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Abstract

A compressive sensing (CS) based approach for stationary and non-stationary
stochastic process power spectrum estimation subject to missing data is de-
veloped. Stochastic process records such as wind and sea wave excitations can
often be represented with relative sparsity in the frequency domain. Relying
on this attribute, a CS framework can be applied to reconstruct a signal that
contains sampling gaps in the time domain, possibly occurring for reasons
such as sensor failures, data corruption, limited bandwidth/storage capacity,
and power outages. Specifically, first an appropriate basis is selected for ex-
panding the signal recorded in the time domain. In this regard, Fourier and
harmonic wavelet bases are utilized herein. Next, an L1 norm minimization
procedure is performed for obtaining the sparsest representation of the signal
in the selected basis. Finally, the signal can either be reconstructed in the
time domain if required or, alternatively, the underlying stochastic process
power spectrum can be estimated in a direct manner by utilizing the de-
termined expansion coefficients; thus, circumventing the computational cost
related to reconstructing the signal in the time domain. The technique is
shown to estimate successfully the essential features of the stochastic pro-
cess power spectrum, while it appears to be efficient even in cases with 65%
missing data demonstrating superior performance in comparison with alter-
native existing techniques. A significant advantage of the approach is that
it performs satisfactorily even in the presence of noise. Several numerical
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examples demonstrate the versatility and reliability of the approach both for
stationary and non-stationary cases.

Keywords: Compressive Sensing, Stochastic Process, Missing Data

1. Introduction

Acquired data corresponding, for instance, to environmental processes,
are often pivotal for defining and calibrating probabilistic engineering load
models to be used in subsequent analyses of critical engineering systems. In
utilizing these data, power spectrum estimation can be an invaluable tool
and an important building block in engineering systems analyses, especially
within a Monte Carlo simulation framework, e.g.[1]. Nevertheless, in the
presence of missing data, there are certain limitations to standard spectral
analysis techniques such as those based on Fourier transform. Missing data
in this context refer to a stochastic process time-history record, which for
some reason has been sampled irregularly or lost some of its original content.
There are numerous situations in which missing data may be unavoidable.
These include sensor failures, data loss or corruption, as well as limited allo-
cated time with shared equipment. In these situations it may be infeasibly
expensive or logistically impossible to re-record the process in full, and there-
fore alternative analysis techniques are required to best analyse and process
the available data.

There exist many algorithms and procedures in the literature that pro-
vide alternatives to standard Fourier analysis for spectral estimation in the
presence of missing data. Nevertheless, most of these alternatives come with
certain drawbacks and often impose several assumptions on the statistics
of the underlying stochastic process. For instance, autoregressive methods
can be used to fit a model to the data, most often under the assumption
that the source time-history is relatively long and that the missing data are
grouped [2, 3]. Further, least-squares sinusoid fitting and zero-padded gaps
[4, 5, 6] offer efficient solutions for re-constructing the Fourier spectrum in the
presence of missing data but suffer, in general, from falsely detected peaks,
spectral leakage and significant loss of power as the number of missing data
increases. Other alternative approaches for spectral estimation in the case of
non-uniform sampling may impose restrictions on the nature of the missing
data; e.g., infrequent loss [7, 8] or assume that the underlying process com-
prises a highly limited number of significant harmonic components [9, 10].
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Recently, an artificial neural network based approach was developed by the
authors for power spectrum estimation and simulation of stochastic processes
subject to missing data [11]. A significant advantage of the approach relates
to the fact that no prior knowledge of statistics of the underlying process is
required.

Note that for the non-stationary case, additional challenges arise when es-
timating the evolutionary power spectrum. In this regard, alternatives to sta-
tionary methods (e.g. the Fourier transform) can be utilized, such as wavelet
[12, 13, 14, 15, 16] or chirplet (e.g. [17]) transforms, the short-time Fourier
transform, Gabor transform (e.g. [12]) and Wigner-Ville distribution (e.g.
[18, 19, 20]). However, the majority of approaches for addressing missing
data in the stationary case are not directly applicable in the non-stationary
case or impose the assumption that the process is locally stationary (e.g.
[21]).

The approach to dealing with missing data in stationary and non-stationary
processes developed in this paper relies on the fact that many environmen-
tal processes such as earthquakes, sea waves, winds and tidal patterns can
be characterized by a relatively small number of dominant frequencies when
expanded in the frequency domain. This feature leads to considering com-
pressive sensing (CS) [22, 23] as a promising tool for signal reconstruction
and spectral estimation both of stationary and non-stationary stochastic pro-
cesses. In this regard, the capabilities of the recently developed CS framework
are exploited herein for addressing the problem of estimating stationary and
non-stationary stochastic process power spectra in cases where the available
realizations exhibit missing data. It is shown that in conjunction with an ap-
propriately selected basis, power spectra are satisfactorily estimated in the
presence of large (up to 65%) amounts of missing data.

