lines are individuals who had repeat ILI. End 
symbol; square= final follow-up no ILI, circle=repeat ILI at this time, PCR available, triangle=repeat ILI at this 
time, no PCR. Top bars are periods of high influenza transmission by subtype. 
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3.3.3 Age Distribution 

Age of recruited study participants was left-skewed with a median age of 25.4 (IQR 18.9-33.7). Three 

study participants were outside the protocol defined age limits, two aged 9 and one aged 74. These 

individuals are included in the analysis. No difference in the age distribution by gender or influenza 

infection status was seen on visual inspection. Median age of study participants was not statistically 

significantly different by gender (Mann Whitney U W=116000, p-value 0.4072) or influenza infection 

status (Kruskal Wallis χ2(2)=0.687, p-value=0.5431). The gender specific age distribution of study 

participants was compared to Vietnam Census estimates (National and HCMC) using Chi Square 

Goodness of Fit (Figure 12, HCMC data only).   

 

Figure 12 Age and Sex Distribution by Infecting Influenza Type. Point and bars represent expected percentage 
for HCMC with binomial 95% CI. Expected values were limited to age groups included in the study protocol (10 
to 70 inclusive). 
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With the exception of subjects infected with influenza B, the gender specific age distributions of 

study participants were statistically significantly different to the general population (Table 3.2). 

Pearson residuals from the Chi Square model show that younger individuals tend to be over 

represented in our study population (reflected by positive residuals) whereas individuals over the 

age of 35 tend to be under represented (reflected by negative residuals) compared to expected rates 

from the population (Figure 13). There is no difference using national data or HCMC specific gender 

specific age distribution data for comparison (t test, all p values >0.4).  

 
 

 
Influenza A  Influenza B  

Influenza A & B 

Negative  
All Study Subjects 

  χ2 p value χ2 p value χ2 p value χ2 p value 

Vietnam National 
Age Distribution 

M 41.363
0 

0.0005 18.684
2 

0.0745 80.882
6 

0.0005  
85.328

4 

0.0005 

F 23.105
8 

0.0165 16.195
3 

0.1239 68.213
5 

0.0005 126.18
4 

0.0005 

Ho Chi Minh City 
Age Distribution 

M 42.969
4 

0.0005 38.087
9 

0.0010 66.584
3 

0.0005 129.95
5 

0.0005 

F 22.915
7 

0.0210 16.211
7 

0.1414 57.097
5 

0.0005  
86.666

7 

0.0005 

Table 3.2 Age and Gender Distribution by Infecting Influenza Type. Pearson's Chi Square Goodness of Fit with 
expected proportions in population. Symptotic p values calculated using Monte Carlo testing. 

 

 

Figure 13 Age Group deviation from Population Census Data by Infecting Influenza Type. Pearson Chi Square 
Residuals. Dashed line chi square p value >0.05. 
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3.3.4 Clinical Characteristics 

3.3.4.1 Past Medical History 

At baseline there was no significant difference in relevant past medical history (PMH) of individuals 

presenting with PCR confirmed influenza or non-influenza ILI (Table 3.3). Chronic respiratory disease 

was uncommon in recruited subjects (2.4%, n=23/953) but was reported more frequently in 

individuals aged 45 years or over (6.3% vs 1.8%, 6/95 vs 17/858; χ2 5.106 p values 0.0238). Current 

smoking was reported in 14.6% of the study population all of whom were male (n=139/952). 36% of 

males over the age of 20 are current smokers (n=129/354). None of the current smokers reported 

chronic respiratory disease.  2.8% (n=27/953) of the study population reported an indication for 

influenza vaccination as defined by WHO (Age >65; PMH of COPD, congenital heart disease, heart 

failure, diabetes or asthma; healthcare worker).  2.4% of the study population had received 

vaccination at some point in their life (n=23/953), but only one of these had a reported indication. 

All subjects who reported vaccination had received it after the emergence of the 2009 influenza 

pandemic (median 2012, IQR 2011-2013).  

 
Influenza A 

n (%)/ med (IQR) 

Influenza B 

n (%)/ med (IQR) 

Influenza 

Negative 

n (%)/ med (IQR) 

χ2 p value 

Age 26.65 (19.12-
35.08) 

25.4 (17.58-
34.52) 

24.8 (19.35-
33.15) 

  

Age Category          5 to 9 2 (0.7) 0 (0) 0 (0)   

10 to 19 70 (25.5) 49 (36) 148 (27.3)   

20 to 44 174 (63.5) 69 (50.7) 346 (63.7)   

45 to 64 28 (10.2) 17 (12.5) 46 (8.5)   

65+ 0 (0) 1 (0.7) 3 (0.6)   

Gender F 123 (44.9) 60 (44.1) 248 (45.7)   

M 151 (55.1) 76 (55.9) 295 (54.3) 0.1235 0.9401 

Pregnant Yes 5 (4.1) 2 (3.3) 4 (1.6)   

No 116 (95.1) 58 (96.7) 241 (97.2)   

DK 1 (0.8) 0 (0) 3 (1.2) 2.9582 0.5648 

Current Smoker Yes 36 (13.2) 19 (14) 84 (15.5)   

No 237 (86.8) 117 (86) 458 (84.3)   

Refused 0 (0) 0 (0) 1 (0.2) 1.5844 0.8116 

COPD Yes 0 (0) 0 (0) 2 (0.4)   

No 274 (100) 136 (100) 541 (99.6) 1.5133 0.4692 

Asthma Yes 4 (1.5) 1 (0.7) 9 (1.7)   

No 270 (98.5) 135 (99.3) 534 (98.3) 0.6392 0.7264 

Any Resp Disease Yes 8 (2.9) 2 (1.5) 13 (2.4)   

No 266 (97.1) 134 (98.5) 530 (97.6) 0.8124 0.6662 

Vaccine Indication Yes 5 (1.8) 3 (2.2) 19 (3.5)   

No 268 (98.2) 133 (97.8) 524 (96.5) 2.0619 0.3567 

Ever Received Vaccine  
Yes 

3 (1.1) 4 (2.9) 16 (2.9)   

No 262 (95.6) 127 (93.4) 520 (95.8)   

DK 9 (3.3) 5 (3.7) 7 (1.3) 7.69 0.1036 

Table 3.3 Past Medical History at Baseline 
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3.3.4.2 Clinical Symptoms at Presentation 

Most subjects presented on the second or third day of symptoms.  Those with influenza B presented 

later than those with influenza A or who were influenza negative (ANOVA F(2,950)=15.9, p <0.001) 

however the difference in time to presentation was 0.32 of a day (95%CI 0.17-0.47)  which is unlikely 

to be clinically significant. All subjects had mild disease, with less than 1% of subjects reporting that 

they could not carry out their normal daily activities (n=5/948), although this was more common in 

those who were infected with influenza A (1.5%, 4/274; χ2 6.52, p value=0.038), the numbers of 

subjects in this group mean this result should be interpreted with caution. Rhinorrhoea and cough 

were reported more frequently in those infected with influenza (Table 3.4). Antibiotic use prior to 

enrolment in the study was common in all groups (51.7%, n=492/952) but was highest in those who 

tested positive for influenza B (66.2%, n=90/136; χ2 15.1, p value=0.0005). 

 

 
Influenza A 

n (%)/ med (IQR) 

Influenza B 

n (%)/ med (IQR) 

Influenza 

Negative 

n (%)/ med (IQR) 

χ2 p value 

Days Symptom Onset 2 (2-3) 3 (2-3) 2 (2-3)   

Normal Tasks Yes 270 (98.5) 136 (100) 542 (99.8)   

No 4 (1.5) 0 (0) 1 (0.2) 6.5151 0.0385 

Fever Yes 256 (93.4) 118 (86.8) 482 (88.8)   

No 18 (6.6) 18 (13.2) 61 (11.2) 5.9555 0.0509 

Temp If Known 38.5 (38-39) 38.1 (38-38.8) 38 (37.8-38.85)   

Headache Yes 254 (92.7) 117 (86) 488 (90)   

No 20 (7.3) 19 (14) 54 (10) 4.6429 0.0981 

Rhinorrhoea Yes 236 (86.1) 110 (80.9) 354 (65.2)   

No 38 (13.9) 26 (19.1) 189 (34.8) 45.433 <0.000
1 Cough Yes 259 (94.5) 129 (94.9) 463 (85.3)   

No 15 (5.5) 7 (5.1) 80 (14.7) 21.456
8 

<0.000
1 Sore Throat Yes 243 (88.7) 120 (88.2) 475 (87.5)   

No 31 (11.3) 16 (11.8) 68 (12.5) 0.2646 0.8761 

Myalgia Yes 246 (89.8) 123 (90.4) 490 (90.2)   

No 28 (10.2) 13 (9.6) 53 (9.8) 0.0596 0.9706 

GI Symptoms Yes 18 (6.6) 13 (9.6) 36 (6.6)   

No 256 (93.4) 123 (90.4) 507 (93.4) 1.5526 0.4601 

Malaise Yes 267 (97.4) 129 (94.9) 520 (95.8)   

No 7 (2.6) 7 (5.1) 23 (4.2) 2.0588 0.3572 

Paracetamol Yes 227 (82.8) 119 (87.5) 452 (83.4)   

No 47 (17.2) 17 (12.5) 90 (16.6) 1.6219 0.4444 

Antiviral Yes 1 (0.4) 1 (0.7) 2 (0.4)   

No 273 (99.6) 135 (99.3) 540 (99.6) 0.3767 0.8283 

Antibacterial Yes 144 (52.6) 90 (66.2) 258 (47.6)   

No 130 (47.4) 46 (33.8) 284 (52.4) 15.139
3 

0.0005 

Vitamin Yes 102 (37.2) 67 (49.3) 185 (34.1)   

No 172 (62.8) 69 (50.7) 358 (65.9) 10.756
1 

0.0046 

Table 3.4 Clinical Symptoms at Presentation 
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3.3.4.3 Recovery following Acute Influenza like Illness 

Follow-up information was available for 186 subjects (19.4%); 120 influenza A positive & 66 influenza 

A & B negative.  Three individuals reported that their symptoms got worse after their original 

presentation (two influenza A (1.6%), one influenza negative (1.5%)). One individual consulted a 

community pharmacist but no other healthcare intervention was required. No study subjects 

required hospital admission.   

3.3.5 Demographic Characteristics 

The commonest reported occupation was school pupil or student (27.8%, n=265/952) followed by 

manual workers (19.7%, n=188/952) and shop assistants/traders (14.9%, n=142/952). Highest rates 

of influenza A were seen in at office workers who did not have contact with the wider public as part 

of their job and home carers (Table 3.5). Contact with pigs was uncommon but contact with poultry 

was reported more frequently with 5.9% and 11.4% of subjects reporting weekly contact with live or 

dead poultry respectively. 

 
Influenza A 

n (%)/ med (IQR) 

Influenza B 

n (%)/ med (IQR) 

Influenza Neg 

n (%)/ med (IQR) 
χ2 p value 

Occupation: At Home 39 (14.3) 13 (9.6) 54 (9.9)   

Student 77 (28.2) 42 (30.9) 146 (26.9)   

Teacher 2 (0.7) 4 (2.9) 7 (1.3)   

Office:No Public Contact 23 (8.4) 3 (2.2) 33 (6.1)   

Office:Public Contact 26 (9.5) 10 (7.4) 44 (8.1)   

Healthcare 1 (0.4) 0 (0) 2 (0.4)   

Driver 8 (2.9) 7 (5.1) 17 (3.1)   

Trader 35 (12.8) 16 (11.8) 91 (16.8)   

Manual Work 49 (17.9) 38 (27.9) 101 (18.6)   

Other 13 (4.8) 3 (2.2) 48 (8.8) 33.42 0.0148 

Household Contacts 3 (2-4) 3 (2-4) 3 (2-4)   

Live Poultry Contact: 
never 

260 (95.9) 130 (96.3) 477 (90.5)   

rarely 0 (0) 0 (0) 1 (0.2)   

monthly 1 (0.4) 0 (0) 9 (1.7)   

weekly 10 (3.7) 5 (3.7) 40 (7.6) 12.119 0.0594 

Dead Poultry 
Contact:never 

218 (80.7) 115 (85.8) 434 (82.5)   

rarely 3 (1.1) 1 (0.7) 8 (1.5)   

monthly 14 (5.2) 5 (3.7) 26 (4.9)   

weekly 35 (13) 13 (9.7) 58 (11) 2.2724 0.893 

Live Pig Contact: never 267 (98.9) 132 (98.5) 510 (97.1)   

rarely 0 (0) 0 (0) 1 (0.2)   

monthly 1 (0.4) 1 (0.7) 2 (0.4)   

weekly 2 (0.7) 1 (0.7) 12 (2.3) 4.5621 0.6011 

Dead Pig Contact: never 267 (98.9) 132 (98.5) 510 (97.1)   

rarely 0 (0) 0 (0) 1 (0.2)   

monthly 1 (0.4) 1 (0.7) 2 (0.4)   

weekly 2 (0.7) 1 (0.7) 12 (2.3) 4.5621 0.6011 

Table 3.5 Demographic Characteristics at Baseline 
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Median number of household members (including the study subject) was four (IQR 3-5), however 

this was heavily right skewed with the largest household having 17 members. The median household 

size was significantly higher than the national urban average of 3.66 (Wilcoxon Rank Sum V= 283830, 

p-value=<0.001). The distribution of household size was also statistically significantly different to the 

national urban average with fewer one person households and more households with five or more 

occupants (Figure 14, Table 3.6; Chi Square Goodness of Fit, all p values <0.005).  Distribution of 

household size was similar for all infection groups and median number of household members was 

not statistically significant between groups (Kruskal Wallis χ2 (2)=1.8958, p-value=0.3875).  There 

was no relationship between the age of the recruited subject and their number of household 

members as assessed by linear regression (F(1, 950) = 0.7552, p 0.385). 

 

Figure 14 Counts of Household Size by Infecting Type and in All Study Subjects. Point and bars are the expected 
counts with 95% binomial CI from the national household distribution. 
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 Influenza A (%) Influenza B (%) 
Influenza 

Negative (%) 

National Urban 

Average (%) 

1 person 2.92 2.21 2.95 8.1 

2 persons 9.49 10.29 12.18 16.7 

3 persons 19.34 24.26 20.3 23.7 

4 persons 28.47 27.94 28.78 27.2 

5+ persons 39.78 35.29 35.79 24.3 

 χ2   46.9 15.98 56.99  

p value 0.0004 0.004 0.0005  

Table 3.6 Distribution of Household Size in Study Population and National Urban Average for Vietnam (2009). 
Chi Square Goodness of Fit. 

Detailed information on household members was given by 894 subjects (93.8%) where they lived 

with at least one other person.   8.5% of subjects reported that at least one member of their 

household had ILI symptoms in the preceding week (n=76/894). There was no difference in the 

presence of household ILI between influenza positive or negative groups (Kruskal Wallis χ2 

(2)=0.1019, p-value=0.95). Overall 3.5% of household contacts were reported to have ILI symptoms 

(n=100/2894). The proportion of households with dependent members (under 10 and over 65, 

including study subjects) was lower than the national average (Figure 15). In univariate and 

multivariable logistic regression there was no significant effect of household age structure or recent 

household ILI on risk of flu vs non-influenza ILI or on risk of repeat ILI during the follow up period. 

 

Figure 15 Percentage of Households with Dependent Age Groups 
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3.3.6 Contact Patterns 

Patients were asked to report contact patterns for the previous day at baseline, planned and 

symptomatic follow-up visits. Although 91.3% of subjects gave this information at baseline 

(n=870/953) and 80% during symptomatic follow-up visits (n=8/10), only 5.7% of subjects agreed to 

share this information during routine follow-up visits (n=28/489).  Linear regression demonstrated 

no difference in either total numbers of face to face conversations or total number of physical 

contacts when individuals currently had ILI (p value >0.05). Due to the low number of follow-up 

contact patterns, no further analysis was performed stratifying by current ILI. All available contact 

pattern data was used in subsequent analysis but not stratified by current symptoms. 

Mean number of reported face to face conversations and physical contacts were 4.73 (95% CI 4.28-

5.17) and 3.49 (95% CI 3.24 - 3.73) respectively. However this was highly variable with several 

individuals reporting upwards of 50 contacts per day (Figure 16). There were significant differences 

in the number of reported contacts in different age groups (Kruskal Wallis χ2(3)=13.497, p-value 

0.003 and χ2 (3)=21.894, p-value <0.001 respectively). The mean number of contacts was highest in 

the 65 and over age group, however this was from only four reports of contact details. Individuals 

under the age of 45 had a wider distribution of number of contacts and reported more contacts 

outside the home (Table 3.7). 

 

Figure 16 Log-Log Distribution of Number of Daily Contacts Reported by Participants 
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Age Category  

of Subject 

n 
Face to Face Conversation Physical Contact 

Total Home Work Total Home Work 

5 to 19 263 
3.236  

(3.041-3.43) 

3.236  

(3.041-3.43) 

2.065  

(1.243-

2.886) 

3.862  

(3.529-

4.194) 

3.173  

(2.975-

3.371) 

0.573  

(0.296-0.85) 

20 to 44 556 
3.121  

(2.769-

3.472) 

3.121  

(2.769-

3.472) 

0.998  

0.549-

1.448) 

3.409  

(3.043-

3.776) 

2.927  

(2.565-

3.289) 

0.146  

(0.066-

0.226) 
45 to 64 83 

2.916  

(2.574-

3.257) 

2.916  

(2.574-

3.257) 

0.88  

(-0.55-

2.311) 

2.805  

(2.493-

3.116) 

2.683  

(2.39-2.976) 

0  

(NaN-NaN) 

65+ 4 
3.25  

(0.532-

5.968) 

3.25  

(0.532-

5.968) 

0  

(NaN-NaN) 

5  

(2.516-

7.484) 

4  

(1.516-

6.484) 

0  

(NaN-NaN) 

Table 3.7 Mean Number of Reported Contacts by Age Group with 95% CI of mean. ‘Work’ includes 
school/university attendance. 

3.3.7 Baseline Serology 

Baseline serology was available for 65.8% of recruited subjects (n=627/953) as per the planned 

testing protocol (Table 3.8). All subjects with a PCR detectable subtype for influenza A had serology 

available.  Approximately 50% of influenza B and influenza negative samples were tested, age and 

sex distribution of these subjects was similar to influenza A positive participants as per the planned 

matching process. The distribution of study week of recruitment was different between infecting 

subtypes consistent with the peaks of activity seen in Figure 9. Samples where an influenza A 

subtype could not be identified were excluded from the subsequent analysis unless explicitly stated. 

 
Influenza A H1N1 

n (%)/ med (IQR) 

Influenza A H3N2 

n (%)/ med (IQR) 

Influenza A NT 

n (%)/ med (IQR) 

Influenza B 

n (%)/ med (IQR) 

Influenza 

Negative 

n (%)/ med (IQR) 

Number 39 (100) 223 (100) 9 (75) 62 (45.6) 294 (54.1) 

Age 28.4 (21.5-37.45) 26.2 (18.25-34.1) 31.3 (26.6-40.4) 24.2 (17.8-34.1) 24.6 (19.9-33) 

Female 23 (59) 94 (42.2) 5 (55.6) 30 (48.4) 124 (42.2) 

Study Week 85 (31.5-89) 41 (38-44) 31 (21-35) 50 (34.5-54) 41 (28-63) 

Table 3.8 Baseline Serology Samples by Influenza Subtype. Number of serum samples is presented as 
percentage of total study numbers. 

3.3.7.1 Serology to Most Recent Circulating Strains 

The log2 transformed titres to both H1N1 2009 and H3N2 2011 are normally distributed but have 

censored values. In contrast to HI titres the microarray titre is on a continuous scale. Left censoring 

at titre 10 is seen more frequently in H1N1 2009, whereas right censored at titre 1810 is more 

common in H3N2 2011 (Figure 17). A value of 10 represents no detectable serological response on 

the microarray and likely means this individual has not been exposed to H1N1 2009 or has any 

detectable cross reaction to this. The highest measurable dilution on the microarray is 1280, any 

sample which has a reaction greater than this is censored at 1810 so these samples have a value 

greater than 1280 but the true value is not known. The mean titre value of H3N2 2011 is significantly 

greater than H1N1 2009 (log 2 titre 3.57 vs 5.16 (GMT 119 vs 354), 95% CI of difference 1.37-1.77. p 
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value <0.001). This remains true on exclusion of censored values (log 2 titre 4.14 vs 4.6 (GMT 177 vs 

244), 95% CI 0.29-0.63. p value <0.001). 

 

Figure 17 Histogram of Baseline Serology, all samples. Values are presented on log2 scale. 

The baseline titre to recent strains was significantly associated with subject’s age at recruitment. In 

simple linear regressions, mean baseline titre reduced as age increased (H1N1 2009 p value<0.001, 

H3N2 2011 p value 0.018) (Figure 18). The model fit for both H1N1 and H3N2 was improved by using 

a non-linear spline which suggests a more rapid decline in titre followed by a plateau around age 25 

(ANOVA model comparison, both p <0.001).  Despite this improvement in model fit, the percentage 

deviance explained remains low, even with non-linear fit (H1N1 7.1 % (Adjusted R2 0.0606); H3N2 

3.9% (Adjusted R2 0.0326)). Although both models have reasonable predictions of the mean 

response with narrow confidence intervals, it fails to take into account the range of individual 

response.  There was no effect of age on censored titre values (logistic regression, p value >0.05). In 

multivariable analysis, there was no effect of gender, pregnancy, chronic respiratory disease or 

smoking on baseline titre. Having previously received influenza vaccine significantly increased 

baseline H1N1 2009 titre (1.61 (0.16-3.06), p 0.03) but not H3N2 (0.75 (-0.42-1.9) p 0.212) in 

multivariable model with age.   
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Figure 18 Titre to Recent Strains by Age of Subject. Blue line linear regression; Red line general additive model 
with spline for age. Points represents titre measurements from study, colour reflects infecting subtype. 

Two way ANOVA was performed to examine baseline titre response by infecting subtype and age 

category. Main effects for both of these factors were significant (Table 3.9, Table 3.10). There was no 

significant interaction between the factors (H1N1 2009 F(6,604)=0.70, p 0.652; H3N2 2011 

F(6,604)=0.538, p 0.78). 

Baseline titre response was significantly different when stratified by infecting subtype (Table 3.9). A 

subtype specific effect is seen where the lowest titre response to that strain is seen in subjects 

infected with that subtype (Tukey HSD post-hoc testing). Those infected with H1N1 had a mean 

microarray titre to H1N1 2009 of 26 (95% CI 18-36) suggesting this is the first time these individuals 

have been infected with the H1N1 pandemic strain. Most individuals infected with H3N2 already had 

detectable titre to H3N2 2011 (mean 183 (95% CI 162-206)) but this was still significantly lower than 

those who were not infected with H3N2. Of note, the highest response to H1N1 2009 and H3N2 

2011 was seen in individuals infected with influenza B. There remained a significant difference 

between groups when the homosubtypic infection group is removed for both subtypes (p values 

<0.005). 

 Influenza A H1N1 Influenza A H3N2 Influenza B 
Influenza 

Negative 
ANOVA 

H1N1 2009 
Mean (95%CI) 

26 (18-36) 96 (80-114) 169 (123-232) 160 (137-186) 
F(3,604)=28.0,  

p <0.001 

H3N2 2011 
Mean (95%CI) 

359 (260-497) 183 (162-206) 731 (599-891) 501 (443-566) 
F(3,604)=60.0,  

p <0.001 

Table 3.9 Mean Titre Response to Most Recent Strains by Infecting Subtype. ANOVA performed on log2 titres, 
transformed titres presented for clarity. 
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Mean titre response was also significantly different when stratified by age category when assessed 

by ANOVA (Table 3.10). On post-hoc testing (Tukey HSD) significant differences were seen between 

10 to 19 age group and 20 to 45 age group for both H1N1 and H3N2 (p values <0.001) but not 

between other age groups. 

 5 to 9 10 to 19 20 to 45 45 to 65 ANOVA 

H1N1 2009 
Mean (95%CI) 

88 (2-4139) 208 (171-252) 94 (82-108) 120 (88-163) 
F(4,604)=10.6,  

p <0.001 

H3N2 2011 
Mean (95%CI) 

203 (28-1443) 495 (418-588) 304 (274-338) 392 (289-532) 
F(4,604)=8.4,  

p <0.001 

Table 3.10 Mean Titre Response to Most Recent Strains by Age Category. All subjects included in analysis. 
ANOVA performed on log2 titres, transformed titres presented for clarity. Category 65 over removed as CI 
incalculable due to small number. 

Logistic regression was performed to investigate the level of protection offered by microarray titre 

at baseline. The outcome of this analysis was susceptibility to PCR positive influenza. Analysis was 

performed for H1N1 and H3N2 separately.   An indicator variable of one is given to individuals 

infected with that subtype, i.e. in H3N2 analysis individuals infected with H3N2 are coded as one and 

individuals not infected (all of H1N1 PCR positive, influenza B positive and influenza A & B negative) 

are coded as zero.  

Univariate logistic regression for the effect of baseline H3N2 2011 on susceptibility to PCR confirmed 

H3N2 was statistically significant. A one unit increase in log2 titre resulted in a halving of 

susceptibility (OR 0.48, 95% CI 0.42-0.56, Wald Z Statistic -10.05, p value <0.001). This gave a 50% 

threshold of protection of log2 titre 4.13 (95% CI 3.85-4.41; non-logged titre 175 (95% CI 143-213)) 

(Figure 19). Multivariable logistic regression was performed to investigate the effect of age, gender, 

respiratory disease and smoking on seroprotection. No additional significant factor was found. 

Logistic regression for the effect of baseline H1N1 2009 titre of protection was also statistically 

significant. A one unit rise in log2 titre also resulted in an approximate halving of susceptibility (OR 

0.54, 95% CI 0.44-0.65, Wald Z Statistic -6.31, p value <0.001). However, there were far fewer H1N1 

PCR confirmed infections and of the individuals who were not infected with H1N1 who had low titres 

to H1N1 2009 suggesting they had never been infected with H1N1 in the post pandemic period. This 

gave an unusual appearance of the logistic regression curve and a nonsensical 50% threshold of 

protection of -1.81 (95% CI -3.0 - -0.53; non-logged titres 2.84 (95% CI 1.25-6.45)) (Figure 19).  
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Figure 19 Logistic Regression for Protection Against Influenza A Subtype by Titre Response to Recent Circulating 
Strain. LR performed on log2 titres. Points represents titre measurements from study, colour reflects infecting 
subtype. 

The risk of having PCR confirmed influenza A also depends on whether influenza is present in the 

population at that time. As shown in Figure 9 the risk of exposure fluctuated through the study and 

so incorporating this into a model of susceptibility is important. Initially a subtype specific indicator 

variable was used to indicate if there was substantial levels of influenza detected. If study week ILI 

percentage was greater than 10% (Figure 10) then this indicator was one.  The presence or absence 

indicator was not significant for either H1N1 or H3N2 when included in logistic regression (p values 

>0.3).   

As the underlying risk of exposure is not known, study time (week of study recruitment) was used as 

a proxy for changing force of infection. General additive models (GAM) were used to investigate 

non-linear effects of titre and time. Inclusion of study week in a model of H3N2 susceptibility led to a  

much improved model fit compared to one that only included titre to H3N2 2011 (R2 0.469, AIC 487 

vs R2 0.21, AIC 669). A similar improvement is seen when fitting study time for H1N1 susceptibility 

(R2 0.479, AIC 142 vs R2 0.09, AIC 243). Fitting splines with an interaction term did not improve 

model fit compared to two separate splines for either H3N2 or H1N1.  

Inclusion of an age term gave a marginal improvement in model fit for H3N2 (R2 0.491, AIC 476) and 

a significant spline term for age (p value 0.006). This spline demonstrated increased odds of having 

PCR confirmed H3N2 if aged below 20 for the same titre to H3N2 2011 and same week of 

recruitment. Inclusion of age in model for H1N1 did not change model fit and spline term for age 

was non-significant. Using age category as a factor rather than a continuous age variable was non-

significant for both H3N2 and H1N1.  
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Figure 20 Log odds of having PCR confirmed influenza by titre at week of study for 30 year old. Log odds below -
5 censored for clarity. Minimum log odd -15. 

Using the optimally fitted models, the log odds of having PCR confirmed influenza was assessed 

across the full range of titre values and study weeks (age was fixed at 30) (Figure 20). The log odds of 

PCR confirmed influenza for a specific titre clearly changes in relation to how much influenza is 

circulating (Figure 9, Figure 10).  As would be expected, when a subtype is not circulating the log 

odds of having PCR confirmed influenza in reduced (represented by blue in heat-map). However, 

when influenza is circulating the log odds of being infected for a particular titre varies depending on 

the relative force of infection. For example, in the week beginning 16 December 2013, an individual 

with H3N2 2011 log2 titre of 4 (160) had a log odds of PCR positive H3N2 -0.92 (95%CI -1.79 - -0.05; 

OR 0.39, 0.17-0.95). For an individual in week beginning 19 May 2014 with log titre of 4, their log 

odds of being PCR positive for H3N2 is 1.70 (95%CI 1.2-2.2; OR 5.49; 3.32-9.04). If the level of 

protection offered by a specific titre was independent of force of infection then it would be expected 

that the log odds would be unchanged for a higher force of infection only that more people below 

the level of protection would be infected. Within this study the probability of being infected when 

you had higher titres to the most recent strains was greater when there was more influenza 

circulating (Figure 21). 
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Figure 21 Probability of PCR confirmed influenza A H3N2 by titre to H3N2 2011 and study week for 30 year old. 

3.3.7.2 Serology to Historical Human Strains 

The log2 transformed titres to historic human strains are normally distributed with censored values 

(Figure 22). Significant differences in mean titre between different strains are seen as assessed by 

one way ANOVA F(8, 5553)=239.7, p <0.001). Post-hoc testing on difference in mean titre (Tukey 

HSD) showed significant differences for all pairwise comparisons except H1N1 1918 & 1977, H1N1 

1999 & 2007, H3N2 1968 & 2007, H3N2 2007 & 2009, and H3N2 1968 & H1N1 1999. Mean 

responses to historical H3N2 strains were higher than to historical H1N1 even when time since 

emergence is considered.   

The relationship between baseline titre to historic strains and subjects’ age is more complicated than 

that seen in the age related response to recent strains (Figure 23). Significant linear relationships 

were seen for all strains with age except H1N1 1999 and H3N2 2007 and 2009. When a non-linear 

spline of age was fitted, significant relationships were seen for all strains except H3N2 2009. The use 

of a non-parametric spline improved model fit for all strains as assessed by AIC and ANOVA except 

H3N2 2009 where optimal model was a linear relationship. The direction of the relationship between 

age and titre response is related to when the strain emerged, with older strains having a positive 
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relationship between titre and increasing age. The percentage of deviance explained is much better 

in older strains as demonstrated by higher R2 with the exception of H1N1 1918. 

 

Figure 22 Histogram of Historic Human Strains, all strains. Geometric mean titre & 95% CI of mean displayed in 
top left. 
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Figure 23 Titre to Historical Human Strains by Age of Subject. Blue line linear regression; Red line general 
additive model with spline for age, R2 for each model included. Points represents titre measurements from 
study, colour reflects infecting subtype. 

As would be expected, changing the age parameter from age at study recruitment to age at strain 

emergence does not change the overall quality of the model fits for individual historic strain models.  

GAM models were fitted looking for overall prediction of historical strain response according to age 

with individual intercepts for each strain (Figure 24). Age and all strains except H1N1 1977 had a 

statistically significant intercept and again the flexible fitted spline was better than linear age term 
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as assessed by AIC and ANOVA (spline model GCV 2.67, adjusted R2 0.273, AIC 21247, p values 

<0.001).  This model was improved by changing age at presentation to age at the time of strain 

emergence (spline model GCV 2.49, adjusted R2 0.322, AIC 20861, p values <0.001). This shows that 

even accounting for strain differences, an individual’s highest titre response appears to be to strains 

that were circulating when the subject was under 20 years of age. 

Significant differences in mean response to historical strains were seen between the different 

infection groups (Table 3.11). Again a subtype specific response is seen with the lowest responses in 

historical strains of the subtype individuals were infected with. There remained significant 

differences between infecting subtypes when the homosubtypic response was removed from the 

ANOVA for all historical strains (p value <0.05) with the exception of H3N2 1968 (F(3,392)=1.46, p 

value 0.233). 

