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Abstract

The spinor–vector duality was discovered in free fermionic constructions
of the heterotic-string in four dimensions. It played a key role in the con-
struction of heterotic–string models with an anomaly free extra Z ′ symmetry
that may remain unbroken down to low energy scales. A generic signature
of the low scale string derived Z ′ model is via di–photon excess that may be
within reach of the LHC. A fascinating possibility is that the spinor–vector
duality symmetry is rooted in the structure of the heterotic–string compact-
ifications to two dimensions. The two dimensional heterotic–string theories
are in turn related to the so–called moonshine symmetries that underlie the
two dimensional compactifications. In this paper we embark on exploration
of this connection by the free fermionic formulation to classify the symmetries
of the two dimensional heterotic–string theories. We use two complementary
approaches in our classification. The first utilises a construction which is akin
to the one used in the spinor–vector duality. Underlying this method is the
triality property of SO(8) representations. In the second approach we use the
free fermionic tools to classify the twenty four dimensional moonshine lattices.
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1 Introduction

The ATLAS and CMS collaborations reported in December 2015 evidence for excess
in the di–photon chanel [1, 2]. Absence of evidence for any other deviation from the
Standard Model expected signals suggested that the excess could be interpreted as
production and decay of a Standard Model singlet state by heavy vector–like states
[3], in a process depicted in figure 1. In ref. [4] it was shown that the spectrum
required to generate the excess naturally arise in the string derived model of ref. [5],
which allows for a light Z ′ vector boson. Anomaly cancellation mandates that the
mass scale of the Standard Model singlet state, which is produced in resonance in
figure 1, as well as the mass scale of the heavy vector–like states that are used in the
production and decay of the singlet states, is the Z ′ symmetry breaking scale. Thus,
assuming that the Z ′ remains unbroken down to the multi–TeV scale naturally gives
rise to the characteristics required to generate di–photon excess. In ref. [6] it was
shown that existence of the light Z ′ at the multi–TeV scale is compatible with gauge
coupling unification at the GUT scale, as well as other phenomenological constraints.

In August 2016 the ATLAS and CMS collaborations reported that accumulation
of further data did not substantiate the observation of the di–photon excess [7, 8],
suggesting that initial observation was a statistical fluctuation. However, this does
not repudiate the di–photon excess as a signal of the string derived Z ′ model, albeit
not as the purported 750GeV resonance. Thus, searching for di–photon excesses in
the energy range accessible at the LHC continues to be of immense interest.

Extra Z ′ vector bosons as possible signatures of heterotic–string vacua have been
discussed in the literature since the mid–eighties [9]. The difficulty in constructing
heterotic–string models that allow for an extra U(1) symmetry to remain unbroken
down to low scales stems from the fact that the aforementioned symmetries tend
to be anomalous in the heterotic–string derived models. The reason being that
the string models utilise the symmetry breaking pattern E6 → SO(10) × U(1)ζ ,
with anomalous U(1)ζ . Suppression of left–handed neutrino masses implies that
the extra U(1) symmetry, which is embedded in SO(10), has to be broken near the
GUT scale. This conundrum motivated the search of extra U(1) symmetries that do
not admit the E6 embedding of their charges [10]. However, these choices result in
contradiction between gauge coupling unification and the gauge coupling parameters
at the electroweak scale, which works well if the extra U(1) charges admit the E6

embedding [11, 6].
It is therefore notable that in reference [5] an heterotic–string derived model with
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Figure 1: Production and di–photon decay of the Standard Model singlet scalar
state.
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an anomaly free U(1)ζ was constructed. What is perhaps more remarkable is that
the construction of the model utilises a basic duality symmetry that operates in the
space of Z2 × Z2 heterotic–string vacua which was dubbed spinor–vector duality.
The duality operates under the exchange of the total number of spinorial 16 ⊕ 16
and vectorial 10 representations of SO(10). For every vacuum with a number of
16 ⊕ 16 representations, and a number of 10 representations, there exist a dual
vacuum in which the two numbers are interchanged. One can further show that the
duality arises from the breaking of (2, 2) world–sheet supersymmetry to (2, 0) and
that the duality map is induced by a spectral flow operator that operates in the
bosonic sector of the heterotic–string vacuum. In the vacua with (2, 2) world–sheet
supersymmetry the SO(10)×U(1)ζ symmetry is enhanced to E6. The chiral 27 and
27 representations of E6 decompose under SO(10)× U(1)ζ as

27 = 16+ 1

2

+ 10−1 + 1+2,

27 = 16− 1

2

+ 10+1 + 1−2.

Thus, the (2, 2) vacua are self–dual under the exchange of the total number of spino-
rial 16⊕ 16 and vectorial 10 representations. The spectral flow operator acts as the
U(1) generator of the N = 2 world–sheet supersymmetry and interchanges between
the SO(10) components in the decomposition of E6 under SO(10) × U(1)ζ . The
breaking of the E6 to SO(10) × U(1)ζ , or the breaking of the world–sheet super-
symmetry from (2, 2) to (2, 0) is induced by Wilson lines. One choice of Wilson line
breaking results in a vacuum with #1 of 16⊕16 representations, and a #2 of 10 rep-
resentations, whereas a second choice interchanges the two numbers. Furthermore,
the duality map between the dual cases induced by the spectral flow operator of the
parent (2, 2) vacuum.

A new twist is that the spinor–vector duality was used to construct the heterotic–
string model with anomaly free U(1)ζ that allows for an extra E6 Z

′ to remain
unbroken down to low scales. Using the methods developed in refs. [12, 13, 14,
15, 16] for the classification of free fermionic models, a self–dual model under the
spinor–vector duality is fished from the landscape of vacua. The unbroken gauge
symmetry at the string level is SO(10)×U(1)ζ, but the spectrum is self–dual under
the exchange of the total number of spinorial 16⊕16 and vectorial 10 representations.
Thus, the spectrum still forms complete E6 multiplets and consequently U(1)ζ is
anomaly free. This is possible in the Z2 × Z2 orbifold if the different spinorial and
vectorial components are obtained from different fixed points. Conversely, obtaining
both the spinorial and vectorial representations at the same fixed point necessarily
implies that the gauge symmetry is enhanced to E6. in the model of ref. [5] the
SO(10) symmetry is broken at the string level to SO(6) × SO(4). However, the
chiral spectrum of the model still appears in complete E6 representations, hence
maintaining U(1)ζ as an anomaly free symmetry.