2. Stochastic process representation and spectral estimation

In this section, a concise review and related details on stationary and
non-stationary stochastic process representation are included for the full,
uniform time-history case. Specifically, Fourier and recently developed har-
monic wavelet based power spectrum estimation approaches are delineated,
providing a basis for the CS approach.

For any real-valued stationary process, X(t), there exists a corresponding
complex orthogonal process Z(ω) such that X(t) can be written in the form
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(e.g. [24, 25, 26])

X (t) =

∫ ∞
0

eiωtdZ (ω) (1)

where Z (ω) has the properties

E
(∣∣dZ2 (ω)

∣∣) = 4SX (ω) dω, (2)

and
E (dZ (ω)) = 0. (3)

In Eq.(2), SX (ω) is the two-sided power spectrum of the process X (t) .
Further, a versatile formula for generating realizations compatible with the
stationary stochastic process model of Eq.(1) [1] is given by

X (t) =
N−1∑
j=0

√
4SX (ωj) ∆ω sin (ωjt+ Φk) , (4)

where Φk are uniformly distributed random phase angles in the range 0 ≤
Φk < 2π . Furthermore, regarding estimation of the power spectrum of the
process of Eq.(1) based on available realizations, this is given by the ensemble
average of the square of the absolute Fourier transform amplitudes of the
realizations. In this context, standard established Fast Fourier Transform
algorithms can be utilized (e.g. [27]).

Next, for the case of non-stationary stochastic processes, a similar to
Eq.(1) rigorous process representation of non-stationary stochastic processes
needs to be employed (see also [28]). In this regard, a framework was devel-
oped in [29] for representing non-stationary stochastic processes by utilizing
a time/frequency-localized wavelet basis as opposed to the Fourier decompo-
sition of Eq.(1); the representation reads

X (t) =
∑
j

∑
k

wj,kψj,k (t) ξj,k, (5)

where ξj,k is a stochastic orthonormal increment sequence; ψj,k (t) is the
chosen family of wavelets and j and k represent the different scales and
translation levels, respectively. Further, the local contribution to the variance
of the process of Eq.(5) is given by the term |wj,k|2. The wavelet-based model
of Eq.(5) relies on the theory of locally stationary processes (see also [30]).
The aforementioned wavelet based representation can be viewed as a natural
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extension in the wavelet domain of earlier work related to the representation
of non-stationary stochastic processes (e.g.[30, 31, 32]).

Focusing next on generalized harmonic wavelets [33], they have a box-
shaped frequency spectrum, whereas a wavelet of (m,n) scale and (k) position
in time attains a representation in the frequency domain of the form

ΨG
(m,n),k (ω) =

{
1

(n−m)∆ω
exp

(
−iω kT0

n−m

)
, m∆ω ≤ ω ≤ n∆ω

0 otherwise
, (6)

where m, n and k are considered to be positive integers and ∆ω = 2π
T0

; and
T0 is the total time duration of the signal under consideration. A collection of
harmonic wavelets of the form of Eq.(6) spans adjacent non-overlapping in-
tervals at different scales along the frequency axis. The inverse Fourier trans-
form of Eq.(6) gives the time-domain representation of the wavelet which is
equal to

ΨG
(m−n),k (t) =

exp
(
in∆ω

(
t− kT0

n−m

))
− exp

(
im∆ω

(
t− kT0

n−m

))
i (n−m) ∆ω

(
t− kT0

n−m

) (7)

Furthermore, the continuous generalized harmonic wavelet transform (GHWT)
is defined as

WG
(m,n),k =

n−m
kT0

∫ ∞
−∞

f (t)ψG(m,n),k (t)dt, (8)

and projects the function f (t) on this wavelet basis. Next, utilizing the
generalized harmonic wavelets, Eq.(5) becomes (see [34])

X (t) =
∑
(m,n)

∑
k

(
X(m,n),k (t)

)
, (9)

where

X(m,n),k (t) =
√
S(m,n),k (n−m) ∆ωψ(m,n),k (t) ξ(m,n),k. (10)

Eq.(10) represents a localized process at scale (m,n) and translation (k) de-

fined in the intervals [m∆ω, n∆ω] and
[
kT0
n−m ,

(k+1)T0
n−m

]
, wheras S(m,n),k repre-

sents the EPS SX (ω, t) at scale (m,n) and translation (k). Further, Eq.(10)
can be written in the form (see [34])