 

 Influenza A H1N1 Influenza A H3N2 Influenza B 
Influenza 

Negative 
ANOVA 

H1N1 1918 
Mean (95%CI) 

 
 
 
 

Mean (95%CI) 

38 (27-54) 65 (56-76) 136 (99-185) 113 (98-131) 
F(3,614)=17.6, 

p <0.001 

H1N1 1977 
Mean (95%CI) 

52 (35-76) 63 (53-75) 102 (74-140) 92 (79-107) 
F(3,614)=5.78, 

p <0.001 

H1N1 1999 
Mean (95%CI) 

113 (86-149) 118 (102-137) 220 (166-292) 179 (156-205) 
F(3,614)=8.61, 

p <0.001 

H1N1 2007 
Mean (95%CI) 

115 (84-157) 142 (121-166) 262 (193-356) 218 (187-253) 
F(3,614)=8.64, 

p <0.001 

H3N2 1968 
Mean (95%CI) 

153 (111-210) 97 (84-112) 218 (172-276) 192 (170-216) 
F(3,614)=20.9, 

p <0.001 

H3N2 2003 
Mean (95%CI) 

606 (442-833) 513 (452-582) 990 (819-1197) 923 (836-1018) 
F(3,614)=21.4, 

p <0.001 

H3N2 2005 
Mean (95%CI) 

400 (289-554) 258 (230-290) 774 (640-936) 584 (523-653) 
F(3,614)=42.02, 

p <0.001 

H3N2 2007 
Mean (95%CI) 

236 (174-320) 131 (117-146) 396 (325-482) 317 (282-356) 
F(3,614)=46.5, 

p <0.001 

H3N2 2009 
Mean (95%CI) 

226 (159-321) 107 (96-121) 461 (367-578) 357 (314-405) 
F(3,614)=71.0, 

p <0.001 

Table 3.11 Mean Titre Response to Historical Human Strains by Infecting Subtype. ANOVA performed on log2 
titres, transformed titres presented for clarity. 
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Figure 24 Titre to Historical Human Strains by Age at Emergence for strain. Adjusted for individuals strain 
effect. Blue line linear regression; Red line general additive model with spline for age. Points represent titre 
measurements from study, colour reflects infecting subtype. 

Logistic regression was used to investigate the influence of historic titres at baseline on 

susceptibility. Outcome of this analysis was susceptibility to PCR positive influenza. Analysis was 

performed only for H3N2. In order to investigate the original antigenic sin hypothesis, a variable of 

“Earliest Strain” was created for the strain which emerged closest to an individual’s first 10 years of 

life. 40% of study subjects had H3N2 1968 as their earliest H3 strain (n=385), 33.4% had H3N2 2003 

(n=319), 6.7% H3N2 2005 (n=64), 5.3% H3N2 2007 (n=51) and 14% H3N2 2009 (n=134). In univariate 

analysis, all historic strains and the earliest strain were significant predictors of having PCR 

confirmed H3N2 (Table 3.12).  

 Univariate Multivariable 

 OR (95% CI) p value OR (95% CI) p value 

H3N2 1968 
0.65 

(0.570-0.727) 
<0.001 1.056  

(0.886-1.26) 
0.544 

H3N2 2003 
0.636  

(0.558-0.724) 
<0.001 

0.951  
(0.76-1.182) 

0.651 

H3N2 2005 
0.528  

(0.457-0.604) 
<0.001 

1.53  
(1.039- 2.262) 

0.032 

H3N2 2007 
0.473  

(0.402-0.55) 
<0.001 

0.91 
 (0.624-1.311) 

0.602 

H3N2 2009 
0.428 

 (0.364-0.499) 
<0.001 

0.310  
(0.207-0.45) 

<0.001 

H3N2 2011 
0.489  

(0.433-0.560) 
<0.001 

1.106  
(0.718-1.715) 

0.64 

Earliest H3N2 
0.663  

(0.595-0.735) 
<0.001 

0.907  
(0.786-1.046) 

0.179 

Table 3.12 Odds Ratio for PCR confirmed H3N2 for each 1 unit rise of baseline log2 titre. Earliest H3N2 is the 
strain which emerged closest to the first decade of life. 
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When a multivariable analysis was fit, only H3N2 2005 and 2009 remained significant with a higher 

baseline titre to H3N2 2005 increasing the odds of having PCR confirmed influenza. The maximal 

model of all strains, earliest strain and age was fitted using splines to look for any non-linear 

relationships between strains. As in the linear multivariable analysis only 2005 and 2009 strains were 

significant (R2 0.306, deviance explained 28.9%, AIC 624) (Figure 20). 

In order to investigate the optimal combination of strains, multivariable analysis was carried out for 

each unique combination of historic strains. For H3N2 this meant 31 models were fitted. Model fit 

was ranked by AIC (Table 3.13). Using historic strains gave a better model fit than fitting only a spline 

to the most recent H3N2 2011 (AIC 669.7, R2=0.21, deviance explained=18.1%). Fitting with only 

H3N2 2009 gave a better explanation of susceptibility than only including the 2011 strain in the 

model. These two strains are highly correlated (Pearson’s Correlation 0.93 (95%CI 0.92-0.94)) and 

this is consistent between all age groups. Titre response to H3N2 2011 is significantly higher than 

H3N2 2009 (5.15 vs 4.53 (95%CI of difference 0.42-0.80), p value <0.001) but with similar variance 

(2.54 vs 2.82 (F test ratio 0.90 (0.77-1.06) p value 0.197).  

 

Strains included in Model AIC/δAIC aRsq 
Dev 

Exp 

 H3N2 2005,  H3N2 2009   627.196 0.265 0.236 

 H3N2 2003,   H3N2 2005,   H3N2 2009   0.944 0.266 0.237 

 H3N2 1968,   H3N2 2005,    H3N2 2009   1.633 0.266 0.238 

 H3N2 2005,   H3N2 2007,   H3N2 2009   1.866 0.265 0.236 

 H3N2 1968,   H3N2 2003,   H3N2 2005,   H3N2 2009   2.694 0.266 0.239 

 H3N2 2003,  H3N2 2005,   H3N2 2007,   H3N2 2009   2.716 0.266 0.238 

 H3N2 1968,   H3N2 2005,   H3N2 2007,   H3N2 2009   3.483 0.265 0.239 

 H3N2 1968,   H3N2 2003,   H3N2 2005,   H3N2 2007,   H3N2 2009   4.508 0.266 0.24 

 H3N2 2009   5.078 0.254 0.228 

 H3N2 2007,   H3N2 2009   6.376 0.253 0.228 

Table 3.13 Logistic Regression Model Fit for PCR confirmed H3N2. Spline for Historic strains only. Top ten 
models presented. Delta AIC=AICi – AICmin. 
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All combinations of historical H3N2 strains were then then refit in combination with H3N2 

2011(Table 3.14). There was no improvement in the explanatory power of models which included 

the more recent strain and the penalty of the additional term is seen in the slightly higher AIC. The 

exclusion of H3N2 2009 in the models results in a considerable drop in fit quality. The best fitting 

model which excluded H3N2 2009 (H3N2 2011 & 1968) had an adjusted R2 of 0.218 and an AIC of 

667. 

The inclusion of an age did not result in an improvement in the best fitting models with no change in 

AIC and an approximately 1% improvement in deviation explained compared to models with the 

same strain but without an age term. The age term was non-significant in the optimally fitted models 

however was significant in strain combinations with poorer explanatory power (R2 < 0.2). These 

strains did not contain H3N2 2009 in the strain combinations. 

Strain included in Model AIC/δAIC aRsq 
Dev 

Exp 

H3N2 2011,  H3N2 2005,  H3N2 2009 626.506 0.271 0.243 

H3N2 2011,  H3N2 2003,  H3N2 2005,  H3N2 2009 0.865 0.272 0.244 

H3N2 2011,  H3N2 2005,  H3N2 2007,  H3N2 2009 1.461 0.271 0.244 

H3N2 2011,  H3N2 1968,  H3N2 2005,  H3N2 2009 1.982 0.27 0.243 

H3N2 2011,  H3N2 2003,  H3N2 2005,  H3N2 2007,  H3N2 2009 2.245 0.273 0.245 

H3N2 2011,  H3N2 1968,  H3N2 2003,  H3N2 2005,  H3N2 2009 2.779 0.271 0.244 

H3N2 2011,  H3N2 2009 2.926 0.265 0.236 

H3N2 2011,  H3N2 1968,  H3N2 2005,  H3N2 2007,  H3N2 2009 3.414 0.27 0.244 

H3N2 2011,  H3N2 1968,  H3N2 2003,  H3N2 2005,  H3N2 2007,  H3N2 2009 4.236 0.271 0.245 

H3N2 2011,  H3N2 1968,  H3N2 2009 4.827 0.264 0.236 

Table 3.14 Logistic Regression Model Fit for PCR confirmed H3N2. Spline for Most Recent and Historic strains. 
Top ten models presented. Delta AIC=AICi – AICmin. 

From this point onwards the full model (all H3N2 strains, titre to earliest H3N2 and age) and the best 

reduced model (H3N2 2005 and 2009 only) were used. Direct comparison between these two 

models shows the full model is significantly better with reduced residual deviance (575 vs 618, 

ANOVA, 0.002). Despite this, in the full model the only significant terms were for 2005 and 2009 

strains. Comparison of the changing log odds of being PCR positive for H3N2 shows the highest odds 
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are for individuals with high titre to 2005 strain and low titres to 2009 (Figure 25). These odds 

appear to be even higher than for individuals who have low titre for both.  

With the addition of study time, both models improve significantly as in the analysis for recent 

strains only. For the best reduced model R2 increases to 0.514 (47.2% deviance explained, AIC 451) 

and for the full model R2 0.528 (49.4% deviance explained, AIC 454). As in the analysis for recent 

strains, the log odds changes in relation to how much influenza is circulating (Figure 26). This again 

suggests that a higher force of infection leads to individuals with higher titres becoming infected.  

 

Figure 25 Predicted Log Odds (upper panel) and Probability (lower panel) of H3N2 PCR confirmed influenza by 
baseline titre to H3N2 2005 and 2009. Log odds censored at -5 for clarity. 
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Figure 26 Predicted Log Odds and Probability of H3N2 PCR confirmed influenza by baseline titre to H3N2 2005 
and 2009. Model included study week of recruitment, weeks 20 and 42 presented here. Log odds censored at -5 
for clarity. 

3.3.7.3 Serology to Avian Strains 

In contrast to recent and historic human strains, titres to avian strains are heavily skewed to the left. 

The proportion of samples with measurable titres (log2 titre >0) varied according to strain (Table 

3.15).  A small number of individuals had very high titres to avian influenza detected. Significant 

differences were seen in mean (measurable) titre as assessed by one way ANOVA F(4, 783)=4.482, p 

0.001). Post-hoc testing on difference in mean titre (Tukey HSD) showed only significant difference 

between H7N7 2003 & H5N1 2007, and H9N2 1999 & H5N1 2007.  
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Figure 27 Histogram of Titre Response to Avian Strains. All Study Subjects. 

Strain Number (%) Mean (95% CI) Max Titre 

H5N1 2004 23 (3.7) 55 (41-74)  418 

H5N1 2007 140 (22.7) 59 (52-67) 1223 

H5N1 2010 52 (8.4) 58 (48-70)  571 

H7N7 2003 248 (40.2) 78 (71-86) 1810 

H9N2 1999 265 (42.3) 75 (68-83) 1810 

Table 3.15 Baseline Titre Response to Avian Strains with measurable titre. Calculations performed on log 2 titre. 

There is a significant relationship between the titre response to avian strains and the age of the 

study participant (Figure 28). All fitted models were significant (p values <0.05), models with a non-

linear spline of age were superior as measured by AIC and ANOVA with the exception of H7N7 2003. 

The optimal model for this strain is a linear term, even when allowed to fit flexibly the spline model 

selected for this. All strains had a positive relationship with increasing titre as age increased.  
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Figure 28 Titre to Avian Strains by Age of Subject. Blue line linear regression; Red line general additive model 
with spline for age, R2 for each model included. Points represents titre measurements from study, colour 
reflects infecting subtype. 

Changing the age parameter from age at study recruitment to age at strain emergence does not 

change the overall quality of the model fits or the explanatory power for individual avian strains. An 

overall prediction of avian strain response to age compared to age at time of emergence was 

performed. Age at emergence was a marginally better fit (adjusted R2 0.187 vs 0.17, p values <0.001) 

but the difference was not as marked as in historical human strains. In contrast to human strains 

which demonstrate the highest response to infections early in life, higher responses to avian strains 

emerge after 35 years of age (Figure 29). 

 

Figure 29 Titre to Avian Strains by Age and Age at Emergence for Strain. Adjusted for individuals strain effect. 
Blue line linear regression; Red line general additive model with spline for age. Points represent titre 
measurements from study, colour reflects infecting subtype 
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The effect of animal contact patterns on titre to avian strains was investigated. In univariate analysis, 

the only significant effect was an increase in H7N7 2007 associated with weekly contact with live 

poultry (Table 3.16).  In multivariable analysis, age was a highly significant term (all p values <0.001) 

and the only other significant finding was an association between H5N1 2010 titre and live poultry 

exposure. However, this showed a significant reduction in titre for both individuals with weekly 

exposure and those who are never exposed (-0.64, p 0.04 and -0.59 p 0.04 respectively). Given the 

multiple testing that was performed during this analysis, minimally significant p values and the 

contradictory nature it is likely this was a chance finding. 

 H5N1 2004 H5N1 2007 H5N1 2010 H7N7 2007 H9N2 1999 

 Est p value Est p value Est p value Est p value Est p value 

Live Poultry           

never -0.085 0.602 -0.176 0.645 -0.369 0.132 0.156 0.762 -0.09 0.863 

weekly 0.028 0.879 0.347 0.417 -0.224 0.415 1.305 0.024 0.89 0.129 

Dead Poultry           

never -0.026 0.782 -0.257 0.25 -0.019 0.894 -0.085 0.778 -0.197 0.512 

rarely 0.188 0.41 -0.142 0.792 0.081 0.814 -0.576 0.428 -0.309 0.674 

weekly 0.022 0.839 -0.289 0.261 0.015 0.925 -0.051 0.883 0.03 0.93 

Live Pig           

never 0.093 0.798 0.042 0.96 0.208 0.701 1.174 0.306 0.594 0.533 

weekly 0.233 0.556 1.15 0.215 0.962 0.105 2.456 0.05 1.519 0.161 

Dead Pig           

never -0.083 0.466 -0.293 0.275 0.031 0.857 0.15 0.679 -0.237 0.519 

rarely -0.169 0.594 -0.872 0.241 -0.179 0.707 -1.048 0.297 -1.439 0.158 

weekly -0.035 0.776 -0.263 0.368 0.114 0.544 0.195 0.621 -0.044 0.913 

Table 3.16 Univariate Linear Regression on animal contact rates and baseline titre to avian strains. 

GAM models were fit to look at the linear effect of human strains on titre response to avian strains 

(Table 3.17). All models included a non-linear age term which remained significant (Figure 30). Even 

accounting for age, historical human titre responses were significant predictors of avian strain 

response.  Response to most recent strains were not significant predictors of response. Historical 

strain response were more predictive of H7N7 and H9N2 response than H5N1 strains with higher R2. 

Adding animal contact into the models with human strains and age did not improve model fit and 

did not add significant terms. 

Mean response to avian strains are significantly lower than the response to human strains (Table 

3.18).  Although a significant F statistic is seen for H5N1 2007, 2010 and H7N7 2003 between 

infecting subtype this should be interpreted with caution. Differences in titre values at this level are 

unlikely to be clinically significant, as this is at the limit of detection for the microarray. 
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 H5N1 2004 H5N1 2007 H5N1 2010 H7N7 2007 H9N2 1999 

 Est p value Est p value Est p value Est p value Est p value 

Recent Human Strains          

H1N1 2009 -0.025 0.154 -0.003 0.942 0.001 0.98 0.038 0.424 0.057 0.226 

H3N2 2011 -0.034 0.405 -0.015 0.863 -0.048 0.431 -0.07 0.524 -0.08 0.467 

Historic Human Strains          

H1N1 1918 0.044 0.062 0.17 0.001 0.062 0.07 0.17 0.006 0.155 0.013 

H1N1 1977 0.04 0.051 0.081 0.057 0.044 0.143 0.29 <0.001 0.355 <0.001 

H1N1 1999 -0.007 0.787 -0.079 0.121 -0.027 0.46 -0.263 <0.001 -0.28 <0.001 

H1N1 2007 0.01 0.65 0.09 0.049 0.036 0.269 0.118 0.045 0.099 0.091 

H3N2 1968 -0.01 0.689 0.098 0.066 -0.02 0.6 0.179 0.007 0.263 <0.001 

H3N2 2003 0.012 0.625 0.071 0.163 0.018 0.615 0.09 0.161 0.094 0.145 

H3N2 2005 0.054 0.161 0.051 0.52 -0.027 0.628 -0.302 0.003 -0.277 0.007 

H3N2 2007 -0.01 0.78 -0.062 0.396 0.02 0.694 0.192 0.038 0.164 0.078 

H3N2 2009 0.016 0.642 0.035 0.623 0.09 0.071 0.241 0.008 0.15 0.094 

R2 Dev 
Exp 

0.14 0.166 0.329 0.348 0.175 0.198 0.401 0.416 0.421 0.435 

Table 3.17 Multivariable GAM Model for Titre to Avian Strains. All models contained non-linear age term which 
was significant (p values <0.001) Significant terms in italics. 

 

 
Influenza A H1N1 Influenza A H3N2 Influenza B 

Influenza 

Negative 
ANOVA 

H5N1 2004 
Mean (95%CI) 

 

 

 

 
Mean (95%CI) 

10 (10-11) 10 (10-10) 11 (10-12) 11 (10-12) F(3,614)=2.3, 
p 0.079 

H5N1 2007 
Mean (95%CI) 

12 (10-15) 13 (12-14) 17 (13-20) 17 (15-19) F(3,614)=5.68, 
p <0.001 

H5N1 2010 
Mean (95%CI) 

11 (9-12) 11 (10-11) 12 (11-14) 12 (11-13) F(3,614)=2.9, 
p 0.035 

H7N7 2003 
Mean (95%CI) 

15 (11-20) 18 (16-21) 29 (21-40) 27 (24-31) F(3,614)=8.2, 
p <0.001 

H9N2 1999 
Mean (95%CI) 

19 (14-27) 21 (18-24) 29 (21-39) 26 (22-29) F(3,614)=1.97, 
p 0.098 

Table 3.18 Mean Titre Response to Avian Strains. ANOVA performed on log2 titres, transformed titres 
presented for clarity. 

 

 

Figure 30 Multivariable GAM Model for Titre to Avian Strains. Strain specific non-linear age terms. All spline 
functions are significant (p value <0.001). 
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3.4 DISCUSSION 

Influenza surveillance in Vietnam has previously centred on hospitalised patients. This observational 

study was designed to investigate non-severe influenza and influenza like illness in a tropical, urban 

primary care setting, the clinical and demographic features associated with it and the impact of pre-

existing antibodies to influenza A strains. 

Over the 90 weeks of the study, influenza was present the majority of the time. However, this was 

not a persistence of the same influenza strain but a mixture of high intensity peaks of single 

subtypes and co-circulation of types and subtypes at variable intensities. This was consistent with 

previous hospital based surveillance which demonstrated asynchronous peaks and co-circulation of 

different strains (Li et al., 2008, Nguyen et al., 2009). This study demonstrated higher rates of 

influenza positivity in ILI than are generally described and fewer periods where no influenza was 

detected (Kasper et al., 2010, Lutwama et al., 2012, Khamphaphongphane et al., 2013, Snacken et 

al., 2014). It should be noted that the frequency or duration of circulation of a particular strain does 

not necessarily reflect the number of cases presenting to clinics. Influenza A H3N2 was found to 

occur in a similar number of weeks to influenza B but almost 100 more cases were detected. Attack 

rates measured through healthcare settings are vulnerable to differences in healthcare seeking 

behaviour (Brooks-Pollock et al., 2011). Influenza B is generally considered to cause less severe 

symptoms than influenza A H3N2 (Glezen et al., 2013) which could mean that people with mild 

disease are less likely to present for clinical assessment. This could give an impression of smaller 

outbreak size despite considerable community transmission (Cowling et al., 2014, Caini et al., 2015). 

Focusing on hospitalised severe cases will therefore underestimate the circulation of flu in the 

community and improving surveillance to include non-severe cases in a primary care setting will help 

us better understand true community attack rates, although this approach has its own challenges 

and limitations (Ortiz et al., 2009).  

One difficulty of utilising community surveillance is finding an appropriate symptom screening 

approach. Although fever, cough and rhinorrhoea were reported more commonly in those who had 

influenza, more than 60% of patients with non-influenza ILI reported such symptoms, suggesting 

that they have poor discriminatory power as a screening test for influenza. Other studies in SE Asia 

have suggested that a revision of ILI definitions developed in temperate regions may be necessary 

for their use in tropical settings with cough an important feature in discriminating from other causes 

of febrile illness (Jiang et al., 2015). Our study was conducted in clinics which also participated in an 

existing GP ILI study which utilised mobile phone reporting of ILI to assess ILI dynamics. This study 

has demonstrated that ILI symptoms are much more consistent through the year compared to 
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temperate countries and that peaks in ILI activity do not always correlate with peaks in influenza 

activity (Lam et al, Manuscript under Review, (Oxford University Clinical Research Unit, 2015)). All of 

this suggests that the current ILI definition as a syndromic surveillance for influenza in tropical 

countries is unlikely to be as clear cut as it is in temperate countries. This study focused on 

respiratory symptoms which therefore means that it is difficult to comment whether inclusion of 

other symptoms would lead to better syndromic definitions for surveillance. Refinement of existing 

definitions may be achieved by combining the results of this study with those of other fever studies 

conducted in similar populations in conjunction with the Hospital for Tropical Disease 

Intense periods of influenza A transmission was seen in the second quarter of both 2014 and 2015 

with noticeable increases after the lunar new year public holidays. This coincides with the start of 

the wet season in southern Vietnam which has previously been linked to influenza seasonality in 

Vietnam (Thai et al., 2015). Internationally, there was a significant shift in influenza A H3N2 

antigenically between 2014 and 2015. This manifested in a mismatch between H3N2 vaccine 

component and the circulating strain which resulted in reduced vaccine efficacy (<25%) and an 

increase in severe cases in winter 2014-2015 in northern temperate countries (Broberg et al., 2015, 

Molbak et al., 2015, Pebody et al., 2015). Both periods of H3N2 activity in this study occurred at the 

end of the northern temperate influenza season. At present we do not know which strain was 

circulating in Vietnam between 2014 and 2015 and if this could be the result of introduction of the 

novel strain from northern temperate regions at the end of their winter season. Genome sequencing 

of viruses collected during this study is planned to investigate this further. 

There was no detectable difference between ages of individuals presenting with influenza or non-

influenza ILI. However our study population had more individuals under the age of 35 than would be 

expected for the general Vietnamese population. Young children are thought to be responsible for 

much of the community transmission of influenza (Fox et al., 1982, Longini et al., 1982) and although 

this study did not recruit very young children, the under 35’s are likely to be siblings or parents of 

this group. Having younger children in the household did not change the likelihood of having 

influenza compared to non-influenza ILI. This could mean that having younger children in the 

household increases your risk of getting any viral respiratory infection rather than increasing the risk 

of influenza only.  Households also tended to be larger than the Vietnamese average with a multi-

generational structure. This may change the age distribution of ILI compared to temperate countries 

where multi-generational homes are less common.  

Although these age and household structures could impact on transmission dynamics it may also 

represent a difference in care seeking behaviour. Individuals who live in smaller households are 
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likely to be more affluent and may not access healthcare through the clinics included in this study, 

either because they self-care, have difficulties attending clinics because of work patterns or they 

attend more expensive polyclinics which suit their lifestyle. More individuals of working age (20-64) 

were recruited from private clinics than from the government run outpatient clinics and were more 

likely to be in a professional work rather than manual labour. Recruitment at the hospital clinics was 

limited to between 8am and 4pm whereas private clinics were able to recruit patients in the 

evening. All clinics had limited recruitment over the weekend period. These restrictions are likely to 

have impacted on the patient group which was recruited. The considerable heterogeneity in subject 

demographics are important to consider when interpreting healthcare surveillance figures. In 

systems where patients have a relative choice regarding healthcare providers (rather than single 

providers like the NHS in the UK) it is important to consider alternative sources of surveillance to 

give a better overall picture of attack rates (Ortiz et al., 2009, Ong et al., 2010). The expanding 

middle class of Vietnam means that this issue is likely to become more important and that 

surveillance of private facilities should be incorporated into future public health surveillance 

planning 

Another impact of the changing economic environment in Vietnam is the use of influenza 

vaccination. There is no public provision for influenza vaccination in Vietnam and prior to 2009 the 

use in the general public was very rare with less than 1% of the population having ever received it 

(Palache et al., 2014). In this study, 5% of individuals who presented to private clinics reported 

receiving vaccination compared to only 1.2% those who attended the hospital outpatient clinic. 

However, only a single individual who reported having received vaccination had a recommended 

indication (this was recruitment from a private clinic). As influenza vaccine is only available from 

private clinics its current use is limited by an individual’s ability to pay. Although preventative care 

through primary care is the strategic goal of the Vietnamese MoH (World Health Organisation & 

MOH Vietnam, 2012), it remains unclear what the optimal vaccination strategy is for Vietnam 

(Lambach et al., 2015).  Preliminary work looking the matches between circulating strains and 

vaccine composition by the Vietnamese MoH have looked at northern hemisphere 

recommendations (Vuong et al., 2012c). Where study participants reported the month of 

vaccination it varied between June and November which is the period covered by annual southern 

hemisphere WHO guidance. This also corresponds to the wet season in HCMC where local belief is 

that there are higher rates of influenza. Clarification on what the optimal strategy for vaccination is 

vital for private providers of vaccination in order to give people the best protection for upcoming 

influenza seasons. It is of note that having received influenza vaccination at any time did not have 

any protective effect against influenza in this study. 



Influenza in Ho Chi Minh City 2013-2015 
 

67 

The rates of chronic respiratory disease in this study was consistent with national estimates (Global 

Burden of Disease Study 2013 Collaborators, 2015). Smoking is a leading cause of morbidity and 

mortality in Vietnam. The rates reported in this study are far below national estimates (47.4% of 

men, 1.4% of women) (World Health Organisation, 2010). It is unusual that none of the smokers 

reported chronic respiratory disease. The main source of recruitment for this study was Hospital for 

Tropical Disease and private clinics. Within Ho Chi Minh City, a separate hospital exists for chronic 

lung disease and TB. Patients with these conditions may already attend this hospital for follow-up 

and so may attend if they develop acute symptoms. Our study also concentrated on non-severe 

influenza, by not including hospitalised patients we may have excluded more of those with chronic 

health problems. This is an important distinction when examining burden of disease and planning 

interventions to reduce severe morbidity and mortality. As the main focus of our study was to 

investigate transmission dynamics, it was reasonable to focus on non-severe cases as they are 

responsible for the majority of transmission. 

Antibiotic use at enrolment was high in all groups although higher in influenza B. All individuals 

presented early in their illness and had accessed antibiotics prior to this attendance at clinic. 

Antibiotics can easily be purchased in pharmacies across Vietnam (Nga et al., 2014). Most ILI will 

have a viral aetiology and given the timings of the study, it is unlikely that individuals have 

developed a secondary bacterial infection requiring antibiotics. Therefore this represents a 

significant problem of unnecessary antibiotic prescribing. Antibiotic resistance in Vietnam is an issue, 

as it is globally (Kim et al., 2012). Education of medical professionals, pharmacists and the public 

about the appropriate use of antibiotics is urgently required (Wertheim et al., 2013). 

As would be expected, lower titre response at baseline is associated with a higher risk of PCR 

confirmed influenza of the same subtype for all human strains (homosubtypic response, recent and 

historic strains).  The homosubtypic response to the most recently circulating strains showed 

differences between H3N2 and H1N1. For individuals infected with H1N1, most had a low or 

undetectable microarray titre at the time of infection. Although the mean titre was significantly 

lower than those not infected with H1N1, across all study subjects a considerable proportion had 

PMA titres less than 80 which were levels observed prior to the emergence of ‘swine flu’ and the 

global pandemic of H1N1 in 2009 (de Bruin et al., 2014, te Beest et al., 2014a). This group could 

represent individuals who have not been infected with H1N1 in the post pandemic period or 

individuals who had been infected previously but their antibody response has waned rapidly to pre-

pandemic levels. The relative lack of antigenic change in the circulating H1N1 since 2009 suggests 

that there are still enough susceptible individuals to infect without selecting for antigenic shift. As 

waned immunity would still be expected to give a brisk immune response when re-challenged with a 
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very similar virus it seems more likely that this is explained by individuals having their primary 

infection with H1N1 2009 up to 5 years after it emerged. 

In contrast, most individuals infected with H3N2 had detectable titre to H3N2 2011, likely due to 

cross reaction to previously encountered H3N2 strains. Younger individuals had the highest response 

to H3N2 2011 although this did not change their probability of being infected. This suggests that 

their higher response is due to H3N2 2011 being antigenically similar to their primary H3N2 infection 

and higher rates of cross reaction are seen. The same picture is seen across historic strains with the 

highest response being to strains seen early in life. The peak in the first decade of life is consistent 

with other studies (Lessler et al., 2012, Miller et al., 2013) but it should be noted that the age criteria 

to enter the study and the time span of the strains on our assay may have contributed to this 

finding. 

Although all H3N2 strains can predict odds of being infected when a single strain is included in 

model, when multivariate analysis is performed with a combination of strains, more recent strains 

seem to be having the greatest contribution to current susceptibility. Strain response to H3N2 2005 

and 2009 consistently come out as the most significant predictors of current susceptibility.  All H3N2 

strains included on the PMA belong to different antigenic clusters (Barr et al., 2014, Bedford et al., 

2014) and the globally predominant circulating strain was antigenically similar to H3N2 

A/Victoria/361/2011 until emergence of an antigenically distinct strain in 2014-2015 (Broberg et al., 

2015, World Health Organisation, 2015c). H3N2 2005 and 2009 therefore represented the two 

previous antigenic clusters at the beginning of this study but this antigenic positioning could have 

changed through the recruitment period. That the highest risk of infection is in individuals with high 

response to H3N2 2005 and low response to H3N2 2009 could be interpreted in terms of time since 

last infection and that this is more important in susceptibility than the absolute titre (although the 

two are inextricably linked).  If your last infection was more than one antigenic cluster away from the 

current circulating strain you are at highest risk of infection. As studies have suggested that adult 

individuals are infected once or twice in a decade this would fit with this interpretation (Kucharski et 

al., 2015).  This also suggests that in terms of the microarray titre, high titres due to infections 

contracted early in life are less predictive of susceptibility now within a continually circulating 

subtype. These assumptions are not likely to hold for the emergence of a new pandemic strain such 

as H1N1 2009 where the historical strain response to H1N1 1918 was shown to be beneficial in the 

first waves of the pandemic (Van Kerkhove et al., 2013b). 

How best to include changing exposure in models of susceptibility is a problem when considering 

epidemic disease rather than endemic particularly where seasonality is not predicable. The use of 
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week of recruitment as a proxy demonstrated interesting findings in this study. It suggested that 

levels of protection offered by a fixed titre changed depending on force of infection. An obvious 

explanation for this could be an antigenic change in the circulating virus meaning that the protection 

offered by existing antibodies is no longer sufficient. In this situation it demonstrates the importance 

of considering changes throughout an influenza ‘season’ and that assessments of population 

susceptibility rely on having a good match between the circulating and testing strain. If this is not 

due to an antigenic change in the virus then it raises other interesting possibilities. At lower 

prevalence’s influenza may preferentially infect those with a lower titre because it is easier with a 

lower infecting dose and the lowest barrier to infection. Where influenza is circulating at higher 

prevalence, susceptible individuals are more likely to come into contact with infected individuals as 

there are more of these in the population leading to multiple challenges with influenza viruses. This 

could lead to a situation where an individual with a higher titre is protected against a single 

challenge but subsequent challenges in a short period of time may overcome the existing protection. 

Animal models have demonstrated interference between subtypes if exposed sequentially over a 

short period but repeat challenge with the same subtype was not explored (Cao et al., 2015, Laurie 

et al., 2015b). Another possibility is that during peaks of activity more individuals have higher levels 

of viral shedding, which again could overcome the immune barrier to infection. Climatic factors 

during wet or cold seasons may lead to changes in human behaviour which result in more frequent 

contacts between individuals which could give an ideal situation to allow the virus to overcome high 

barriers to infection. Evaluation of vaccine programs including influenza have suggested that vaccine 

efficacy changes across different transmission intensities (Gomes et al., 2014). This would likely be 

the same phenomenon described in this study. 

That individuals infected with influenza B had the highest baseline titres to both H1N1 and H3N2 

titres poses interesting questions. Influenza B was detected throughout the study period but a peak 

of activity was seen to follow a large peak of influenza A H3N2. Interference between influenza A 

and B have been noted in natural infection states previously (Camacho et al., 2011) and more 

recently modelling and animal experiments have suggested that infection with influenza A may 

change the susceptibility to influenza B in the short term (Cao et al., 2015, Laurie et al., 2015b). If 

being infected with influenza A does increase the chance of being infected with influenza B this 

could be a contributing factor to the different influenza epidemiology in tropical regions. If influenza 

A is present throughout the year then this could increase the amount of influenza B activity and 

explain why influenza B is seen more frequently in tropical countries (Caini et al., 2015) and may 

have a higher mortality than in temperate countries (Feng et al., 2012). The observation from this 

study needs to be explored in more detail and in particular look at the likely time since last influenza 
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A infection for those infected with influenza B, using the techniques described in Chapter 5. Further 

prospective studies are required to explore the interference of multiple influenza types and subtypes 

in relation to influenza transmission dynamics.  