The spinor–vector duality is a fundamental symmetry in the space of (2, 0)
heterotic–string vacua. It played a central role in the construction of the Z ′ model
in ref. [5]. If the additional U(1) symmetry remains unbroken down to low scales it
may be detected via di–photon production as in fig. 1.

Another fascinating direction of investigation is the possibility that the spinor–
vector duality is a mere reflection of a much larger symmetry structure that underlies
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this class of vacua. The much larger symmetry structure is obtained in compactifi-
cations to two dimensions, and give rise to 24 dimensional lattices. Ref. [17] alluded
to possible similarities with the Massive Spectrum boson–fermion Degeneracy Sym-
metry [MSDS] [18], which arises from a basic Jacobi–like identity in 24 dimensions.
The compactifications to two dimensions are connected to 24 dimensional lattices
and the symmetries of those are related to the so called moonshine symmetries. In
two dimensions the spectral flow operator that induces the spinor–vector duality and
the the twist operators that acts on the internal coordinates can be seen to share a
common structure in that both have four periodic right–moving fermions. One may
further envision that under decompactification back to 4 dimensions the two spinor–
vector dual vacua appear on the boundaries of the moduli space. This is reminiscent
of the case when spacetime supersymmetry is broken to N = 0 by a Scherk–Schwarz
mechanism in nine dimensions and the supersymmetric and non–supersymmetric
vacua appear on the boundaries of the compactified dimension.

In this paper we embark on a program to explore the connection between the
moonshine symmetries and the spinor–vector duality. We foresee that the spinor–
vector duality is a tip of the iceberg, and that elucidation of this connection may
reveal a covering space of large space of string compactifications facilitating a deeper
understanding of their symmetries and connections. In this paper we make several
modest steps to initiate the enterprise. In section 2 we review a specific realisation of
the spinor–vector duality, which is particularly suited for our purpose here. In this
realisation the untwisted vector bosons corresponding to the sixteen dimensional
vector bundle of the heterotic–string in ten dimensions, generate an SO(8)4 gauge
symmetry. This is obtained by including in the construction four basis vectors with
four periodic world–sheet fermions, and enhancement to larger gauge symmetries is
obtained from twisted sectors. A similar basis vector with four periodic fermions that
acts simultaneously on the gauge degrees of freedom and the internal coordinates
produces the twisted sectors. The spinor-vector duality can be then seen to arise
due to a special choice of the Generalised GSO (GGSO) phases. In section 3 we
explore a similar construction in two dimensions and classify the symmetries that
arise on the resulting 24 dimensional lattices. In section 4 we derive representations
of some of the Niemeier lattices in 24 dimensions in the free fermionic formulation.
Section 5 concludes our paper.

2 A novel basis

In this section we review the spinor vector duality in the specific realisation of ref.
[19]. Construction of a consistent four dimensional heterotic–string theory in the
light–cone gauge requires 20 left–moving and 44 right–moving two dimensional real
fermions [20] propagating on the world–sheet torus. The models in this construction
are specified in terms of a set of basis vectors vi, i = 1, . . . , n,

vi = {αi(f1), αi(f2), αi(f3)) . . . }

describing the transformation properties of each fermion

fA → −eiπαi(fA) fA, , A = 1, . . . , 44 , (1)
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when transported along the non–contractible loops of the one loop vacuum to vac-
uum amplitude. The basis vectors span a space Ξ which consists of 2N sectors that
give rise to the string spectrum. Each sector is given by

ξ =
∑

Nivi, Ni = 0, 1 (2)

The spectrum is truncated by a GGSO projection whose action on a string state
|S > is

eiπvi·FS |S >= δS c

[

S

vi

]

|S >, (3)

where FS is the fermion number operator and δS = ±1 is the spacetime spin statis-
tics index. Different sets of projection coefficients c

[

S
vi

]

= ±1 consistent with mod-
ular invariance give rise to different models. A model is defined by a set of basis
vectors vi, i = 1, . . . , n and a set of 2N(N−1)/2 independent projections coefficients
c
[

vi
vj

]

, i > j. The 64 world–sheet fermions in the light–cone gauge are denoted by:

ψµ, χi, yi, ωi, i = 1, . . . , 6 (real left-moving fermions) and ȳi, ω̄i, i = 1, . . . , 6 (real
right-moving fermions); ψ̄j , j = 1, . . . , 4; η̄k, k = 0, 1, 2, 3; φ̄l, l = 1, . . . , 8 (complex
right-moving fermions). The division of the right–moving complex fermions into
groups of four is obtained by introducing four basis vectors z{0,1,2,3} into the ba-
sis. Each of the zi contains four non–overlapping periodic fermions under the sets
{ψ̄1,...,4, η̄0,1,2,3, φ̄1,...,4, φ̄5,...,8}. We note that our notation here deviates from the con-
ventional one in the free fermion literature by renaming ψ̄5 ≡ η̄0. To illustrate the
structure of the spinor–vector duality we use a basis V of seven boundary condition
basis vectors given by:

V = {v1, v2, . . . , v7},
where

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|
ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S = {ψµ, χ1,...,6},
v3 = z1 = {φ̄1,...,4},
v4 = z2 = {φ̄5,...,8},
v5 = z3 = {ψ̄1,...,4},
v6 = z0 = {η̄0,1,2,3},
v7 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄0, η̄1}. (4)

The partition function of such models is of the form
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Z(τ, τ̄ ) =
1

τ2(ηη̄)2
1

η10η̄22
1

27

∑

a,b,s,s′

∑

h1,g1

∑

HI ,GI

C[a,s,h1,HI

b,s′,g1,GI
]

θ[a+sb+s′ ]θ[
a+s
b+s′]θ[

a+s+h1
b+s′+g1

]θ[a+sb+s′]