X(m,n),k (t) =

∫ n∆ω

m∆ω

eiω(t− kT0
n−m)dZ(m,n),k (ω) , (11)
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with the properties
E
(
dZ(m,n),k (ω)

)
= 0, (12)

and
E
(∣∣dZ(m,n),k (ω)

∣∣2) = S(m,n),k (n−m) ∆ω. (13)

Furthermore, it has been shown that realizations compatible with SX (ω, t)
can be generated by utilizing a generalization of Eq.(4) of the form (see [35])

X (t) =
N−1∑
j=0

√
4SX (ωj, t) ∆ω sin (ωjt+ Φj) . (14)

Regarding the problem of estimating the EPS of a non-stationary stochastic
process based on available/measured realizations, a wavelet process based
compatible estimation approach advocates that the EPS SX (ω, t) of the pro-
cess X (t) is estimated by (e.g. [16, 34])

SX (ω, t) = SX(m,n),k =

E

(∣∣∣WG
(m,n),k [X]

∣∣∣2)
(n−m) ∆ω

, (15)

where m∆ω ≤ ω ≤ n∆ω, kT0
n−m ≤ t ≤ (k+1)T0

n−m , SX(m,n),k represents the EPS

of the process X (t), assumed to have a constant value in the intervals

[m∆ω, n∆ω] and
[
kT0
n−m ,

(k+1)T0
n−m

]
. Thus, the EPS can be estimated as the

ensemble average of the square of the wavelet coefficients.
In the ensuing analysis and specifically in the numerical examples section,

stationary and non-stationary process realizations are generated by utilizing
Eq.(4) and Eq.(14) respectively. Further, power spectrum estimates for sta-
tionary processes are determined by calculating the ensemble average of the
square of the absolute Fourier transform amplitudes of the realizations. In
the case of non-stationary processes Eq.(15) is employed.

3. Compressive Sensing

The Shannon-Nyquist theorem states that a time-dependent signal with
maximum frequency f can be completely determined when sampled at time
intervals of f

2
or smaller. This maximum sampling frequency is commonly

known as the Shannon-Nyquist rate. Compressive sensing is a recently devel-
oped signal processing technique that allows for signal reconstruction even
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if the maximum frequency f present in the signal is greater than the half
the signal’s sampling rate [36]. Note that the idea shares many features with
existing lossy compression algorithms (e.g. JPEG image compression) that
take advantage of a signal’s relative sparsity in some basis or frame [37].

When data is captured, it is often convenient to expand it into a new
basis. In the case of lossy compression techniques, bases or frames (e.g. re-
dundant dictionaries) are chosen so that the vast majority of coefficients of
the transformed signal will be close or equal to zero. If these coefficients
are simply removed, the amount of space required to store the signal is re-
duced significantly (possibly by several orders of magnitude). Next, when
the signal is finally reconstructed back into its original form, for instance in
the case of digital images, music or videos, it is often indiscernible from the
true signal. Compressive sensing explores the possibility of recording data
directly in its compressed state, allowing not only the space-saving advan-
tages of compressed data but also saving on recording time, complexity and
compression processing [36].

3.1. Signal sparsity and incoherence

For robust compressive sensing there are several important properties to
be considered, one restriction is that of sparsity. The signal being sampled
must be sparse in some known basis, i.e. it must be possible to represent
the full signal with far fewer coefficients than the number determined by
the Shannon-Nyquist rate. Further, the sampling domain and the relatively
sparse transformation domain must have high incoherence. This implies that
a sparse signal in the transform domain must have a non-sparse representa-
tion in the sampling domain (i.e. a single Fourier coefficient in the transform
domain would form a harmonic signal in the sampling domain spanning the
entire sample length). As an example, Figure 1 (dotted line) shows the fol-
lowing simple discrete time waveform sampled 256 times,

y (t) = 2 sin (12t+ 1) + sin (35t+ 2) + 1.5 sin (120t+ 3) , (16)

where 0 ≤ t < 2π. The function of Eq.16 can be represented in the frequency
domain by 6 peaks, 2 for each of the real and imaginary components of
the harmonics at 12, 35 and 120 rad/s. The absolute amplitudes for each
harmonic are shown in Figure 3 (resulting in 3 peaks on the plot). In the
frequency domain, Eq.16 is clearly sparse as the majority of the data is
equal to zero. Assuming now that Eq.16 was a real signal being captured
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Figure 1: Graphical output of Eq.16 with randomly selected points to sample