The serological response to avian strains in this study was consistent with work suggesting that much 

of the detectable response is related to cross reaction to previous infection with human strains (Boni 

et al., 2013, Molesti et al., 2014, Oshansky et al., 2014, Todd et al., 2014, Freidl et al., 2016). This is 

particularly noticeable in the response to H7N7 2003 and H9N2 1999 where over 40% of subjects 

have a detectable PMA titre. A small number of individuals have a high titre response which is 

similar to levels seen in response to human strains an individual could have been exposed to. 

Whether these high responses can be attributed to cross reaction requires further investigation 

including work from the longitudinal study described in Chapters 4 and 5 and how responses to 

avian strains change following recent infection with human strains. Further work is planned to look 

at titre response in individuals who were known to be infected with H5N1 as trying to determine 

appropriate cut offs for infection with avian strains is crucial to understand the true global attack 

rates (Wang et al., 2012). 

There are a number of limitations to this study.  In an ideal world this study would have been 

designed as prospective study recruiting individuals prior to their influenza illness to get a true 

picture of their influenza serology prior to infection. Given the numbers needed to recruit to reach 

the sample size of 350 influenza A positive individuals this was not feasible. A pragmatic approach 

was used to limit recruited to the first three days of illness so as to minimise the humoral immunity 

response which occurred following infection (Sealy et al., 2003). As historic B cell response can 

activate prior to three days there may already be a rise in response to historic strains at baseline. 

Any response in this way is likely to make the baseline titre differences between influenza and non-

influenza less detectable, as a significant difference was found despite this these results are still 

interpretable. By recruiting individuals who attended clinic we are still missing those with mild or 

sub-clinical disease who may have a different antibody profile at baseline. Household studies with 

prospective follow-up of secondary cases can help to identify these individuals and would be 

beneficial to understand population level transmission. At the other end of the clinical spectrum, 

individuals with severe disease have been excluded and understanding whether differences in 

response to historic and current strains at the time of infection and also following infection could 

explain differences in clinical presentation should be explored. This could also address the question 

of whether original antigenic sin is indeed a sin.  
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Further work is required to relate the results from the PMA with HI testing as well as functional 

neutralisation assays. The more sensitive PMA assay is likely to be subject to more issues relating to 

cross reaction and being able to understand these in relation to susceptibility and recent infection 

will be explored in more detail in Chapters 4 and 5. Many of the questions raised in this chapter 

require an understanding of which virus was circulating during the recruitment period and where 

this fits antigenically with the most recent strains on the assay. Vietnam’s national surveillance 

programme monitors for predominant circulating strain and these results will be available in the 

near future. In addition to this there are plans to sequence a subset of the viruses from this study. 

This study continued to recruit until the end of November 2015. Much of the analysis has focused on 

H3N2 because this was the predominant subtype identified. The mixed H3N2 and H1N1 wave 

detected in May 2015 carried on for two months. These additional subjects infected with H1N1 will 

allow further exploration of the effect of historic strains on susceptibility to a recently emerged 

subtype. 
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4 INFLUENZA ANTIBODY DYNAMICS FOLLOWING ACUTE RESPIRATORY 

INFECTION  

ABSTRACT 

Background: Repeat infections with influenza A occur because of the continual evolution of the 

virus. A specific humoral response occurs after each infection and this develops into an 

immunological profile for each individual based on their prior exposure history and the cross-

reaction between antigenically similar viruses. Understanding how this profile changes following 

acute infection is important for interpretation of seroepidemiological studies. 

Methods: A prospective, observational study of patients with ILI in Ho Chi Minh City, Vietnam has 

been running since August 2013.  Influenza A & B PCR and antibody testing to a panel of 11 human 

and 5 avian strains is performed using a novel protein microarray technique.  A subset of subjects 

are followed up clinically and serologically for seven months.  

Results: 186 ILI patients were recruited between August 2013 & May 2015. 102 and 14 subjects had 

influenza A H3N2 and H1N1 respectively.    The largest response was within subtype which peaked at 

around 30 days. A boosting of historic response was also seen. The response in historic strains 

waned quicker than response to recent strains. A smaller but significant between subtype increase in 

titre was also detected. Following an acute rise after infection within six months most individuals 

had returned to a standard rate of decline of 1 log2 titre unit each one to two years. 

Conclusion: Titre rise is seen within and across subtypes which would lead to repeat boosting of titre 

levels across many years. Further work should be performed to establish if this titre rise is 

accompanied by a change in neutralisation activity.  

4.1 BACKGROUND 

Repeat infections with influenza are possible due to the continual evolution of the influenza virus 

which means that specific immunity generated to one strain is no longer protective when the 

circulating virus is sufficiently different (Ferguson et al., 2003). Response to the strains an individual 

has been exposed to during their life remain detectable many years after this exposure with some of 

the highest responses to strains exposed early in life (Hennessy et al., 1955, Lessler et al., 2012). This 

develops into an immunological profile for each individual based on their prior exposure history and 

the cross-reaction between antigenically similar viruses (Smith et al., 2004).  Following infection with 
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a strain there is the development of a specific humoral immune response which then wanes over 

time.  It is assumed that once antibodies have waned sufficiently that an individual is again 

susceptible to further infection. How the waning of specific immunity and the simultaneous 

evolution of the virus are linked in terms of susceptibility is not well understood. With improvements 

in computational methods and more multi-strain studies being conducted it is hoped that these 

questions can be addressed.   

Short term antibody dynamics to the infecting strains have been investigated for many decades. A 

rapid rise with a peak around one month has been demonstrated previously using HI (Horsfall and 

Rickard, 1941, Morris et al., 1966, Sonoguchi et al., 1986). Where paired serology is available for 

sero-diagnosis a minimum of one month is preferred (World Health Organisation, 2014a). The 

pattern and speed of antibody waning is less clearly defined and in particular the response in historic 

strains (Horsfall and Rickard, 1941, Foy et al., 1980, Lerman et al., 1980, Ochiai et al., 1986, 

Sonoguchi et al., 1986). Understanding this rate of waning is vital for design and interpretation of 

seroepidemiology studies (Vinh and Boni, 2015). Much of the recent work around antibody dynamics 

has been around the antibody dynamics following vaccination (Petrie et al., 2015) or the dynamics 

following first infection with a pandemic strain. These will not necessarily be the same as the 

antibody response in individuals who have never been vaccinated and therefore is an important 

distinction when modelling response in countries such as Vietnam with very low rates of vaccination.  

For drifted strains such as H3N2, understanding the historic antibody response following infection is 

crucial to interpreting historical and current attack rates (Fonville et al., 2014, Kucharski et al., 2015). 

Finally, it is important to recognise any differences in measured antibody dynamics in novel testing 

techniques such as the protein microarray utilised in this study from traditional HI methods 

(Huijskens et al., 2013). One of the major benefits of these techniques is to allow high throughput 

testing of large population representative serum banks. To be able to do this we need to understand 

differences between these and existing technologies to ensure inferences from these studies are 

reasonable. The work presented in this chapter is designed to address some of these queries. 

4.2 METHODS 

A full description of the study procedures and laboratory testing is given in Chapter 2. 

4.2.1 Summary of Design and Conduct of the Observational Study 

This observational study was conducted between August 2013 and May 2015 at outpatient clinics 

and community medical practitioners in Ho Chi Minh City (HCMC), Vietnam. Individuals were invited 

to join the study if they were between 10 and 70 years of age with symptoms for less than 72 hours 



Influenza Antibody Dynamics following Acute Respiratory Infection 
 

74 

and fitted the ECDC ILI definition (European Centre for Disease Prevention and Control (ECDC), 

2015). One anterior nasal swab and one throat swab  and one  5ml serum sample was collected at 

baseline and stored at -20oC within 24 hours.  A subset of patients were invited to join a longitudinal 

sub-study. All subjects testing positive for influenza A were eligible to join the sub-study. Negative 

control subjects were matched by age (+/- 5 years) and gender to influenza A positive subjects. 

Subjects attended for repeat serum sampling at 30, 90, 150 and 210 days (+/- 5 days) after 

recruitment. Active respiratory symptom surveillance was conducted during the follow-up period 

with telephone follow-up at 60, 120 and 180 days.  

Both studies were approved by the Scientific and Ethical Committee of the Hospital for Tropical 

Disease, Ho Chi Minh City, Vietnam and Liverpool School of Tropical Medicine Research Ethics 

Committee, UK.  Letters of agreement supporting the involvement of the community medical clinics 

were obtained from the Ho Chi Minh City Department of Health. 

4.2.2 Sample Analysis 

Respiratory samples were batched tested monthly for influenza A & B using standard polymerase 

chain reaction (PCR) techniques (World Health Organisation, 2011). Samples positive for influenza A 

were then tested for H3N2 and H1N1 subtypes. All subjects recruited to the longitudinal study had 

their baseline and follow-up sera tested against a panel of 16 influenza A strains (11 human, 5 avian 

strains) using a protein microarray technique previously described (Koopmans et al., 2011). This 

included both influenza A PCR positive individuals and age matched negative controls (i.e. non-

influenza ILI.  Full methods are described in Chapter 2.  

4.2.3 Outcome Variables and Statistical Analyses 

The primary outcome was antibody titre as measured by protein microarray at one, three, five and 

seven months after acute respiratory infection. 

Continuous variables which were normally distributed were compared with t-test or ANOVA as 

appropriate. Tukey’s HSD was used for posthoc testing following ANOVA where appropriate. 

Continuous variables which were non-normally distributed were compared using Wilcox and Kruskal 

Wallis rank sum depending on the number of groups (2 vs more than 2 respectively).  Categorical 

variables were compared using the Fisher exact test, Mann-Whitney test or Chi Square test as 

appropriate. 

Antibody responses were compared between predefined groups based on PCR determined infecting 

virus subtype giving three groups; influenza A H3N2, influenza A H1N1 and non-influenza ILI. 

Microarray strains were categorised into i) Most Recent Circulating Strains (H1N1 2009, H3N2 2011), 
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ii) Historical Human Strains (all other human strains), and iii) Avian Strains (Table 3.1). Titre 

responses will be categorised as homosubtypic where the infecting subtype and the microarray 

strain match (i.e. infected with H1N1, homosubtypic titre response is to H1N1 strains of the 

microarray). Heterosubtypic titres are where the infecting subtype and the microarray strain do not 

match (i.e. infected with H1N1, heterosubtypic titre response is to H3N2 strains on the microarray). 

Analysis was performed on log2 transformed titres unless explicitly stated. 

Where appropriate, analysis was stratified by age at recruitment.  Age was preferentially used as a 

continuous variable, otherwise age was categorised as per recommendations from the Consortium 

for the Standardisation of Influenza Seroepidemiology (5-9, 10-19, 20-44, 45-65, 65+) (Van Kerkhove 

et al., 2013a). 

Linear regression and non-parametric general additive models were used to investigate the titre 

change between visit one and visit two, and to look for significant predictors of titre change. This 

was performed for i) homosubtypic, ii) heterosubtypic and iii) negative responses separately. For the 

homosubtypic and heterosubtypic responses, individuals infected with H3N2 and H1N1 were 

grouped together and their response to recent strains were looked at together. A strain specific term 

for infecting subtype was included. Univariate and multivariable analysis was performed looking at 

the impact of infecting influenza strains, occurrence of new ILI during follow-up period, gender, 

week of study recruitment, days of symptoms at recruitment, paracetamol or antibiotic use prior to 

study recruitment (antiviral use not included due to very low number of subjects using this at 

baseline), any prior respiratory disease, current pregnancy, current smoker and whether they have 

ever received influenza vaccine.  

Change in titre across the follow-up period were investigated using two methods, piecewise linear 

regression and non-parametric general additive models. Both of these methods were used to 

investigate the decline in antibody following post-infection peak and allow for monophasic and 

biphasic decline in titre.  

A two-step process was used to investigate antibody response using piecewise regression. First the 

optimal breakpoint (or points) was determined using the R package segmented (Muggeo, 2008) 

which identifies the most likely breakpoint using maximum likelihood methods.  95% credible 

intervals of estimates were identified using the boot R package and 1000 replicates (Davison, 1997, 

Canty and Ripley, 2015). The mean breakpoint(s) were then used to identify the range of variation in 

the slopes surrounding the breakpoint. In order to fit the model, a prior estimate of break point was 

required, i) 30 and ii) 30 and 90 were used.  Piecewise linear regression was also performed with a 
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random effects term allowing a different intercept for each subject. The segmented package does 

not allow the incorporation of individual random effects so the linear mixed methods package mcgv 

was used and user defined code for optimisation using the foo function within R. 1000 bootstrapped 

replicates were run to calculate mean and credible interval. In the sampling procedure sampling with 

replacement was allowed by participant ID but no resampling was performed on serum sample time 

points. This is consistent with the assumptions of random intercept but not slope for individuals and 

was coded by hand. User defined R code for resampling, bootstrapping and MLE of piecewise 

regression are included in the supplementary appendix. As in the initial regressions, models were fit 

to determine optimal breakpoint(s) followed by investigation of slope variability for the mean 

breakpoint(s). Quality of model fit was assessed using adjusted R2 and comparison of relative model 

fit was performed using AIC. For the random effects models marginal and conditional pseudo-R2 

were calculated as per the methods in (Nakagawa and Schielzeth, 2013) using the r.squaredGLMM 

function from the MuMIn package (Barton, 2015). 

Non-parametric generalised additive models and splines were used to investigate titre response. 

These methods allow a flexible approach to the shape of response accounting for individual variation 

when random effects are used and parameters such as age included. In addition to strain specific 

models, a model of all titre response with strain specific response was fitted. To explore possible 

mechanisms behind the age differences in the combined strain model, titre response was 

categorised depending on whether this was i) a titre response to a recent strain (H3N2 2011), ii) a 

titre response to historic strains an individual could have been exposed to (i.e. subject was alive at 

the time of circulation) ii) a titre response to historic strains an individual could not have been 

exposed to (i.e. subject was not alive at the time of circulation). 

All statistical analysis were performed using R Statistical Software v3.2.1 (R Core Team, 2015). 

Packages used for analysis were ggplot2, gamm4, mgcv, segmented, boot. 

4.3 RESULTS 

4.3.1 Description of follow-up study participants 

The longitudinal study recruited 186 subjects between 8 August 2013 and 31 May 2015. The majority 

of patients were recruited from hospital outpatient settings (n=124/186, 66.7%) in line with the 

overall pattern of pattern of study recruitment (χ2 = 0.34, p=0.55). Seven month follow-up was 

available for 82 subjects (Table 4.1). 42 subjects (22.5%) withdrew from the study during the follow-

up period. Drop out rates were higher in influenza positive groups (H1N1 3/14, 21.4%; H3N2 27/102, 
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26.4%; Negative 11/55, 16.6%) but this difference was not statistically significant (χ2 = 0.34, p=0.52). 

The commonest time point to drop out of the study was between visit two and three (n=33, 78%).  

 

Visit 1 

(Day 1-3) 

Visit 2 

(Day 30) 

Visit 3 

(Day 90) 

Visit 4 

(Day 150) 

Visit 5 

(Day 210) 

Influenza A H1N1  14 (100) 14 (100) 5 (35.7) 5 (35.7) 5 (35.7) 

Influenza A H3N2 102 (100) 102 (100) 62 (60.8) 51 (50) 45 (44.1) 

Influenza A NT 4 (100) 4 (100) 3 (75) 3 (75) 3 (75) 

Influenza 
Negative 

66 (100) 66 (100) 51 (77.3) 41 (62.1) 29 (43.9) 

Table 4.1 Number of Follow-Up Clinic Visits before 31 May 2015. Percentage of follow-up subjects by infecting 
subtype in brackets. 

Age and sex distribution suggested that the matching process between influenza positive and 

negative was adequate (Table 4.2). Study week of recruitment varied between infecting subtypes as 

would be expected given the differences in influenza circulation during the study period (Figure 31). 

Samples without an influenza A subtype were excluded from the subsequent analysis unless 

explicitly stated. 

 Influenza A H1N1 

n (%)/ med (IQR) 

Influenza A H3N2 

n (%)/ med (IQR) 

Influenza A NT 

n (%)/ med (IQR) 

Influenza 

Negative 

n (%)/ med (IQR) 

Number 43 (100) 356 (98.3) 17 (100) 253 (100) 

Age 30.1 (25.9-46.4) 26.3 (18.1-33.1) 40.4 (22.9-43.3) 25.8 (20.1-33.6) 

Female 22 (51.2) 148 (41.6) 12 (70.6) 120 (47.4) 

Study Week 31 (30-84) 40 (35-43) 29 (21-35) 62 (46-67) 

Table 4.2 Serology Samples by Influenza Subtype. Number of serum samples is presented as percentage of total 
number of follow-up samples. 
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Figure 31 Study Timeline. Top panel is recruitment to follow-up study. Bottom panel main study recruitment. 

Mean number of follow-up days at each visit was significantly different between infecting subtype as 

measured by two-way ANOVA (F(12,655)=2.428, p 0.004). On post-hoc testing the only significant 

difference was between H1N1 positive and influenza negative groups at visit two. 

 
Visit 1 

(Day 1-3) 

Visit 2 

(Day 30) 

Visit 3 

(Day 90) 

Visit 4 

(Day 150) 

Visit 5 

(Day 210) 

Influenza A H1N1  2 (2-3) 33 (31-34) 95 (91-98) 157 (149-165) 218 (215-222) 

Influenza A H3N2 2 (2-2) 35 (34-36) 95 (94-96) 158 (156-159) 217 (215-218) 

Influenza 
Negative 

2 (2-2) 37 (35-39) 95 (93-96) 155 (154-156) 216 (214-218) 

Table 4.3 Follow-up Days at each Study Visit by Infecting Subtype. Mean and 95% CI presented. 
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4.3.2 PMA Titre Change between Visit One and Visit Two 

4.3.2.1 Change in Most Recent Circulating Strains 

The log titre change between serology at baseline (day 1-3 of illness) and approximately one month 

post infection showed significant differences depending on infecting subtype as measured by one 

way ANOVA (Table 4.4). Post-hoc testing shows significant differences in mean titre change between 

all infecting groups for both recent strains (Tukey HSD, all p values <0.05). The largest rise for each 

strain was where infecting and testing subtype match (e.g. testing strain H1N1 2009, infecting strain 

H1N1).  However, significant positive responses are seen in the non-infecting subtype: these 

responses will be referred to as homosubtypic and heterosubtypic respectively. The mean response 

in subjects with non-influenza ILI was localised around zero. This is within the expected variation of 

the microarray assay. Outliers were seen in all infecting groups (Figure 32). 

 
Influenza A H1N1 Influenza A H3N2 

Influenza 
Negative 

ANOVA 

H1N1 2009 
Mean (95%CI) 

3.67 (2.55-4.79) 0.82 (0.61-1.03) -0.1 (-0.41-0.21) 
F(2,177)=56.74  

p <0.001 

H3N2 2011 
Mean (95%CI) 

0.86 (0.41-1.31) 2.97 (2.74-3.2) 0.01 (-0.27-0.3) 
F(2,177)=140.1  

p <0.001 

Table 4.4 Mean Log2 Titre Change between Visit 1 and 2 by Infecting Subtype. 

 

Figure 32 Log2 Titre Change between baseline and 30 days for Recent Strains by Infecting Subtype. 

In univariate analysis of predictors of homosubtypic titre response between visit one and two, only 

titre at baseline of homosubtypic strain was a significant predictor of titre change (Table 4.5). In 

multivariable analysis, titre at baseline remained significant as was whether an individual was 



Influenza Antibody Dynamics following Acute Respiratory Infection 
 

80 

infected with H3N2 or H1N1. In univariate analysis having H3N2 resulted in a lower titre change than 

being infected with H1N1 (non-significant).  However, in multivariable analysis this became a 

significantly higher titre change than individuals infected with H1N1.  The maximum titre measurable 

on the microarray is 1280 with a fixed value of 1810 for values which are higher than this dilution. 

This means that for individuals with a higher baseline titre there is a smaller possible increase than 

individuals who have a lower baseline titre. 85% (n=85/100) of individuals infected with H3N2 have a 

homosubtypic titre greater than 1280 at one month compared to only 21.4% (n=3/15) of individuals 

infected with H1N1.  

 Univariate  Multivariable 

 
Estimate 
(95% CI) 

p value R2 
Estimate 
(95% CI) 

p value R2 

H3N2 vs H1N1 -0.701 (-1.42-0.018) 0.056  0.024 1.325 (0.786-1.864) <0.001 0.684 

Titre at Baseline -0.615 (-0.71--0.52) <0.001  0.590 -0.769 (-0.875--0.663) <0.001  

Study Week -0.011 (-0.024-0.001) 0.070  0.020 -0.002 (-0.011-0.006) 0.571  

Days since symptom 
onset 

0.046 (-0.011-0.103) 0.111  0.014 0.025 (-0.009-0.058) 0.146  

Age 0.007 (-0.014-0.027) 0.505 -0.005 -0.011 (-0.024-0.001) 0.077  

Gender -0.286 (-0.766-0.193) 0.239  0.004 -0.126 (-0.419-0.167) 0.395  

Influenza Vaccination -1.383 (-3.192-0.425) 0.133  0.011 -0.284 (-1.336-0.767) 0.593  

Current Smoker -0.217 (-1.029-0.594) 0.597 -0.006 0.043 (-0.455-0.542) 0.863  

Paracetamol at Baseline 0.039 (-0.579-0.658) 0.900 -0.009 -0.01 (-0.387-0.366) 0.957  

Antibacterial at Baseline -0.338 (-0.814-0.138) 0.162  0.009 -0.144 (-0.454-0.167) 0.361  

Any Respiratory Disease 0.885 (-0.408-2.178) 0.178  0.007 0.311 (-0.483-1.105) 0.438  

Current Pregnancy -0.513 (-2.459-1.432) 0.598 -0.015 - -  

Table 4.5 Homosubtypic Titre Change between Visit 1 and Visit 2. Subjects infected with H1N1 and H3N2 
included in linear regressions. 

To investigate non-linear relationships, baseline titre, week of study recruitment, days since 

symptom onset and age were fitted as non-parametric splines along with an indicator for infecting 

subtype using GAMM package.  The overall model fit was better than the multivariable linear model 

with an adjusted R2 of 0.738 and AIC 240 (vs R2 0.684 and AIC 263). Only titre at baseline had a 

significant smoothed spline term (p <0.001), age at baseline and infecting subtypes were both 
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significant linear terms (p <0.001 & 0.023 respectively). Due to a small number of H1N1 infections, 

fitting a separate spline for H1N1 and H3N2 infections results in an over fitted spline for H1N1 

despite significance for this fitted term. 

The GAM model demonstrates a plateauing of predicted visit two titres where baseline titre is 

greater than 80 (Figure 33 – left panel). When the predicted titre change is plotted against the 

maximum possible change between visit one and two (Figure 33 – right panel) it is likely that the 

presence of right censoring because of upper limit of detection on the microarray is responsible for 

this appearance. 

 

Figure 33 Predicted Visit 2 Homosubtypic Titre by Baseline Titre and Infecting Subtype. Left Panel Shows 
predicted titres with 95% CI of prediction. Right Panel shows titre change, black line is the maximum possible 
titre change for baseline titre. Points represent titre measurements from study, colour reflects infecting 
subtype. 

In univariate analysis of heterosubtypic response, titre at baseline, days since symptom onset and 

having received antibiotics at baseline were predictive of a response (Table 4.6). In multivariable 

analysis, titre at baseline and antibiotic use at baseline remain significant. As in homosubtypic 

response, a GAM was fitted using non-parametric splines; titre at baseline was the only significant 

term.  However, this was optimally fit with a linear term rather than a smoothed spline when given 

the option of fitting either model. In contrast to the homosubtypic response, four individuals had 

titre values at the limit of detection for the assay so the titre behaviour seen in Figure 33 is not 

replicated in Figure 34.  A higher predicted response in heterosubtypic strain is seen where baseline 

heterosubtypic titre is low (Figure 34).   
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 Univariate  Multivariable 

 
Estimate 
(95% CI) 

p value R2 
Estimate 
(95% CI) 

p value R2 

H3N2 vs H1N1 
-0.042 (-0.616-0.532) 0.886 -0.009 -0.421 (-0.988-0.147) 0.144 

0.279 

Titre at Baseline 
-0.282 (-0.37--0.193) <0.001  0.257 -0.255 (-0.356--0.154) <0.001 

 

Study Week 
0.001 (-0.009-0.01) 0.918 -0.009 0.002 (-0.008-0.011) 0.755 

 

Days since symptom 
onset 

0.067 (0.024-0.11) 0.003  0.070 0.036 (-0.005-0.078) 0.084 
 

Age 
0.015 (-0.001-0.031) 0.065  0.022 0.001 (-0.014-0.016) 0.866 

 

Gender 
0.188 (-0.189-0.565) 0.326  0.000 0.197 (-0.152-0.545) 0.265 

 

Influenza Vaccination 
-0.552 (-1.984-0.879) 0.446 -0.004 -0.291 (-1.539-0.958) 0.645 

 

Current Smoker 
0.011 (-0.627-0.65) 0.972 -0.009 -0.165 (-0.756-0.426) 0.580 

 

Paracetamol at Baseline 
0.176 (-0.309-0.661) 0.474 -0.004 0.361 (-0.085-0.807) 0.111 

 

Antibacterial at Baseline 
-0.443 (-0.81--0.075) 0.019  0.040 -0.398 (-0.772--0.025) 0.037 

 

Any Respiratory Disease 
0.147 (-0.877-1.171) 0.777 -0.008 -0.143 (-1.088-0.801) 0.764 

 

Current Pregnancy 
0.5 (-0.746-1.745) 0.424 -0.007 

- -  

Table 4.6 Heterosubtypic Titre Change between Visit 1 and Visit 2. Subjects infected with H1N1 and H3N2 
included in linear regressions. 

 
Figure 34 Predicted Visit 2 Heterosubtypic Titre by Baseline Titre and Infecting Subtype. Left Panel Shows 
predicted titres with 95% CI of prediction. Right Panel shows titre change, black line is the maximum possible 
titre change for baseline titre. Points represent titre measurements from study, colour reflects infecting 
subtype. 
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4.3.2.2 Change in Historic Human Strains 

As with the response to more recent strains, the log titre change between baseline and one month 

post-infection of historic strains between baseline and one month post infection is significantly 

different between infecting subtypes (one way ANOVA, Table 4.7). Again the largest change was in 

the heterosubtypic response but a consistent positive rise was seen in homosubtypic historic strains 

(Figure 35).  In post-hoc testing (Tukey HSD) the homosubtypic response was always statistically 

different from influenza negative individuals. The heterosubtypic response was not statistically 

significantly different from negative individuals for the more recent H1N1 strains (1999) or for most 

of the H3N2 strains (1968, 2005, and 2009). There are a relatively small number of individuals 

infected with H1N1 which may account for the lack of statistical significance although it is worth 

noting that the trend of the change is consistently positive.  There is no significant difference in titre 

change of H3N2 2003 between individuals infected with H3N2 or H1N1. This is likely to be because 

H3N2 2003 had the highest baseline titre of all strains (see Chapter 3) and so has the lowest possible 

rise as described above. 

 
Influenza A H1N1 Influenza A H3N2 

Influenza 
Negative 

ANOVA 

H1N1 1918 
Mean (95%CI) 

2.97 (1.96-3.99) 1.16 (0.94-1.37) -0.06 (-0.3-0.17) 
F(2,177)=52.56 

p <0.001 

H1N1 1977 
Mean (95%CI) 

1.93 (1.31-2.55) 0.89 (0.69-1.08) 0.05 (-0.13-0.23) 
F(2,177)=32.22 

p <0.001 

H1N1 1999 
Mean (95%CI) 

1.31 (0.73-1.9) 0.34 (0.21-0.48) 0.1 (-0.15-0.35) 
F(2,177)=12.16 

p <0.001 

H1N1 2007 
Mean (95%CI) 

1.73 (1.15-2.31) 0.46 (0.27-0.65) 0.02 (-0.28-0.32) 
F(2,177)=15.1 

p <0.001 

H3N2 1968 
Mean (95%CI) 

0.75 (0.41-1.09) 2.84 (2.54-3.14) 0.02 (-0.28-0.33) 
F(2,177)=89.52 

p <0.001 

H3N2 2003 
Mean (95%CI) 

1.02 (0.4-1.63) 1.69 (1.42-1.96) 0.13 (-0.05-0.31) 
F(2,177)=36.4 

p <0.001 

H3N2 2005 
Mean (95%CI) 

0.77 (0.35-1.19) 2.54 (2.3-2.78) 0.1 (-0.16-0.36) 
F(2,177)=98.3 

p <0.001 

H3N2 2007 
Mean (95%CI) 

0.8 (0.41-1.19) 3.17 (2.96-3.38) 0.01 (-0.26-0.28) 
F(2,177)=181.4 

p <0.001 

H3N2 2009 
Mean (95%CI) 

0.89 (0.29-1.5) 3.69 (3.45-3.93) 0.04 (-0.33-0.4) 
F(2,177)=159.1 

p <0.001 

Table 4.7 Mean Log2 Titre Change of Historic Strains between Visit 1 and 2 by Infecting Subtype 
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Figure 35 Log2 Titre Change between baseline and 30 days for Historic Strains by Infecting Subtype 

For historic strains regression models were fit to look for predictors of titre change. For each strain 

the homosubtypic and heterosubtypic response were investigated separately. Because of the nature 
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of the historic strain data, it was necessary to consider individuals infected with H3N2 and H1N1 

separately for this particular analysis, unlike with the response to current strains, ice homosubtypic 

response to H1N1 1918 uses data only from subjects infected with H1N1, heterosubtypic response 

to H1N1 1918 uses data only from subjects infected with H3N2. Results tables of univariate and 

multivariable analyses are in the supplementary appendix. 

In univariate analysis of homosubtypic response, titre at baseline was a significant predictor of titre 

change for all historic human H3N2 strains (p values <0.001) but not H1N1 strains (p > 0.05). Age was 

a significant predictor for titre change for H3N2 1968, 2003 and 2005 although with differing effects. 

Higher age at baseline was associated with a lower titre change in 1968 but higher changes in 2003 

and 2005 although all these effects were small with a 0.2 log2 titre change for each 10 years of age. 

Days since symptom onset was a significant predictor for H3N2 2005 but the p value was 0.048 and 

this is likely to be a chance finding. No other variables were significant in univariate analysis.   

In multivariable analysis, titre at baseline remained a significant predictor of titre change for all 

historic H3N2 strains (p values <0.001). Age was a significant predictor of more recent H3N2 strains 

(H3N2 2009, p value 0.02) even when baseline titre was accounted for with older age groups having 

a lower response but again with a small effect of less than 0.2 log2 titre change for each 10 years of 

age.  No significant terms were found in multivariable model of H1N1 homosubtypic response 

although there are only 14 individuals in this group.  

As with the response to the most recent strains, higher baseline titre in historic human strains 

results in a lower log titre change. The number of right censored samples on visit two samples are 

likely to contribute to this (Table 4.8).  

 Influenza A H1N1 

(n=14) 

Influenza A H3N2 

(n=102) 

Influenza 

Negative 

(n=66) 

H1N1 1918 n (%) 1 (7.1) 3 (3) 1 (1.5) 

H1N1 1977 n (%) 0 (0) 2 (2) 0 (0) 

H1N1 1999 n (%) 1 (7.1) 2 (2) 0 (0) 

H1N1 2007 n (%) 4 (28.6) 3 (3) 4 (6.1) 

H1N1 2009 n (%) 3 (21.4) 1 (1) 0 (0) 

H3N2 1968 n (%) 1 (7.1) 32 (32) 5 (7.6) 

H3N2 2003 n (%) 8 (57.1) 89 (89) 31 (47) 

H3N2 2005 n (%) 2 (14.3) 87 (87) 18 (27.3) 

H3N2 2007 n (%) 0 (0) 63 (63) 9 (13.6) 

H3N2 2009 n (%) 2 (14.3) 75 (76.5) 14 (21.2) 

H3N2 2011 n (%) 3 (21.4) 85 (85) 17 (25.8) 

Table 4.8 Number of Samples (%) with right censored values at visit 2 (>1280). 
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In univariate analysis of heterosubtypic response in historic human strains, titre at baseline was the 

only significant predictor of log titre change between visit one and two (H3N2 strains p values <0.05, 

H1N1 strains p values <0.001). This was true of all strains except heterotypic response to H3N2 1968 

(i.e. response in individuals infected with H1N1). In multivariable regression, baseline titre remains 

the only significant predictor of heterosubtypic titre change in individuals infected with H3N2 

(response in H1N1 strains with exception of H1N1 1977 p value <0.01). No significant terms were 

found in the model of heterosubtypic response for individuals infected with H1N1. As in the 

homosubtypic response, the small numbers in this group make it difficult to interpret this response. 