θ[ab ]θ[
a+h1
b+g1

]θ[a+h1b+g1
]θ[ab ]θ[

a+h1
b+g1

]θ[a+h1b+g1
]

θ[ab ]θ[
a+h1
b+g1

]θ[a+h1b+g1
]θ[ab ]θ[

a+h1
b+g1

]θ[a+h1b+g1
]

θ[a+H0

b+G0
]θ[a+H0

b+G0
]θ[a+H0

b+G0
]θ[a+H0

b+G0
]θ[a+H3

b+G3
]θ[a+H3

b+G3
]θ[a+H3

b+G3
]θ[a+H3

b+G3
]

θ[a+H1

b+G1
]θ[a+H1

b+G1
]θ[a+H1

b+G1
]θ[a+H1

b+G1
]θ[a+H2

b+G2
]θ[a+H2

b+G2
]θ[a+H2

b+G2
]θ[a+H2

b+G2
] . (5)

The phases C[a,s,h1,HI

b,s′,g1,GI
] can be calculated in terms of the phases C[vivj ] that define the

model: If we define the vectors

α = a1+ sS + h1b1 +
∑

I

HIzI =
∑

nava ,

α′ = b1+ s′S + g1b1 +
∑

I

GIzI =
∑

n′
bvb ,

then

C[a,s,h1,HI

b,s′,g1,GI
] = C[αα′] =

(

δα
)

∑
a n

′

a−1 (
δα′

)

∑
a na−1

e−πi r(α)·α
′
∏

a,b

C
[

Ba

Bb

]nan′

b , (6)

where δα = eiπα(ψ
µ) and r(α) = α−[α]

2
is the reduction vector which takes α to [α]

with the latter having all its entries in the interval (−1, 1].
The models generated by the basis (4) preserve N = 2 space–time supersym-

metry. Models that break N = 2 to N = 1 space–time supersymmetry are easily
incorporated by introducing a second basis vector b2 [14]. The second function of
the second Z2 basis vector b2 is to break the untwisted observable symmetry gauge
group from SO(12)× SO(4) to SO(10)× U(1)3. Here the spinor-vector duality is
therefore seen in terms of SO(12), rather than SO(10), representations. However,
since in the N = 1 vacua the spinor–vector duality operates separately on each of
the N = 2 planes [14], the discussion in terms of N = 2 representations is sufficient.

In the models generated by the basis in eq. (4) all the geometrical degrees
of freedom {yi, ωi|ȳi, ω̄i}, i = 1, · · · , 3 are grouped together. The remaining 8
left–moving and 32 right–moving world–sheet fermions are divided into five non–
overlapping groups of eight real fermions. In the ten dimensional supersymmetric
heterotic–string such a division always produces either SO(32) or E8 × E8 gauge
groups [21]. Although, naively one may expect that other gauge symmetries, such
as SO(8)4, SO(16)2 or SO(8)×SO(24) may be obtained, the modular properties of
the partition function forbid the other possible extensions. In terms of the SO(8)
characters this property follows from the equivalence of the 8

V
, 8

S
and 8

C
SO(8)

representations, which enables twisted constructions of the SO(32) or E8×E8 gauge
groups. This phenomena appear in the models generated by the basis in eq. (4) and
will be exploited in section 3 below. The basis vector b1 generates a Z2 projection
which breaks N = 4 to N = 2 space–time supersymmetry, and breaks one of the
SO(8) groups to SO(4)× SO(4) ≡ SU(2)4.
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The sectors contributing to the gauge group are the 0–sector and the 10 anti–
holomorphic sets:

G = { 0,

z0, z1, z2, z3,

z0 + z1, z0 + z2, z0 + z3, z1 + z2, z1 + z3, z2 + z3 } . (7)

The 0–sector requires two oscillators acting on the vacuum in the right–moving
sector to produce a massless state; the zj–sectors require one oscillator; and the
zi+ zj sectors require no oscillators. We first discuss the N = 4 gauge group arising
prior to the inclusion of the basis vector b1, which reduces N = 4 to N = 2 space–
time supersymmetry. The basis vector b1 does not produce additional enhancement
sectors, and therefore merely breaks the N = 4 gauge group to a subgroup.

The 0–sector gauge bosons produces the gauge symmetry

[SO(12)]× SO(8)4 (8)

where the SO(12) group factor arises from the 12 right–moving world-sheet fermions
{ȳ, ω̄}1,··· ,6, which correspond to the internal lattice at the free fermionic SO(12)
enhanced symmetry point. The SO(8)3,0,1,2 group factors arise respectively from:
ψ̄1,··· ,4, η̄0,1,2,3, φ̄1,··· ,4, φ̄5,··· ,8. The notation adheres to the conventional notation in
the quasi–realistic heterotic–string models in the free fermionic formulation [22].

The additional sectors in eq. (7) may produce space–time vector bosons that en-
hance the untwisted four dimensional gauge symmetry. The possible enhancements
depend on the GGSO projection coefficients c

[

zi
zj

]

with i 6= j. Excluding the basis

vector b1 all vacua possess N = 4 space–times supersymmetry, which fixes the c
[

S
zi

]

phases. Hence, there may be a priori 26 possibilities for the four dimensional gauge
group, some of which are repeated. Identical manifestations of the gauge groups
arise from twisted realisation of the group generators, due to the triality property of
the SO(8) group representations. This is the four dimensional manifestation of the
twisted generation of gauge groups already observed in the ten dimensional case. A
few of the possibilities that may arise were classified in ref. [19]. The same con-
struction will be exploited in section 3 in the analysis of compactifications to two
dimensions.