Figure 2: Randomly sampled points without original signal

on a digital recorder, given the knowledge that the signal is sparse in the
frequency domain, it is no longer necessary to capture 100% of the data
in the time domain at the Shannon-Nyquist rate. Figure 2 shows the same
signal as in Figure 1 sampled only 32 times (1/8th the full signal) at uniformly
distributed random points. White noise following a normal distribution with
zero mean and standard deviation of 0.6 is added to the signal to simulate
measurement error. By applying CS, with only this limited amount of data,
the sparse solution in the frequency domain is identified (Figure 3) and the
signal may be reconstructed in the time domain as shown in Figure 4.
Despite the relatively small number of samples and added noise, CS has
perfectly identified the positions of the original basis coefficients with a good
approximation of their magnitude, and thus, the reconstructed signal is very
similar to the original.
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Figure 3: Eq.16 represented in the fre-
quency domain as a sparse signal with
CS estimation of frequency domain coef-
ficients from Figure 1

Figure 4: Comparison of first second of
Figure 1 against the CS estimation in the
time domain from Figure 2

3.2. Restricted Isometry Property

Another important condition for reliable compressive sensing, in addition
to signal sparsity and incoherence between bases is the Restricted Isometry
Property (RIP). A ’fat’ sampling matrix, A, satisfies the RIP with sparsity
K if there exists a constant, δK such that,

(1− δK) |x̃|2l2 ≤ |Ax̃|
2
l2 ≤ (1 + δK) |x̃|2l2 , (17)

for every vector x̃ with at least K non-zero entries [38]. Equivalently, this
means that if a signal has sparsity K (i.e. it can be represented by K coef-
ficients in a chosen basis, A), any matrix comprised of K randomly selected
columns of A should have full rank and be nearly orthonormal. Unfortu-
nately, checking the RIP for any given matrix is NP-hard [39]. However,
there are several matrices for which the RIP is known to hold with high
probability. For instance, for a Gaussian random matrix, the RIP holds with
high probability if

m ≥ CK log

(
N

M

)
, (18)

where m is the height of the measurement matrix (i.e. the number of mea-
surements), N is the width, and C is a constant which tends towards 1 as N
tends to infinity (e.g. [40]).

3.3. Sparse solutions via L1 minimization

If it is known that a signal is sparse in a particular basis, then the aim
of CS is to attempt to find the sparsest representation in that basis for the
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given data; this may be achieved by L1 norm minimization. Given a sample
record y, of length N0−Nm, where N0 is the original sample length and Nm

is the number of missing data, assuming the locations of the missing data are
known, a corresponding (N0 −Nm by N0) sensing matrix, A can be drawn,

y = Ax (19)

where x is the measurement vector assumed to be sparse. Eq.19 represents
an under-determined system with infinite solutions. This problem may be
solved easily under the constraint that x must be minimized in the least
squares sense, i.e.

min |x|l2 = AT
(
AAT

)−1
y. (20)

Considering a Fourier basis, this solution is similar to replacing the missing
data with zeros and applying the Fourier transform in the standard way.
Therefore, in the majority of cases applying the least squares solution (Eq.20)
does not lead to a sparse solution. The sparsest solution of Eq.19 occurs when
the L0 norm is minimized, often referred to as a pseudo-norm [41] and defined
as

|x|l0 =

{
1, x > 0 or x < 0
2, x = 0

(21)

This optimization problem is non-convex with no known exact solution [23].
However, a viable alternative exists in minimizing the L1 norm instead. L1
norm minimization promotes sparsity and will often yield the same result as
L0 norm minimization in many cases [41]. Further, the problem becomes
convex and may be set in a convenient linear programming form, i.e.

min |x|l1 subject to y = Ax (22)

Eq.22 describes a basis pursuit optimization problem and can be easily solved
via a gradient-based optimization method, e.g. [42]. Figure 5 shows how L1
minimization gives sparse solutions by comparing both L1 and L2 norm
minimization for the simple 2-dimensional problem, a + 2b = 1, (for which
there are infinite solutions). Note, as the L2 ball is stretched (Figure 5,
left), unless the equation for y is parallel to one of the axes, the solution will
incorporate components of both a and b. However, unless the equation for
y is parallel to the edge of the L1 ball (Figure 5, right), as it is stretched,
the minimum solution will lie on one of the two axes. Unfortunately, real
signals are rarely ever truly sparse, even low levels of noise will produce small
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Figure 5: Minimum L2 and L1 solutions to the equation, a + 2b = 1

