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ABSTRACT: Survival signature is a summary of structure function, which has been presented to perform
reliability analysis on system with multiple component types. However, it is pretty intractable and difficult to use
analytical methods to perform reliability analysis on repairable system, therefore, numerical simulation method
for the analyse of such systems is required. Importance measures in system reliability engineering are applied to
find the weakest component in a system. In many practical situation it is a necessary to know the importance of a
set of components. The existing component importance measures are calculated through analytical ways which
mainly focus on a specific component, however, there are few applications of these measures to repairable
systems. In this paper, survival signature-based simulation method has been proposed to analyse reliability
on repairable systems. This approach is efficient since the survival signature of the system only need to be
calculated once while Monte Carlo simulation is used to generate component transition times. What is more,
two component importance measures which based on survival signature are also introduced to estimate the
importance degree of a specific component or a set of components. In order to quantify the importance degree
of the component, the relative criticality index is presented. Numerical examples are presented to show the
applicability of the approaches.

1 INTRODUCTION

In recent years, the system signature has been rec-
ognized as an important tool to quantify the reliabil-
ity of systems consist of independent and identically
distributed (iid) or exchangeable components with
respect the random failure times (Samaniego 2007).
System signature separates the system structure from
the component probabilistic failure distribution. How-
ever, when it is adopted to solve a complex system
with more than one component type, it requires the
computation of the probabilities of all possible differ-
ent ordering statistics of each component failure life-
time distributions (Coolen & Coolen-Maturi 2015),
which is often an intractable procedure.

In order to overcome the limitations of the sys-
tem signature, Coolen & Coolen-Maturi (2012) pro-
posed the use of survival signature. Survival signa-
ture method not only reserves the merits of the sys-
tem signature, but it has been shown to be an effective

tool for analysing complex system consisting of more
than one single component type. In essence, it does
not have the assumption that components of different
types are iid, which overcome the long-standing lim-
itation of system signature. Therefore, survival signa-
ture is a promising method for application to complex
systems and networks.

Recently, Aslett (2012) developed a package to cal-
culate the survival signature. Coolen et al. (2014)
proposed a non-parametric predictive inference for
system reliability using the survival signature. Aslett
et al. (2015) did system reliability within the Bayesian
framework of statistics. Based on the above concepts,
Feng et al. (2016) developed an analytical method
to calculate survival function of systems with uncer-
tain components parameters which belong to expo-
nential distribution. These methods are efficient, how-
ever, they do not take the repairable system into con-
sideration.

Repairable components are those that not replaced



following the occurrence of a failure; rather, they are
repaired and put into operation again. The use of sim-
ulation methods for repairable system reliability has
attractive features, especially for large or complex
systems (Patelli et al. 2012). Moreover, if there exist
imprecise probabilities, it is even more complicated
to deal with the imprecision (Beer et al. 2013). Most
of the current simulation methods for system reliabil-
ity are based on Monte Carlo simulation and structure
function. By generating the state evolution of each
component, the structure function is computed to de-
termine the state of the system. However, the calcula-
tion of the structure function usually requires the cal-
culation of all the path sets or cut sets. Therefore, it is
a difficult task for complex repairable systems.

The survival signature is a summary of the system
structure functions, which is not only good for de-
termining the system reliability function, but efficient
for complex system with repairable components. This
is because it just needs to store survival signature in-
stead of the whole structure functions of the system.