2.1 A simple example of the spinor–vector duality

The basis vector b1 reduces N = 4 → N = 2 space–times supersymmetry. The
N = 4 vacuum with [SO(12)]× SO(16)× SO(16) gauge group is realised with the
GGSO projection coefficient taken to be:

c

[

z0
z1

]

= c

[

z0
z3

]

= c

[

z1
z2

]

=

− c

[

z0
z2

]

= −c
[

z1
z3

]

= −c
[

z2
z3

]

= −1 (9)

With this set of GGSO phases the additional sectors, beyond the 0–sector, that
produce additional space–time vector bosons are z2 and z3, whereas those from all

7



other sectors in eq. (7) are projected out. The additional projection induced by the
basis vector b1 breaks the gauge symmetry arising from the 0–sector to

[SO(8)× SO(4)]L × [SO(8)3 × SO(4)× SO(4)]O × [SO(8)1 × SO(8)2]H (10)

The SO(12) lattice gauge symmetry in eq. (8) is reduced to [SO(8)× SO(4)]L. The
observable gauge symmetry arising from the 0–sector is [SO(8)3 × SO(4)× SO(4)]O,
and [SO(8)1 × SO(8)2]H is the hidden gauge symmetry. Both observable and hidden
sector gauge symmetries are enhanced. The hidden gauge symmetry is enhanced
to [SO(16)]H by the additional vector bosons arising from the sector z2. At the
N = 4 level, the additional vector bosons from the sector z3 enhance the observable
[SO(8)3 × SO(8)0]O gauge symmetry to [SO(16)]O. At the N = 2 level the b1 pro-
jection reduces [SO(16)]O → [SO(12)× SO(4)]O ≡ [SO(12)× SU(2)0 × SU(2)1]O.
The N = 2 spinor–vector duality is realised by the exchange of the vectorial 12 repre-
sentation of SO(12) with the spinorial 32 representation. This duality is illustrated
by considering two different models in which these representations are interchanged
due to the choices of the GGSO projection coefficients. We remark further that
the choice of GGSO projection coefficients in eq. (9) prevent the enhancement of
the SO(12) × SU(2) gauge symmetry to E7, which is the N = 2 analog of the
enhancement of SO(10)× U(1) to E6 at the N = 1 level.

The first choice of the extra GGSO projection coefficients that we consider is
given by:

c

[

b1
1, z0

]

= −c
[

b1
S, z1, z2, z3

]

= −1 . (11)

This choice defines a model with 2 multiplets in the (1, 2L + 2R, 12, 1, 2, 1) and 2 in
the (8, 2L + 2R, 1, 2, 1, 1) representations of

[SO(8)× SO(4)]L × [SO(12)× SU(2)0 × SU(2)1]O × [SO(16)]H . (12)

The sectors producing the vectorial 12 representation of SO(12) are the sectors b1
and b1 + z3, where the sector b1 produces the (1, 2, 2) representation and the sectors
b1 + z3 produces the (8

S
, 1, 1) under the decomposition

[SO(12)]O → [SO(8)× SO(4)]O ≡ [SO(8)× SU(2)× SU(2)]O . (13)

All other states are projected out. In this case there are eight multiplets in the vec-
torial representation of the observable SO(12), which also transform as as doublets
of the observable SU(2)1.

We next consider the choice of GGSO phases given by

c

[

b1
1, z0, z1

]

= −c
[

b1
S, z2, z3

]

= −1 (14)

This case defines a model with 2 multiplets in the (1, 2L + 2R, 32, 1, 1, 1), and 2 in
the (1, 2L + 2R, 1, 1, 2, 16), representations of the gauge group in eq. (12). The sec-
tors producing the spinorial 32 representation of [SO(12)]O are the sectors b1 + z0
and b1 + z3 + z0, where the sector b1 + z0 produces the (8

V
, 2, 1) representation and

the sectors b1 + z3 + z0 produces the (8
C
, 1, 2) under the decomposition given in
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eq. (13). The sectors producing the vectorial 16 multiplet of the hidden SO(16)
gauge group are the sectors b1 and b1 + z2, where the sector b1 produces the (8

V
, 1)

multiplet and the sector b1 + z2 produces the (1, 8
C
) multiplet under the decompo-

sition [SO(16)]H → [SO(8)1 × SO(8)2]H . The hidden 16 multiplets transform as
doublets of the observable SU(2)1 group. All other states are projected out. In this
model there are eight multiplets in the spinorial 32 representation of the observable
[SO(12)]O.

We note that in the first model the vectorial 12 representation of the observable
[SO(12)]O is constructed as 12 = (8

S
, 1, 1) ⊕ (1, 2, 2), while in the second model

the spinorials are constructed as 32 = (8
V
, 2, 1)⊕ (8

C
, 1, 2) under the decomposition

SO(12) → SO(8)× SU(2) × SU(2). At the core of the construction is the triality
of the SO(8) representations 8

S
↔ 8

V
↔ 8

C
. This property of the SO(8) represen-

tations reproduces the standard decomposition of SO(n +m) → SO(n) × SO(m)
as V n+m = (V n, 1) ⊕ (1, V m), and Sn+m = (Sn, Sm) ⊕ (Cn, Cm), for the vectorial
and spinorial representations of SO(n+m), respectively. The triality of the SO(8)
representations enables the twisted realisations of the GUT gauge group and repre-
sentations, which is SO(12) in the N = 2 models, and SO(10) in N = 1 models.
This SO(8) triality is the main property in the analysis of section 3.

The transformation between the two models, (11) and (14), is induced by the
discrete GGSO phase change

c

[

b1
z1

]

= +1 → c

[

b1
z1

]

= −1 (15)

In the models utilising the basis of eq. (4) the map from sectors that produce
vectorial representations of the observable SO(12) group, to sectors that produce
spinorial representations is obtained by adding the basis vector z0, which is similar
to the x–map of refs. [23, 14]. The basis vector z0 therefore acts as the spectral flow
operator. It is a generator of the right–moving N = 2 world–sheet supersymmetry
in the models that preserve (2, 2) world–sheet supersymmetry. It is the mirror image
of the basis vector S, which is the spectral flow operator on the fermionic side of
the heterotic–string. For appropriate choice of the discrete GGSO phases either
the vectorial states or the spinorial states are kept in the spectrum. The discrete
phase modification in eq. (15) induces the spinor–vector duality map in the N = 2
model. The role of the basis vectors z2 and z3 in the models of (11) and (14) is to
generate the twisted realisation of the gauge symmetry enhancement of the SO(8)
gauge groups arising from the null sector. We may further represent the spinor–
vector duality in an orbifold representation [24], and translate the duality map in
eq. (15) to distinct choices of the toroidal background fields [25, 17]. Generalisation
of the spectral map transformation between heterotic–string vacua was extended to
Gepner models in [26].