Figure 6: Minimum L1 solution to the equation, a + 2b = 1 with toler-
ance, e for noise vector, z

coefficients across most bases. With a small modification to Eq.22 to account
for noise, basis pursuit is still able to recover a good approximation to the
original signal; this element of robustness was demonstrated in Figure 4. For
a noisy signal,

y = Ax+ z, (23)

where z is some noise vector. Given a tolerance, e, relative to the variance
of the noise, Eq.22 may be re-cast in the form,

min |x|l1 subject to |Ax− y|l2 ≤ e. (24)

This modification has the effect of applying intervals to the solutions (Fig-
ure 6), further promoting sparsity. However, as the tolerance increases, the
resulting basis coefficients tend to reduce not only in number but also in
magnitude. For the cases where either the signal is not sparse enough or the
missing data are too extensive for L1 minimization to exactly reconstruct the
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original signal, it is important to note that there may still be significant ad-
vantages over a minimum L2 solution. In spectral estimation, minimizing the
L2 norm (similar to zero-padding) is likely to spread the solution over many
frequencies; this is because individually, large coefficients are heavily penal-
ized. Minimizing the L1 norm however is far more likely to yield larger indi-
vidual coefficients, having the effect of producing sharp, well-defined peaks
at the key frequencies. The difference between L1 and L2 minimization for a
real sparse signal in the time domain is clearly shown in Figure 7. Figure 7a
shows radiosonde wind speed data recorded from a weather balloon launched
from Halley Antarctic Research Station in January, 2014 [43]. This data has
a very sparse representation in the GHW domain and is therefore ideal for
CS. With 50% of the data removed at random locations Figures 7c and 7d
show L1 and L2 wavelet reconstructions respectively.

3.4. Compressive sensing for missing data

CS is mostly applied in situations where some saving in data capture
time or data size is useful. For example, if a series of sensors capture data
for real-time structural health monitoring, data may need to be compressed
to adhere to bandwidth limitations, after which most of the captured data is
lost. Instead, the sensors could be designed to only capture a fraction of the
data, reducing manufacturing cost. By utilizing CS with the compression
basis (in which the signal has a sparse representation), data series with far
higher resolution than those originally captured could be reconstructed (e.g.
[44, 45]). Not only would the sensors not need to capture as much data, but
also the stored data would have a small file size, negating the requirement
for compression processing at the sensor. Nevertheless, applying compressive
sensing theory to the problem of missing data differs primarily in one respect;
i.e., missing data are not necessarily intentional. Unfortunately this removes
control over one important step of CS: the arrangement of the sampling
matrix. CS relies on the choice of an appropriate sampling matrix. Uniform
random Fourier matrices obey the RIP with high probability when data are
sparse ([22, 23]); similarly, random GHW matrices may reconstruct sparse
non-stationary signals exactly (however, there is lower incoherence between
the wavelet and time domains which decreases with frequency resolution).
Unfortunately, the missing data may not be uniformly distributed over the
record; when using Fourier or GHW matrices, regular or large gaps of missing
data leads to lower orthogonality between random columns of the sampling
matrix. The result is that greater numbers of measurements are required
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Figure 7: (a) Full windspeed record. (b) Full record with missing data. (c,d) Records
with 50% missing data in random locations, down-sampled and reconstructed via L1 and
L2 minimization of harmonic wavelets respectively. Data provided by [43]
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Figure 8: Fourier sampling matrix construction with missing data

for reliable reconstruction. Despite these problems, CS reconstruction based
on the assumption of sparsity may still be advantageous over more common
least-squares/zero-padding approaches. This is because, despite massive data
loss (in some cases > 90%), CS can still identify sharp spectral peaks at key
frequencies.

3.5. Basis matrix construction

3.5.1. Stationary case

For stationary stochastic processes, represented by Eq.1, the power spec-
trum is estimated based on the mean square value of the Fourier transform
over an ensemble of time-histories, e.g. [15]. As such, a partial Fourier basis
is required for the CS approach. The partial Fourier basis is formed first by
generating a full, square (N0 by N0) Fourier basis via the Inverse Fast Fourier
Transform (IFFT). Nm rows are then removed from the matrix corresponding
to the positions of the missing data as shown in Figure 8.
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Figure 9: Harmonic wavelet basis construction using IFFT and nested for-loops

3.5.2. Non-stationary case

The non-stationary case is slightly more involved as specific properties of
the harmonic wavelets are needed. In particular, wavelet scales must first be
defined; that is, a set of non-overlapping frequency intervals corresponding
to (n−m) in Eq.6. In most cases these are chosen to be equally spaced with
an interval size that gives the desired trade-off between time and frequency
resolutions. However, should finer frequency or time resolutions over specific
frequency bands be required, the sampling matrix can be altered accordingly.
As in the stationary case, the harmonic wavelet basis components may be
generated efficiently via IFFT. However, a single harmonic wavelet must
be shifted (n − m) times in the time domain to form an orthogonal basis.
The process used to build this harmonic wavelet basis matrix is depicted
in Figure 9. In a similar manner as in the stationary case, rows must be
removed corresponding to the missing data, yielding a sampling matrix with
more columns than rows. (Figure 10).