Risk are unavoidable and as such the key challenge
in engineering risk analysis is to identify the com-
ponents of the system that contribute most to risk
(Modarres 1992). Component importance measure is
a very useful method for the designers and manufac-
tures experts to find how the failure of one compo-
nent affects the functioning of the system and iden-
tify the weakest components in the system. The def-
inition of component importance measure is first in-
troduced by Birnbaum (1968) in 1968, which is ob-
tained by partial differentiation of the system reliabil-
ity with respect to the given component reliability. An
improvement or decline in reliability of the compo-
nent with the highest importance will cause the great-
est increase or decrease in system reliability. Based on
this achievement, many other component importance
measures have been introduced. e.g., structure impor-
tance measure (Borgonovo 2007), Fussell-Vesley im-
portance measure (Vesely 1970, Fussell 1975), fail-
ure criticality index (Wang et al. 2004), risk reduc-
tion worth and risk achievement worth (Borgonovo
and Apostolakis 2001). Dutuit & Rauzy (2014) gave
a review for importance factors of coherent systems,
which contributes to clarify mathematical and algo-
rithmic foundations of importance factors.

However, the traditional importance measures
mainly focus on non-repairable systems, and mainly
concern reliability importance of an individual com-
ponent. In many practical situation it is of interest to
evaluate the importance of a set of components in-
stead of just individual component.

A survival signature-based method is proposed in
this paper, which is efficient to analysis repairable
system reliability. This is essential when dealing with
complex repairable systems since they can only be
analysed through simulation method. In order to find
out the most “critical” component in the system, new
component importance measures which based on sur-

vival signature are introduced to analysis individual
component and component sets respectively. What is
more, a new relative criticality index is used to quan-
tify the importance degree of the component. The ap-
plicability of the proposed approach is demonstrated
by solving the numerical examples.

This paper is organized as follows. Section 2
presents the definition and advantages of survival sig-
nature for system with multiple component types. The
reliability analytical method for repairable systems
which based on survival signature is introduced in
Section 3. In Section 4, the component importance
measures both for a specific component and compo-
nent sets are presented. The applicability of the pro-
posed methods is shown by analysing one numerical
example in Section 5 and Section 6 closes the paper
with conclusions.

2 SURVIVAL SIGNATURE FOR SYSTEM WITH
MULTIPLE COMPONENT TYPES

For a system with m components, let state vector
x = (x1, x2, ..., xm) ∈ {0,1}m, with xi = 1 if the ith
component works and xi = 0 if not. The structure
function φ : {0,1}m→ {0,1}, defined for all possible
x, takes the value 1 if the system functions and 0 if not
for state vector x. In this paper, attention is restricted
to coherent systems, for which φ(x) is not decreasing
in any of the components of x, so system function-
ing cannot be improved by worse performance of one
or more of its components. It is further assumed that
φ(0) = 0 and φ(1) = 1, so the system fails if all its
components fail and functions if all its components
function.

Now consider a system with K ≥ 2 types of
components, with mk components of type k ∈
{1,2, ...,K} and

∑K
k=1mk = m. Assume that the

random failure times of components of the system
type are exchangeable, while full independence is
is assumed for the random failure times of com-
ponents of different types. The components of the
same type can be grouped together due to the arbi-
trary ordering of the components in the sate vector,
which leads to a state vector can be presented as x =
(x1, x2, ..., xK), with xk = (xk1, x

k
2, ..., x

k
mk

) illustrat-
ing the states of the components of type k. Coolen and
Coolen-Maturi (2012) introduced the survival signa-
ture for such a system, denoted by Φ(l1, l2, ..., lK),
with lk = 0,1, ...,mk for k = 1,2, ...,K, which is de-
fined to be the probability that the system functions
given that lk of its mk components of type k work, for
each k ∈ {1,2, ...,K}.

There are
(
mk

lk

)
state vectors xk with

∑mk
i=1 x

k
i = lk

(k = 1,2, ...,K), and let Sl1,l2,...,lK denote the set of
all state vectors for the whole system. Due to inde-
pendent and identical distributed (iid) assumption, all
the state vectors xk ∈ Sk

lk
are equally likely to occur,



so the survival signature can be written as

Φ(l1, ..., lK) = [
K∏
k=1

(
mk

lk

)−1
]×

∑
x∈Sl1,...,lK

φ(x) (1)

Ck(t) ∈ {0,1, ...,mk} denotes the number of k
components working at time t. Assume that the com-
ponents of the same type have a known CDF, Fk(t) for
type k. Moreover, the failure times of different com-
ponent types are assumed independent, then:

P (
K⋂
k=1

{Ck(t) = lk}) =
K∏
k=1

P (Ck(t) = lk) = (2)

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

Hence, the survival function of the system with K
types of components becomes:

P (Ts > t) =
m1∑
l1=0

...
mK∑
lK=0

φ(l1, ..., lK) ∗ (3)

P (
K⋂
k=1

{Ck(t) = lk})

It is obvious from Equation 3 that the survival sig-
nature can separate the structure of the system from
the failure time distribution of its components, which
is the main advantage of the system signature. What is
more, the survival signature only need to be calculated
once for any system, which is similar to the system
signature for systems with only single type of compo-
nents. It is easily seen that survival signature is closely
related with system signature. For a special case of a
system with only one type (K = 1) of components,
the survival signature and the Samaniego’s signature
(Samaniego 2007) are directly linked to each other
through a simple equation, however, the latter cannot
be easily generalized for systems with multiple types
(K ≥ 2) of components (Coolen & Coolen-Maturi
2012).

This implies that all attractive properties of the sys-
tem signature also hold for the method using the sur-
vival signature, also the survival signature is easy to
apply for systems with multiple types of components,
and one could argue it is much easier to interpret than
the system signature.

3 REPAIRABLE SYSTEM RELIABILITY
ANALYSIS BASED ON SURVIVAL
SIGNATURE

If the system with m components is repairable, a
schematic diagram of components status and the cor-
responding system performance are presented in fig-
ure 1.

Figure 1: Schematic diagram of components status and the cor-
responding system performance.

For structure function method, it is a necessary to
identify whether the system works or not at each criti-
cal time point. The critical time point is the beginning
time for each component fails and the finish time for
each component repairs.

In this paper, a survival signature-based method
is proposed to analyse the repairable system relia-
bility. This method is based on the system produc-
tion idea proposed by Zio et al. (2006) and Patelli
et al. (2016). Assume that there are jk possible tran-
sition for the components of type k. The probability
of going from state s = i to state s′ = j in given by
pkji = Pr(Xk = i |Xk = j). For simplicity, let assume
there is only one possible transition to exit from the
state s = i. For instance, a component in working sta-
tus s = 1 can fail and entering in the state s′ = 2; the
component in the state s = 2 can only be repaired and
returning in the status s′ = 1. Let Fkj = Pr(· |Xk = j)
represents the CDF of the component of type k in the
state j to undergo a transition. The Monte Carlo sim-
ulation is performed as follows and the evaluation of
the survival function of a system are performed using
the procedure shown in figure 2.

Step 1. Sample the transition times ti for i =
1,2, . . . ,m for each component from the cor-
responding CDF Fkj and stored in a vector
V t = {t1, t2, . . . , tm}, set told = 0;

Step 2. Identify the first transition time min(V t) and
the corresponding component z. Hence, t1
represents the first transition of a system, t2
the second transition and so on;

Step 3. At each transition time, the number of com-
ponents in working status is computed: C =
(C1,C2, . . . ,CK) and the corresponding “pro-
duction level” by evaluating the survival sig-
nature ΦC ;

Step 4. Collect the value of the survival signature
ΦC in the vector V r representing the sur-
vival function as follows: V r(j) = V r(j) +



Compute Survival Signature Φ

Sample components transition times (Vt)

Update 
component status Ck

is ti smaller than
the mission time?

Identify smallest transition time
ti=min(Vt ) and component j

Collect "production level" 
Φ(C1,C2, ..., Ck) for ti-1 to ti
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No
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Monte Carlo
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Figure 2: Flow chart of survival signature based survival function
evaluation method for repairable system.

Φti ∀j : told ≤ j · dt < min(V t), Set told =
min(V t).