3 D = 2 model classification

In this section we extend the classification of the symmetry groups to the case
of compactifications to two dimensions. We develop the formalism and perform
a complete classification in the simpler cases and partial classification in the more
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complex cases, where complexity here entails increasing number of basis vectors. The
primary property which is exploited in our classification is the triality of the SO(8)
representations. In section 4 we will employ an alternative method to construct the
24 dimensional Niemeier lattices. In section 5 we will comment on the overlap and
differences between our analysis in sections 3 and 4 and that of 2.

We compactify the heterotic–string to two dimensions. The two dimensional free
fermions in the light-cone gauge (in the usual notation [20, 22]) are: χi, yi, ωi, i =
1, . . . , 8 (real left-moving fermions) and ȳi, ω̄i, i = 1, . . . , 8 (real right-moving fermions),
ψ̄A, A = 1, . . . , 4, η̄B, B = 0, 1, 2, 3, φ̄α, α = 1, . . . , 8 (complex right-moving fermions).
The left– and right–moving real fermions are combined into complex fermions as
ρi = 1/

√
2(yi + iωi), i = 1, · · · , 8, ρ̄i = 1/

√
2(ȳi + iω̄i), i = 1, · · · , 4, ρ̄i =

1/
√
2(ȳi + iω̄i), i = 5, · · · , 8.
The class of models under investigation, is generated by a maximal set V of 7

basis vectors
V = {v1, v2, . . . , v7},

v1 = 1 = {χ1,...,8, y1,...,8, ω1,...,8|
ȳ1,...,8, ω̄1,...,8, η̄0,1,2,3, ψ̄1,...,4, φ̄1,...,8},

v2 = HL = {χ1,...,8, y1,...,8, ω1,...,8},
v3 = z1 = {φ̄1,...,4},
v4 = z2 = {φ̄5,...,8},
v5 = z3 = {ψ̄1,...,4},
v6 = z4 = {η̄0,1,2,3},
v7 = z5 = {ȳ1,...,4, ω̄1,...,4}, (16)

with the corresponding matrix of one–loop GGSO projection coefficients

























1 HL z1 z2 z3 z4 z5
1 −1 −1 +1 +1 +1 +1 +1
HL −1 −1 ±1 ±1 ±1 ±1 ±1

z1 +1 ±1 +1 ±1 ±1 ±1 ±1
z2 +1 ±1 ±1 +1 ±1 ±1 ±1
z3 +1 ±1 ±1 ±1 +1 ±1 ±1
z4 +1 ±1 ±1 ±1 ±1 +1 ±1
z5 +1 ±1 ±1 ±1 ±1 ±1 +1

























(17)

The analysis of the models is similar to the analysis in the four dimensional
case, where we define the GGSO projections in a similar way to eq. (3), with the
δS index being +1 in sectors in which the left–moving world–sheet fermions are
anti–periodic and −1 sectors in which they are periodic. With this definition of the
GGSO projection, consistent with modular invariance, we can proceed to analyse
the symmetry configurations.

10



c
[

z1
HL

]

c
[

z2
HL

]

c
[

z1
z2

]

Gauge group G

+ + + SO(16)× SO(32)
+ − + SO(8)× SO(40)
− − + SO(48)
− − − E8 × SO(32)

Table 1: The configuration of the symmetry group with four basis vectors.

3.1 Configurations

We analyse the various configurations that arise with increasingly larger number
of basis vectors. The simplest is the set {1, HL}. With this set there is only one
possible configuration with SO(48) symmetry. Climbing the complexity ladder by
adding the z1 basis vector produces two possible configurations SO(8) × SO(40)
and SO(48). The first is obtained from the the untwisted vector states and the
vector states from the sector z1 are projected out, whereas the second is obtained
by retaining the states from z1 in the massless spectrum. The choice of the phase
c
[

z1
HL

]

= ±1 selects between the two configurations. The next set is obtained by
adding the basis vector z2 yielding the set {1, HL, z1, z2}. The matrix of GGSO
phases is given by:













1 HL z1 z2
1 −1 −1 +1 +1
HL −1 −1 ±1 ±1

z1 +1 ±1 +1 ±1
z2 +1 ±1 ±1 +1













(18)

Only the phases above the diagonal are independent, whereas those on and below
the diagonal are fixed by the modular invariance rules. Thus, in the configurations
corresponding to eq. (18) we have a total of three independent phases or eight pos-
sible configurations. Naturally, there are degeneracies in the space of configurations
due to the permutation symmetries among the zi. With the basis corresponding to
eq. (18) we find a total of four independent configurations shown in table 1.

We note that we each subsequent basis set the configurations of the smaller sets
are reproduced. This is a recurring feature of string constructions [14] and results
from some generic θ–function identities and redistribution of the vector states among
the different sectors. We next add the additional basis vector z3 producing a five
basis set {1, HL, z1, z2, z3}. The phases matrix is given by

















1 HL z1 z2 z3
1 −1 −1 +1 +1 +1
HL −1 −1 ±1 ±1 ±1

z1 +1 ±1 +1 ±1 ±1
z2 +1 ±1 ±1 +1 ±1
z3 +1 ±1 ±1 ±1 +1

















(19)
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c
[

z1
HL

]

c
[

z2
HL

]

c
[

z3
HL

]

c
[

z1
z2

]

c
[

z1
z3

]

c
[

z2
z3

]

Gauge group G

+ + + + + + SO(24)× SO(24)
+ + + + + − SO(8)× SO(16)× SO(24)
+ + − + + + SO(16)× SO(32)
− − + + + + SO(8)× SO(40)
− − + − + + E8 × SO(8)× SO(24)
− − − + + + SO(48)
− − − − + + E8 × SO(32)

Table 2: The configuration of the symmetry group with five basis vectors.

The untwisted symmetry is SO(8)1×SO(8)2×SO(8)3×SO(24). In this case there
are a total of six independent phases producing 64 distinct possibilities. Out of
those we obtain seven distinct configurations shown in table 2. Four of the resulting
configurations are reproductions of previous cases and three are new. a complete
analysis of all configurations has been performed in the case with five basis vectors.