3.5.3. Cases with uneven sampling

The previously described methods for forming stationary and non-stationary
basis matrices assume that the original data has been regularly sampled. This
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Figure 10: Harmonic wavelet sampling matrix construction with missing data

means that the data always occur at multiples of the smallest sampling time
increment. If the data has been irregularly sampled, the basis matrices can
no longer be generated via the standard IFFT. However, this is not a major
problem; it merely reduces the efficiency of the sampling matrix construction
as the basis functions must be evaluated for each sample point. This over-
head is more apparent in the non-stationary case as each instance of every
wavelet must be individually calculated from Eq.7.

With the basis formed, the CS reconstruction may be solved via an appro-
priate minimization algorithm. Examples include linear programming basis
pursuit [46, 23] and greedy algorithms [47].

4. Numerical examples

Examples are provided for stationary and non-stationary processes, utiliz-
ing Fourier and GHW bases, respectively. CS reconstruction is first applied
to simulated stationary sea-wave and earthquake ground acceleration pro-
cesses. Next, simulated separable and non-separable earthquake processes are
generated compatible with a prescribed EPS to demonstrate non-stationary
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process reconstruction.
All results are compared to identical problems solved via zero padding

followed by the corresponding scaled transform (Fourier or wavelet). Scaled
zero padding is a common spectral reconstruction technique when dealing
with missing data (e.g. [48]). The result is the same as that of a least squares
solution but the resulting spectrum is scaled up relative to the amount of
missing data in the signal. It is shown that even with this additional scaling,
estimates often fall short of the original target spectrum.

4.1. Simulation of missing data

In the ensuing examples, two different arrangements of missing data are
applied. The first case simulates missing data at random locations drawn
from a uniform distribution of the time index,

f0 (t) =

{
f (t) , ra (t) ≥ m

0, ra (t) < m
(25)

where f0(t) is the sample time history with missing data, f(t) is the original
sample generated from its power spectrum, ra is a vector of N0 equally spaced
numbers from 0 to 1 arranged in random order and m is the fraction of
missing data. The second case simulates missing data that occur in groups,
positioned at random locations again drawn from a uniform distribution of
the time index,

f0 (t) =

{
f (t) , v (t) = 1

0, v (t) = 0
(26)

where v(t) is given by

v (u) =

{
M, rb (u) ≤ 1/k
0, rb (u) > 1/k

(27)

and k is the number of intervals, M is a vector of ones of length N0m/k and
ra is a vector of N0− (N0m/k) equally spaced numbers from 0 to 1 arranged
in random order.

4.2. Stationary simulated processes

Process records are generated compatible with the JONSWAP spectrum
to simulate wave height over time (Eq.28) [49]. This spectrum typically has
a very sharp, strong peak and it is relatively sparse (narrow-band) in the
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frequency domain. Further, JONSWAP spectrum compatible time-histories
of lengthN0 = 256 are generated by utilizing Eq.4. The JONSWAP spectrum
has the form,

S (ω) = ag2

ω5 e
− 5

4(ωpω )
4

γr; r = e
−
(
ω−ωp
2σωp

)2

(28)

where α = 0.03, ωp = 0.5, γ = 3.3, and σ =

{
0.07 ω < ωp
0.09 ω > ωp

.

For comparison purposes, the procedure is demonstrated on simulated data
compatible with a Kanai-Tajimi earthquake spectrum [50, 51] as well. This
spectrum is purposely arranged with wider peak and longer tail and as a
result is less suitable, in theory, for CS reconstruction. Again, stationary
processes of length N0 = 256 are generated utilizing Eq.4, based on the
spectrum

S (ω) =
1 + αω2(

ω2
g − ω2

)
+
(
2ζωω2

g

)2 , (29)

where the natural frequency, g = 12rad/s, damping ratio ζ = 0.4 and α = 20.
Furthermore, Gaussian white noise is added to the process realizations of
magnitude 1/5th the standard deviation of the record in both cases. Three
examples are shown, two for the JONSWAP spectrum and one for the Kanai-
Tajimi spectrum. For each example, ten process realizations are generated
and data is removed. The spectrum is then estimated via scaled zero padding
and L1 minimization in the Fourier basis. The first example is of the JON-
SWAP process with 65% missing data at random locations. Figure 11 shows
a full example process realization alongside the same with 65% missing data.
Figure 12 shows that L1 minimization in a Fourier basis (CS reconstruction)
has correctly identified the key peak frequency of the process and only lost
roughly 25% of its original power. Further, comparing with the scaled, zero
padded reconstruction it is clear that the CS approach is far superior to a
scaled least squares which has a very low spectral peak and a long tail of
noise across all other frequencies.