Step 5. Update the status j of component z;

Step 6. Update the vector of transition time V t by
sampling the next transition time t′z of the
component z from Fkj where k is the compo-
nent type of the component z and j its status.
Hence: V t(z) = tz + t′z;

Step 7. If min(V t) < TMission, return to point 2.

4 COMPONENT IMPORTANCE MEASURES

4.1 Importance measure of a specific component

Based on the results of Feng et al. (2016), the rela-
tive important index (RIi(t)) of the ith component at
time t can be used to analyse repairable component
importance. It is the survival function probability dif-
ferences between the repairable system works if the
ith component functions and the repairable ith com-
ponent failures. The mathematical expression formula
of RIi(t) is

RIi(t) = P (TS > t | Ti > t)− P (TS > t | Ti ≤ t) (4)

Where, P (TS > t | Ti > t) represents the probabil-
ity that the repairable system works knowing that the
ith component functions; P (TS > t | Ti ≤ t) denotes
the probability that the repairable system functions if
the ith component has failed.

4.2 Importance measure of a set of components

It is sometimes important to evaluate the importance
of a set of components instead of a specific one in
real engineering world. Therefore, the relative impor-
tance index for a specific component can be extended
for components of type k, which can be denoted by
RIk(t). It is the probability difference values between
the repairable system functions if the components of
type k are repairable and the components of type k
cannot be repaired. RIk(t) can be expressed as fol-
lows

RIk(t) = P (TS > t | Tk > t)−P (TS > t | Tk ≤ t)(5)

Where, P (TS > t | Tk > t) represents the proba-
bility that the repairable system works if the compo-
nents of type k are repairable; P (TS > t | Tk ≤ t) de-
notes the probability that the repairable system func-
tions knowing that the components in type k cannot
be repaired.

Both RIi(t) and RIk(t) is a function of time and
they reveals the trend of the importance degree of a
specific component or a set of components within the
repairable system. The bigger the value of RIi(t) or
RIk(t), the more “critical” of the ith component or
the set of components on the repairable system relia-
bility at a specific time t, and vice versa. This helps to
allocate resources, which might including resources
for reliability improvement, surveillance and mainte-
nance, design modification, security, operating pro-
cedure, training, quality control requirements, and a
wide variety of other resource expenditures. By us-
ing the importance of a specific component or a set
of components, resources expenditure can be properly
optimized to reduce the total life-cycle resource ex-
penditures while keeping the risk as low as possible.
In other words, for a given resource expenditure such
as for maintenance, the importance measure of a spe-
cific component or set of components can be used to
allocate resources to minimize the total system risk.
This approach allows the risk manager to offer the
“biggest bang for the buck” (Modarres 2006).

4.3 Quantify importance degree of the component

In order to quantify importance degree of the com-
ponent, a new index which called relative criticality
index (RC) is introduced in this paper. The numeri-
cally obtained index for a repairable system is through
Monte Carlo simulation which based on Section 3.
The failure times of the system can be got through
each trial, after having simulated many histories of
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Figure 3: The complex repairable system with six types of com-
ponents. The numbers inside the component boxes indicate the
component type. The numbers above the component boxes indi-
cate the component indices.

the system, estimates are made of the desired rela-
tive criticality index statistically. For a system with
m components, given component i, this index is ex-
pressed as

RCi =
N f

i

max{N f
1,...,m}

(6)

Where, N f
i represents average number of sys-

tem failures if the ith component cannot repair; and
max{N f

1,...,m} denotes the maximum average number
of system failures if the each component cannot repair
respectively.

This index can quantify the importance degree of
each component, and the relative criticality index val-
ues of all the components are compared with the
biggest RC value. Therefore, the bigger the value is,
the bigger influence of the ith component on the re-
pairable system.

5 NUMERICAL EXAMPLE

The purpose of this numerical example is to show the
efficiency of the survival signature-based reliability
analysis on repairable system. What is more, the com-
ponent importance measures presented in this paper
are also used to analyse the same system. The reli-
ability block diagram representation of a simplified
auxiliary feedwater system can be seen in figure 3, it
consists of fourteen components which belong to six
component types.