4.3.3 Homosubtypic Antibody Dynamics 

Following acute influenza infection there is a rise in the homosubtypic and heterosubtypic strain 

responses as detailed in section 4.3.2. In looking at the short term dynamics after infection, the raw 

titres rapidly rise followed by a decline (Figure 36). It is not clear if this decline is monophasic with a 

fixed rate of decline from the peak response or if there is a more complex decline. We employ 

several methods to investigate this: in the first instance piecewise linear regression will be used to fit 

multiple linear regressions through the data accounting for rise and fall of antibody followed by 

generalised additive models using flexible non-parametric spline fits. Because of the small numbers 

of H1N1 infections with longitudinal data to seven months, all analyses in this section will only 

include subjects infected with H3N2 and negative individuals.  

 

Figure 36 H3N2 Homosubtypic Strain Response. Individual trajectories in grey. 
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4.3.3.1 Piecewise Linear Regression 

A two-step process was used to investigate antibody response using piecewise regression. First the 

optimal breakpoint (or points) was determined using bootstrapping methods and the segmented 

package.  The mean breakpoint(s) were then used to identify the range of variation in the slopes 

surrounding the breakpoint. In order to fit the model, a prior estimate of break point was required, i) 

30 and ii) 30 and 90 were used, which were estimated from visual inspection of Figure 36. 

Mean estimates of the first breakpoint (which represents the peak of titre response post infection) 

were localised around 30 days for all homosubtypic strains with the exception of H3N2 2003 for both 

models (one and two breakpoints, Table 4.9) . The upper limit of credible interval was always less 

than 40 days where a single breakpoint was estimated and only higher for H3N2 1968 and 2005 

where two breakpoints were estimated. The optimal peak for H3N2 2003 was earlier and it is again 

possible that this is due to the higher baseline titres to this strain and that this represents the time 

to reach the maximum possible titre measurable on the assay rather than a time to reach peak 

response. This could also have affected strains which have a large number of censored titres in 

follow-up samples and may explain the wider credible intervals for more recent strains (Table 4.10). 

 Single Breakpoint Two Breakpoints 

 
Break 

(95%CI) 
AIC a R2 

Conv. 
(n) 

Break 1 
(95%CI) 

Break 2 
(95%CI) 

AIC a R2 
Conv. 

(n) 

H3N2 1968 
32.16  

(10.8-35.5) 
1235.91 0.37 1000 

36.01  
(28.8-86.51) 

96.21  
(32.2-216.1) 

1229.77 0.38 603 

H3N2 2003 
10.41  

(4.69-35.86) 
 948.27 0.38 1000 

8.47  
(2.63-37.7) 

33.63  
(30.5-51.21) 

 950.12 0.38 734 

H3N2 2005 
32.09  

(9.29-36.31) 
 946.48 0.59 1000 

32.49  
(8.15-56.32) 

83.17  
(30.7-214.5) 

 947.91 0.59 669 

H3N2 2007 
32.37  

(31.5-36.47) 
1036.85 0.61 1000 

32.32  
(5.96-35.15) 

103.92 
(30.9-218.3) 

1035.75 0.61 752 

H3N2 2009 
29.14  

(20.4-32.71) 
1054.53 0.68 1000 

29.04  
(8.15-33) 

122.06 
(30.4-218.9) 

1055.13 0.68 764 

H3N2 2011 
31.6  

(15.73-34.4) 
 933.95 0.67 1000 

31.64  
(6.09-36.82) 

127.2  
(31.6-220.4) 

 935.29 0.67 703 

Table 4.9 Homotypic Response to H3N2 Infection. Piecewise linear regression. Bootstrapped 95% Credible 
Interval from 1000 replicates. AIC and adjusted R2 for the model using best predicted break point. Comparison 
of AIC within strain only, i.e. across rows only. Conv. is the number of models which successfully converged 
during Maximum Likelihood Estimation using the segmented package. 

There was more variability in the estimation of the second breakpoint although mean estimates and 

credible intervals may suggest a pattern of second breakpoint between 90 and 120 days after 

infection (Table 4.9). It should be noted that having two breakpoints did not significantly improve 

model fit or percentage of deviance explained compared to a single breakpoint as measured by AIC 

and adjusted R2 for the optimal breakpoint (within strain comparison only). The model with two 
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breakpoints was also less likely to converge during maximum likelihood optimization (60-76% of 

bootstrapped datasets converged). This demonstrates that for the available data it is difficult to 

make interpretations about a second breakpoint. This could be because it exists but we have too few 

data points (either too few subjects or too few sampled time points) or because there is not an 

optimal second time point.  

 
Visit 1  
n (%) 

Visit 2 
n (%) 

Visit 3 
n (%) 

Visit 4 
n (%) 

Visit 5 
n (%) 

H3N2 1968 1 (1) 32 (32) 7 (11.5) 4 (8.2) 3 (6.8) 

H3N2 2003  25 (24.5) 89 (89) 47 (77) 36 (73.5) 29 (65.9) 

H3N2 2005 6 (5.9) 87 (87) 43 (70.5) 35 (71.4) 28 (63.6) 

H3N2 2007 0 (0) 63 (63) 25 (41) 20 (40.8) 13 (29.5) 

H3N2 2009  0 (0) 75 (76.5) 41 (67.2) 30 (61.2) 27 (61.4) 

H3N2 2011  4 (3.9) 85 (85) 46 (75.4) 33 (67.3) 31 (70.5) 

Table 4.10 Number of samples (%) with right censored values (>1280) by visit number. H3N2 PCR positive 
subjects only. 

The next step was to fit slopes using the optimal breakpoints. This was again performed with 1000 

bootstrapped datasets for both models of one or two break points. As would be expected for strains 

with similar breakpoints, the rate of titre increase was similar for all strains except H3N2 2003 where 

slopes for a single breakpoint were estimated (Table 4.11). The rate of decline was less consistent 

between strains with the mean rate of titre decline varying between 102 and 589 days/one log unit 

decline. This again is likely to be affected by the number of censored values and it is worth noting 

that strains with fewer censored values (H3N2 1968 and 2007) have faster rates of decline and 

narrower credible intervals. 

 
Break 
Point 

Slope 1: Days 
to Rise 1 Log 

Unit 

Slope 2: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H3N2 1968 33 
11.4  

(10.1-13.1) 
102.4  

(81.6-131.3) 
1000 

H3N2 2003 8 
4.6  

(3.9-5.5) 
589  

(369-1561) 
1000 

H3N2 2005 32 
11.7  

(10.4-13) 
399.2  

(252.5-836.5) 
1000 

H3N2 2007 32 
9.5  

(8.8-10.4) 
201.1  

(148.6-318.8) 
1000 

H3N2 2009 29 
7.4  

(6.9-8.1) 
359.2  

(215.3-1309.5) 
1000 

H3N2 2011 32 
10.1  

(9.2-11.1) 
462.3  

(277.3-1066.3) 
1000 

Table 4.11 Homotypic Response to H3N2 Infection. Using single fixed break point slope estimates from 
piecewise linear regression. 1000 bootstrapped replicates performed, mean and 95% credible interval of slope 
presented. 
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Where two breakpoints were fitted, the slope estimates for a two phase decline were less consistent 

(Table 4.12). The rates of initial titre rise were consistent with estimates for a single breakpoint. The 

credible intervals included rates of decline which extended beyond 10 years to drop one unit. Again 

it is likely that titre censoring is playing a part here as the most interpretable strain is H3N2 1968 

with a fast initial decline followed by a slower rate of decline which is in keeping with prior work. The 

relatively short follow-up period would also make it difficult to measure a biphasic decline using this 

method. 

 
Break 
Point

1 

Break 
Point

2 

Slope 1: Days 
to Rise 1 Log 

Unit 

Slope 2: Days 
to Fall 1 Log 

Unit 

Slope 3: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H3N2 1968 36  96 
11.2  

(9.8-12.8) 
44.7  

(33.8-66.1) 
222.2  

(99.3-1731.5) 
1000 

H3N2 2003  8  34 
4.3  

(6.6-104) 
81.8  

(13159.4-26.3) 
557.5  

(330.1-1293.8) 
1000 

H3N2 2005 32  83 
11.5  

(10.4-12.9) 
216.3  

(104.9-1742.1) 
596  

(1485->3000) 
1000 

H3N2 2007 32 104 
9.3  

(8.5-10.1) 
110.2  

(73.6-217.9) 
468.8  

(629.8->3000) 
1000 

H3N2 2009 29 122 
7.3  

(6.7-8) 
188.7  

(102.3-719.6) 
109746.5 

(>3000->3000) 
1000 

H3N2 2011 32 127 
9.9  

(9.1-10.9) 
275.9  

(159.4-1087.3) 
3000.9  

(1408.6->3000) 
1000 

Table 4.12 Homotypic Response to H3N2 Infection. Using two fixed break points slope estimates from piecewise 
linear regression. 1000 bootstrapped replicates performed, mean and 95% credible interval of slope presented. 
Rates in italics include a positive slope 2 or 3 (i.e. an increase in titre) in confidence intervals. 

As can be seen in Figure 36 there is considerable variation between individuals in the magnitude of 

their response. To try and account for this, piecewise linear regression was refit with a random 

effects term allowing a different intercept for each subject. There were not enough data points to 

allow different breakpoints and slopes for each individual but this also fits in with the assumption 

that the overall trend of response is similar between all individuals although the magnitude of 

response may differ. 1000 bootstrapped replicates were run to calculate mean estimate and 95% 

credible intervals. In the sampling procedure, sampling with replacement was allowed by participant 

ID but no resampling was performed on serum sample time points. As in the initial regressions, 

models were fit to determine optimal breakpoint(s) followed by investigation of slope variability for 

the mean breakpoint(s). 

Compared with the initial regression, the introduction of random effects gives a similar range of time 

to peak response but with narrower 95% CI (Table 4.13). Of note, the time of peak response in H3N2 

2003 is later at 22 days (rather than 10 days without random effects). The inclusion of random 

effects is likely to be accounting for the higher baseline and censored values to give a better overall 
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idea of trend. Where two breakpoints were fit, the second breakpoint was more consistent between 

strains in both mean and credible interval estimates. Using random effects all models were able to 

converge in contrast to the initial regressions not accounting for individual differences. Using the 

methods described by (Nakagawa and Schielzeth, 2013) it is possible to determine the adjusted R2 of 

random effects model. The first measurement describes the proportion of variance explained by the 

fixed factors only (marginal R2). The second is the conditional R2, which describes the proportion of 

variance explained by both the fixed and random factors. As would be expected, the marginal R2 for 

the random effects models (Table 4.13) are similar to the R2 for the models without random effects 

(Table 4.9). The inclusion of the random effects shows a considerable improvement in the R2 and 

demonstrates the importance of individual variability and baseline titre on estimation of titre 

dynamics. The inclusion of random effects leads to a bigger proportion of variance explained in older 

strains compared to more recent strains, likely due to the larger variability in baseline titre (see 

Chapter 3). Only H3N2 1968 showed an improvement in fit as measured by AIC between one and 

two breakpoints even with random effects. 

 Single Breakpoint Two Breakpoints 

 
Break 

(95%CI) 
AIC 

aR2 Fit 
(n) 

Break 1 
(95%CI) 

Break 2 
(95%CI) 

AIC 
a R2 Fit 

(n) M C M C 

H3N2 1968 
30.3  

(17.1-32.6) 
1103.97 0.38 0.76 1000 

30.3  
(18.1-32.5) 

92.3  
(57.6-118.1) 

1096.86 0.39 0.78 1000 

H3N2 2003 
22.6  

(5.5-36) 
 934.75 0.36 0.61 1000 

23  
(5.3-36) 

117.4  
(44-176) 

 946.05 0.35 0.61 1000 

H3N2 2005 
28.3 

(8.8-35.8) 
 912.35 0.57 0.76 1000 

28.4  
(8.5-35.8) 

103.9  
(91-205.5) 

 923.84 0.57 0.76 1000 

H3N2 2007 
31.5  

(31-33) 
 949.08 0.60 0.82 1000 

31.6  
(31-33) 

99.4  
(59.6-126.4) 956.24 0.60 0.82 1000 

H3N2 2009 
30.5  

(22.4-34.7) 
1003.36 0.67 0.83 1000 

30.6  
(29-33.7) 

137.5  
(91-210) 1013.01 0.67 0.83 1000 

H3N2 2011 
32.5  

(17.1-36) 
 896.82 0.65 0.82 1000 

32.6  
(17.9-36) 

126.8  
91-206.9) 907.53 0.65 0.82 1000 

Table 4.13 Homotypic Response to H3N2 Infection. Piecewise linear regression with random effects for 
individual intercept. Bootstrapped 95% Credible Interval from 1000 replicates.  Adjusted R2 calculated using 
methods described in (Nakagawa and Schielzeth 2013), M = marginal R2, C = conditional R2. Comparison of AIC 
within strain only, i.e. across rows only 

 

 

 



Influenza Antibody Dynamics following Acute Respiratory Infection 
 

91 

 
Break 
Point 

Slope 1: Days 
to Rise 1 Log 

Unit 

Slope 2: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H3N2 1968 30 
10.4 

(9.4-11.5) 
109.8 

(94.6-127.5) 
1000 

H3N2 2003 23 
12.4 

(10.5-14.4) 
432.6 

(299.4-643.4) 
1000 

H3N2 2005 28 
10.3 

(9.4-11.3) 
398.8 

(259.3-655.8) 
1000 

H3N2 2007 32 
9.6 

(8.9-10.2) 
184.3 

(140.6-244.6) 
1000 

H3N2 2009 31 
8 

(7.5-8.5) 
304.1 

(202.1-477.1) 
1000 

H3N2 2011 33 
10.3 

(9.6-11.1) 
388.7 

(257.5-644.9) 
1000 

Table 4.14 Homotypic Response to H3N2 Infection. Using single fixed break point slope estimates from 
piecewise linear regression with random intercept for individual response. 1000 bootstrapped replicates 
performed, mean and 95% credible interval of slope presented. 

In the models with a single breakpoint, the credible intervals of the rate of decline were narrower 

where random effects were included (Table 4.14).  The fastest rate of decline was in H3N2 1968 and 

2007. Although it is feasible that titre rises relating to the boosting of previously exposed strain last a 

shorter length of time than a new response to the most recent circulating strains, the presence of 

censored titres currently means these findings cannot be explored further. As in the model without 

random effects, the two break point model includes rises within the credible intervals where there is 

a significant proportion of censored values (Table 4.15).  

 
Break 
Point

1 

Break 
Point

2 

Slope 1: Days 
to Rise 1 Log 

Unit 

Slope 2: Days 
to Fall 1 Log 

Unit 

Slope 3: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H3N2 1968 30  92 
9.6  

(8.7-10.7) 
53.8  

(44.1-68.1) 
226.7  

(161.4-331.7) 
1000 

H3N2 2003 23 117 
12.2  

(10.5-14.2) 
328.5  

(174.2-708.8) 
-1051.8  

(->3000->3000) 
1000 

H3N2 2005 28 104 
10.1  

(9.3-11.1) 
287.6  

(166.5-490.7) 
626.9  

(228.9-2356.7) 
1000 

H3N2 2007 32  99 
9.3  

(8.7-9.9) 
108.7  

(78.7-154.7) 
355.8  

(198.5-692.8) 
1000 

H3N2 2009 31 138 
7.9  

(7.4-8.3) 
198  

(128.4-308.3) 
84.2 

 (-9783-7880.3) 
1000 

H3N2 2011 33 127 
10.2  

(9.5-11) 
254.1  

(159-443.1) 
1146.6  

(->3000->3000) 
1000 

Table 4.15 Homotypic Response to H3N2 Infection. Using two fixed break points slope estimates from piecewise 
linear regression with random intercept for individual response. 1000 bootstrapped replicates performed, mean 
and 95% credible interval of slope presented. Rates in italics include a positive slope 2 of slope presented 
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4.3.3.2 Non-linear model of response 

An alternative to piecewise linear regression is to use a non-parametric approach to titre response 

using generalised additive models and splines. These methods allow a flexible approach to the shape 

of response accounting for individual variation when random effects are used. For homosubtypic 

responses in individuals infected with H3N2, the fitted splines show a rapid rise and predominantly 

biphasic decline which is most pronounced in strains with the fewest censored values in follow-up 

(Figure 37).  All strain specific splines were highly significant (p values <0.001).  When the non-linear 

splines of antibody response were compared to piecewise linear regression with one or two 

breakpoints, there was little difference in the adjusted R2 on the fixed component (marginal R2) of 

the regression models (Table 4.16). The adjusted R2 was highest in the most recent strains for both 

modelling approaches. AIC was lower for the simpler piecewise regressions for all strains but a 

significant improvement in AIC between one or two breaks was only seen where there were few 

censored values (H3N2 1968 and 2007).  

 GAM Piecewise One Break Piecewise Two Break 

 AIC R2 AIC R2 AIC R2 

H3N2 1968 
1092.067 0.378 1104.099 0.38 1097.25 0.391 

H3N2 2003 
934.191 0.371 934.794 0.355 946.052 0.354 

H3N2 2005 
913.534 0.583 912.343 0.567 923.829 0.566 

H3N2 2007 
952.844 0.604 949.132 0.599 956.017 0.6 

H3N2 2009 
1006.155 0.675 1003.329 0.672 1012.91 0.672 

H3N2 2011 
899.258 0.667 896.679 0.654 907.254 0.654 

Table 4.16 Comparison of Fixed Effects for Homosubtypic Antibody Response in Individuals Infected with 
Influenza A H3N2. Comparison of AIC within strain only, i.e. across rows only. 
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Figure 37 Antibody response to Homosubtypic Strains in Individuals infected with Influenza A H3N2. Red line is 
GAM fit for titre against time since infection. Grey band is 95% CI of mean estimated response. Vertical dashed 
lines are the strain specific breakpoints from piecewise linear regression estimates.  

In both the GAM and piecewise regressions, a random intercept for each individual was allowed 

which makes the assumption that the baseline titre will vary the magnitude but not shape of 

response. One explanation for the rising R2 in more recent strains could be that this is a new immune 

response to infection with current strains and that most people have similar kinetics regardless of 

age and therefore prior exposure to this strain. As seen in Chapter 3 most infected individuals had 

similar baseline titres of recent strains so these kinetics are reasonably consistent between 

individuals. For older strains (1968 and 2003), the adjusted R2 was lower for post infection response 

because factors other than just baseline titre dictate the shape of the antibody dynamics. Although 

the simpler piecewise regression models were better fitting than the GAM model of titre response, 

the flexibility allowed by the GAM modelling approach will allow easier exploration of these 

additional features such as age, time of infection and baseline titre.  

Age was incorporated in the model of homosubtypic antibody dynamics in two ways. The first was to 

allow a different spline of titre response for each age category. The other was to fit a model 

including separate splines of time since infection and age. Fitting splines for different age categories 

did not significantly improve model fit (Table 4.17) although all splines were highly significant where 

there were adequate numbers of data points (Figure 38). In contrast, the inclusion of a single age 
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spline showed a significant improvement compared to GAM with only time since infection or 

separate splines. The adjusted R2 of the fixed components are most improved in the historic strains 

although the AIC of the simpler piecewise regressions are still better than the more complicated 

GAM models. 

 
Separate Splines  

for each Age Category 
Single Age Spline 

 AIC R2 AIC R2 

H3N2 1968 
1109.59 0.397 1051.427 0.57 

H3N2 2003 
963.501 0.366 930.406 0.431 

H3N2 2005 
948.559 0.58 909.735 0.608 

H3N2 2007 
1001.357 0.592 954.205 0.619 

H3N2 2009 
1051.534 0.667 1008.569 0.681 

H3N2 2011 
938.482 0.663 895.812 0.686 

Table 4.17 Comparison of Fixed Effects for Homosubtypic Antibody Response by Age in Individuals Infected with 
Influenza A H3N2. Comparison of AIC within strain only, i.e. across rows only. 
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Figure 38 Antibody response to Homosubtypic Strains by Age Category in Individuals infected with Influenza A 
H3N2. Points represent measured titre. Red line is GAM fit for titre against time since infection with random 
effects for individual response. Grey band is 95% CI of mean estimated response.  

If the GAM with splines of age and days since infection are used to predict the antibody response for 

different ages (15, 25, 40 and 60) then a pattern of response can be seen (Figure 39). The predicted 

response to H3N2 1968 shows that a higher response is expected in older individuals however in 
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more recent strains this changes, with highest response seen in younger individuals with less 

differentiation between other age groups. 

 

Figure 39 Predicted Antibody Response to Homosubtypic Strains for Selected Ages in Individuals infected with 
Influenza A H3N2. Age is included as a spline of response. Grey band is 95%CI of Mean Response. Horizontal 
dashed line is current limit of detection for Microarray. 

To this point all strain specific models have been fit separately. An alternative approach is to analyse 

all titre responses together with strain specific splines while maintaining random effects for 

individual subjects.  Initially this model was fit without age and all strains remained highly significant. 

The combined model led to an improvement in fit for some strains but poorer for more recent 

strains (adjusted R2 for combined model 0.474 vs Table 4.16). Using this approach the model is 

unable to converge when a spline of age or age at emergence was included.   

To explore possible mechanisms behind the age differences, titre response was categorised 

depending on whether this was i) a titre response to a recent strain (H3N2 2011), ii) a titre response 

to historic strains an individual could have been exposed to (i.e. subject was alive at the time of 

circulation) iii) a titre response to historic strains an individual could not have been exposed to (i.e. 

subject was not alive at the time of circulation). The overall model fit was not significantly improved 

compared to using splines for individuals strains (adjusted R2 0.459) and the addition of age did not 

improve this (adjusted R2 0.459). Splines for the exposure period were highly significant in both of 

these models but age spline was not (Figure 40). Compared to both responses to recent strains and 

to historic strains individuals could have encountered, the titre response in the historic strains 

individuals could not have encountered appear to give a higher peak and faster decline. However, it 
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is worth noting that this response is entirely based on titre response to H3N2 1968 strains (Table 

4.18), it would be important to explore this in more detail with a broader range of strain years. 

 

Figure 40 Homosubtypic Titre Response by Strain Exposure in Individuals infected with Influenza A H3N2. Age is 
included as a spline of response in bottom row. Grey band is 95% CI of Mean Response. Horizontal dashed line 
is current limit of detection for Microarray. 

 
Historic 
Exposed 

Historic 
Not 

Exposed 
Recent 

H3N2 1968 33 323 0 

H3N2 2003 356 0 0 

H3N2 2005 356 0 0 

H3N2 2007 356 0 0 

H3N2 2009 354 0 0 

H3N2 2011 0 0 356 

Table 4.18 Number of Titres by Strain for Each Strain Exposure Category 

4.3.4 Heterosubtypic Antibody Dynamics 

In order to investigate the apparent heterosubtypic rise following acute infection, a combination of 

piecewise linear regression and GAM with splines were used to investigate the dynamics in the same 

way as the homosubtypic response was investigated. This analysis will look at the response to H1N1 

strains in individuals infected with H3N2 only. Figure 41 shows the individual subject trajectories 

throughout the follow-up period, although the increase between baseline and first follow-up can be 
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seen clearly, there appears to be a pattern of decline that is less consistent than in the 

homosubtypic response for the same individuals plotted in Figure 36. 

 

Figure 41 Heterosubtypic Strain Response in individuals infected with H3N2. Individual trajectories in grey. 

4.3.4.1 Piecewise Linear Regression 

For the heterosubtypic response all models included individual random effects as this method clearly 

demonstrated better fit in the homosubtypic response. As before a two-step process was used with 

the determination of optimal breakpoints followed by estimation of the slope variation around these 

breakpoints. 1000 bootstrapped replicates were run to calculate mean and credible interval. In the 

sampling procedure, sampling with replacement was allowed by participant ID but no resampling 

was performed on serum sample time points. 

As with the homosubtypic response, the first breakpoint localises around 30 days although there is 

more variation than in the homosubtypic response (Table 4.19). The 95% CI are widest for H1N1 

1999 and 2007 which did not demonstrate a significant titre change between Visit one and two in 

section 4.3.2.2.  Where a second breakpoint was fit the mean break was at around day 100 as with 

the homosubtypic response.  
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 Single Breakpoint Two Breakpoints 

 
Break 

(95%CI) 
AIC 

aR2 Fit 
(n) 

Break 1 
(95%CI) 

Break 2 
(95%CI) 

AIC 
aR2 Fit 

(n) M C M C 

H1N1 1918 
26.7  

(6.4-33.9) 
1015.4 0.07 0.84 1000 

26.9 
(7-33.5) 

93.2 
(70.1-96) 

1013.50 0.07 0.85 1000 

H1N1 1977 
31.5  

(30-35) 
1022.3 0.03 0.90 1000 

31.5 
(30-35) 

94.5 
(57-121) 

1024.13 0.03 0.91 1000 

H1N1 1999 
40.5  

(6.4-129) 
855.3 0.01 0.87 1000 

41 
(6-154) 

104.4 
(55.2-210) 

860.73 0.01 0.88 1000 

H1N1 2007 
34.4  

(4.9-122) 
977.0 0.01 0.85 1000 

35 
(5-122) 

97 
(56.1-162.1) 

982.25 0.01 0.85 1000 

H1N1 2009 
24.5  

(4.3-36) 
992.5 0.04 0.86 1000 

25.4 
(4.7-36.2) 

97.3 
(93-118.1) 

996.09 0.04 0.87 1000 

Table 4.19 Heterotypic Response to H3N2 Infection. Piecewise linear regression with random effects for 
individual intercept. Bootstrapped 95% Credible Interval from 1000 replicates.  Adjusted R2 calculated using 
methods described in (Nakagawa and Schielzeth 2013), M = marginal R2, C = conditional R2. Comparison of AIC 
within strain only, i.e. across rows only. 

Slope variation for heterosubtypic response was consistent with the magnitude of change seen in 

section 4.3.2 with around a one log rise in the month following infection (Table 4.20). The rate of 

decline was more consistent for the strains where there was a significant rise (H1N1 1918, 1977 and 

2009) with a one log unit decline over 260 days. This was slower than in many of the homosubtypic 

strains (Table 4.14) but had a narrower 95% CI. Most subjects did not have censored values for H1N1 

strains and it is likely that this allows for better estimation and can explain the narrower credible 

intervals.  

 
Break 
Point 

Slope 1: Days 
to Rise 1 Log 

Unit 

Slope 2: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H1N1 1918 27 
23.5 

(19.5-28.7) 
260.1 

(194-357.5) 
1000 

H1N1 1977 32 
37.6 

(30.1-47.7) 
258.4 

(196.7-345.5) 
1000 

H1N1 1999 41 
132.2 

(80.6-231.6) 
17.1 

(373.5- -2040.7) 
1000 

H1N1 2007 35 
86.7 

(54.2-155.1) 
505.1 

(301.5-988.5) 
1000 

H1N1 2009 25 
30.4 

(23.6-40) 
257.7 

(202.1-331.4) 
1000 

Table 4.20 Heterosubtypic Response to H3N2 Infection. Using single fixed break point slope estimates from 
piecewise linear regression with random intercept for individual response. 1000 bootstrapped replicates 
performed, mean and 95% credible interval of slope presented. 

When a second breakpoint was fitted, the rate of decline between the two break points suggested 

that it would take between 100 and 200 days for the titre to drop one log unit. The rate of decline 
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after the second breakpoint included rates of decline which would be considered implausible (time 

to drop one log unit greater than 10 years, a rise in titre after the second breakpoint, Table 4.21).  

 
Break 
Point

1 

Break 
Point

2 

Slope 1: Days 
to Rise 1 Log 

Unit 

Slope 2: Days 
to Fall 1 Log 

Unit 

Slope 3: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H1N1 1918 27 93 
20.6 

(17.2-24.7) 
99.6 

(75.6-137.7) 
>3000 

(>3000- ->3000) 
1000 

H1N1 1977 32 95 
33.4 

(26.7-41.7) 
115 

(80-172.7) 
>3000 

(>3000- ->3000) 
1000 

H1N1 1999 41 104 
99.4 

(70.1-144) 
209.5 

(113.6-453.2) 
982.9 

(>-3000- >3000) 
1000 

H1N1 2007 31 97 
63.2 

(42.7-97.2) 
190.7 

(117.1-393.8) 
530.6 

(>-3000 ->3000) 
1000 

H1N1 2009 26 97 
27.8 

(21.8-35.8) 
122.2 

(85.8-176.7) 
754.9 

(349.2-2636.2) 
1000 

Table 4.21 Heterosubtypic Response to H3N2 Infection. Using two fixed break points slope estimates from 
piecewise linear regression with random intercept for individual response. 1000 bootstrapped replicates 
performed, mean and 95% credible interval of slope presented. Rates in italics include a positive slope 2 of 
slope presented 

4.3.4.2 Non-linear Model of Response 

The use of non-parametric splines to investigate the heterosubtypic response demonstrated a mean 

titre rise of approximately one log unit which was short lived and appeared to return to near 

baseline values by 150 days (Figure 42). All strain specific splines were highly significant (p values 

<0.001).  Despite the highly significant strain specific splines the percentage deviance explained (as 

measured by the adjusted R2) by the splines remains very low when compared to the adjusted R2 of 

the homosubtypic response (Table 4.22). In contrast to the homosubtypic response, the best AIC for 

each strain was always using a GAM approach rather than the piecewise linear model. 

 GAM Piecewise One Break Piecewise Two Break 

 AIC RSq AIC RSq AIC RSq 

H1N1 1918 998.273 0.063 1015.456 0.067 1013.53 0.073 

H1N1 1977 1008.38 0.023 1022.403 0.029 1024.042 0.032 

H1N1 1999 840.838 0.001 855.48 0.006 860.718 0.009 

H1N1 2007 964.274 0.003 977.057 0.011 982.25 0.015 

H1N1 2009 976.922 0.02 992.504 0.035 996.051 0.039 

Table 4.22 Comparison of Fixed Effects for Heterosubtypic Antibody Response in Individuals Infected with 
Influenza A H3N2. Comparison of AIC within strain only, i.e. across rows only. 
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Figure 42 Antibody response to Heterosubtypic Strains in Individuals infected with Influenza A H3N2. Red line is 
GAM fit for titre against time since infection. Grey band is 95% CI of mean estimated response. Vertical dashed 
lines are the strain specific breakpoints from piecewise linear regression estimates.   

Age was incorporated into the model of heterosubtypic response. As with the homosubtypic 

response, fitting splines for different age categories did not improve the model fit compared to time 

since ILI alone but using a spline of age did improve the adjusted R2 of the fixed component (Table 

4.23). The predicted mean antibody response for different ages (15, 25, 40 and 60) shows a faster 

rate of decline and return to baseline in younger individuals for H1N1 1918 and 2009 (Figure 43). 

When considered in terms of exposure the largest heterosubtypic response was for historic strains 

an individual could not have been exposed, suggesting this could be a either an assay effect or non-

specific antibody production rather than a boosting of immunological memory (Figure 44). 

 
Separate Splines  

for each Age Category 
Single Age Spline 

 AIC aR2 AIC aR2 

H1N1 1918 1032.609 0.045 1003.852 0.079 

H1N1 1977 1033.717 0.007 976.034 0.291 

H1N1 1999 857.507 0.005 844.104 0.006 

H1N1 2007 980.672 0.003 953.979 0.077 

H1N1 2009 1002.173 0.006 970.205 0.068 

Table 4.23 Comparison of Fixed Effects for Heterosubtypic Antibody Response by Age in Individuals Infected 
with Influenza A H3N2. Comparison of AIC within strain only, i.e. across rows only. 
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Figure 43 Predicted Antibody Response to Heterosubtypic Strains for Selected Ages in Individuals infected with 
Influenza A H3N2. Age is included as a spline of response. Grey band is 95% CI of Mean Response. Horizontal 
dashed line is current limit of detection for Microarray. 

 

Figure 44 Heterosubtypic Titre Response by Strain Exposure in Individuals infected with Influenza A H3N2. Age 
is included as a spline of response in bottom row. Grey band is 95% CI of Mean Response. Horizontal dashed 
line is current limit of detection for Microarray. 
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4.3.5 Antibody Response after Non-Influenza ILI 

In contrast to both the homo- and heterosubtypic responses in those infected with H3N2, there is 

not an obvious pattern of response seen in individuals who had non-influenza ILI (Figure 45).  

 

Figure 45 Strain Response in individuals with non-influenza ILI. Individual trajectories in grey. 
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4.3.5.1 Linear Model of Response 

Piecewise linear regression was not performed as there was no suggestion from the raw data of a 

biphasic response. Instead, linear regression with individual random effects for intercept was used. 

1000 bootstrapped replicates were run to calculate mean and credible interval of the slope. In the 

sampling procedure, sampling with replacement was allowed by participant ID but no resampling 

was performed on serum sample time points. Slope variation for those not infected with influenza 

was consistent with the decline in the homosubtypic response with a one log unit decline 

approximately every one to two years for most strains (Table 4.24). 