The second example (Figure 13) uses the same spectrum but this time
with 50% missing data at intervals of length N0/32 (Eq.26). The arrange-
ment of missing data is less similar to an ideal CS sampling matrix (e.g.
uniform random Fourier); therefore more data is needed for reliable results.
Under these conditions, the CS reconstructed spectrum still out-performs
scaled zero-padding significantly, showing a much more defined spectral peak.
The final stationary example shows the limitations of CS for spectral recon-
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Figure 11: Example JONSWAP process (top) and the same process with 65% missing
data (bottom)
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Figure 12: JONSWAP power spectrum reconstruction from 10 stationary process records
via L1 minimization and scaled, zero-padding for 65% missing data at uniform random
locations

Figure 13: JONSWAP power spectrum reconstruction from 10 stationary process records
via L1 minimization and scaled, zero-padding for 50% missing data over randomly located
fixed intervals of length N0/32

Figure 14: Kanai-Tajimi power spectrum reconstruction from 10 stationary process records
via L1 minimization and scaled, zero-padding for 50% missing data at uniform random
locations
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struction when the signal is not as sparse in the Fourier domain. For the
Kanai-Tajimi process, the number of missing data was reduced to 50% to
account for the broader spectrum, by which point a least-squares solution
became a viable option (although it still retains higher noise at large values
of the frequency domain). The differences between the two approaches shown
in Figure 14 are far less significant than in previous examples. In this case
either reconstruction method could be considered.

4.3. Non-stationary simulated processes

In this section results are shown for both separable and non-separable
examples. For the separable case, process records are generated compatible
with a time modulated Clough-Penzien earthquake spectrum [52] of the form,

S (ω, t) = g (t)2 S0
ω4(

ω2
f − ω2

)
+ 4ζ2

fω
2
fω

2
·

ω4
g + 4ζ2

gω
2
gω

2(
ω2
g − ω2

)
+ 4ζ2

gω
2
gω

2
, (30)

where S0 = 0.06, ωf = 1, ζf = 0.6, ωg = 10, ζg = 0.4 and g(t) is the envelope
function,

g (t) = ke−at − e−bt, (31)

where k = 4, a = 0.3 and b = 0.6. Finally, for the non-separable case, the
method is tested on an earthquake process of the form,

S (ω, t) =
( ω

5π

)2

e−0.15t2e−( ω
5π )

2
t. (32)

Eq.32 (Figure 17) has a broad spectrum of power at the start of the time
history. High frequency powers are significant during the first second of the
process, quickly reducing and resembling more of a separable process during
the final ten seconds. Naturally, for the non-stationary reconstructions, a
GHW basis is used. For the separable spectrum (Eq.30), the bandwidth of
the wavelets is set at 1/32nd the length of the corresponding Fourier power
spectrum (or 8rad/s for N0 = 512). This resolution is more relaxed in the
time domain than in the frequency domain; however, there is still a significant
loss of resolution with such a rapidly changing signal (both in frequency and
time). For the non-separable spectrum (Eq.32), a larger bandwidth of 1/16th

the length of the power spectrum is used (16rad/s). This allows the GHWT
to better capture the more rapid changes in power over time. Figures 15 & 17
show the target spectra drawn directly from Eq.30 & Eq.32. Comparatively,
Figures 16 & 18 show the average power of the GHWT of 25 time-histories
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of the separable and non-separable processes (generated using Eq.14). There
are power losses at the peak frequencies as they are spread over a number
of frequencies and larger time intervals. Despite this loss, the spectra in
Figures 16 & 18 still present a useful result, showing the location of the
peak frequencies and the trends over time. Because of these limitations of
the HWT with no missing data, Figures 16 & 18 are considered to be the
target spectra for reconstruction in the separable and non-separable examples
respectively. In the following examples 50% of the data are removed and the
power spectra are estimated based on an ensemble of 25 realizations. For the
separable process with uniformly distributed missing data, both the scaled
least-squares (Figure 19) and CS (Figure 20) reconstructed spectra identify
the frequency location of the power peak and the decaying trend over time.
However, CS has produced a much sharper peak and significantly less noise
at higher frequencies than least squares. Figures 21 and 22 show the same
reconstructions but with uniformly distributed intervals of missing data of
length N0/32. Here the differences are not so apparent as although the CS
reconstruction remains relatively unchanged, the scaled least squares solution
has much lower noise than in Figure 19. This is because introducing large
interval gaps of missing data rather than many individual points of missing
data is less likely to generate false powers at higher frequencies. Although
not easily identified in Figure 21, the least-squares reconstruction does show
significant powers right down to the minimum frequency (behind the peak),
whereas it should drop down to zero (this is an important feature of Eq.30).
The CS reconstruction much more accurately reproduces this drop at the
lowest frequencies.