The next step is to add an additional basis vector to the set. The set of basis
vectors is then {1, HL, z1, z2, z3, z4}. The untwisted symmetry is SO(8)1×SO(8)2×
SO(8)3 × SO(8)4 × SO(16). The sectors contributing to the symmetry group are
the 0–sector and the 11 purely anti–holomorphic sets:

G = { 0,

z1, z2, z3, z4,

z1 + z2, z1 + z3, z1 + z4, z2 + z3, z2 + z4, z3 + z4,

z̃ = 1+HL + z1 + z2 + z3 + z4 } (20)

where the 0–sector requires two oscillators acting on the vacuum in the gauge sector;
the zj–sectors require one oscillator; and the zi+zj and z̃ require no oscillators. The
matrix of GGSO phases is given by





















1 HL z1 z2 z3 z4
1 −1 −1 +1 +1 +1 +1
HL −1 −1 ±1 ±1 ±1 ±1

z1 +1 ±1 +1 ±1 ±1 ±1
z2 +1 ±1 ±1 +1 ±1 ±1
z3 +1 ±1 ±1 ±1 +1 ±1
z4 +1 ±1 ±1 ±1 ±1 +1





















(21)

There are 10 independent phases in eq. (21) rendering a total of 1024 different
possibilities with a complete analysis seemingly prohibitive. For a sample of the
choices we reproduce the previous seven configurations and obtain six new ones.
The thirteen configurations are displayed in table 3.

The fifth case in table 3 is a new feature of the basis set corresponding to eq.
(21) as compared to the earlier cases. In all the previous cases the symmetry was
enhanced by one or more of the additional sectors, whereas in the case of the fifth
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c
[

z1
HL

]

c
[

z2
HL

]

c
[

z3
HL

]

c
[

z4
HL

]

c
[

z1
z2

]

c
[

z1
z3

]

c
[

z1
z4

]

c
[

z2
z3

]

c
[

z2
z4

]

c
[

z3
z4

]

Gauge group G

+ + + + + + + + + + E8 × SO(32)
+ + + + + + + + + − SO(16)× SO(16)× SO(16)
+ + + + + + + + − − SO(16)× SO(8)× SO(8)× SO(16)
+ + + + + + + − − − E8 × SO(24)× SO(8)
+ + + + − + + − + − SO(16)× SO(8)× SO(8)× SO(8)× SO(8)
+ + + + − − − + + + SO(24)× SO(16)× SO(8)
+ + + + + − − − − + E8 × SO(16)× SO(16)
− + + + + + + + + + SO(24)× SO(24)
+ + + + − − − − − − SO(32)× SO(16)
− − + + − + + + + + E8 ×E8 × SO(16)
− − − − + + + + + + SO(48)
− − − + + + + + + + SO(40)× SO(8)
− − − − − + + + + − E8 ×E8 × E8

Table 3: The configuration of the symmetry group with six basis vectors.
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row in table 3 all enhancements are projected out. Thus, this set affords a larger
set of projectors that facilitate projection of all enhancements. This is a recurring
feature, which is frequently used in classification of fermionic string vacua in four
dimensions. The last row in table 3 correspond to a model with E3

8 symmetry, which
is identified as one of the Niemeier lattices.

The next and final step is to add an additional basis vector which correspond
to the set given in eq. (16) and the GGSO coefficients matrix in eq. (17). The
untwisted symmetry is SO(8)1 × SO(8)2 × SO(8)3 × SO(8)4 × SO(8)5 × SO(8)6,
corresponding to the six sets of right–moving worldsheet complex fermions

{

{ρ̄1,2,3,4}; {ρ̄5,6,7,8}; {ψ̄1,2,3,4}; {η̄0,1,2,3}; {φ̄1,2,3,4}; {φ̄5,6,7,8}
}

.

The sectors contributing to the symmetry group are the 0–sector and the 21 purely
anti–holomorphic sets:

G =
{

0,

z1, z2, z3, z4, z5, z6,

z1 + z2, z1 + z3, z1 + z4, z1 + z5, z1 + z6,

z2 + z3, z2 + z4, z2 + z5, z2 + z6,

z3 + z4, z3 + z5, z3 + z6,

z4 + z5, z4 + z6, z5 + z6
}

(22)

where z6 = 1 +HL + z1 + z2 + z3 + z4 + z5 = {φ̄5,6,7,8}., Similarly, to the previous
cases the 0–sector requires two oscillators acting on the vacuum in the right–moving
sector to produce a massless state; the zi sectors require one oscillator; and the
zi + zj with i 6= j require no oscillators. All these cases require one oscillator acting
on the vacuum in the left–moving sector. There are 15 independent phases in eq.
(17) rendering a total of 32768 possibilities, which requires a computerised analysis,
and is beyond our scope here.

All the sets that we introduced so far involve non–overlapping periodic fermions,
i.e. the product between any two non–trivial basis vectors is 0mod4. We can intro-
duce additional basis vectors with two overlapping right–moving periodic fermions,
i.e. the product between the new basis vectors and two of those in in eq. (16) is
2. For example, a basis vector with z7 = {ρ̄1,2, η̄2,3} ≡ 1 has z7 · z1 = z7 · z4 = 2.
We can further envision breaking HL into three corresponding basis vectors z0, z8
and z9 with HL = z0 + z8 + z9, and similarly introduce basis vectors with overlap-
ping periodic complex fermions. A single mod 4 left–moving basis vector, with null
assignment for the right–moving fermions, produces a Jacobi–like factor, V8 − S8,
in the partition function, which produces N = 4 spacetime supersymmetry in the
four dimensional models. Such non overlapping left–moving basis vectors produce
a product of Jacobi–like identities, whereas basis vectors with overlapping periodic
fermions break this identity in a familiar way from the four dimensional models.
The action of the basis vectors with overlapping periodic fermions is reminiscent of
the orbifold action in section 2 and combining a left–moving action with a right–
moving one will entail precisely that. This will alter the sharp division between the
left– and the right–movers and reduce the symmetry structures obtained with the
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24 dimensional lattices. This looks similar to the case of toroidal orbifolds. Detailed
analysis of these cases is beyond our scope here and will be reported in future work.
What may be envisioned is that the symmetry structures of the four dimensional
models are rooted in the rich symmetry structures of the 24 dimensional lattices in
two dimensions. In turn the free fermionic construction may provide a set of simple
tools that can be used to explore the properties of the 24 dimensional lattices. In
the next section we derive some of the Niemeier lattices by using the free fermionic
tools.