H1N1 H3N2 

Strain 
Slope 1: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

Strain 
Slope 1: Days 
to Fall 1 Log 

Unit 

Fit 
(n) 

H1N1 1918 
375.2  

(214.5-725.9) 
1000 H3N2 1968 

387.2  
(243-678.1) 

1000 

H1N1 1977 
369.7  

(240.9-657) 
1000 H3N2 2003 

974.2  
(355.3-2759.8) 

1000 

H1N1 1999 
506.3  

(275.5-938.9) 
1000 H3N2 2005 

691.5  
(261-2660.2) 

1000 

H1N1 2007 
374.6  

(214.3-832) 
1000 H3N2 2007 

547.7  
(279.8-1603.6) 

1000 

H1N1 2009 
2353.3  

(2596.1-3343.8) 
1000 H3N2 2009 

672.9  
(3123.8-4288.2) 

1000 

   H3N2 2011 
549.5  

(253.5-2517.8) 
1000 

Table 4.24 Antibody Response following non-influenza ILI. Slope estimates from linear regression with random 
intercept for individual response. 1000 bootstrapped replicates performed, mean and 95% credible interval of 
slope presented. 

4.3.5.2 Non-linear Model of Response 

Using non parametric splines to investigate response in individuals presenting with non-influenza ILI 

demonstrated a marginal improvement in model fit compared with the linear model (Table 4.25). 

However the R2 of the fixed effects was low for both GAM and linear models. H3N2 2003, 2009 and 

H1N1 1918 all preferentially fit linear models even when the option of fitting a spline was allowed 

(as determined by edf ~ 1). Where a spline was fit, a general decline was noted with a slight plateau 

at past 150 days which may be related to the number of samples available at this point (Figure 46). 

All strain specific splines were significant (p values <0.05). The inclusion of age did not significantly 

improve the model fit. Where models of exposure were fit, there was not a considerable difference 

in mean rates of decline (Figure 47).  
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 GAM Linear Response 

 edf AIC RSq AIC RSq 

H1N1 1918 
1.646 770.852 0.006 777.74 0.015 

H1N1 1977 
1 683.056 0.004 689.604 0.013 

H1N1 1999 
2.169 722.82 0.007 729.86 0.013 

H1N1 2007 
1.416 848.654 0.01 855.289 0.014 

H1N1 2009 
1 853.114 0.01 859.663 0.005 

H3N2 1968 
1.593 740.34 0.009 747.082 0.019 

H3N2 2003 
1 705.131 0.002 711.68 0.005 

H3N2 2005 
2.561 767.91 0.001 776.426 0.008 

H3N2 2007 
2.179 743.555 0.001 751.513 0.01 

H3N2 2009 
1.726 876.644 0.001 883.634 0.006 

H3N2 2011 
2.052 804.968 0 812.838 0.008 

Table 4.25 Comparison of Fixed Effects for Antibody Response in Individuals not Infected with Influenza. 
Comparison of AIC within strain only, i.e. across rows only. 

 

Figure 46 Antibody response in Individuals not infected with Influenza. Red line is GAM fit for titre against time 
since infection. Grey band is 95% CI of mean estimated response.  
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Figure 47 Antibody Response by Strain Exposure in Individuals not infected with Influenza. Age is included as a 
spline of response in bottom row. Grey band is 95% CI of Mean Response. Horizontal dashed line is current limit 
of detection for Microarray 
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4.4 DISCUSSION 

Influenza antibody dynamics have been studied for over 70 years. This has generally been restricted 

to early responses matched to the strain the individual was infected with. Despite being an integral 

part of influenza surveillance systems and pandemic planning through assessment of population 

immunity, our understanding of multi-strain and multi-subtype responses have been limited by the 

labour intensive nature of existing serological techniques. The development of the protein 

microarray used in this analysis and other high throughput techniques (Koopmans et al., 2011), 

along with a dramatic shift in the availability of computing power to analyse complex multivariate 

data sets not possible even a few decades ago, has given an opportunity to re-examine multi-strain 

and multi-subtype responses following infection. 

As would be expected the most significant titre response post infection is in strains matched with 

the same subtype as the infecting virus (homosubtypic response). There is a higher mean change 

between visit one and two in more recent strains than in historic strains with most having a 

threefold increase in titre. Baseline titre is the strongest predictor of the magnitude of response but 

this result was heavily impacted by the current limit of detection of the microarray assay. For the 

most recent strains, those who had a very low baseline titre had a predicted titre change of four to 

five log2 titre increase (Figure 33). The current upper limit of detection of the microarray means that 

it is not possible to determine whether this magnitude of change is consistent across historic strains 

for a given baseline titre. Previous results have suggested that although the presence of 

homosubtypic response to historic strains increases with an individual’s age (Horsfall and Rickard, 

1941, Grilli et al., 1986, Fonville et al., 2014), the magnitude of rise following repeated exposures to 

live vaccine is lower than in primary exposure (Davenport and Hennessy, 1956, Yamane et al., 1981, 

Ochiai et al., 1986).  As seen in Chapter 3, age was a significant predictor of baseline titre for most 

strains, and in multivariable analysis age was only an additional predictive value for H3N2 2009 but 

with a p-value of 0.02 this may represent chance finding given the number of tests performed. 

Being infected with H3N2 resulted in a homosubtypic titre change 1.3 log higher than those infected 

with H1N1 in multivariable analysis. It is important to note that the initial univariate result which 

suggested a higher fold change in those infected with H1N1 was inaccurate as it had failed to take 

into account the higher baseline titres in H3N2 and the smaller potential rise because of the current 

limit of detection on the microarray. This phenomenon has been described previously and is an 

important consideration in vaccine studies where immunogenicity is an outcome (Nauta, 2011) and 

subjects have multiple infections or vaccinations during their lifetime. Methods to overcome this 

include the use of multivariable analysis with baseline titre as a specific variable as was performed in 
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this analysis, an alternative is to look at the covariance of change and this will be investigated 

further.  

Time to peak antibody response of around 30 days was consistent with previous work (Horsfall and 

Rickard, 1941, Morris et al., 1966, Sonoguchi et al., 1986) and although memory response to historic 

strains are produced more quickly than response to new strains (Morris et al., 1966, Jao et al., 1970) 

this is only seen as a one to two day difference in reaching peak response in our study. This is likely 

to be heavily influenced by our study design which did not sample earlier than 30 days. Despite this 

limitation, the identification of time to peak response was possible using piecewise linear regression 

and was much improved when the magnitude of baseline titre was incorporated using random 

effects. The suggestion of a biphasic decline in antibody response has been demonstrated previously 

(Horsfall and Rickard, 1941, Foy et al., 1980, Lerman et al., 1980, Ochiai et al., 1986, Sonoguchi et al., 

1986). Although the identification of a second breakpoint was less consistent than a model with a 

single breakpoint it was in keeping with previous results. The second breakpoint was identified more 

frequently in older strains. While this could be due to the presence of censored values, previous 

studies have demonstrated that the response to infecting strains persists longer than homosubtypic 

response to historic strains (Horsfall and Rickard, 1941, Grilli et al., 1986). As the follow-up period of 

this study was limited to seven months it is highly likely that there are too few sampling points after 

the second breakpoint for more recent strains for this to be identified. Previous work has also 

demonstrated that age appears to have an impact on rates of decline with the very youngest 

individuals (under 10 years of age) having a shortest duration of response but those in their second 

and third decade of life having the longest duration of response to contemporary strains (Hall et al., 

1973, Boucher et al., 1979, Lerman et al., 1980).  When exposure history is considered, historic 

strains that an individual cannot have been exposed to have the shortest duration of persistence 

after infection and the response is similar in magnitude and duration as the heterosubtypic 

response.  

A consistent heterosubtypic response of approximately one log increase is detected for most strains. 

The lack of response in individuals with non-influenza ILI suggests this is an influenza specific effect 

rather than a non-specific activation of the respiratory immune system. Possible mechanisms of this 

include cross-reaction of infected strain specific antibodies (homosubtypic) in the acute phase 

(‘sticky assay’), the release of heterosubtypic specific antibodies when infected acutely with the 

opposing strain or the release of specific antibodies against the stem component of the HA . The 

finding of heterosubtypic rise was more pronounced in subjects infected with H1N1 (i.e. a larger rise 

in H3N2 strains for individuals infected with H1N1). Previous results had suggested that 

heterosubtypic response was related to baseline antibody response (Morris et al., 1966, Pyhala, 
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1985) but there was not a clear relationship in these results. A higher heterosubtypic response was 

seen where baseline titre to the most recent heterosubtypic strain was lowest, this correlates with 

the rise in the homosubtypic titre suggesting that this could be cross reaction within the assay.  

The duration of heterosubtypic response was shorter than the homosubtypic response with a more 

consistent second breakpoint at around 100 days for all strains.  Although the rate of decline was 

rapid to this point, most strains had not returned to baseline at seven months.  The results from 

those not infected with influenza suggest that a one log drop in antibody response can be expected 

every one to two years. The rate of antibody decline beyond the effect of recent infection was 

difficult to measure due to the limited duration of follow-up in the study but the credible intervals in 

the both the homosubtypic and heterosubtypic responses suggest that this could be a plausible rate 

of decline for all strains after the second breakpoint. 

The results of this longitudinal study demonstrate repeat boosting of historic responses with each 

new infection. Although the most significant part of this response is within subtype, there appears to 

be a smaller but still significant between subtype boost which changes the overall trajectory of the 

decline.  This boosting of historic responses has been described elsewhere (Lerman et al., 1980, 

Miller et al., 2013, Fonville et al., 2014) and would be an explanation for the persistence of antibody 

to strains encountered early in life if these were being boosted with each new infection throughout 

lifetime (Kucharski et al., 2015). One key question is whether these ‘back boosted’ titres to historic 

strains represent a functional change in immunity and an increase in strain specific immunity. The 

ability of PMA to measure neutralisation is yet to be established and correlation of these 

longitudinal results with HI is planned. As discussed in Chapter 3, when looking at multi-strain 

antibody response, H3N2 2005 and 2009 were most predictive of susceptibility to current strains. 

This suggests that back boosting of historical strains is less important for current susceptibility in 

drifted subtypes such as H3N2. However, in the face of novel pandemic strains, historical responses 

which have been boosted periodically over time are likely to provide protection (Van Kerkhove et al., 

2013b). Some studies have shown that rises in specific HI titre over time are correlated with an 

increase in total IgG for group one or group two influenza subtype corresponding to the HI subtype 

(Miller et al., 2013). If this rise in total IgG is related to the production of antibodies to the conserved 

stem region of the haemagglutinin, then this may also be what is being measured in the short lived 

measurable titres to strains an individual has not been exposed to or heterosubtypic response (Lu et 

al., 2014). Further exploration of the antibody dynamics of avian strains on the microarray and in 

particular, within and across group responses (group 1 H1N1 & H5N1; group 2 H3N2 & H7N7) are 

planned.  
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Although all tests will have an upper limit of detection, it is important that this captures the majority 

of results we are interested in. The microarray used in this analysis was developed and validated 

predominantly using H1N1 rather than H3N2 strains (Koopmans et al., 2011, Baas et al., 2013, 

Huijskens et al., 2013). The upper limit of detection of 1280 is likely to be adequate for H1N1 with 

only 20% of subjects infected with H1N1 having values greater than this limit of detection one 

month after infection, the point likely to be the peak of response (Table 4.8).  In contrast, up to 89% 

of H3N2 titres are above the limit of detection and this persists through the seven months of follow-

up (Table 4.10). This demonstrates that the consideration of influenza A as a single entity is likely to 

be incorrect.  This microarray was validated in the early post-pandemic phase following the 

emergence of H1N1 2009. Global public health emergencies such as this or Ebola in West Africa 

often provide the impetus for the development of novel diagnostics which are then used in the post 

pandemic phase. Serological diagnostics developed in a population with limited immunity are likely 

to perform differently in a population where they are measuring both historic responses and 

response to repeat infection. The determination of the maximum limit of detection of an array 

should relate to the questions that need to be answered. The use of a threshold approach to 

determine recent exposure (de Bruin et al., 2014) is likely to require fewer dilutions and a lower 

threshold than if investigating  dynamics. Chapter 5 will discuss the issues around determining 

thresholds for recent exposure.   
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5 DETERMINANT OF ACUTE INFLUENZA INFECTION IN SEROEPIDEMIOLOGY 

STUDIES 

ABSTRACT 

Background: Accurate surveillance of influenza is essential to understand the global burden of 

disease. Serological surveillance is a longstanding method used to estimate population attack rates 

particularly in pandemic situations. In seasonal strains cross reaction from prior infection 

complicates this surveillance methods. Diagnostic accuracy of serological markers of recent infection 

is therefore crucial to accurately measure attack rates. 

Methods: A prospective, observational study of patients with ILI in Ho Chi Minh City, Vietnam has 

been running since August 2013.  Influenza A & B PCR and antibody testing to a panel of 11 human 

and 5 avian strains is performed using a novel protein microarray technique.  A subset of subjects 

are followed up clinically and serologically for seven months, samples. Optimal threshold for sero-

diagnosis was determined by ROC analysis using titre response to most recent strain and was 

compared to a multi-strain measure using a modified Simpson’s diversity index. 

Results: 470 samples from 186 ILI patients were available for analysis. For the most recent H3N2 

2011 strain the optimal threshold was greater than log2 5.5 for all age groups at all time points. 

Sensitivity was greater than 90% for all thresholds but specificity was poor. Specificity was improved 

by using a multi-strain approach as measured by the diversity index. The sensitivity and specificity of 

serological measures of recent infection will lead to a significant over estimation of influenza 

seroprevalence unless test accuracy is adjusted for.    

Conclusion: Seroepidemiology of influenza is challenging because of cross-reaction. Methods exist to 

improve the estimation from these methods and should be employed for non-pandemic influenza 

serosurveillance. 

5.1 BACKGROUND 

Influenza viruses circulate globally and seasonal epidemics are thought to be associated with three 

to five million severe clinical infections and 250,000 to 500,000 deaths each year (World Health 

Organisation, 2014c, Global Burden of Disease 2013 Mortality and Causes of Death Collaborators, 

2015, Global Burden of Disease Study 2013 Collaborators, 2015). Morbidity and mortality are highest 

in the extremes of age (Cohen et al., 2010, Nair et al., 2011) but all ages are affected with repeat 
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infections throughout an individual’s lifetime. In temperate countries predicable winter epidemics 

occur with annual incidence concentrated into a two to three month peak of activity with limited or 

no activity recorded between these annual peaks (Finkelman et al., 2007). In contrast to the 

predictable peaks in temperate countries, influenza transmission in tropical areas is less predictable 

with asynchronous peaks of activity, co-circulation of strains and apparent year round transmission 

(Moura, 2010) with the drivers for this difference not yet being fully understood (Tamerius et al., 

2011, Paynter, 2015). 

A variety of surveillance techniques are utilised to estimate the global impact of influenza including 

healthcare based syndromic and virological surveillance (World Health Organisation, 2014a). These 

systems have well recognised biases, in particular the under representation of clinically mild or 

asymptomatic cases (Van Kerkhove et al., 2013a). One approach used to try and quantify this is 

through the use of serological surveillance techniques, also known as seroepidemiology. There are a 

number of different ways that this method is employed, including large cross sectional surveys at the 

end of a winter season in temperate countries (Fragaszy et al., 2015) or through longitudinal 

serological sampling either in a specific observational cohort (Chen et al., 2010, Horby et al., 2012) or 

convenience sampling of repeat blood donors (McVernon et al., 2010, Wu et al., 2010, Sauerbrei et 

al., 2014).  Haemagglutinin Inhibition assays (HI) are the traditional gold standard for 

seroepidemiology with long established diagnostic standards of a four-fold titre rise in paired 

samples or a titre of greater than 1:40 in cross sectional surveys. However, HI has challenges, 

including the time-intensive nature of performing the test and inter-laboratory variability.  

These seroepidemiology methods have often been developed and employed in the face of an 

emerging pandemic where there is limited prior immunity and therefore most of the population 

have undetectable antibodies making seroprevalence curves easier to estimate (Van Kerkhove et al., 

2013b). During the most recent pandemic in 2009, there was suggestion that the standard threshold 

of 1:40 was too high and was underestimating the true community attack rate (Cauchemez et al., 

2012, Wu et al., 2014). However, most influenza infections do not occur during a pandemic period 

and most seroepidemiology studies are performed to assess attack rates of subtypes which have 

caused multiple infections during a lifetime. Cross reaction to the current circulating strain from 

previously encountered strains may result in detectable antibodies, reflecting prior infection rather 

than being a measure of recent infection (Smith et al., 2004, Kucharski et al., 2015). Most 

seroepidemiology studies only measure antibodies to current circulating strains due to the labour 

intensive nature of HI testing. High throughput technologies such as the protein microarray (PMA) 

have been designed to allow testing of multiple strains from a large number of samples but the 

appropriate markers of acute infection have yet to be determined. Microarray technology has been 
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employed previously to identify serological markers of response in infections which have 

considerable cross reaction (Sundaresh et al., 2007, Felgner et al., 2009, Crompton et al., 2010). The 

use of these methods in influenza have yet to be fully explored.   

Serological surveys are a long standing method of investigating infectious diseases with two major 

goals i) determination of disease incidence and ii) assessment of susceptibility to disease (Van 

Kerkhove et al., 2013a). However, many of the existing statistical methods rely on assumptions of 

life-long immunity following infection which does not hold in influenza in non-pandemic situations 

(Hens et al., 2012). Following the emergence of H1N1 2009, age-specific seroprevalence studies 

were widely performed demonstrating both differences in attack rates in different age groups and 

different levels of pre-existing immunity (Van Kerkhove et al., 2013b). In the post-pandemic period 

there was a review of the methods used and discussions around how interpretation of influenza 

serology can be improved for future pandemic preparedness and understanding seasonal influenza 

(Cauchemez et al., 2012, Wu et al., 2014).  

5.2 METHODS 

A full description of the study procedures and laboratory testing is given in Chapter 2. 

5.2.1 Design and Conduct of the Observational Study 

This observational study was conducted between August 2013 and May 2015 at outpatient clinics 

and community medical practitioners in Ho Chi Minh City (HCMC), Vietnam. Individuals were invited 

to join the study if they were between 10 and 70 years of age with symptoms for less than 72 hours 

and if they fitted the ECDC ILI definition (European Centre for Disease Prevention and Control 

(ECDC), 2015) One anterior nasal swab and one throat swab were collected at recruitment and 

transported in a single tube of viral transport medium to central laboratory before being stored at -

20oC within 24 hours. A 5ml serum sample was also collected at baseline and stored at -20oC within 

24 hours. 

A subset of patients were invited to join a longitudinal sub-study. All subjects testing positive for 

influenza A were eligible to join the sub-study. Negative control subjects were matched by age (+/- 5 

years) and gender to influenza A positive subjects included in the follow-up study. Subjects attended 

for repeat serum sampling at 30, 90, 150 and 210 days (+/- 5 days) after recruitment. Active 

respiratory symptom surveillance was conducted during the follow-up period with telephone follow-

up at 60, 120 and 180 days.  
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Both studies were approved by the Scientific and Ethical committees of Hospital for Tropical Disease, 

Ho Chi Minh City, Vietnam and Liverpool School of Tropical Medicine Research Ethics Committee, 

UK.  Letters of agreement supporting the involvement of the community medical clinics were 

obtained from the Ho Chi Minh City Department of Health. 

5.2.2 Sample Analysis 

Respiratory samples were batched tested monthly for influenza A & B using standard polymerase 

chain reaction (PCR) techniques (World Health Organisation, 2011). All influenza A positive subjects 

and subset of all other subjects (50%) had their baseline serum sample tested against a panel of 16 

influenza A strains (11 human, 5 avian strains) using a protein microarray technique previously 

described (Koopmans et al., 2011). Negative and influenza B controls were age and sex matched to 

the positive subjects included in longitudinal study. Baseline and follow-up sera were analysed for 

subjects recruited to the longitudinal study. Full methods described in Chapter 2.  

5.2.3 Statistical Analyses 

The primary outcome was diagnostic accuracy of serological markers of recent H3N2 infection. The 

gold standard for influenza diagnosis was PCR-confirmed influenza A H3N2 in nasal/throat samples. 

This included both single influenza A infections and co-infections with influenza B.   

5.2.3.1 ROC Analysis of Threshold Values 

To perform this analysis we compared H3N2 PCR positive individuals to H3N2 negative individuals in 

the longitudinal study who were either (i) PCR negative for both influenza A & B; ii) H1N1 PCR 

positive or iii) H3N2 PCR positive at recruitment but sampled after the time period of interest had 

elapsed.  Three time periods of interest were explored for ‘recent infection’; infection in the last i) 60 

days, ii) 100 days or iii) 250 days.  Analysis was performed on log2 transformed titres unless explicitly 

stated. 

Where appropriate, analysis was stratified by age at recruitment.  Age was preferentially used as a 

continuous variable, otherwise age was categorised as per recommendations from the Consortium 

for the Standardisation of Influenza Seroepidemiology (5-9, 10-19, 20-44, 45-65, 65+) (Van Kerkhove 

et al., 2013a).     

Two methods of serological characterisation were investigated i) threshold cut-off using log2 titre to 

most recently circulating strain; ii) threshold cut-off using a modified Simpson’s Diversity Index for 

within subtype (homosubtypic) microarray response. Analysis was performed for both threshold 

measures using area under the curve (AUC) of the receiver operating characteristic (ROC) curve or 

sensitivity and 1-specificity of gold standard (PCR positivity).  Sensitivity and specificity was 
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calculated for different cut off thresholds varied by 0.25. 95% confidence intervals of the sensitivity 

and specificity was calculated using 2000 bootstrap replicates. Age stratified cut-offs using CONSISE 

recommended age categories was calculated.  R package pROC was used for this analysis (Robin et 

al., 2011). 

A Diversity Index is a method which gives a single value to summarise the overall magnitude and 

breadth of titre response across several strains. A modified Simpson’s diversity index is used in this 

instance (Equation 2 from (Jost, 2006)). Within the diversity index equation there is a defined cut off 

value. This allows the distinction between “broad and low” and “broad and high” responses. This cut 

off is set to log titre 5.5 (non-transformed titre 452). This was selected based on results from 

Chapter 4 where most H3N2 strains had a visit two titre greater than this value in subjects infected 

with H3N2. The diversity index was calculated for both log transformed and non-transformed titres. 

R Code for the calculation of the Diversity Index is included in the Supplementary Appendix. 

5.2.3.2 Optimal Threshold Cut Off for Changing Prevalence 

Underlying influenza prevalence changes throughout the year meaning that positive and negative 

predictive values of any determinant will change as well. Two established measures used to 

determine optimal measures are the Youden’s J Statistic and Closest-To-Top-Left.  Both of these 

have incorporated weights for prevalence and cost of false negatives (Perkins and Schisterman, 

2006).  

Weights are added with    

𝑟 =
1 − 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

𝑐𝑜𝑠𝑡 ∗ 𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒
 

Youden’s J Statistic (Youden, 1950) is the maximised distance to the identity (diagonal) line on ROC 

curve.  

max(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 + 𝑟 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑖𝑒𝑠) 

Closest to the top left is the point closest to the top left part of the ROC plot (i.e. point of perfect 

(100%) sensitivity/specificity). 

min(1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠)2  +  𝑟 ∗ (1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑖𝑒𝑠)2) 

The cost of false negative is set to 1. Optimal cut off thresholds are then calculated for a range of 

prevalence (0.5, 0.3, 0.1) for each age category. 95% credible intervals are calculated for the optimal 
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threshold and for the sensitivity and specificity using 2000 bootstrapped replicates. R package pROC 

was used for this analysis (Robin et al., 2011).  

An alternative way to consider the question of optimal threshold is to look at how this will change 

across all possible values of prevalence (range 0-1). Because serology is imperfect we detect an 

apparent prevalence (or seroprevalence) (T+ = test positive) rather than the true prevalence (D+ = 

disease positive). The relationship between the two is demonstrated in: 

𝑃(𝑇 +) =  𝑃(𝑇 + |𝐷 +)𝑃(𝐷 +) +  𝑃(𝑇 + |𝐷 −)[1 − 𝑃(𝐷 +)]   

Which is the same as 

𝑃(𝑇+)  =  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃(𝐷+) + (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) ∗ [1 − 𝑃(𝐷+)]  (1) 

For each age group, sensitivity and specificity (95% CI) were calculated for threshold cut offs for 

infection in the last 60, 100 and 250 days. The median estimates of sensitivity and specificity were 

then used to calculate the apparent prevalence (i.e. seropositivity) for a given true prevalence using 

equation 1. 

Up to this point, we have attempted to select a threshold value which means that P(T+) is closest to 

P(D+).  Another way is the try and directly estimate P(D+). Equation 1 can be manipulated to give 

estimated true prevalence (P(d+)) (2): 

𝑃(𝑑 +) =  
𝑃(𝑇 +)     +    𝑃(𝑇 − |𝐷 −) − 1

𝑃(𝑇 + |𝐷 +)   +       𝑃(𝑇 − |𝐷 −) − 1
 

          (2) 

This is known as the Rogan-Gladen estimate (Rogan and Gladen, 1978) and can give a calculation of 

the true prevalence where the sensitivities and specificities are known.  However, negative results 

can be produced where the apparent prevalence (P(T+)) measured is lower than the expected false 

positive rates.  Sensitivity and specificity can be altered by factors such as laboratory differences, 

cross reaction (likely different at different ages in our cohort) meaning that they are unlikely to be 

fixed. One way to overcome this is to use a Bayesian approach which assumes an intrinsic 

distribution to sensitivity and specificity (Speybroeck et al., 2013). By incorporating this uncertainty a 

priori along with the observed seroprevalence (T+), we can obtain a probability distribution of the 

underlying prevalence (P(d+)). 

For this analysis the estimated seroprevalence calculated using equation 1 were utilised (T+). The 

prior probabilities of the sensitivity and specificity were the 95% credible intervals calculated for a 
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threshold cut offs between log2 titre 5.5 to 7 for infection in last 60, 100 and 250 days. For each 

‘True Prevalence’ we were interested in, a hypothetical 1000 samples were assumed. The 

seroprevalence for a given threshold was then calculated for the 1000 samples. OpenBUGS was used 

as the Bayesian modelling framework (Lunn et al., 2009) with the R2OpenBUGS package providing 

the interface for R programming (Sturtz et al., 2005). In OpenBUGS sampling 2 chains were started 

with a burn in of 1000 iterations with 6000 iteration used to calculated estimated true prevalence 

(P(d+)) with 95% credible interval.  R Code is included in the Supplementary Appendix and is adapted 

from (Speybroeck et al., 2013). 

All statistical analysis were performed using R Statistical Software v3.2.1(R Core Team, 2015). 

Packages used for analysis were ggplot2, pROC, R2OpenBUGS. 

5.3 RESULTS 

5.3.1 Data Description  

As described in detail in Chapters 3 and 4, 953 subjects with ILI were recruited between 8 August 

2013 and 31 May 2015 with 186 subjects in the longitudinal study. Serology samples were available 

for 686 subjects at baseline and seven month follow-up was available for 81 subjects (Table 5.1).  

 

Visit 1 

(Day 1-3) 

Visit 2 

(Day 30) 

Visit 3 

(Day 90) 

Visit 4 

(Day 150) 

Visit 5 

(Day 210) 

Influenza A H1N1  39  14 (100) 5 (35.7) 5 (35.7) 5 (35.7) 

Influenza A H3N2 223  100 (100) 61 (61) 49 (49) 44 (44) 

Influenza A NT 9  4 (100) 3 (75) 3 (75) 3 (75) 

Influenza B 79  0  0  0  0  

Influenza 
Negative 

336  66 (100) 51 (77.3) 41 (62.1) 29 (43.9) 

Table 5.1 Number of Microarray Results Available before 31 May 2015. Percentage of follow-up subjects at 
each visit by infecting subtype in brackets. 

The peak response post infection was approximately 30 days post infection. The titre to recent 

strains remained higher than baseline for the duration of the seven month follow-up.  

5.3.2 Threshold Cut-off using Contemporary Strains 

Using a single threshold cut off for all ages, the discriminatory power of titre thresholds below a titre 

of 640 (log2 titre of 6) was poor (Figure 48). There was a marked improvement as the test 

approached the limit of detection but the specificity for detecting infection in the last 100 days was 

still less than 70%. If the timing since infection was expanded to consider infection in the last 250 

days, then the specificity improved with a compensatory drop in sensitivity. 
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Figure 48 Sensitivity and Specificity for different threshold values for H3N2 2011. 95% CI calculated using 2000 
bootstrapped replicates. 

When the threshold analysis was performed for different age categories, it became clear that there 

are different sensitivities and specificities for different age groups (Figure 49). This is most marked in 

the 10 to 19 age group with high sensitivity but lower specificity even at the limits of detection of 

the assay. 

 

Figure 49 Sensitivity and Specificity for different threshold values for H3N2 2011 for different age categories. 
95%CI calculated using 2000 bootstrapped replicates. 

Estimates were made of the best threshold limit as measured by the Youden Index and Closest to 

Top Left (CtL) (Table 5.2). Comparing the two methods, the ideal thresholds identified by Youden 
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index have a higher sensitivity and lower specificity than the threshold identified by Closest to Top 

Left when all ages are combined and at all time points. This means that the Youden identified best 

thresholds will have fewer false negatives but more false positives compared to the Closest to the 

Top Left thresholds. When separate thresholds were identified for different age groups, Youden and 

CtL identified the same threshold if numbers of cases were smaller (10 to 19 and 45 to 64) and 

follow-up period was longer (250 days). The optimal threshold to identify recent infection was lower 

as individuals aged. A single threshold for all ages would result in more false positives for younger 

individuals but more false negatives in older individuals. This estimation was performed for a fixed 

prevalence of 50% which is much higher than the estimated annual attack rate for influenza.   

  Youden Index Closest to Top Left 

Time since 
Infection 

Age Group Threshold Sensitivity Specificity Threshold Sensitivity Specificity 

60 days All Ages 
6.51  

(6.3-6.73) 
0.94  

(0.89-0.99) 
0.53  

(0.46-0.59) 
7.18  

(6.63-7.24) 
0.88  

(0.81-0.95) 
0.56  

(0.51-0.61) 

 10 to 19 
7.18  

(7.16-7.18) 
1  

(1-1) 
0.34  

(0.24-0.45) 
7.18  

(7.16-7.18) 
1  

(1-1) 
0.34  

(0.24-0.45) 

 20 to 44 
6.45  

(5.88-6.67) 
0.92  

(0.86-0.98) 
0.62  

(0.5-0.69) 
6.63  

(6.45-7.24) 
0.89  

(0.81-0.95) 
0.64  

(0.58-0.7) 

 45 to 64 
6.28  

(5.75-6.44) 
1  

(1-1) 
0.49  

(0.31-0.66) 
6.28  

(5.75-6.44) 
1  

(1-1) 
0.49  

(0.31-0.66) 

100 days All Ages 
6.33  

(5.88-7.24) 
0.92  

(0.84-0.98) 
0.56  

(0.46-0.65) 
7.18  

(6.63-7.24) 
0.84  

(0.78-0.9) 
0.61  

(0.56-0.67) 

 10 to 19 
7.18  

(7.16-7.18) 
1  

(1-1) 
0.41  

(0.29-0.52) 
7.18 

(7.16-7.18) 
1  

(1-1) 
0.41  

(0.29-0.52) 

 20 to 44 
5.88  

(5.88-6.64) 
0.93  

(0.82-0.98) 
0.62  

(0.54-0.73) 
6.63  

(6-7.24) 
0.83  

(0.76-0.91) 
0.69  

(0.62-0.75) 

 45 to 64 
5.69  

(5.52-6.03) 
1  

(1-1) 
0.52  

(0.35-0.68) 
5.69  

(5.41-6.03) 
1  

(1-1) 
0.52  

(0.32-0.71) 

250 days All Ages 
5.87  

(5.74-5.89) 
0.94  

(0.9-0.96) 
0.67  

(0.6-0.74) 
6.64  

(5.86-7.24) 
0.82  

(0.74-0.95) 
0.73  

(0.65-0.81) 

 10 to 19 
7.18  

(7.11-7.18) 
0.94  

(0.89-0.99) 
0.6 

(0.45-0.75) 
7.18  

(7.16-7.18) 
0.94  

(0.89-0.99) 
0.6  

(0.45-0.75) 

 20 to 44 
5.87  

(5.7-5.88) 
0.9  

(0.85-0.95) 
0.77  

(0.69-0.83) 
5.87  

(5.85-6.18) 
0.9  

(0.84-0.94) 
0.78  

(0.71-0.84) 

 45 to 64 
5.69  

(5.47-6.07) 
1  

(1-1) 
0.57  

(0.39-0.75) 
5.69  

(5.47-6.07) 
1  

(1-1) 
0.57  

(0.39-0.75) 

Table 5.2 Best Threshold Value for Recent Infection by Age Group by Youden Index or Closet to Top Left 
Estimates. Fixed prevalence of 50% used. 95% CI calculated using 2000 bootstrapped replicates. 