For the non-separable process, with uniformly distributed missing data
there is a clear advantage of using CS (Figure 24) over scaled least squares
(Figure 23). The low-power, high frequency spike that occurs at the very
beginning of the process is lost in a sea of noise in Figure 23. The signifi-
cance of this difference between the two reconstructions is made even clearer
when using them to generate new process realizations. Figure 27.a shows
a non-stationary process realization compatible with Eq.32, note the high
frequency oscillations at the start, slowing over time. Figure 27.b shows a
process realization generated from Figure 24 (the CS reconstruction). The
high frequency content at the start trending into a lower frequency signal has
clearly been captured in this case. Finally Figure 27.c shows a process re-
alization generated from Figure 23 (the scaled least-squares reconstruction).
Here it is rather difficult to identify visually any frequency dependent change
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Figure 15: Separable target spectrum
drawn from Eq.30

Figure 16: Averaged HWT spectrum es-
timation with no missing data using 25
time-histories compatible with Eq.30

Figure 17: Separable target spectrum
drawn from Eq.32

Figure 18: Averaged HWT spectrum es-
timation with no missing data using 25
time-histories compatible with Eq.32

Figure 19: Separable earthquake power
spectrum reconstruction from 25 station-
ary process records via least squares for
50%/ missing data at uniform random
locations

Figure 20: Separable earthquake power
spectrum reconstruction from 25 station-
ary process records via L1 minimization
for 50% missing data at uniform random
locations
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Figure 21: Separable earthquake power
spectrum reconstruction from 25 station-
ary process records via least squares for
50% missing data over randomly located
fixed intervals

Figure 22: Separable earthquake power
spectrum reconstruction from 25 station-
ary process records via L1 minimization
for 50% missing data over randomly lo-
cated fixed intervals

over time, further high frequency noise has a significant presence throughout.
For the interval-based missing data examples (Figures 25 & 26), as in the
separable case, the differences are less apparent. However, Figure 26 does
still present less noise at higher frequencies and has a more defined shape
than Figure 25, more closely matching that of Figure 18.
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Figure 23: Non-separable earthquake
power spectrum reconstruction from 25
stationary process records via least
squares for 50%/ missing data at uni-
form random locations

Figure 24: Non-separable earthquake
power spectrum reconstruction from 25
stationary process records via L1 min-
imization for 50% missing data at uni-
form random locations

Figure 25: Non-separable earthquake
power spectrum reconstruction from 25
stationary process records via least
squares for 50% missing data over ran-
domly located fixed intervals

Figure 26: Non-separable earthquake
power spectrum reconstruction from 25
stationary process records via L1 mini-
mization for 50% missing data over ran-
domly located fixed intervals
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Figure 27: (From top to bottom) single realization of Eq.32, single realization from Figure
26 and a single realization of Figure 25
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5. Conclusion

In this paper, a CS based approach for stationary and non-stationary
stochastic process power spectrum estimation subject to missing data has
been developed. Specifically, when applied to both stationary and non-
stationary processes, CS theory, combined with an appropriate harmonic
basis and applied in the presence of missing data has been shown to be
highly effective in reconstructing the power spectrum in many cases. The
approach appears efficient and superior to least-squares based solutions pro-
vided that the recorded time-domain data is relatively sparse in the frequency
domain - an assumption that is often valid, especially when environmental
process or structural response histories are considered. Although most ef-
fective when missing data are not grouped and randomly distributed, CS
reconstruction is capable of providing with accurate power spectrum esti-
mates under a range of missing data configurations. Of particular note is the
extent to which CS-reconstruction with harmonic wavelets is able to produce
non-separable spectra with up to 50% missing data. The accuracy of non-
separable estimated spectra is comparable to that of the separable spectra
results, suggesting that the herein developed approach can be efficacious in
a range of problems in which very little a priori information is known about
the shape of the spectrum.
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