Table 1 shows the distribution for failure process
(1→ 2) and repair process (2→ 1) of components.

Let first perform importance measure of a specific
component. The results can be seen in figure 4.

It is clear that component 14 always has higher rel-
ative importance index than the other thirteen com-
ponents, which means it is the most “critical” com-
ponent in the repairable system. Then it comes to
component 8. Component 13 has litter relative im-
portance index values at the first time, however, its
relative importance index values become bigger and
bigger as time goes on, which just follows the com-
ponents 14 and 8. Component 1 and component 2 has
similar relative importance values, which are some-
times crossover. The same circumstance occurs on

Table 1: Distribution for failure and repair process of compo-
nents

.

Component Type Process Distribution Parameters
1 1→ 2 Exponential 2.3
1 2→ 1 Constant 0.5
2 1→ 2 Exponential 1.2
2 2→ 1 Constant 1.0
3 1→ 2 Weibull (1.7,3.6)
3 2→ 1 Constant 0.7
4 1→ 2 Lognormal (1.5,2.6)
4 2→ 1 Constant 1.1
5 1→ 2 Weibull (3.2,2.5)
5 2→ 1 Constant 1.3
6 1→ 2 Gamma (3.1,1.5)
6 2→ 1 Constant 1.2
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Figure 4: Relative importance index of the specific component
in system.

components 4 and 6. The relative importance of the
five components (3, 5, 7, 9, 10) always within within
0.1, which means they has less importance influence
degree than other components on the repairable sys-
tem.

For application in the real world, sometimes people
want to know the importance degree of a set of com-
ponents. i.e., the relative importance index of compo-
nents of set 1 to set 6 in this repairable system. Fig-
ure 5 shows the results of them.

It can be seen that the relative importance index val-
ues of component sets 1 and 2 are bigger than other
component sets, therefore, components of type 1 and
2 are more important than components of other types
in this repairable system. On the contrary, component
set 4 is the least important within the system because
it has the smallest values of relative importance index.
The values of component set 1 are higher than 2 at the
beginning time, however, their values are the same as
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Figure 5: Relative importance index of the component sets in
system.
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Figure 6: Relative criticality index of the component in system.

time goes on. Component set 6 has lower relative im-
portance values than component sets 3 and 5, but the
values go up and rank the third within the six compo-
nent sets in the last. Component set 3 and 5 has the
similar relative importance values trend, although the
value of set 5 is bigger than set 3.

If using the relative criticality index to quantify the
importance degree, theRC of each component can be
seen in figure 6.

It shows that component 14 has the highest im-
portance degree to the repairable system, then comes
component 8 and 13. The components 9 and 10 has
the similar relative criticality index and they are also
the “critical” ones.

6 CONCLUSIONS

Survival signature is an efficient approach for
analysing complex system with more than one com-
ponent type, and it is just need to be calculated once
when perform reliability analysis on a specific sys-
tem, which represents a significant computational ad-
vantage. Sensitivity analysis is an important concept
in system reliability, it helps to quantify the impor-
tance of the component and identify the weakest com-
ponent, also it gives guidance on how to allocate
the resources. Some of the component importance
measures can be calculated through analytical meth-
ods, while for complex systems or repairable systems,
simulation ways are much more efficient and useful.

In this paper, survival signature-based methods for
repairable system reliability analysis and component
importance measures have been presented. The effi-
cient simulation method which based on survival sig-
nature has been used for reliability analysis on re-
pairable system, and survival signature only need to
be calculated once for the same system whether it is
repairable or not. What is more, the proposed impor-
tance measures can not only find out the importance
degree of the exact component, but can be used for
analysing importance of a set of components. In order
to quantify the importance degree of the component
within the repairable system, a new relative criticality
index is introduced in this paper. The application of
these approaches presented in this paper is illustrated
by performing an analysis on a complex repairable
system.
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