When prevalence was reduced to 30% the optimal threshold for H3N2 2011 titre for all ages 

increased (Table 5.3). Only Closest to Top Left estimates are presented as the Youden index 

estimates failed to give credible intervals during fitting process. When prevalence was reduced to 
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10%, an optimal threshold for infection in previous 60 or 100 days is not identifiable.  For infection in 

previous 250 days the optimal threshold was at the limit of detection on the microarray assay. 

  Prevalence 30% Prevalence 10% 

Time since 
Infection 

Age Group Threshold Sensitivity Specificity Threshold Sensitivity Specificity 

60 days All Ages 
7.24  

(6.72-7.24) 
0.85  

(0.78-0.92) 
0.56  

(0.51-0.61) 
Inf  

(Inf-Inf) 
0  

(0-0) 
1  

1-1) 

 10 to 19 
Inf  

(7.16-Inf) 
0  

(0-1) 
1  

(0.35-1) 
Inf  

(Inf-Inf) 
0  

(0-0) 
1  

(1-1) 

 20 to 44 
7.16  

(6.62-7.24) 
0.86  

(0.76-0.94) 
0.65  

(0.59-0.71) 
Inf  

(7.16-Inf) 
0  

(0-0.89) 
1  

(0.67-1) 

 45 to 64 
6.28  

(5.75-Inf) 
1  

(0-1) 
0.51  

(0.37-1) 
Inf  

(Inf-Inf) 
0  

(0-0) 
1  

(1-1) 

100 days All Ages 
7.24  

(6.65-7.24) 
0.82  

(0.76-0.88) 
0.62  

(0.57-0.67) 
Inf  

(7.24-Inf) 
0  

(0-0.8) 
1  

(0.68-1) 

 10 to 19 
7.18  

(7.16-Inf) 
1  

(0-1) 
0.43  

(0.35-1) 
Inf  

(Inf-Inf) 
0 

(0-0) 
1  

(1-1) 

 20 to 44 
6.64  

(6.43-7.24) 
0.8  

(0.71-0.88) 
0.7  

(0.64-0.76) 
7.24  

(6.63-Inf) 
0.75  

(0-0.85) 
0.72 

(0.68-1) 

 45 to 64 
5.69  

(5.41-6.41) 
1  

(1-1) 
0.52  

(0.35-0.77) 
Inf  

(5.69-Inf) 
0  

(0-1) 
1  

(0.68-1) 

250 days All Ages 
7.24  

(6.63-7.24) 
0.77  

(0.72-0.83) 
0.76  

(0.71-0.81) 
7.24  

(6.82-7.24) 
0.77  

(0.72-0.82) 
0.76  

(0.71-0.82) 

 
 

10 to 19 
7.18  

(7.16-7.18) 
0.94  

(0.89-0.99) 
0.6  

(0.45-0.75) 
Inf  

(7.18-Inf) 
0  

(0-0.97) 
1  

(0.68-1) 

 20 to 44 
5.88  

(5.85-7.24) 
0.87  

(0.7-0.93) 
0.8  

(0.73-0.87) 
7.24  

(6.18-7.24) 
0.7  

(0.62-0.82) 
0.84  

(0.78-0.9) 

 45 to 64 
5.69  

(5.43-6.07) 
1  

(1-1) 
0.57  

(0.39-0.75) 
Inf  

(5.59-Inf) 
0  

(0-1) 
1  

(0.68-1) 

Table 5.3 Best Threshold Value for Recent Infection by Age Group by Closet to Top Left Estimates. Fixed 
prevalence of 30% and 10% used. 95% CI calculated using 2000 bootstrapped replicates. 

From Table 5.2 & Table 5.3 the optimal threshold was never less than log titre 5.5 for all age groups. 

For each age group sensitivity and specificity was calculated for a threshold cut off of log2 titre 5.5 to 

7 for infection in last 60, 100 and 250 days (Table 5.4). The median estimates of sensitivity and 

specificity were then used to calculate the apparent prevalence for a given true prevalence (Figure 

50). As demonstrated in Figure 50, even when the threshold is at the limit of detection of the PMA 

(log2 titre =7) the number of false positives in the measured seroprevalence (T+) would lead to an 

overestimation of influenza attack rate where the true prevalence is less than 50%.  If you extend 

the time period since infection to 250 days then the degree of overestimation is reduced. Younger 

individuals have a greater degree of over-estimation than individuals over the age of 20. As we 

estimate influenza to fluctuate between 0 and 30% prevalence in an inconsistent seasonal pattern, 
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the degree of overestimation at low prevalence and short outbreaks makes influenza surveillance 

challenging in tropical settings. 

  Less than 60 days Less than 100 days Less than 250 

 Threshold Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

All Ages 5.5 
0.98  

(0.95-1) 
0.37  

(0.32-0.42) 
0.97  

(0.94-0.99) 
0.42  

(0.37-0.48) 
0.96  

(0.93-0.98) 
0.59  

(0.53-0.65) 

 6.0 
0.95  

(0.9-0.99) 
0.45  

(0.4-0.5) 
0.93  

(0.88-0.97) 
0.51 

(0.46-0.56) 
0.89  

(0.85-0.93) 
0.67  

(0.61-0.73) 

 6.5 
0.93  

(0.88-0.97) 
0.52  

(0.47-0.58) 
0.87  

(0.81-0.92) 
0.58  

(0.52-0.63) 
0.81  

(0.76-0.86) 
0.71  

(0.65-0.77) 

 7.0 
0.85  

(0.77-0.91) 
0.56 

(0.51-0.62) 
0.81  

(0.75-0.87) 
0.62  

(0.57-0.68) 
0.77  

(0.71-0.82) 
0.76  

(0.71-0.82) 

10 to 19 5.5 
1  

(1-1) 
0.13  

(0.06-0.2) 
1  

(1-1) 
0.16  

(0.09-0.25) 
1 (1-1) 

0.28  
(0.15-0.42) 

 6.0 
1  

(1-1) 
0.16  

(0.08-0.24) 
1  

(1-1) 
0.19  

(0.1-0.29) 
1 (1-1) 

0.32  
(0.2-0.48) 

 6.5 
1  

(1-1) 
0.25  

(0.16-0.35) 
1  

(1-1) 
0.3  

(0.2-0.42) 
0.94  

(0.89-0.99) 
0.42  

(0.28-0.57) 

 7.0 
1  

(1-1) 
0.34  

(0.23-0.45) 
1 

(1-1) 
0.41 

 (0.29-0.52) 
0.94  

(0.89-0.99) 
0.6  

(0.45-0.75) 

20 to 44 5.5 
0.97  

(0.92-1) 
0.43 

 (0.37-0.49) 

0.95  
(0.9-0.99) 

0.49  
(0.42-0.56) 

0.93  
(0.9-0.97) 

0.67  
(0.59-0.74) 

 6.0 
0.92  

(0.86-0.98) 
0.54  

(0.48-0.61) 
0.89  

(0.83-0.95) 
0.61  

(0.54-0.68) 
0.84 (0.78-

0.89) 
0.77  

(0.7-0.83) 

 6.5 
0.89  

(0.81-0.97) 

0.62 
 (0.56-
0.68) 

0.81  
(0.73-0.89) 

0.67  
(0.61-0.74) 

0.74  
(0.68-0.8) 

0.81  
(0.74-0.87) 

 7.0 
0.81  

(0.71-0.9) 
0.65  

(0.6-0.71) 
0.75 

 (0.67-0.84) 
0.71 

 (0.64-0.77) 

0.69  
(0.62-0.76) 

0.84  
(0.78-0.9) 

45 to 64 5.5 
1 

(1-1) 
0.46  

(0.29-0.63) 
1  

(1-1) 
0.52  

(0.35-0.68) 
1  

(1-1) 
0.57  

(0.39-0.75) 

 6.0 
1  

(1-1) 
0.46  

(0.29-0.63) 
1  

(1-1) 
0.52  

(0.35-0.68) 
1  

(1-1) 
0.57  

(0.39-0.75) 

 6.5 
1  

(1-1) 
0.49  

(0.31-0.66) 
0.91  

(0.73-1) 
0.52  

(0.35-0.68) 
0.93  

(0.79-1) 
0.57  

(0.39-0.75) 

 7.0 
0.57  

(0.29-0.86) 
0.49  

(0.31-0.66) 
0.64  

(0.36-0.91) 
0.52  

(0.35-0.68) 
0.71  

(0.5-0.93) 
0.57  

(0.39-0.75) 

Table 5.4 Sensitivity and Specificity for Fixed Threshold Cut-Off for Recent H3N2 Infection using Titre to H3N2 
2011. 95%CI from 2000 bootstrapped replicates. 
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Figure 50 Estimated Seroprevalence for Underlying True Prevalence for given Sensitivity and Specificity using 
Threshold Cut-off of H3N2 2011 Titre. Number of cases and controls used in ROC curve estimation. Black line is 
the output a ‘perfect test’ would give. 

Up to this point we have been trying to select a threshold value which means that P(T+) is closest to 

P(D+).  Another way is to try and directly estimate P(D+) using the Rogan Gladen estimate of P(d+).  

For this analysis the estimated seroprevalence calculated for Figure 50 were used (T+). The prior 

probabilities of the sensitivity and specificity were the 95% CI presented in Table 5.4. For each ‘True 

Prevalence,’ a hypothetical 1000 samples were assumed to be collected. In OpenBUGS sampling 2 

chains were started with a burn in of 1000 iterations with 6000 iterations used to calculated 

estimated true prevalence (P(d+)) with 95% CI (Figure 51).   



Determinant of Acute Influenza Infection in Seroepidemiology Studies 
 

123 

 

Figure 51 Bayesian Estimate of Prevalence for True Underlying Prevalence. Number of cases and controls used 
in ROC curve estimation of sensitivity and specificity presented. Black line is the output a ‘perfect test’ would 
give. Hypothetical 1000 samples taken at each true prevalence of interest (points). Ribbons are 95% CI for each 
threshold level. OpenBUGS burn in of 1000 iterations and 6000 iterations used. 

The point estimates of prevalence (d+) are much improved (i.e. closer to D+) using this method 

compared to using uncorrected seroprevalence (T+).   Figure 51 shows that point estimates for all 

ages now run along the ‘perfect test’ line for true prevalence between 10 and 90%. At the extremes 

of prevalence, there continues to be an over or underestimate. When looking at ages separately, 

there are wider confidence intervals around the sensitivity and specificity in 10 to 19 and over 45’s. 

It is possible that there is a greater variability in these groups (particularly in younger individuals), 

but these groups also had smaller sample sizes when performing ROC analysis which is likely to have 

contributed.  

In addition, although the point estimates are much improved, the wide confidence intervals around 

these estimates may still lead to difficulty in interpretation. A median estimate of prevalence (P(d+)) 

0.2 has a confidence interval of 0.1 to 0.3 meaning precise prevalence estimations are difficult. 
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5.3.3 Threshold Cut-off using Diversity Index 

An alternative to using a single strain with a single threshold is to look at the overall response across 

several strains.  As was discussed in Chapter 4, most strains had values greater than the current limit 

of detection on the microarray. When viewed as a heatmap, this shows a clear pattern of high 

response across all H3N2 strains for individuals recently infected (Figure 52). In contrast to using 

only a single strain, this “broad and high” response seems to be present for a relatively short period 

of time with the highest apparent frequency at visit two (~30 days post infection). One method to 

investigate this “broad and high” response is to use a diversity index which gives a single value to 

summarise the overall magnitude and breadth of titre response. A modified Simpson’s diversity 

index is used in the instance calculated on titres to H3N2 strains only. 

 

Figure 52 Heatmap of Log2 Titre by Visit Number. Each horizontal row represents the same subject, 79 subjects 
with follow-up to visit 5 included in figure. Coloured bar on left represents infecting subtype; Red=H1N1, 
Blue=H3N2, Grey= Negative. Within infecting subtype ordered by age. 

Within the diversity index equation there is a defined cut off value. This allows the distinction 

between “broad and low” and “broad and high. This cut off is set to log titre 5.5 (non-transformed 

titre 452). This was selected based on results from Chapter 4 where most strains had a visit two titre 

greater than this value. When the logged titre values were used to calculate the diversity index, 

there was poor discrimination with median diversity index score of 5.8 and a narrow IQR of 5.5-5.9 

across all visit numbers and infecting subtypes (Figure 53 – top panel). In contrast, if non 

transformed titres are used then a wider range of diversity scores occur with a median of 4.3 and 

wider IQR of 3.2-5.2 (Figure 53 – bottom panel). If the heatmap is replotted using non transformed 

titres, the pattern becomes very noticeable (Figure 54). 
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Figure 53 Boxplot of Diversity Index Scores by Infecting Subtype and Visit Number. Modified Simpson's Diversity 
Index shows diversity of H3 response only with cut-off of log2 5.5 or 452.  Top panel with logged titres, bottom 
panel with non-transformed titres. 

 

Figure 54 Heatmap of Non-Transformed Titre by Visit Number. Each horizontal row represents the same 
subject, 79 subjects with follow-up to visit 5 included in figure. Coloured bar on left represents infecting 
subtype; Red=H1N1, Blue=H3N2, Grey= Negative. Within infecting subtype ordered by age. 

Compared to using a single strain threshold, using the diversity index gives an improved specificity 

(Figure 55) and is more consistent between age groups (Figure 56). 
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Figure 55 Sensitivity and Specificity for different threshold values for Modified Simpsons Diversity Index. 95% CI 
calculated using 2000 bootstrapped replicates. 

 

Figure 56 Sensitivity and Specificity for different threshold values for Modified Simpsons Diversity Index by Age 
Category. 95% CI calculated using 2000 bootstrapped replicates. 

As before, for each age group sensitivity and specificity was calculated for a threshold cut off of 

Diversity Index 4.5 to 6 for infection in last 60, 100 and 250 days (Table 5.5). The median estimates 

of sensitivity and specificity were then used to calculate the apparent prevalence for a given true 

prevalence (Figure 57). Using the Diversity Index, the apparent prevalence (T+) is closer to the true 

prevalence than where a single strain threshold was used. There is a marked improvement in 

younger individuals when using a diversity index threshold greater than 5 with a switch to 

underestimation. The higher diversity index threshold is better for estimating recent infection (last 

60 days); as the time since infection increases, this threshold will underestimate the number of cases 

and a lower diversity index is a better. 
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  Less than 60 days Less than 100 days Less than 250 

 Threshold Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

All Ages 4.0 
1  

(1-1) 
0.36  

(0.31-0.4) 
0.99  

(0.97-1) 
0.42  

(0.36-0.47) 
0.94  

(0.92-0.97) 
0.55  

(0.48-0.61) 

 4.5 
1  

(1-1) 
0.48  

(0.44-0.54) 
0.94  

(0.9-0.97) 
0.54  

(0.49-0.6) 
0.86  

(0.82-0.9) 
0.67  

(0.61-0.73) 

 5.0 
0.83  

(0.74-0.9) 
0.65  

(0.59-0.69) 
0.76 

(0.69-0.82) 
0.7  

(0.65-0.75) 
0.68  

(0.62-0.74) 
0.81  

(0.76-0.87) 

 5.5 
0.49  

(0.39-0.59) 
0.89  

(0.86-0.92) 
0.38  

(0.3-0.45) 
0.9  

(0.87-0.94) 
0.31  

(0.25-0.37) 
0.95  

(0.92-0.98) 

 6.0 
0.27  

(0.18-0.36) 
0.96  

(0.95-0.98) 
0.19  

(0.13-0.25) 
0.97  

(0.95-0.99) 
0.13  

(0.09-0.17) 
0.97  

(0.95-0.99) 

10 to 19 4.0 
1  

(1-1) 
0.18  

(0.1-0.27) 
1  

(1-1) 
0.22  

0.13-0.32) 
0.96  

(0.9-1) 
0.3  

(0.18-0.45) 

 4.5 
1  

(1-1) 
0.31  

(0.22-0.41) 
0.98  

(0.93-1) 
0.36  

(0.25-0.48) 
0.9  

(0.83-0.96) 
0.48  

(0.32-0.62) 

 5.0 
0.89  

(0.75-1) 
0.54  

(0.45-0.65) 
0.83  

(0.71-0.93) 

0.59 
 (0.48-
0.71) 

0.69  
(0.58-0.79) 

0.65  
(0.5-0.8) 

 5.5 
0.46  

(0.29-0.64) 
0.98  

(0.94-1) 
0.33  

(0.19-0.48) 
0.99  

(0.96-1) 
0.2  

(0.11-0.3) 
0.98  

(0.92-1) 

 6.0 
0.29  

(0.14-0.46) 
0.99  

(0.96-1) 
0.19  

(0.07-0.31) 
0.99  

(0.96-1) 
0.11  

(0.04-0.2) 
0.98  

(0.92-1) 

20 to 44 4.0 
1  

(1-1) 
0.43  

(0.36-0.49) 
0.98  

(0.95-1) 
0.5  

(0.43-0.56) 
0.93  

(0.89-0.97) 
0.65  

(0.58-0.73) 

 4.5 
1  

(1-1) 
0.56  

(0.5-0.63) 
0.92  

(0.86-0.97) 
0.62  

(0.56-0.69) 
0.85  

(0.79-0.9) 
0.78  

(0.72-0.85) 

 5.0 
0.77 

 (0.66-
0.87) 

0.71  
(0.65-0.76) 

0.71  
(0.62-0.79) 

0.76  
(0.7-0.82) 

0.66  
(0.59-0.74) 

0.92  
(0.88-0.97) 

 5.5 
0.5  

(0.37-0.63) 
0.89  

(0.86-0.93) 
0.39  

(0.3-0.48) 
0.91  

(0.87-0.95) 
0.34  

(0.27-0.42) 
0.99  

(0.98-1) 

 6.0 
0.23  

(0.13-0.34) 
0.97  

(0.95-0.99) 
0.17  

(0.1-0.24) 
0.98  

(0.96-1) 
0.12  

(0.07-0.17) 
0.99  

(0.98-1) 

45 to 64 4.0 
1  

(1-1) 
0.23  

(0.09-0.37) 
1  

(1-1) 
0.26  

(0.13-0.42) 
1  

(1-1) 
0.29  

(0.14-0.46) 

 4.5 
1  

(1-1) 
0.29  

(0.14-0.43) 
0.91  

(0.73-1) 
0.29  

(0.13-0.45) 
0.93  

(0.79-1) 
0.32  

(0.14-0.5) 

 5.0 
1  

(1-1) 
0.4  

(0.26-0.57) 
0.91  

(0.73-1) 
0.42  

(0.26-0.58) 
0.93  

0.79-1) 
0.46  

(0.29-0.64) 

 5.5 
0.57  

(0.14-0.86) 
0.66  

(0.49-0.8) 
0.45  

(0.18-0.73) 
0.65  

(0.48-0.81) 
0.57  

(0.29-0.86) 
0.71  

(0.54-0.86) 

 6.0 
0.57  

(0.14-0.86) 
0.86  

0.74-0.97) 
0.36  

(0.09-0.64) 
0.84  

(0.71-0.97) 
0.36  

(0.14-0.64) 
0.86  

(0.71-0.96) 

Table 5.5 Sensitivity and Specificity for Fixed Threshold Cut-Off for Recent H3N2 Infection using Modified 
Simpson’s Diversity Index. 95%CI from 2000 bootstrapped replicates. 
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Figure 57 Estimated Seroprevalence for Underlying True Prevalence for given Sensitivity and Specificity using 
Modified Simpson’s Diversity Index. Number of cases and controls used in ROC curve estimation. Black line is 
the output a ‘perfect test’ would give. 

 

Figure 58 Bayesian Estimate of Prevalence for True Underlying Prevalence using Modified Simpson’s Diversity 
Index. Number of cases and controls used in ROC curve estimation of sensitivity and specificity presented. Black 
line is the output a ‘perfect test’ would give. Hypothetical 1000 samples taken at each true prevalence of 
interest (points). Ribbons are 95% CI for each threshold level. OpenBUGS burn in of 1000 iterations and 6000 
iterations used. 

Using the estimated seroprevalence (T+) from Figure 57 and the 95% CI of the sensitivity and 

specificity presented in Table 5.5, the estimated true prevalence (P(d+)) with 95% CI were calculated 

using OpenBUGS (Figure 58).  Again, the point estimates of prevalence are much improved using this 



Determinant of Acute Influenza Infection in Seroepidemiology Studies 
 

129 

method compared to using only the estimated seroprevalence. Compared to using threshold to 

H3N2 2011 only, there is an improvement in point estimates for prevalence below 10% particularly 

for younger individuals. Again when looking at ages separately, there are wider confidence intervals 

around the sensitivity and specificity in 10 to 19 and over 45’s. With high diversity index cut off (5.5 

or 6) then the credible intervals are narrower at prevalence in the range that are likely to be 

observed in seasonal influenza (below 0.3). 

5.4 DISCUSSION 

One of the key purposes of seroepidemiology is the determination of disease incidence. Serology has 

been used for many years in influenza surveillance and has improved the understanding of disease 

attack rates through both seasonal epidemics and introductions of new viruses during pandemics. 

The increasing interest in understanding influenza in tropical settings with its different disease 

dynamics has brought new challenges. 

The use of a single threshold for determination of acute infection is the current standard in influenza 

seroepidemiology. Traditionally an HI titre of greater than 40 is considered positive in cross sectional 

surveys. In surveys with paired samples, a fourfold rise between acute and convalescent samples are 

considered to be diagnostic (World Health Organisation, 2014a). The contradiction between these 

two definitions are evident, in paired samples the assumption of baseline titre value of 10 (i.e. no 

detectable titre) is not present. A baseline titre of greater than 10 in HI could be possible due to a 

cross-reaction with older responses. The duration of response is also important to consider in 

seroepidemiology. Once infected, titres can stay significantly elevated from many months and 

potentially years. If the titre threshold value for seroepidemiology is low, we will get a high 

sensitivity for infection at any time but poor specificity for infection in a recent period. In temperate 

countries this phenomenon can be obviated by doing a single cross sectional study at the end of the 

relatively short influenza season and, assuming there is a good match between infecting and testing 

strain, could give a reasonable season attack rate (Laurie et al., 2012, Fragaszy et al., 2015). In 

tropical settings where seasonality is less pronounced, this could lead to difficulties in timing and 

interpretation of cross sectional sero-studies.  The development of a novel microarray allows a 

reassessment of these methods to optimise serological determinants of acute infection and how this 

can be applied in settings with less pronounced seasonal epidemics. 

Defining an optimal titre cut-off to the most recent circulating strain on the microarray is an attempt 

to replicate the traditional 1:40 cut off using HI testing. The PMA is known to be more sensitive than 

HI and a PMA titre is higher than a corresponding HI test (Koopmans et al., 2011). Small studies in-
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house and at the population level have suggested that an HI of 1:40 for H1N1 2009 corresponds to a 

PMA of approximately 1:100 (log2 3.3) (Boni, unpublished data; (te Beest et al., 2014a)). As 

measured by the Youden or Closest to the Top Left methods, the optimal threshold for recent 

infection on PMA is considerably higher than would be expected given the HI threshold of 1:40 

(Table 5.2). The sensitivity of these thresholds are better but have a poorer specificity than those 

reported for HI cut off of 1:40 in the post-pandemic period with PCR confirmed H1N1 (Veguilla et al., 

2011).  Age specific differences in sensitivity and specificity were also identified in this study.  In 

another study in the Netherlands, sensitivity and specificity of HI were much lower when estimated 

at the population level in the immediate pre and post emergence of H1N1 2009pdm but were 

improved using a PMA cut off of ~ 1:100 (te Beest et al., 2014a). 

In contrast to the published estimates of sensitivity and specificity, this study looked at the threshold 

for H3N2, which has been circulating for over 40 years, rather than to a newly emerged subtype. 

Most individuals in this study have been exposed to H3N2 previously and have baseline values of 

H3N2 2011 greater than the 1:40 equivalent of 1:100 (see Chapter 3). This cross reactivity due to 

previous infection is overcome by increasing the threshold value and explains why sensitivity can be 

preserved or improved despite the presence of positive baseline titres. Specificity improves as the 

time since infection get longer when using the titre response to H3N2 2011. Where very few 

individuals have ever been exposed to a disease and therefore have undetectable or very low titres 

then specificity is improved. Where individuals have been exposed at some point in the past they 

will have detectable titres which then wane. Individuals were categorised as negative for H3N2 if 

they had non-influenza ILI or influenza A H1N1 at recruitment. We do not know when their last 

infection was prior to study recruitment which could have affected the specificity. Younger 

individuals have poorer specificity than older individuals even at the limit of detection. The presence 

of ‘original antigenic sin’ means that these individuals have higher titres to antigenically similar 

viruses which could explain the poorer specificity. 

The use of multiple strains in the definition of a threshold cut off markedly improves specificity for 

all ages in this analysis. The use of a diversity index to look for a high titre across multiple strains 

takes into account the antibody dynamics which were observed in Chapter 4. The use of a weighting 

threshold gave a higher diversity score where all titres were above a certain value (log2 5.5 in this 

analysis) allowing a higher score for ‘high and broad’ microarray responses. This method has been  

explored to look for cross reaction following H1N1 2009 (Freidl et al., 2016) but this is the first time it 

has been used as a diagnostic marker in influenza. Further work is planned to investigate the optimal 

weighting value and the optimal number of strains to be included in the calculation of the index. 

Other methods that have been used to look at the inclusion of multiple strains for diagnosis include 
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a ratio of H1N1 2009 to 1918 which improved specificity compared to a single strain in the post-

pandemic period (te Beest et al., 2014a). Microarrays have been used for diagnosis of non-influenza 

infectious disease and methods utilised have included k-means clustering and support vector 

machine learning which are standard methods for genomic microarray analysis (Sundaresh et al., 

2006, Sundaresh et al., 2007, Felgner et al., 2009, Crompton et al., 2010). These approaches are now 

being applied to large scale population sero-surveys for malaria (King et al., 2015). It is planned to 

explore these more complicated methods to look for classification of recent subtype specific 

infection and susceptibility and apply this to the related population serum bank for central and 

southern Vietnam. 

One challenge in serosurveillance is the continual evolution of the virus which can result in a 

mismatch between the infecting strain and testing strain. This can occur when there is antigenic drift 

within seasons but also in longer term studies over a number of seasons and batch testing.  If using a 

titre threshold to a single strain, it is likely that the sensitivity and specificity of this will change as the 

virus evolves and these changes need to be taken into account when using newer serological 

markers.  The advantage of the diversity index approach is that this pattern is likely to be present 

regardless of the match between the most recent strain on the assay and the infecting strain. It also 

leads to a more consistent sensitivity and specificity between different age groups. Age in the 

multiple strain approach is less important than in single strain as there is similarity in broad cross 

reactivity in the short term after infection leading to a more consistent sensitivity and specificity. 

This method is also affected less by presence of censored data than a single strain approach which 

may allow fewer dilutions to be performed. 

The time since infection is an important consideration when performing surveillance for influenza as 

the assumption of a single infection during a lifetime, which underpins most other serosurveillance 

methods, does not hold true (Hens et al., 2012). The standard serological cut-off of 1:40 assumes  

infection at any time, which is not useful for estimating the force of infection of non-pandemic 

influenza using cross-sectional data (Lessler, 2014). There remain unanswered questions regarding 

the optimal designs of seroepidemiology for seasonal influenza (Van Kerkhove et al., 2013a). One 

particular question is what measure of incidence are we interested in and are we able to measure it. 

Age specific population attack rate is important to determine public health impact of influenza and 

plan interventions such as vaccination. The other use of seroepidemiology is to understand the 

influenza transmission dynamics at a population level including those with mild or asymptomatic 

disease. The second of these aims will require a finer time resolution than the first, i.e. a six month 

age specific attack rate is a useful figure but does not give information on transmission dynamics.  

This is of particular importance in tropical settings with less predictable seasonality. The use of 
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multiple strains appears to provide better discrimination between infections in the last 60 days.  

Further exploration of this is required as well as exploring if a probability of infection in the last 60 or 

100 days can be determined. 

Seroepidemiology in an environment without strong seasonal forcing is likely to be compromised by 

the lack of a perfect test. Few studies have adjusted for the sensitivity and specificity of influenza 

serology (Cox et al., 2011, Lee et al., 2011, Reed et al., 2012) and all of these used a fixed sensitivity 

and specificity value. The assumption of fixed sensitivity and specificity is likely not to hold, 

especially in the situation of a drifted seasonal virus which individuals have been exposed to multiple 

times. None of the studies where adjustment has been performed considered the changing 

underlying prevalence on positive and negative predictive values of the test and how this would 

impact the confidence intervals of the predictions. Our results demonstrate a considerable 

overestimation of prevalence if adjustments for sensitivity and specificity have not been made. This 

is particularly true in younger individuals even six months post infection. The use of a multi-strain 

approach with its improved specificity reduces this overestimation in all age groups. Bayesian 

techniques offer a method to improve these estimations but with the wide confidence intervals will 

require further refinement before they can be widely implemented. 

The work presented in this thesis also raises important questions around how to identify the optimal 

measure of acute influenza infection using serological methods. To date a cut off of HI 1:40 has been 

used for all ages, in temperate and tropical settings, for both seasonal and pandemic strains, for all 

influenza A subtypes. The results presented in this thesis supports other published work which 

shows this simplified approach to seroepidemiology in influenza is in need of review and requires to 

be tailored to the specific questions that are being asked of the methodology (Van Kerkhove et al., 

2013a). In the pandemic setting, detection of age specific attack rates is the priority and several 

papers suggest that a titre threshold of 1:20 is more appropriate to estimate the population attack 

rate (Cauchemez et al., 2012, Wu et al., 2014). The relative lack of cross reactivity in the initial waves 

after the emergence of a new strain means that a lack of specificity due to previous infection is not a 

problem in the way it is for a seasonal strains. For seasonal strains, cross reactivity and serological 

response to previous infection becomes an issue and here specificity of any marker of acute 

infection is likely to be at least as important as sensitivity, if not more so. Existing methods for 

defining the optimal threshold such as Youden’s and Closest to the Top Left minimise the number of 

false negatives (Perkins and Schisterman, 2006). This is because these methods were developed for 

cancer screening tests where false negatives need to be avoided even at the expense of a large 

number of false positives. In a surveillance setting rather than screening, the goal is to get as close to 

‘true prevalence (D+)’ as possible and have a diagnostic test which offers the best accuracy over the 
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range of likely prevalence (Banoo et al., 2010). For influenza this is likely to range between 0 and 

30% prevalence for seasonal strains. In addition to this we need to use the information we possess 

on test accuracy by incorporating sensitivity and specificity into estimates. The Rogan-Gladen 

adjusted estimates of seroprevalence are used more commonly within veterinary epidemiology 

(Lewis and Torgerson, 2012, Brooks-Pollock et al., 2013). One reason for this difference between 

human and animal epidemiology could be that false positives can have a financial implication if 

culling is employed for disease control. With developments in computing and statistical software, 

the use of simple Bayesian models becomes much easier and within the grasp of those working in 

influenza epidemiology. 

There are a number of limitations to this study. This work has been restricted to measure of acute 

infection with influenza A H3N2 due to the small number of subjects with PCR confirmed H1N1 

within the longitudinal study. The mixed H3N2 and H1N1 wave detected in May 2015 carried on for 

two months and there were additional H1N1 positive subjects in the longitudinal portion of the 

study. Further analysis is planned to detect the optimal threshold for the most recent strain on the 

PMA as well as looking at the multi-strain response in a recently emerged strain (although no longer 

strictly a pandemic strain). No follow-up was conducted on subjects with influenza B as this study 

was designed to assess influenza A seroepidemiology. Subjects infected with influenza B had the 

highest mean titres to H3N2 at baseline and further work is planned to see if these would be 

classified as recent infection using the markers defined in this Chapter. The interaction between 

subtypes and influenza A and B still needs to be fully understood particularly in tropical settings 

where influenza B seems to be a more significant cause of disease than had previously been 

recognised (Caini et al., 2015). One of the benefits of seroepidemiology is that it is thought to give a 

more accurate depiction of population attack rate because it includes individuals with mild or 

asymptomatic disease who do not attend healthcare and are therefore missed by syndromic 

surveillance techniques. Although this study specifically recruited outpatients with mild disease 

these individuals still presented to healthcare setting for assessment. Antibody response in those 

with very mild or asymptomatic infection is likely to be lower than those who have symptoms severe 

enough to present to healthcare. It is important to consider this in any future marker of acute 

infection. Household studies may elicit further information on antibody response in those with 

asymptomatic shedding or very mild disease. 