4 The Niemeier lattices

Some of the models we have already presented have the property that the modular
invariant partition function factorizes into a left and a right–moving part:

Z(τ, τ̄) = Z(τ)Z(τ̄). (23)

For models based on the set {HL, HR} = {1, HR}, which might also include some
of the zi ’s given in (16), this will happen if the phases between HL and any other
vector are chosen appropriately (c

[

HL

anything

]

= −1).
Within the class of models with factorized partition functions, there is a subclass

of models for which Z(τ) and Z(τ̄) are modular invariant by themselves. Particular
cases of this type are models for which Z(τ) is a constant. These models display
a Massive Spectrum Degeneracy Symmetry (MSDS) and have been studied in [18].
Here, we would like to focus more on the right-moving partition function, which for
lattice compactifications is

Z(τ̄ ) =
ZΛ(τ̄)

η̄(τ̄)24
. (24)

Λ is the lattice on which the right-moving bosons are compactified.
Since Z(τ̄) is modular invariant, Λ must be an even, self-dual, 24-dimensional

lattice (assuming a compactification to two dimensions). There are 24 such lattices
classified by Niemeier [27] and they are presented in table 4. With the exception
of the Leech lattice that has no vectors of length 2, the vectors of length 2 of the
remaining 23 lattices belong to the root lattices of simple Lie groups. However,
knowing the components is not enough by itself to fully define a Niemeier lattice.
One must also describe how conjugacy classes among different components are cou-
pled with each other. This is given in terms of certain glue vectors. For example, the
Niemeier lattice D2

12 needs glue vectors {(s, v), (v, s)} where v and s stand for the
vector and the spinor conjugacy class of D12. More details about this construction
and a list of glue vectors for all the Niemeier lattices can be found in [28, 29].

Note that these lattices have been studied extensively in the past, especially in
connection with moonshine. For example, the lattice A24

1 carries a natural represen-
tation of the monster group M24 and the Umbral Moonshine conjecture associates
a finite group and a set of vector valued mock modular forms to each of these 23
Niemeier lattices (see [30] and references therein).

Lattice compactifications have an equivalent fermionic description [31, 32]. The
main result of this section is table 4 in which we give realizations of the Niemeier lat-
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tices in terms of free fermionic basis vectors. Note that even though many glue vec-
tors need to be included for a description in the bosonic language, the free fermionic
realizations of many of these lattices are quite succinct. This is a demonstration of
the power of the free fermionic formalism for certain tasks and an example where
the dictionary between bosons and fermions described in [31] can be used to provide
new insights.

For an example, let us look at the D2
12 Niemeier lattice again. The straightfor-

ward way one might imagine implementing this in the free fermionic language is
through the basis set {b1, b2, b3, b4} where (remembering that the normalization is
twice the usual for weight vectors):

b1 = {112, 012} , (25)

b2 = {012, 112} , (26)

b3 = {112, 2, 011} , (27)

b4 = {2, 011, 112} . (28)

b1 and b2 generate the two D12, whereas b3 and b4 is what one would naively write
down to implement the glue vectors (s, v) and (v, s). On the other hand, the inclusion
of b3 and b4 appears highly unconventional from a free fermionic model building
perspective because they are not independent of b1 and b2 when considered mod 2.
The resolution to this paradox is to use the formula [31]:

c

[

α + δ

α′ + δ′

]

= e
1

2
πi δ·α′

c

[

α

α′

]

, (29)

where δ and δ′ have only even entries and α, α′ are arbitrary, to reduce b3 and b4
to b1 and b2 respectively. This also changes the phase c

[

b1
b2

]

from 1 to −1, hence
verifying the corresponding entry in table 4. The same idea can be applied to fill in
the rest of the table.

We tried to give realisations of the lattices using a small number of free fermionic
basis vectors. However, for certain lattices we were not able to do so and we had
to use the following set of 12 basis vectors {g1, g2, · · · , g12}, known as the Golay
generators :









































1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1









































(30)
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Note that we only show the right-moving components of the basis vectors here,
with the understanding that the left-moving components are all zero. For a consis-
tent free fermionic model, (at least) the vector HL should also be added to the set
to ensure that the vector 1 is generated. The defining phases c

[

gi
gj

]

for the models

that use this set are as follows:

A3
8 : c =









































−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
∗ 1 1 1 −1 −1 1 1 −1 −1 1 1
∗ ∗ 1 1 −1 −1 1 1 −1 −1 1 1
∗ ∗ ∗ 1 −1 −1 1 1 −1 −1 1 1
∗ ∗ ∗ ∗ −1 −1 1 1 −1 −1 1 1
∗ ∗ ∗ ∗ ∗ −1 1 1 −1 −1 1 1
∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 −1 −1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1









































(31)

A2
7D

2
5 : c =









































−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
∗ 1 1 1 −1 −1 −1 −1 1 1 −1 −1
∗ ∗ 1 1 −1 −1 −1 −1 1 1 −1 −1
∗ ∗ ∗ 1 −1 −1 −1 −1 1 1 −1 −1
∗ ∗ ∗ ∗ −1 −1 −1 −1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ −1 −1 −1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ −1 −1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1









































(32)

A15D9 : c =









































−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
∗ 1 1 1 1 1 1 1 1 1 −1 −1
∗ ∗ 1 1 1 1 1 1 1 1 −1 −1
∗ ∗ ∗ 1 1 1 1 1 1 1 −1 −1
∗ ∗ ∗ ∗ 1 1 1 1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1









































(33)

A6
4 : c =









































−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
∗ 1 1 1 1 1 1 1 1 1 1 1
∗ ∗ 1 1 1 1 1 1 1 1 1 1
∗ ∗ ∗ −1 −1 −1 −1 −1 −1 −1 −1 −1
∗ ∗ ∗ ∗ −1 −1 −1 −1 −1 −1 −1 −1
∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 1 1
∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 −1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1









































(34)
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Note that there are some entries in table 4 for which we were unable to provide
concrete realisations. We conjecture that these cases can also be given in terms of the
Golay basis vectors for certain phases. However, the fact that there are 278 a priori
different phases that are allowed by modular invariance makes it computationally
difficult to verify (or disprove) this claim.