The way forward for this work will be to apply markers of acute infection to the related population 

serum bank which has been collected since 2009 in central and southern Vietnam. This would allow 

an assessment of the markers defined in a real life setting and should be compared to the results 
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from national surveillance system within Vietnam.  In particular to look at whether the markers of 

acute influenza infection demonstrably give a measure of transmission dynamics in a tropical setting.  
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6 DISCUSSION 

6.1 INTRODUCTION 

As discussed in chapter 1, global influenza circulation is a complex interplay between viral evolution, 

population level immunity and environmental pressures which results in multiple infections during 

an individual’s lifetime (Ferguson et al., 2003). Despite being studied for over 70 years this interplay 

is still not fully understood. Influenza evolution occurs through a series of ‘shifts’ and ‘drifts’, with 

gradual antigenic changes occurring each year and larger jumps occurring every three to five years 

(Smith et al., 2004, Bedford et al., 2014). In addition to these changes, the sporadic emergence of 

novel subtypes occur with a subsequent rapid spread globally. These pandemics are known to have 

occurred five times in the last 100 years and each time the new virus has become the predominant 

circulating virus in the human population (Webster, 2013).  It is important to consider the 

differences between these forms of influenza, generally termed seasonal and pandemic respectively, 

particularly with regard to limiting the clinical impact of existing and novel strains. 

Serological surveys are a long standing method of investigating infectious disease epidemiology with 

two major goals i) determination of disease incidence and ii) assessment of susceptibility to disease 

(Van Kerkhove et al., 2013a). However, many of the existing statistical methods rely on assumptions 

of life-long immunity following infection which does not hold true in influenza in non-pandemic 

situations (Hens et al., 2012).  

This thesis presents the results of a prospective observational study of non-severe influenza like 

illness (ILI) in a tropical, urban primary care setting. This study was designed to address questions 

around the levels of protection against influenza A infection offered by pre-existing antibodies, 

understand the short term antibody dynamics of both recent and historical strains post infection and 

identify optimal serological determinants of recent infection.   

These results will contribute to a wider body of work which aims to understand the impact on the 

humoral immune system of multiple influenza infections during an individual’s lifetime and how this 

might impact on susceptibility and transmission of influenza at the population level. A pre-existing 

population level seroepidemiology study has been collecting residual serum samples from hospitals 

across central and southern Vietnam since 2009 and had a bank of over 40,000 samples at the end 

of 2015. These samples can be related to simplified demographic information but no information on 

recent infection or clinical status was available. This dataset provided rich spatio-temporal data on 

the changing antibody titre measurements at population level which has been used to investigate 
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the introduction and spread of H1N1 2009 in Vietnam (manuscript in preparation) and assessment 

of potential exposure to avian strains at the time of H7N9 emergence in southern China (Boni et al., 

2013, Todd et al., 2014). The study presented in this thesis was developed to answer questions 

around individual level susceptibility to influenza in a non-pandemic period. This collected more 

detailed clinical and demographic information than the population study in the context of known 

current infection status and allowed short term follow-up of antibody response for individuals 

infected with influenza A and non-influenza ILI. Together these research studies offer a rare 

opportunity to improve our understanding of the interaction between individual and population 

measures of immunity and how this influenza transmission at the population level.. 

6.2 KEY FINDINGS IN CONTEXT 

Many of the observations in this thesis are consistent with and corroborate the existing influenza 

literature. Year round transmission is one of the hallmarks of influenza in tropical regions (Nguyen et 

al., 2007, Li et al., 2008, Nguyen et al., 2009, Moura, 2010, Tamerius et al., 2011, Horby et al., 2012) 

and this study supports this finding with influenza identified in over 80% of study weeks. However, it 

is important to note that this was not persistence of the same influenza type or all types 

simultaneously but a mixture of high intensity peaks of single subtypes and co-circulation of types 

and subtypes at variable intensities. Influenza is traditionally thought of as a single entity; however, 

this is likely to be a gross simplification and understanding the interactions between the different 

types and subtypes is vital. The presence of long lasting antibodies to strains encountered decades 

prior to testing has long been recognised (Davenport et al., 1953, Lessler et al., 2012, Miller et al., 

2013). The results of this study have again demonstrated an age specific effect with the highest titres 

being to those strains an individual was exposed to in the first decade of life. The mechanism behind 

this ‘original antigenic sin’ or ‘antigenic seniority’ remains elusive. One hypothesis is the repeat 

boosting of strain responses after acute infection. The finding of short term boosting of historic 

responses after infection was identified in this and other recent multi-strain studies (Lerman et al., 

1980, Miller et al., 2013, Fonville et al., 2014) and has been incorporated into models estimating the 

life course of infection with reasonable success (Kucharski et al., 2015). An alternative is the concept 

of ‘antigenic trapping’ where pre-existing antibodies reduce the viral (and therefore antigenic) load, 

meaning the new humoral response to the infecting strain is smaller (Hennessy et al., 1955). In this 

study, there appeared to be a higher fold change of titre to the most recent strain for individuals 

with very low titres at baseline. As these individuals were mostly younger, this could represent the 

antigenic trapping phenomenon but this result was highly confounded by the upper limit of 

detection on the microarray.  
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Some unexpected results were found during this analysis. That recent but not most recent strains 

were predictive of susceptibility to infection with H3N2 is consistent with the idea that an adult is 

infected once or twice each decade (Kucharski et al., 2015). It also suggests that the boosting of 

historic responses may not translate to an increase in neutralisation titre to drifted strains such as 

H3N2 but could provide protection against the emergence of novel strains such as H1N1 2009 (Van 

Kerkhove et al., 2013b). Another surprising finding was the extent to which protection offered by a 

fixed titre measurement changes with the force of infection. Although intuitively this finding makes 

sense there has been little work which explored it in detail (Gomes et al., 2014, Cao et al., 2015, 

Laurie et al., 2015b). Another intuitive finding, which has been overlooked, is the degree to which 

prevalence is overestimated if the imperfect nature of serology is not corrected for (Cox et al., 2011, 

Lee et al., 2011, Reed et al., 2012). This is the first time, to my knowledge, that an exploration of this 

nature has been made to quantify the degree of uncertainty around influenza seroprevalence and 

establish an optimal measure, based on the underlying likely prevalence. 

6.3 IMPLICATIONS FOR PRACTICE 

The two key messages from this thesis are related to the conduct and interpretation of 

seroepidemiology studies in influenza; i) surveillance methods developed in temperate settings 

cannot be directly moved to tropical settings without consideration; ii) surveillance and testing 

methodologies should be tailored specifically for pandemic or seasonal strains. This is a major shift 

from existing approaches which have traditionally used a universal approach for all settings. These 

findings have important implications for influenza public health policy and research. 

6.3.1 Surveillance methods developed in temperate settings cannot be directly moved to tropical 

settings without consideration 

Influenza is a global disease with differing behaviour in temperate and tropical settings (Moura, 

2010). The year round persistence of all types of influenza rather than predictable winter peaks is 

the most significant difference. In considering the first goal of seroepidemiology, to determine 

disease incidence, year round presence of some type of influenza will lead to difficulty.  Following 

infection, titre rise to most recent circulating strains persists out to seven months meaning that fine 

resolution of seroprevalence in cross-sectional studies is likely to prove difficult if relying on a 

response to most recent strains alone. The presence of heterosubtypic boosting within influenza A 

and the possibility of influenza B infection following influenza A are additional complicating factors. 

In temperate countries a single cross sectional study at the end of the relatively short influenza 

season could give a reasonable season attack rate estimate, assuming there is a good match 



Discussion 
 

138 

between infecting and testing strains. In tropical settings where seasonality is less pronounced, this 

could lead to difficulties in timing and interpretation of cross sectional sero-studies. 

The other goal of seroepidemiology is to assess the susceptibility to disease in the population. The 

complex transmission dynamics in tropical countries highlights the question of how population 

immunity may be shaping these transmission dynamics. In temperate countries there is temporal 

clustering of infection where people are infected within a relatively short season. As waning of titre 

(and therefore immunity) appears to occur at a reasonably consistent rate between individuals, this 

may lead to a synchronicity in time to becoming susceptible again after infection. In tropical 

countries there is less clustering of infection in time and more low level transmission of different 

subtypes through the year, which could lead to greater variability in the population level waning of 

immunity.  If the heterosubtypic boosting demonstrated in chapter 4 corresponds to a boost in 

neutralisation activity then this could also impact on the dynamics of population susceptibility. The 

other major finding with regard to susceptibility in this study is that levels of protection offered by a 

specific titre vary depending on the force of infection. If this observation is related to an antigenic 

change in the predominant H3N2 strain then it accentuates the need to match the serological 

assessment of susceptibility with the genetic and antigenic evolution of virus. If this finding is not 

due to mismatch between infecting and testing strains, then it poses interesting questions around 

changing population susceptibility through the year. Again this is likely to be a more significant 

problem in tropical countries where there is more variation in the incidence of influenza infection 

through the year rather than the condensed intense peaks of transmission in temperate regions. The 

longer periods of low transmission in tropical countries (rather than no transmission in temperate 

countries) could lead to variability in which portions of the population are susceptible at different 

times throughout the year.  

Changes occurring across the tropics will pose new challenges in influenza surveillance. As seen in 

this study, vaccination is increasingly being used in the private sector in Vietnam, although in small 

numbers, and this will start to change the population immune landscape that has arisen due to a 

lifetime of natural infection.  The challenge of incorporating multiple healthcare providers is likely to 

become more important in future public health surveillance planning 

6.3.2 Surveillance and testing methodologies should be tailored specifically for pandemic and 

seasonal strains 

Just as methods developed in temperate settings need to be introduced with due consideration to 

tropics, pandemic and seasonal influenza should also be treated differently. The H1N1 pandemic 

strain which emerged from Mexico in 2009 has replaced previously circulating H1N1 seasonal strain 
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and now can be considered to be a seasonal influenza type. However, the results presented in this 

thesis suggests that, even six years after its emergence, there still appear to  be individuals 

encountering their first infection with this strain. This was a surprising finding and it is unclear if this 

is related to cross reaction of the assay with pre-existing H1N1 antibodies related to strains 

circulating between 1977 and 2009 (rather than pre 1957 H1N1 strains). The small number of H1N1 

infections present in the study meant that it was not possible to perform the planned analysis 

presented in chapters 4 and 5 for H1N1. The study has continued to collect data and this should 

allow additional analysis of this finding.  

Given the primary aim of seroepidemiology is to determine disease incidence, in the pandemic 

setting detection of age specific attack rates is a priority. Several papers have suggested that an HI 

titre threshold of 1:20 is more appropriate than the traditional 1:40 to estimate the population 

attack rate in pandemic periods (Cauchemez et al., 2012, Wu et al., 2014). The relative lack of cross 

reactivity in the initial waves after the emergence of a new strain means that a lack of specificity due 

to pre-existing titres, from previous infection, is not a problem in the way it is for seasonal strains 

and therefore a lower threshold with a higher sensitivity is optimal. For seasonal strains, cross 

reactivity and serological response to previous infection becomes an issue and here specificity of any 

marker of acute infection is likely to be at least as important as sensitivity. In order to determine 

disease incidence, the goal is to get as close to true prevalence as possible and have a diagnostic test 

which offers the best accuracy over the range of likely prevalence. This means that for seasonal 

strains, a higher threshold and likely one that takes into account cross reaction is required. The 

results presented in this thesis suggests a multi-strain diagnostic is likely to give a better estimate of 

disease incidence that titre to a single strain.  

Serological surveys have also been performed to attempt to estimate true attack rates for non-

human strains which are spilling over from animal and avian reservoirs to cause sporadic infections 

in humans (Wang et al., 2012, Liu et al., 2014).  Results from this and other studies have suggested 

that cross reaction from repeat human infections could lead to cross reaction with avian strains on 

serological testing (Boni et al., 2013, Molesti et al., 2014, Oshansky et al., 2014, Todd et al., 2014).  

This has important implications both for assessment of prevalence but also for consideration of 

population susceptibility.  The need for adjustment for imperfect test, raised in Chapter 5, applies to 

this type of serosurveillance and offers a new dimension to the debate on the ‘missing millions’ of 

H5N1 cases (Osterholm and Kelley, 2012, Palese and Wang, 2012a, Palese and Wang, 2012b, Van 

Kerkhove et al., 2012, Wang et al., 2012).  With regard to population susceptibility, further work is 

required to assess whether this detectable cross reaction to avian strains corresponds to 

neutralisation activity.  If initial results are replicated and this detectable cross-reactivity also reflects 
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cross-immunity (Henry Dunand et al., 2015) then this finding could be used to assess for the 

likelihood of non-human strains moving from intermittent spill over and small scale outbreaks to 

global pandemics. 

Finally, where new technologies are developed in post-pandemic periods for pandemic strains their 

use and relevance should be assessed before translation to seasonal strains. As demonstrated in this 

study, the upper limit of detection of 1280 is likely to be adequate for H1N1 with only 20% of 

subjects infected with H1N1 having values greater than this limit of detection one month after 

infection. In contrast, up to 89% of H3N2 titres are above the limit of detection and this persists 

through the seven months of follow-up. Global public health emergencies often provide the impetus 

for the development of novel diagnostics which are then used in the post pandemic phase. 

Serological diagnostics developed in a population with limited immunity are likely to perform 

differently in a population where they are measuring both historic responses and response to repeat 

infection. 

6.4 STRENGTHS AND LIMITATIONS 

There are a number of strengths associated with the design of this study. That it was designed as 

part of a wider programme of research into influenza in Vietnam will be key to full exploration of 

these results and their wider implications. Conducting studies within a primary care setting in low 

and middle income countries has been traditionally an underserved area of research, this combined 

with the specific objective of recruiting those with mild disease reflects a major strength when 

aiming to understand serology in the context of disease transmission and population estimates of 

incidence.  The use of the protein microarray technology in this study has allowed for the 

investigation of multi-strain serological response, which as demonstrated from this and other studies 

(Fonville et al., 2014) is becoming vital to the next steps in our understanding of the role of humoral 

immunity in influenza evolution.  Sample quality is fundamental to the accurate interpretation of 

both serological and virological results.  This study was designed with a view to ensuring sample 

consistency and quality including daily sample collections from study sites, and subsequent 

aliquoting and freezing within 24 hours.  Standardisation across batches of PMA processing also 

reduces variability and increases confidence in study results.  Further work is planned for results 

validation including HI testing of longitudinal samples, testing for other respiratory viruses and 

integration of results with population serology results, these will add to the existing strengths of this 

work and for future directions of influenza seroepidemiology and surveillance.  
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As with all research, there are important limitations which should be considered with regard to this 

study and its results. For pragmatic reasons this study recruited from healthcare clinics individuals 

who already had ILI symptoms. In studies investigating the humoral response and its role in 

susceptibility, the ideal design would be to sample individuals as close to the onset of symptoms as 

possible, preferably just prior to infection. Although cohort studies allow the sampling of individuals 

without ILI symptoms, ‘baseline’ samples can be collected up to a year prior to the onset of 

symptoms, depending on the study design (Horby et al., 2012, Lessler et al., 2012). Although this 

study recruited individuals with mild disease these subjects still attended for clinical assessment. 

Differences in healthcare seeking behaviour suggests that this study is likely not to be representative 

of the population as a whole. The majority of influenza infections are self-limiting but a significant 

proportion cause severe disease (Fischer II et al., 2014, Global Burden of Disease 2013 Mortality and 

Causes of Death Collaborators, 2015). This study specifically excluded these individuals and further 

work is required to understand if the findings in mild disease can be directly translated to those with 

severe complications. The selection of the strains present on the PMA was dictated by the 

commercial availability of HA1 proteins. The H3N2 strains do not cover all antigenic clusters since its 

emergence in 1968 and the analysis looking at original antigenic sin is likely to be impacted by this. 

As multi-strain seroepidemiology for influenza is expanded it is important to determine what the 

optimal number of strains and antigenic clusters should be included on a testing panel. This will 

likely depend on the question being asked. 

As discussed there were a number of limitations associated with the study design, with these and 

other aspects of research bias in mind a number of steps were taken to attempt to minimise bias 

within the study design.  By recruiting from a number of different clinics and different clinic types I 

attempted to recruit across demographic variations expected within HCMC. The inclusion of 

polyclinics expanded recruitment time into the evening and weekend which is likely to have resulted 

in greater number of working individuals to be recruited to the study.  Allowing recruiting of 

accompanying family members and household contacts with ILI symptoms was done with the aim of 

reducing selection bias introduced by healthcare seeking behaviours. Unfortunately only a small 

number of individuals were recruited through this route and in future studies I would plan to change 

this to a more prospective recruitment pathway.  To reduce loss to follow-up and attrition bias 

phone-calls were introduced at months two, four and six to encourage individuals to remain within 

the study, to remind them of study procedures and of the next follow-up date. An additional 

reminder phone-call was made shortly before the follow-up clinic visit to try and encourage 

retention.  These additional contacts also helped in the reduction of recall bias for any new ILI 

symptoms which occurred during follow-up period.   
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In the analysis of the serology results comparisons were made between those who had ILI caused by 

influenza and those who had non-influenza ILI. The inclusion of non-influenza ILI group provided a 

comparator who had similar recent history of healthcare seeking behaviour and age and sex 

matching was aimed at reducing bias in the likely influenza strains that an individual could have been 

exposed to during their lifetime. The lack of an ‘ILI negative’ group (i.e. individuals who presented to 

healthcare for reasons other than ILI) was considered as a potential source of bias in the study 

design. The recruiting clinic sites reported a high rate of individuals presenting with non-ILI febrile 

illnesses which have a wide differential diagnoses. It is unclear if non-respiratory causes of febrile 

illnesses could affect longitudinal influenza serology and with a heterogeneous group of 

presentations it would be difficult to explore with explanatory power without a much larger sample 

size if using only the existing clinic sites. By recruiting only patients with ILI it was hoped that any 

comparison would be more consistent.  In future studies designs the inclusion of age and sex 

matched non-infected control such as the use of elective surgery or trauma patients would be 

planned. 

6.5 FUTURE DIRECTIONS 

Building on the results presented in this thesis, further investigation into several areas are planned. 

The results in this thesis present data collected to the end of May 2015, study recruitment and 

follow-up continued until the end of November 2015. This included a period of sustained H1N1 

transmission which will allow much of analysis performed only in H3N2 cases to be performed for 

this subtype. In order to further validate the microarray results, subjects included in the follow-up 

study will have HI assays performed using the same strains as on the microarray.  Genomic 

sequencing is planned for the isolated influenza A viruses along with testing for other respiratory 

viruses in those who had non-influenza ILI.  Finally, the results obtained from this study will be 

applied to the population dataset to advance assessments on the changing dynamics of disease 

incidence and susceptibility. 

For the wider influenza field, the period since 2009 has led to considerable progress in our 

understanding of influenza humoral immunity and its contribution to transmission dynamics. This 

has included exciting new areas such as the identification of conserved regions of the 

haemagglutinin stalk region, giving hope of a universal vaccine (Lu et al., 2014) but also a renewed 

interest in old concepts such original antigenic sin and the role of early infection (Kucharski and Gog, 

2012).  The work presented in this thesis, along with wider literature published since the design and 

set up of this study, indicates several areas where future work should be concentrated. 

Understanding the interaction between individual and population level immunity is a vital piece of 
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the interplay between virus, human and environment. Human challenge studies of influenza are 

being used to investigate the impact of infection on the immune system and also the interference 

between different respiratory viruses (Habibi et al., 2015). This technique could be used to 

investigate the finding of different levels of protection offered by a fixed titre with different force of 

infections. A better understanding of the role of humoral immunity in disease severity is also 

important:  whether the ‘sin’ component of original antigenic sin does lead to more serious disease 

outcomes is an important question. The ethics around both of these types of studies need careful 

consideration but are important enough to require the discussion. At the population level, trialling of 

novel vaccination schedules in tropical regions should be considered. In particular trialling of 

targeted vaccination schedules driven by an assessment of population immunity by assessing 

population profile of susceptibility, as in this study, or through the use of antigenic landscapes 

(Fonville et al., 2014). The most pressing area identified in this work is the need to improve our 

surveillance methods for influenza and further refine the testing and analysis techniques to take into 

account the difficulties associated with seroepidemiology. This study used a novel protein 

microarray and the results suggest that a high throughput multi-strain approach is the future of 

influenza seroepidemiology. Further refinement of the microarray technology to improve the 

specificity and sensitivity of the test across different age groups is likely to be beneficial. From a 

methodological perspective the results from this study on test accuracy, and how this will change 

global estimated disease surveillance, should be replicated in other settings.  

6.6 CONCLUSION 

Eradication of human influenza, in the manner of smallpox, is unlikely to be possible because of 

animal and avian reservoirs of disease. This means our focus in influenza control should be on 

mitigation of severe disease and attempts to minimise the risk of new pandemic strain emergence. 

Annual influenza vaccination remains the best method available for disease control, despite this 

there are still around half a million deaths per year. Although investigation of the humoral immune 

response is one of the oldest themes of influenza research, this thesis demonstrates we still have 

much to learn about the continually shifting landscape of influenza immunity. 
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PATIENT INFORMATION SHEET 

SUSCEPTIBILITY TO INFLUENZA A:  

A STUDY IN HO CHI MINH CITY  

 
You/Your child are(is) being asked to participate in a research study because you are suspected to have influenza 

based on your symptoms.  Participation is your choice.  Take as much time as you need to read the following 

information regarding this research study.  You will be given a copy of this form to keep.  

 

Why is this study being done? 

Influenza is normally a mild, short lived illness. However in some groups it causes serious illness and death.  The 

influenza virus continually changes and this means individuals may have multiple influenza infections during their 

life.  The purpose of this study is to explore how previous influenza infections affect your risk of catching current 

influenza viruses.  We are also interested in how important infections you catch early in life (before the age of 10) 

are.   

 

What will happen if you/your child take(s) part in this study? 

You/Your child will be asked to spend up to 15 minutes in the study today. If you agree to join the study the 

following investigations will be performed: 

1. Investigations for all participants 

a. One nasal swab and one throat swab will be collected to give us information on whether influenza is 

causing your symptoms and if so the type of influenza you/your child has. 

b. 5ml venous blood sample will be collected by the study nurse. 

 

We will collect some simple information from everyone who takes part in the study.  This will include information 

on your previous health, on people you came into contact with yesterday and the people who you live with.  

 

If anyone in your household develops similar symptoms in the next 7 days we would like to invite them to join the 

study.  This is an optional part of the study and you are not under any obligation to inform your household 

members about this study.  

 

We want to follow up a group of participants over the next few months.  You may be contacted by a study staff to 

invite you to take part in this part of the study. 

 

What will happen if you/your child agree to take part in the follow-up study? 

Some people will be invited to have additional study visits over the next 7 months.  If you agree to join the follow-

up study the following investigations will be performed: 

a. 5ml venous blood sample to be taken at this clinic approximately 1 month, 3 months, 5 months and 7 

months after today’s visit.  

b. Monthly questionnaire on your recent symptoms.  We will do this on the day you/your child attend for 

the blood test.  For months where you don’t have a clinic visit we will telephone you to ask these 

questions (approximately 2 months, 4 months and 6 months after today). 

c. If you/your child develop new symptoms similar to today we would like you to contact the study team 
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who will ask some simple questions to decide if influenza could be causing your symptoms.  If we think 

it could be influenza we will invite you/your child to attend the clinic.  At this visit you/ your child will 

have one nasal swab and one throat swab collected to give us information on whether influenza is 

causing the symptoms and if so the type of influenza you/your child has 

 

 

Are there potential benefits to taking part in this study? 

Participation in this study will have only limited direct benefit to you/your child.  The swabs will not be processed 

right away and we will report the results back to your doctor and you/your child, but that they will not be available 

in time to change your treatment. For most people, specific anti-viral treatment for influenza is not needed and no 

treatment will be offered as part of the study.    

 

You will receive 50,000VND compensation for participating in the study.  If you agree to the follow-up study you 

will receive 220,000VND for each return study visit including any extra visits to the clinic if you develop new 

influenza like symptoms 

 

Your/your child’s participation will help the Ho Chi Minh City Health Department understand patterns of influenza 

in the city which may help to develop future advice on the use of vaccination and anti-virals.   

 

What are the risks if you/your child take(s) part in this study? 

A nasal swab may cause some slight discomfort, and rarely mild bleeding.  A throat swab may cause a sensation of 

gagging and an urge to cough. Collection of blood samples may be painful and there is a very small risk of infection.  

The amount of blood we collect is very small and poses no risk to your health. The Liverpool School of Tropical 

Medicine is sponsoring this study and has insurance in place to cover the unlikely case of any harm coming to you 

as a result of participating in this study.  

Will my health information be kept confidential? 

All samples will be identified by only a number.  No names or personal identifiers will be sent with the samples.  

The information collected from you/your child will be kept in a secure location.  Study staff or the research ethics 

board may review the information collected for the study and will do so in the strictest confidence. 

 

What will happen to the samples? 

Swabs will be tested for influenza within the next few weeks.  Blood samples will be stored in a freezer at the 

laboratory Hospital for Tropical Diseases.  If you test positive for influenza then a small amount of your blood will 

be sent to The Netherlands for testing on immune reactions to previous influenza infections.  This test cannot be 

performed in Vietnam at present.  All results will be sent directly back to Vietnam for analysis.  The results of these 

blood tests are only meaningful when looked at in a big group, we don’t know what the results mean for an 

individual person.  You will not receive the results of your individual blood test but we will send the results of the 

whole study to you/your child. 

 

After this study is completed, samples may be stored in the freezer at HTD for up to 10 years.  Further research on 

these samples may be performed in the future to improve our understanding of diseases in Viet Nam, including 

tests done by researchers outside Vietnam. These future studies will be approved by Hospital for Tropical Diseases.  

Some of this future research may include studies of your genetic code to try and understand why some people get 
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sick from this disease, while others do not.  This will involve studying the DNA from your cells.  Results will be made 

available to other researchers but you will not be identified and no one will know whose genetic information it is.  

You can choose if you agree to your samples being stored after this study is completed and if you also agree to 

further research on your samples by marking the end of this form. 

 

What are your/your child’s rights if you/your child take(s) part in this study? 

Your/Your child’s participation is voluntary.  You/Your child may refuse to participate or may stop participating at 

any time without penalty.  Choosing not to participate or stopping participation will not affect the quality of 

your/your child’s health care. If you/your child decide to stop the study, just tell your doctor or a member of the 

study team. 

 

What if you/your child have questions about this study? 

If you/your child have(has) any questions about this research study or your/your child’s medical care, you should 

contact Dr. Nguyen Thi Cam Huong at 09 8377 3915 or the study team at 09 3701 4962 Monday to Friday 0800-

1600.  If you/your child have any questions about your/your child’s rights as a research subject or about research-

related injuries, you/your child should contact the Clinical Research Unit of the Hospital for Tropical Diseases at 08 

3924 1983. 
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INFORMED CONSENT TO PARTICIPATE IN A RESEARCH STUDY 

SUSCEPTIBILITY TO INFLUENZA A:  

A STUDY IN HO CHI MINH CITY 

 

Participant’s name: ___________________________________ Participant ID [__] [__] [__] [__] [__] 

 

 I have read the participant information sheet for this study, and I have been told about the purpose, possible 

risks and benefits of taking part in this study.  

 I have had a chance to discuss this information with study staff, and have got answers that I can understand to 

all my questions. 

 I consent to study staff collecting and processing my information, including information about my / my child’s 

health, and using this information for future medical research about influenza. 

 I freely agree that I / my child will take part in this study. 

 I understand that I / my child may withdraw from this study at any time, and that if I do leave the study it will 

not affect my future care. If I decide to leave the study, I agree that the information collected about me up to 

the point when I withdraw, may continue to be used. 

 □ I AGREE OR □ I DO NOT AGREE to take part in the follow-up part of the study.  I agree to attend the clinic for 

follow up visits 1, 3, 5 and 7 months after this visit and be contacted monthly about my symptoms. 

 □ I AGREE OR □ I DO NOT AGREE that samples from me / my child may be stored and that further research on 

these samples may be undertaken in the future, including tests done by researchers outside Viet Nam. 

 □ I AGREE OR □ I DO NOT AGREE that genetic tests on my blood sample can be performed and that this may be 

done outside of Viet Nam. 

 
By signing my name here, I am saying that you gave me a copy of this form. I will keep my copy until my part in the 
study ends. 
 
 
 
____________________ ____________  _____________________  ______________ 
Signature of person giving Print name  Relationship to   Date of signature 
consent                    participant 
 
PERSON OBTAINING CONSENT: 
I confirm the participant (and their parent/guardian if under 15) has understood the information in this form, has had a chance 
to ask questions and consider the answers to his/her questions and voluntarily agrees to be in the study. 

If the subject is under 15, I confirm they have given verbal assent and agree to join the study □. 

 
 
 
_________________________                      ______________________                   ____________ 
Printed name of study staff                                   Signature of study staff                      Date 
 
WITNESS (if the person giving consent can not read, a witness should sign below): 
I was present when this consent form was read accurately to the participant.  I agree that they have given their consent to be 
in the study. 
 
 
 
__________________________   __________________________  ____________ 
Printed name of witness    Signature of witness     Date                                                                      
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CONTACT INFORMATION SHEET 

SUSCEPTIBILITY TO INFLUENZA A:  

A STUDY IN HO CHI MINH CITY  

 
Thank you for taking part in our study.  We would like to recruit other people who live in your house to our study if 

they develop similar symptoms to you in the next 7 days.  This part of the study is voluntary and you can chose not 

to pass this information onto the people who live in your home. 

 

Why is this part of the study being done? 

Influenza viruses often transmit between people who live in the same house.  We are interested in looking at how 

much the virus spread in households in Vietnam and whether everyone in a household has the same patterns of 

previous infection. 

 

What symptoms should I look for? 

We are interested if anyone develops symptoms of: 

 Fever 

 Cough 

 Runny Nose 

 Muscle Aches  

 Head Aches 

 Sore Throat 

What will my household contact have to do as part of the study? 

The person in your household will go through all the same study procedures as you did today.  If they are interested 

in taking part, our study team will discuss it with them in detail before any procedures take place and they can 

make their own decision about whether to join the study. 

 

Why do you need to know my study number? 

If we have people from the same household or family it is useful for us to be able to link their samples together to 

compare results.  Linking will be done through study numbers not your name and all results are confidential. 

What is the next step? 

If your household contact is interested in joining the study they can contact the study team through the dedicated 

study phone number 0937014962 Monday to Friday 0800-1600.  The member of the study team will then invite 

them to attend the clinic discuss the study in more detail.  We will also provide you with a business card with the 

study phone number which you can pass onto other members of your house. 

 

Thank you again for helping us with this study.  If you have any questions please contact us on the above number.      
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STUDY PROCEDURES  

ICF MUST BE SIGNED BEFORE ANY STUDY PROCEDURES ARE PERFORMED. 