For all the models presented in table 4, an independent check of correctness can
be performed by calculating the partition function (restricted to the right-moving
sector) of the proposed free fermionic realization via the formula

Z(τ̄) =
∑

sectors α,β

c

[

α

β

]

θ̄

[

α

β

]

(35)

and check that it matches the partition function of the Niemeier lattices given as
[33]

Z(τ̄) = J(τ̄ ) + 24(h+ 1) , (36)

where h is the corresponding Coxeter number (given for example in [28]) and J(τ̄ )
the unique modular invariant with zero constant term (i.e. J(τ̄ ) = j(τ̄) − 744).
Note in particular that the partition functions of all these lattices (and those of the
corresponding free fermionic models) only differ in their constant term. The massive
spectra of all the models are identical.

The fact that the modular invariant phases in the partition function can be ad-
justed to couple conjugacy classes among different factors is quite surprising and, to
our knowledge, has not been noticed before. It demonstrates an interesting interplay
between gluing lattices and modularity and allows for a deeper understanding of the
spinor-vector duality: For lattice compactifications, adjusting the generalized phases
couples different conjugacy classes among different factors leading to different lat-
tices. In a similar way, for orbifold compactifications adjusting certain generalized
phases leads to spinor-vector dual models.

5 Conclusions

The heterotic–string models in the free fermionic formulation are among the most
realistic string models constructed to date [22]. They correspond to Z2×Z2 toroidal
orbifold constructions at special points in the moduli space [34, 31]. Their phe-
nomenological properties raise the possibility that the true string vacuum shares
some of their underlying properties. It is therefore of immense interest to explore
what those underlying properties are. It is of course also plausible that the true
string vacuum does not belong to this class, and for that purpose other classes of
interesting string vacua (see e.g. [35]) should be investigated and their underlying
properties explored.

A particular sub–class of free fermionic models are those that allow for a light
extra Z ′, with its distinct low scale signature via a di–photon excess. The construc-
tion of the string model utilised the spinor–vector duality, which is akin to mirror
symmetry [36]. A realisation of the spinor–vector duality relies on the triality of
the SO(8) representations. In particular, this triality enables a large range of pos-
sibilities for the GGSO phases to produce the same symmetry groups. The SO(8)
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Niemeier lattice
Free fermionic basis vector realization

based on

D24 {124}
D16E8 {116, 08}, {016, 18}
E3

8 {18, 08, 08}
A24 {(1

3
)23, 7

3
}, c

[

b1
b1

]

= e
4πi
3

D2
12 {112, 012}, {012, 112}, c

[

b1
b2

]

= −1

A17E7 {(1
3
)18, 16}

D10E
2
7 {124}, {110, (0)(1)6, 07}

A15D9 Golay set

D3
8 {18, 08, 08}, c

[

bi
bj

]

= −1, i 6= j

A2
12

{18, 016}, {04, 18, 012}, {1, 03, 1, 04, 14, 03, 1, 03, 1, 03},
{1, 03, 1, 03, 1, 04, 14, 03, 1, 03}, {012, 18, 04}, {016, 18},

c
[

b3
b4

]

= −1, c
[

b5
b6

]

= −1

A11D7E6 ?

E4
6 {(0)(1)5, (1)(0)5, (1)(0)5, (1)(0)5}, c

[

b2
b4

]

= −1

A2
9D6 ?

D4
6 {06, 16, 06, 16}, {16, 06, 16, 06}, {012, 112}, c

[

bi
bj

]

= −1, i 6= j

A3
8 Golay set

A2
7D

2
5 Golay set

A4
6 ?

A4
5D4 ?

D6
4 {124}, {18, 04, 04, 04}, c

[

b2
b5

]

= −1, c
[

b3
b4

]

= −1

A6
4 Golay set

A8
3 ?

A12
2 ?

A24
1 ?

Leech ?

Table 4: Free fermionic realizations of all inequivalent Neimeier lattices. Underlying
means permutations of all blocks separated by comma. For example, the three
basis vectors needed for E3

8 are {18, 08, 08}, {08, 18, 08}, {08, 08, 18}. Only the 24
right-moving components of the basis vectors appear explicitly; the left-moving are
understood to be zero. We also state explicitly which generalized phases in the
upper triangular part of the phase matrix are not 1. For a consistent free fermionic
model, (at least) the vector HL should also be added to the set to ensure that the
vector 1 is generated.
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triality property is also at the core of the well known Jacobi identity and the ensuing
spacetime supersymmetry.

In this paper we explored the symmetry structures of heterotic–string vacua
compactified to two dimensions. Our primary motivation is to seek the origin of
the four dimensional spinor–vector duality in the symmetry structure of 24 dimen-
sional lattices that are obtained in the two dimensional compactifications. This is
analogous to the MSDS symmetry which is similarly rooted in two dimensional com-
pactifications. We discussed in section 2 how the spinor–vector duality is rooted in
the triality property of SO(8) representations and we used this triality property in
3 to classify some of the symmetries of the two dimensional compactifications. Self–
duality under the spinor–vector duality played a key role in the construction of the
Z ′ model of ref [5], with its distinctive signature via a di–photon excess [4, 6]. Thus,
a basic property underlying the string vacua is tied to a phenomenological model
with its distinct experimental signature. In section 4 we derived a representation of
some of the Niemeier lattices in the free fermionic formulation. The properties of 24
dimensional lattices and their moonshine symmetries are of growing in the literature
[37]. In this context it is not implausible that the free fermionic methods can add to
the set of tools that can be used to explore the underlying mathematical structures.
How, and whether, these mathematical phenomena manifest themselves in physical
observable is the arena we will explore in future publications.
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