1. Date of ICF Signed:   [__|__]/[__|__]/[__|__]  

2. Recruitment Group:   i  ii  iii  

3. Agreed to enter the follow-up sub-study:  YES   NO 

DEMOGRAPHIC HISTORY  

4. Sex     MALE  FEMALE 

5. Date of birth:  Day: [__|__] Month: [__|__]  Year: [__|__|__|__] 

CURRENT INFLUENZA LIKE ILLNESS 

6. How many days ago did your symptoms start? [__|__] 

7. Which of these symptoms have you had since you have been ill? 

a. Fever     Yes   No       

Temperature (If known):   [__|__].[__] 

b. Headache    Yes   No 

c. Runny nose   Yes   No 

d. Cough     Yes   No 

e. Sore throat   Yes   No 

f. Muscle Aches     Yes   No 

g. Vomiting/Diarrhoea    Yes   No  

h. Shortness of Breath            Yes   No 

i. Malaise                                      Yes   No 

8. Have you taken any of these treatments for this illness? 

a. Paracetamol    Yes   No   

b. Anti-viral    Yes   No 

c. Anti-bacterial   Yes   No   

d. Other    Yes   No 

If Yes, specify: [_____________________________________________________] 

9. Have you been able to do your normal tasks during this illness?  Yes    No    Don’t know  
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4. PREVIOUS ILLNESS HISTORY  

10. Have you ever suffered from any of these health problems? 

a. COPD                      Yes   No 

b. Congenital Heart Disease  Yes   No 

c. Heart Failure    Yes   No 

d. Diabetes    Yes   No 

e. Asthma      Yes   No   

f. Other Respiratory Disease  Yes   No 

If yes, specify: [___________________________________________________]   

g. Other Health Problems     Yes   No 

If yes, specify: [___________________________________________________] 

11. Are you currently pregnant?  Yes         No           Don’t know  N/A 

12. Are you a smoker?    Yes         No           Don’t know  N/A 

13. Have you ever had influenza vaccination?  Yes    No    Don’t know 

If Yes, when? (mm/yyyy): [__|__] / [__|__|__|__] 

HOUSEHOLD AND CONTACT HISTORY 

14. What is your usual/main occupation? 

  School/College Student  

  Stay at Home Parent/Carer 

  Professional or Office Work, if yes: Contact with Public?    YES  NO  

  Shop Assistant/Trader 

  Manual Work 

  Other, specify [______________________________________________] 

15. How many people did you have a face to face conversation with yesterday? Refused to answer □ 

 0-4 YEARS 5-18 YEARS 19-44 YEARS 45-64 YEARS 65+ YEARS 

HOME [__|__] [__|__] [__|__] [__|__] [__|__] 

WORK/SCHOOL [__|__] [__|__] [__|__] [__|__] [__|__] 

OTHER [__|__] [__|__] [__|__] [__|__] [__|__] 

16. How many people did you have physical contact with yesterday? Refused to answer □ 

 0-4 YEARS 5-18 YEARS 19-44 YEARS 45-64 YEARS 65+ YEARS 

HOME [__|__] [__|__] [__|__] [__|__] [__|__] 

WORK/SCHOOL [__|__] [__|__] [__|__] [__|__] [__|__] 

OTHER [__|__] [__|__] [__|__] [__|__] [__|__] 

17. How many people (including you) have stayed in your house in the last 7 days: [__|__] 
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18. For the people who stayed in your house, can you tell us their ages and if they have had any illness in the last 7 days:  Refused to answer □ 

 AGE RELATIONSHIP * USUAL DAYTIME LOCATION ILLNESS IN LAST 7 DAYS ENROLLED IN 10FL 

1 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

2 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

3 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

4 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

5 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

6 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

7 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

8 [__|__] [__|__]  Home   School   Work   Travel   Yes   No   Don’t Know 
 Yes   No   Don’t Know 
If Yes, Study ID: [__|__]-[__|__|__] 

* 1.Parent; 2.Parent in Law; 3.Grandparent;   4.Grandparent in Law; 5.Uncle/Aunt; 6. Uncle/Aunt in law;  

7. Nephew/Neice; 8.Nephew/Neice in law; 9.Cousin; 10.Friend; 11.Other 12. Son/Daughter 13. Son/Daughter in law 14. Wife/Husband 

19. How often do you have skin contact with the follow animals:  Refused to answer □ 

 4+ 

DAYS PER WEEK 

1 – 3 DAYS PER 

WEEK 

MORE THAN ONCE PER WEEK BUT LESS 

THAN ONCE PER MONTH 

LESS THAN ONCE A 

MONTH NEVER 

LIVE POULTRY (CHICKENS, DUCKS, GEESE) [        ] [         ] [         ] [         ] [         ] 

DEAD POULTRY (CHICKENS, DUCKS, GEESE) [         ] [         ] [         ] [         ] [         ] 

LIVE PIGS [         ] [         ] [         ] [         ] [         ] 

DEAD PIGS [         ] [         ] [         ] [         ] [         ] 
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STUDY PROCEDURES  

ICF MUST BE SIGNED BEFORE ANY STUDY PROCEDURES ARE PERFORMED. 

1. Date of ICF Signed:   [__|__]/[__|__]/[__|__] (dd/mm/yy) 

2. Visit number:  [__|__]            Telephone Visit:  Yes    No 

3. Date of visit:   [__|__]/[__|__]/[__|__] (dd/mm/yy) 

4. Confirm participant agrees to continue in the follow up study and  

any additional questions have been addressed    Yes    No  

5. Date of next follow up: [__|__]/[__|__]/[__|__] (dd/mm/yy) 

a. Study complete  

PREVIOUS INFLUENZA LIKE ILLNESS (if this is visit 2) 

6. After your last visit did your symptoms get worse?  Yes   No   Don’t Know 

7. After your last visit did you seek any further medical advice? 

 No   Pharmacy      Private Clinic   Hospital Clinic     Hospital Inpatient  Other 

INFLUENZA LIKE ILLNESS SINCE LAST VISIT 

8. Have you had any new respiratory symptoms since the last clinic visit? 

 Yes  

 No   Don’t Know (go to question 14) 
 

a. If Yes, Did you attend for Symptomatic Follow Up Visit (SFU) 

 Yes (go to question 9 & 10)  

 No  (go to question 11 – 13) 

9. After your last visit did your symptoms get worse?  Yes   No   Don’t Know 

10. After your last visit did you seek any further medical advice? 

 No   Pharmacy      Private Clinic   Hospital Clinic     Hospital Inpatient  Other 

11. Which of these symptoms did you have? 

a. Fever     Yes   No       

Temperature (If known):   [__|__].[__] 

b. Headache    Yes   No 

c. Runny nose   Yes   No 

d. Cough     Yes   No 

e. Sore throat   Yes   No 
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f. Muscle Aches     Yes   No 

g. Vomiting/Diarrhoea    Yes   No  

h. Shortness of Breath            Yes   No 

i. Malaise                                      Yes   No 

12. Did you take any of these treatments for this illness? 

a. Paracetamol    Yes   No   

b. Anti-viral    Yes   No 

c. Anti-bacterial   Yes   No   

d. Other    Yes   No 

If Yes, specify: [_____________________________________________________] 

13. Have you been able to do your normal tasks during this illness?  Yes    No    Don’t know  

CONTACT HISTORY 

14. How many people did you have a face to face conversation with yesterday? Refused to answer □ 

 0-4 YEARS 5-18 YEARS 19-44 YEARS 45-64 YEARS 65+ YEARS 

HOME [__|__] [__|__] [__|__] [__|__] [__|__] 

WORK/SCHOOL [__|__] [__|__] [__|__] [__|__] [__|__] 

OTHER [__|__] [__|__] [__|__] [__|__] [__|__] 

15. How many people did you have physical contact with yesterday? Refused to answer □ 

 0-4 YEARS 5-18 YEARS 19-44 YEARS 45-64 YEARS 65+ YEARS 

HOME [__|__] [__|__] [__|__] [__|__] [__|__] 

WORK/SCHOOL [__|__] [__|__] [__|__] [__|__] [__|__] 

OTHER [__|__] [__|__] [__|__] [__|__] [__|__] 

16. How many people (including you) have stayed in your house in the last 7 days: [__|__] 
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STUDY PROCEDURES  

ICF MUST BE SIGNED BEFORE ANY STUDY PROCEDURES ARE PERFORMED. 

1. Date of ICF Signed:   [__|__]/[__|__]/[__|__] (dd/mm/yy) 

2. Telphone contact number: [__|__]             

3. Date of contact:   [__|__]/[__|__]/[__|__] (dd/mm/yy) 

4. Confirm participant agrees to continue in the follow up study and  

any additional questions have been addressed    Yes    No  

5. Date of next follow up: [__|__]/[__|__]/[__|__] (dd/mm/yy) 

INFLUENZA LIKE ILLNESS SINCE LAST VISIT 

6. Have you had any new respiratory symptoms since the last clinic visit? 

 Yes                       (go to question 7) 

 No  Don’t Know    (end call) 
  

7. How many days ago did your symptoms start? [__|__] (if <5 invite to study clinic) 

8. Did you seek any further medical advice? 

 No   Pharmacy      Private Clinic   Hospital Clinic     Hospital Inpatient  Other 

9. Which of these symptoms did you have? 

a. Fever     Yes   No       

Temperature (If known):   [__|__].[__] 

b. Headache    Yes   No 

c. Runny nose   Yes   No 

d. Cough     Yes   No 

e. Sore throat   Yes   No 

f. Muscle Aches     Yes   No 

g. Vomiting/Diarrhoea    Yes   No  

h. Shortness of Breath            Yes   No 

i. Malaise                                      Yes   No 

10. Did you take any of these treatments for this illness? 

e. Paracetamol    Yes   No   
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f. Anti-viral    Yes   No 

g. Anti-bacterial   Yes   No   

h. Other    Yes   No 

If Yes, specify: [_____________________________________________________] 

11. Have you been able to do your normal tasks during this illness?  Yes    No    Don’t know  
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STUDY PROCEDURES  

ICF MUST BE SIGNED BEFORE ANY STUDY PROCEDURES ARE PERFORMED. 

1. Date of ICF Signed:   [__|__]/[__|__]/[__|__] (dd/mm/yy) 

2. Symptomatic Visit: [__|__]             

3. Date of visit:  [__|__]/[__|__]/[__|__] (dd/mm/yy) 

4. Confirm participant agrees to continue in the follow up study and  

any additional questions have been addressed    Yes    No  

5. Date of next follow up: [__|__]/[__|__]/[__|__] (dd/mm/yy) 

CURRENT INFLUENZA LIKE ILLNESS 

6. How many days ago did your symptoms start? [__|__]  

7. Did you seek any further medical advice? 

 No   Pharmacy      Private Clinic   Hospital Clinic     Hospital Inpatient  Other 

8. Which of these symptoms do you have? 

j. Fever     Yes   No       

Temperature (If known):   [__|__].[__] 

k. Headache    Yes   No 

l. Runny nose   Yes   No 

m. Cough     Yes   No 

n. Sore throat   Yes   No 

o. Muscle Aches     Yes   No 

p. Vomiting/Diarrhoea    Yes   No  

q. Shortness of Breath            Yes   No 

r. Malaise                                      Yes   No 

9. Did you take any of these treatments for this illness? 

i. Paracetamol    Yes   No   

j. Anti-viral    Yes   No 

k. Anti-bacterial   Yes   No   

l. Other    Yes   No 

If Yes, specify: [_____________________________________________________] 
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10. Have you been able to do your normal tasks during this illness?  Yes    No    Don’t know  

CONTACT HISTORY 

11. How many people did you have a face to face conversation with yesterday? Refused to answer □ 

 0-4 YEARS 5-18 YEARS 19-44 YEARS 45-64 YEARS 65+ YEARS 

HOME [__|__] [__|__] [__|__] [__|__] [__|__] 

WORK/SCHOOL [__|__] [__|__] [__|__] [__|__] [__|__] 

OTHER [__|__] [__|__] [__|__] [__|__] [__|__] 

12. How many people did you have physical contact with yesterday? Refused to answer □ 

 0-4 YEARS 5-18 YEARS 19-44 YEARS 45-64 YEARS 65+ YEARS 

HOME [__|__] [__|__] [__|__] [__|__] [__|__] 

WORK/SCHOOL [__|__] [__|__] [__|__] [__|__] [__|__] 

OTHER [__|__] [__|__] [__|__] [__|__] [__|__] 

13. How many people (including you) have stayed in your house in the last 7 days: [__|__] 
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Heterosubtypic Titre Change between Visit 1 and Visit 2 of Historic Strains. Subjects infected with 

H1N1 and H3N2 included in multivariable linear regression. 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.235 (-0.359--0.11) <0.001  0.116 -0.226 (-0.359--0.093) 0.001 0.188 

Study Week 0.008 (-0.005-0.021) 0.217  0.005 0.007 (-0.006-0.02) 0.310  

Days since symptom onset 0.034 (-0.016-0.083) 0.179  0.008 0.017 (-0.033-0.066) 0.505  

Age 0.001 (-0.018-0.02) 0.932 -0.010 0.002 (-0.018-0.021) 0.876  

Gender 0.283 (-0.147-0.714) 0.194  0.007 0.19 (-0.263-0.643) 0.407  

Influenza Vaccination -0.631 (-2.161-0.899) 0.415 -0.003 -0.767 (-2.257-0.723) 0.309  

Current Smoker 0.051 (-0.636-0.738) 0.883 -0.010 -0.167 (-0.881-0.547) 0.644  

Paracetamol at Baseline 0.363 (-0.169-0.895) 0.179  0.008 0.473 (-0.085-1.031) 0.096  

Antibacterial at Baseline -0.02 (-0.45-0.41) 0.926 -0.010 -0.129 (-0.601-0.344) 0.589  

Any Respiratory Disease -0.502 (-2.034-1.029) 0.517 -0.006 -0.303 (-1.853-1.246) 0.698  

Current Pregnancy 0.494 (-1.123-2.111) 0.540 -0.015    

Table 1 Heterosubtypic Response H1N1 1918 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.138 (-0.238--0.038) 0.008  0.061 -0.114 (-0.244-0.016) 0.084 0.123 

Study Week 0 (-0.011-0.012) 0.973 -0.010 0.001 (-0.012-0.014) 0.883  

Days since symptom onset 0.03 (-0.015-0.075) 0.187  0.008 0.027 (-0.019-0.073) 0.241  

Age -0.015 (-0.032-0.002) 0.082  0.021 -0.007 (-0.029-0.016) 0.544  

Gender 0.241 (-0.15-0.633) 0.224  0.005 0.195 (-0.234-0.624) 0.369  

Influenza Vaccination -0.667 (-2.055-0.721) 0.342 -0.001 -0.502 (-1.912-0.908) 0.481  

Current Smoker 0.031 (-0.593-0.655) 0.922 -0.010 -0.127 (-0.802-0.548) 0.710  

Paracetamol at Baseline 0.234 (-0.252-0.72) 0.342 -0.001 0.402 (-0.125-0.93) 0.133  

Antibacterial at Baseline -0.013 (-0.404-0.377) 0.946 -0.010 -0.181 (-0.626-0.263) 0.420  

Any Respiratory Disease 0.063 (-1.331-1.457) 0.929 -0.010 -0.179 (-1.642-1.284) 0.808  

Current Pregnancy 0.344 (-1.008-1.697) 0.610 -0.018    

Table 2 Heterosubtypic Response H1N1 1977 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.19 (-0.274--0.105) <0.001  0.160 -0.181 (-0.271--0.092) <0.001 0.22 

Study Week 0.005 (-0.003-0.013) 0.213  0.006 0.006 (-0.002-0.015) 0.117  

Days since symptom onset 0.011 (-0.019-0.042) 0.473 -0.005 0.006 (-0.023-0.035) 0.686  

Age 0.009 (-0.003-0.02) 0.138  0.012 0.004 (-0.007-0.016) 0.447  

Gender 0.122 (-0.143-0.387) 0.362 -0.002 0.108 (-0.165-0.38) 0.434  

Influenza Vaccination -0.19 (-1.13-0.751) 0.690 -0.009 -0.278 (-1.173-0.618) 0.540  

Current Smoker -0.095 (-0.516-0.325) 0.654 -0.008 -0.026 (-0.463-0.41) 0.905  

Paracetamol at Baseline -0.029 (-0.358-0.301) 0.863 -0.010 -0.012 (-0.347-0.323) 0.945  

Antibacterial at Baseline -0.103 (-0.366-0.16) 0.437 -0.004 -0.089 (-0.37-0.193) 0.533  

Any Respiratory Disease -0.588 (-1.522-0.346) 0.214  0.006 -0.275 (-1.207-0.657) 0.559  

Current Pregnancy -0.012 (-0.809-0.785) 0.976 -0.024    

Table 3 Heterosubtypic Response H1N1 1999 



 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.309 (-0.409--0.208) <0.001  0.268 -0.274 (-0.388--0.159) <0.001 0.344 

Study Week 0.001 (-0.01-0.012) 0.843 -0.010 0.002 (-0.009-0.012) 0.753  

Days since symptom onset 0.035 (-0.009-0.078) 0.120  0.015 0.022 (-0.017-0.061) 0.260  

Age 0.017 (0-0.033) 0.048  0.030 -0.003 (-0.019-0.014) 0.733  

Gender 0.191 (-0.19-0.572) 0.323  0.000 0.22 (-0.146-0.585) 0.235  

Influenza Vaccination -0.038 (-1.393-1.317) 0.956 -0.010 -0.21 (-1.392-0.972) 0.725  

Current Smoker -0.399 (-1-0.202) 0.191  0.007 -0.464 (-1.041-0.113) 0.113  

Paracetamol at Baseline 0.179 (-0.294-0.652) 0.454 -0.004 0.392 (-0.051-0.834) 0.082  

Antibacterial at Baseline -0.348 (-0.722-0.025) 0.067  0.024 -0.344 (-0.714-0.027) 0.069  

Any Respiratory Disease -0.9 (-2.243-0.443) 0.187  0.008 -0.635 (-1.868-0.599) 0.309  

Current Pregnancy 0.443 (-0.68-1.567) 0.430 -0.009    

Table 4 Heterosubtypic Response H1N1 2007 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.156 (-0.379-0.068) 0.156  0.091 -0.753 (-0.942--0.565) <0.001 0.513 

Study Week 0 (-0.013-0.012) 0.949 -0.083 0.002 (-0.012-0.016) 0.788  

Days since symptom onset 0.042 (-0.093-0.177) 0.511 -0.043 0.026 (-0.026-0.079) 0.318  

Age -0.018 (-0.042-0.006) 0.132  0.110 0.013 (-0.013-0.038) 0.321  

Gender -0.253 (-0.962-0.457) 0.453 -0.032 0.223 (-0.261-0.707) 0.362  

Influenza Vaccination - - - 0.44 (-1.172-2.051) 0.589  

Current Smoker - - - -0.381 (-1.15-0.388) 0.328  

Paracetamol at Baseline 0.808 (-0.493-2.109) 0.201  0.060 0.552 (-0.049-1.154) 0.071  

Antibacterial at Baseline -0.216 (-0.93-0.499) 0.523 -0.046 -0.002 (-0.507-0.502) 0.993  

Any Respiratory Disease 0.056 (-0.971-1.084) 0.907 -0.082 -0.533 (-2.196-1.129) 0.526  

Current Pregnancy - - - - - - 

Table 5 Heterosubtypic Response H3N2 1968 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.459 (-0.878--0.041) 0.034  0.266 -0.496 (-1.631-0.639) 0.312 0.713 

Study Week -0.002 (-0.024-0.021) 0.876 -0.081 0.008 (-0.023-0.039) 0.546  

Days since symptom onset -0.093 (-0.334-0.148) 0.417 -0.023 -0.153 (-0.543-0.236) 0.359  

Age 0.007 (-0.041-0.055) 0.751 -0.074 -0.047 (-0.189-0.094) 0.427  

Gender -1.062 (-2.188-0.064) 0.062  0.199 -0.596 (-2.466-1.275) 0.450  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 1.094 (-1.326-3.515) 0.344 -0.002 -1.547 (-8.803-5.708) 0.607  

Antibacterial at Baseline -0.32 (-1.614-0.974) 0.600 -0.058 0.282 (-1.791-2.354) 0.741  

Any Respiratory Disease 1.503 (-0.09-3.095) 0.062  0.199 1.856 (-0.946-4.658) 0.149  

Current Pregnancy - - - - - - 

Table 6 Heterosubtypic Response H3N2 2003 



 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.313 (-0.519--0.107) 0.006  0.435 -0.272 (-1.053-0.509) 0.411 0.527 

Study Week -0.007 (-0.022-0.008) 0.317  0.007 0.002 (-0.024-0.028) 0.833 0.527 

Days since symptom onset 0.043 (-0.124-0.211) 0.585 -0.056 0.002 (-0.378-0.381) 0.991 0.527 

Age 0.001 (-0.032-0.034) 0.949 -0.083 0.002 (-0.114-0.117) 0.969 0.527 

Gender -0.39 (-1.251-0.472) 0.344 -0.002 -0.065 (-1.854-1.725) 0.929 0.527 

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 0.828 (-0.812-2.468) 0.293  0.016 0.356 (-5.44-6.151) 0.881 0.527 

Antibacterial at Baseline -0.527 (-1.359-0.305) 0.192  0.065 -0.402 (-2.211-1.407) 0.592 0.527 

Any Respiratory Disease 0.628 (-0.576-1.831) 0.278  0.022 -0.139 (-2.661-2.382) 0.893 0.527 

Current Pregnancy - - - - - - 

Table 7 Heterosubtypic Response H3N2 2005 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.259 (-0.513--0.005) 0.046  0.232 -0.143 (-1.027-0.742) 0.696 0.441 

Study Week -0.007 (-0.021-0.007) 0.308  0.010 -0.002 (-0.029-0.025) 0.852  

Days since symptom onset 0.037 (-0.119-0.192) 0.615 -0.060 0.082 (-0.242-0.405) 0.545  

Age -0.003 (-0.034-0.027) 0.821 -0.079 0.026 (-0.073-0.125) 0.523  

Gender -0.428 (-1.213-0.356) 0.257  0.031 -0.409 (-2.086-1.267) 0.558  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 0.784 (-0.732-2.3) 0.282  0.020 0.963 (-4.61-6.535) 0.676  

Antibacterial at Baseline -0.289 (-1.099-0.52) 0.451 -0.031 -0.292 (-2.081-1.497) 0.693  

Any Respiratory Disease 0.093 (-1.078-1.265) 0.865 -0.081 -0.911 (-3.4-1.577) 0.390  

Current Pregnancy - - - - - - 

Table 8 Heterosubtypic Response H3N2 2007 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.345 (-0.656--0.034) 0.032  0.272 -0.54 (-1.901-0.82) 0.354 0.385 

Study Week -0.008 (-0.03-0.014) 0.443 -0.029 0.003 (-0.041-0.046) 0.886  

Days since symptom onset 0.032 (-0.211-0.274) 0.781 -0.076 -0.015 (-0.57-0.539) 0.946  

Age 0.005 (-0.042-0.052) 0.828 -0.079 0.002 (-0.17-0.173) 0.979  

Gender -0.433 (-1.687-0.821) 0.466 -0.035 -0.063 (-2.783-2.656) 0.955  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 0.963 (-1.427-3.353) 0.397 -0.018 -0.94 (-11.193-9.314) 0.823  

Antibacterial at Baseline -0.348 (-1.612-0.916) 0.560 -0.052 0.235 (-2.927-3.397) 0.856  

Any Respiratory Disease 0.582 (-1.195-2.359) 0.489 -0.039 -0.548 (-4.579-3.484) 0.741  

Current Pregnancy - - - - - - 

Table 9 Heterosubtypic Response H3N2 2009 



Homosubtypic Titre Change between Visit 1 and Visit 2 of Historic Strains. Subjects infected with 

H1N1 and H3N2 included in multivariable linear regression. 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.714 (-1.312--0.116) 0.023  0.308 -0.429 (-1.793-0.935) 0.455 0.591 

Study Week -0.01 (-0.047-0.027) 0.583 -0.055 0.017 (-0.042-0.077) 0.485  

Days since symptom onset 0.085 (-0.319-0.489) 0.655 -0.065 -0.179 (-0.819-0.461) 0.503  

Age -0.048 (-0.121-0.025) 0.175  0.077 -0.067 (-0.241-0.106) 0.363  

Gender -0.592 (-2.707-1.524) 0.554 -0.051 0.923 (-2.503-4.349) 0.519  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 2.9 (-0.803-6.603) 0.114  0.128 1.217 (-9.059-11.493) 0.773  

Antibacterial at Baseline -1.014 (-3.066-1.037) 0.303  0.012 -1.492 (-5.179-2.195) 0.346  

Any Respiratory Disease 1.294 (-1.633-4.221) 0.354 -0.006 1.558 (-4.097-7.213) 0.510  

Current Pregnancy - - - - - - 

Table 1 Homosubtypic Response H1N1 1918 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.521 (-0.843--0.199) 0.004  0.467 -0.575 (-1.165-0.016) 0.054 0.754 

Study Week -0.011 (-0.033-0.011) 0.303  0.012 -0.002 (-0.029-0.026) 0.893  

Days since symptom onset 0.185 (-0.036-0.405) 0.093  0.152 0.011 (-0.294-0.317) 0.929  

Age -0.032 (-0.076-0.012) 0.136  0.107 0.005 (-0.082-0.093) 0.879  

Gender 0.435 (-0.851-1.721) 0.475 -0.036 0.915 (-0.681-2.511) 0.201  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 1.398 (-0.971-3.767) 0.223  0.048 0.701 (-3.589-4.991) 0.692  

Antibacterial at Baseline -0.295 (-1.597-1.007) 0.630 -0.062 -0.683 (-2.372-1.006) 0.346  

Any Respiratory Disease 0.049 (-1.81-1.909) 0.955 -0.083 -0.033 (-2.644-2.577) 0.975  

Current Pregnancy - - - - - - 

Table 2 Homosubtypic Response H1N1 1977 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.21 (-0.678-0.259) 0.349 -0.004 -0.156 (-1.279-0.967) 0.736 0.484 

Study Week -0.012 (-0.032-0.009) 0.231  0.043 -0.001 (-0.042-0.04) 0.967  

Days since symptom onset 0.043 (-0.191-0.277) 0.696 -0.069 -0.132 (-0.56-0.297) 0.465  

Age -0.027 (-0.069-0.016) 0.196  0.063 -0.051 (-0.18-0.077) 0.351  

Gender -0.093 (-1.334-1.148) 0.873 -0.081 0.7 (-1.478-2.878) 0.446  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 1.457 (-0.747-3.661) 0.175  0.076 0.379 (-7.626-8.383) 0.908  

Antibacterial at Baseline -0.628 (-1.805-0.55) 0.268  0.026 -0.762 (-3.2-1.675) 0.458  

Any Respiratory Disease 0.629 (-1.083-2.34) 0.439 -0.028 0.727 (-2.926-4.38) 0.631  

Current Pregnancy - - - - - - 

Table 3 Homosubtypic Response H1N1 1999 



 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.098 (-0.539-0.343) 0.637 -0.063 0.045 (-1.256-1.346) 0.933 0.427 

Study Week -0.001 (-0.023-0.02) 0.900 -0.082 0.01 (-0.033-0.054) 0.575  

Days since symptom onset -0.133 (-0.35-0.084) 0.206  0.057 -0.269 (-0.698-0.16) 0.168  

Age -0.011 (-0.056-0.033) 0.592 -0.057 -0.041 (-0.184-0.103) 0.497  

Gender -0.399 (-1.598-0.801) 0.483 -0.038 0.529 (-1.737-2.795) 0.575  

Influenza Vaccination - - - - - - 

Current Smoker - - - - - - 

Paracetamol at Baseline 0.649 (-1.669-2.968) 0.553 -0.051 0.951 (-8.277-10.178) 0.802  

Antibacterial at Baseline -0.309 (-1.519-0.9) 0.588 -0.056 -0.616 (-3.153-1.922) 0.560  

Any Respiratory Disease 0.371 (-1.346-2.088) 0.646 -0.064 1.167 (-2.839-5.172) 0.488  

Current Pregnancy - - - - - - 

Table 4 Homosubtypic Response H1N1 2007 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.68 (-0.826--0.534) <0.001  0.460 -0.753 (-0.942--0.565) <0.001 0.513 

Study Week 0.006 (-0.011-0.024) 0.490 -0.005 0.002 (-0.012-0.016) 0.788  

Days since symptom onset 0.014 (-0.055-0.084) 0.682 -0.008 0.026 (-0.026-0.079) 0.318  

Age -0.047 (-0.072--0.021) <0.001  0.113 0.013 (-0.013-0.038) 0.321  

Gender 0.466 (-0.13-1.062) 0.124  0.014 0.223 (-0.261-0.707) 0.362  

Influenza Vaccination -0.252 (-2.386-1.882) 0.815 -0.010 0.44 (-1.172-2.051) 0.589  

Current Smoker -0.033 (-0.988-0.922) 0.945 -0.010 -0.381 (-1.15-0.388) 0.328  

Paracetamol at Baseline 0.425 (-0.317-1.168) 0.258  0.003 0.552 (-0.049-1.154) 0.071  

Antibacterial at Baseline 0.576 (-0.01-1.163) 0.054  0.027 -0.002 (-0.507-0.502) 0.993  

Any Respiratory Disease 0.48 (-1.652-2.613) 0.656 -0.008 -0.533 (-2.196-1.129) 0.526  

Current Pregnancy -0.883 (-3.065-1.299) 0.418 -0.008 - - - 

Table 5 Homosubtypic Response H3N2 1968 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.896 (-0.947--0.844) <0.001  0.923 -0.897 (-0.952--0.843) <0.001 0.931 

Study Week 0.007 (-0.01-0.023) 0.419 -0.003 0.002 (-0.003-0.007) 0.442  

Days since symptom onset 0.05 (-0.012-0.113) 0.113  0.015 0.017 (-0.001-0.035) 0.062  

Age 0.027 (0.003-0.051) 0.026  0.040 -0.004 (-0.012-0.003) 0.236  

Gender -0.007 (-0.557-0.543) 0.979 -0.010 -0.06 (-0.226-0.106) 0.475  

Influenza Vaccination -0.292 (-2.237-1.652) 0.766 -0.009 -0.324 (-0.876-0.228) 0.247  

Current Smoker 0.017 (-0.853-0.888) 0.969 -0.010 0.041 (-0.225-0.306) 0.762  

Paracetamol at Baseline 0.303 (-0.376-0.981) 0.378 -0.002 0.104 (-0.103-0.31) 0.322  

Antibacterial at Baseline 0.255 (-0.288-0.797) 0.354 -0.001 -0.026 (-0.201-0.148) 0.767  

Any Respiratory Disease -0.901 (-2.838-1.036) 0.358 -0.002 0.059 (-0.513-0.631) 0.838  

Current Pregnancy -0.143 (-2.14-1.855) 0.886 -0.024 - - - 

Table 6 Homosubtypic Response H3N2 2003 



 

 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.844 (-0.911--0.776) <0.001  0.860 -0.854 (-0.927--0.782) <0.001 0.874 

Study Week -0.003 (-0.017-0.011) 0.654 -0.008 0.001 (-0.005-0.007) 0.642  

Days since symptom onset 0.055 (0-0.109) 0.048  0.029 0.024 (0.003-0.045) 0.027  

Age 0.023 (0.002-0.044) 0.033  0.036 -0.007 (-0.016-0.002) 0.137  

Gender 0.028 (-0.455-0.51) 0.910 -0.010 -0.11 (-0.307-0.086) 0.268  

Influenza Vaccination -0.661 (-2.361-1.039) 0.442 -0.004 0.107 (-0.548-0.763) 0.746  

Current Smoker 0.163 (-0.599-0.925) 0.673 -0.008 0.048 (-0.265-0.361) 0.761  

Paracetamol at Baseline -0.006 (-0.603-0.59) 0.983 -0.010 0.032 (-0.213-0.276) 0.797  

Antibacterial at Baseline -0.017 (-0.495-0.461) 0.943 -0.010 -0.031 (-0.236-0.174) 0.764  

Any Respiratory Disease -0.645 (-2.345-1.055) 0.453 -0.004 0.114 (-0.563-0.79) 0.739  

Current Pregnancy -0.124 (-1.985-1.737) 0.894 -0.024 - - - 

Table 7 Homosubtypic Response H3N2 2005 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.71 (-0.828--0.591) <0.001  0.586 -0.717 (-0.838--0.596) <0.001 0.629 

Study Week -0.006 (-0.019-0.006) 0.333 -0.001 -0.001 (-0.01-0.008) 0.804  

Days since symptom onset 0.017 (-0.033-0.067) 0.503 -0.006 0.017 (-0.016-0.05) 0.309  

Age -0.006 (-0.025-0.013) 0.546 -0.006 -0.013 (-0.026-0) 0.054  

Gender 0.081 (-0.354-0.515) 0.714 -0.009 -0.011 (-0.314-0.293) 0.945  

Influenza Vaccination -1.005 (-2.53-0.52) 0.194  0.007 -0.216 (-1.231-0.799) 0.673  

Current Smoker 0.015 (-0.673-0.704) 0.964 -0.010 -0.065 (-0.549-0.419) 0.791  

Paracetamol at Baseline 0.275 (-0.261-0.811) 0.311  0.000 0.319 (-0.059-0.696) 0.097  

Antibacterial at Baseline 0.182 (-0.247-0.612) 0.402 -0.003 0.039 (-0.277-0.356) 0.806  

Any Respiratory Disease 0.184 (-1.354-1.721) 0.813 -0.010 0.206 (-0.84-1.253) 0.696  

Current Pregnancy -0.739 (-2.414-0.937) 0.378 -0.005 - -  

Table 8 Homosubtypic Response H3N2 2007 

 Univariate  Multivariable 

 
Estimate 

(95% CI) 
p value R2 

Estimate 

(95% CI) 
p value R2 

Titre at Baseline -0.794 (-0.901--0.687) <0.001  0.690 -0.801 (-0.912--0.69) <0.001 0.724 

Study Week -0.01 (-0.025-0.004) 0.153  0.011 0.003 (-0.006-0.012) 0.521  

Days since symptom onset 0.027 (-0.03-0.083) 0.351 -0.001 0.012 (-0.02-0.044) 0.457  

Age -0.008 (-0.03-0.014) 0.481 -0.005 -0.016 (-0.029--0.003) 0.020  

Gender 0.071 (-0.422-0.564) 0.776 -0.010 -0.024 (-0.324-0.275) 0.873  

Influenza Vaccination -1.578 (-3.279-0.124) 0.069  0.024 -0.642 (-1.628-0.344) 0.199  

Current Smoker -0.046 (-0.821-0.729) 0.906 -0.010 0.105 (-0.372-0.582) 0.662  

Paracetamol at Baseline 0.071 (-0.536-0.679) 0.816 -0.010 0.116 (-0.254-0.486) 0.536  

Antibacterial at Baseline -0.024 (-0.514-0.466) 0.921 -0.010 -0.047 (-0.361-0.268) 0.770  

Any Respiratory Disease 0.598 (-1.129-2.325) 0.493 -0.005 0.266 (-0.752-1.284) 0.604  



Current Pregnancy -0.461 (-2.355-1.433) 0.626 -0.018 - -  

Table 9 Homosubtypic Response H3N2 2009 
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