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Abstract 

We report on heterojunction diodes prepared by exfoliation and direct mechanical transfer of a p-

type InSe thin film onto an n-type InAs epilayer. We show that despite the different crystal 

structures and large lattice mismatch (~34%) of the component layers, the junctions exhibit 

rectification behaviour with rectification ratios of ~104 at room temperature and broad-band 

photoresponse in the near infrared and visible spectral ranges. 
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Heterostructures made by mechanical exfoliation and vertical stacking of van der Waals 

(vdW) crystals are being intensively studied (see [1-3] and references therein). Because the 

component layers are held together by weak van der Waals forces, both the structural integrity and 

the electronic properties of the individual atomic sheets are preserved, thus enabling high-quality 

interfaces and devices [1]. On the other hand, heterostructures that combine vdW crystals with 

traditional semiconductors, such as GaAs, InAs, Ge have received less attention [4-6]. Of particular 

interest are p-n diodes that combine a vdW crystal with a narrow bandgap semiconductor, such as 

InAs (band gap energy Eg = 0.35 eV at 300 K). The optical response of the component layers of 

the diode over distinct spectral ranges could offer a plethora of strategically important near-infrared 

(NIR) and mid-infrared (MIR) optoelectronic applications, including remote gas sensing, health 

and security [7].  

In this Letter, we report on heterojunction diodes prepared by exfoliation and direct 

mechanical transfer of a p-type InSe thin film onto an n-type InAs epilayer (see Figure 1a). The 

InSe compound is a vdW semiconductor with electronic properties that are unprecedented within 

the wide family of vdW crystals. Its high electron mobility (up to 103 cm2V-1s-1 at 300 K) [8], p- 

or n-type doping [9], tunable band gap from the NIR (Eg = 1.26 eV at 300K) to the visible (VIS) 

range [10], as well as chemical stability in air [11], represent attractive features for versatile band 

engineering and reliable devices for electronics and optoelectronics. Recent reports have 

demonstrated optical devices based on heterostructure stacks of InSe and other vdW crystals (e.g. 

GaSe, graphene, and CuInSe2) [9, 12-13] or oxides (e.g. CdO, and ZnO) [14-15], and p-n junctions 

based on surface functionalization of n-InSe [16]. Here we report on a heterojunction that combines 

the NIR p-InSe with the MIR n-InAs. We show that despite the different crystal structures and 

large lattice mismatch (~34%) of the component layers, the junction exhibits diode-like behaviour 
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with rectification ratios of ~104 and broad-band photoresponse in the NIR and VIS spectral ranges, 

with the potential to be extended to the MIR region.  

Our -polytype p-type InSe crystals were grown by the Bridgman method from a 

polycrystalline melt of In1.03Se0.97 using Cd as the p-type dopant. The primitive unit cell of -InSe 

is shown in Figure 1a: it consists of three layers, each comprising four covalently bonded 

monoatomic sheets in the sequence Se-In-In-Se; along the c-axis, the lattice constant is c = 24.961 

Å and, within each a-b plane, atoms form hexagons with lattice parameter aInSe = 4.002 Å [10]. 

The van der Waals gap between adjacent layers is of 0.38 nm. The Hall concentration of holes in 

p-InSe is np = 6x1020 m-3 at room temperature (T = 300 K) and decreases significantly with lowering 

T below 200K due to freezing of carriers onto the Cd-acceptor levels. The InAs epilayer (thickness 

d=1.0 m) was grown by Molecular Beam Epitaxy (MBE) on a semi-insulating (100)-oriented 

GaAs substrate, which provides effective isolation for electrical measurements. The nominally 

undoped InAs epilayer has n-type conductivity with a Hall concentration of electrons ne = 8.8x1021 

m-3 at T = 300 K, which is weakly dependent on T down to 2 K. Following oxygen plasma cleaning 

of the n-InAs surface, a thin film of p-InSe was mechanically exfoliated from as-grown crystals 

with adhesive tape and transferred onto the n-InAs layer. The p-InSe flakes have thickness in the 

range t = 1-10 m and in-plane area A = 2-5 mm2. Metal contacts were made to InAs with indium 

and to the top p-InSe layer with silver paste. In the following, we define positive bias with the p-

InSe layer biased positively. 

The in-plane lattice mismatch between InSe and InAs is (aInAs-aInSe)/aInAs ~ 34%, where aInAs 

= 6.058 Å and aInSe = 4.002 Å are the in-plane lattice constants of InAs and InSe, respectively. 

Despite this large lattice mismatch, the current-voltage (I-V) characteristics of the heterojunctions 

show diode-like behavior at T = 300 K, see Figure 1b. The I-Vs reveal a number of common 
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features: a low leakage current density (J < 10 mA/cm2) in reverse bias that is weakly dependent 

on V up to V ~ -4 V; and an exponential increase of the current, which becomes steeper around a 

“knee” at V ~ 1 V (see inset of Figure 1b). The analysis of the I-V characteristics of these devices 

using the Shockley equation give ideality factors (  > 2) that are larger than those expected for 

conventional p-n diodes ( = 1-2) and those reported for InAs/WSe2 [4]. These larger ideality 

factors can be caused by low carrier mobilities and carrier localization, which are not considered 

in the Shockley equation [17]. We have conducted Hall-mobility studies of both n-type InAs and 

p-type InSe. The room temperature Hall mobility of holes in p-type InSe  is h ~ 10 cm2/Vs, 

significantly smaller than that of electrons in n-type InAs (e ~ 104 cm2/Vs).  

We note that the diode-like behavior is stable and reproducible over multiple runs; the 

stability relies on the formation of a good mechanical contact between the n-InAs and p-InSe layers. 

This requires the use of layers with clean surfaces: the InAs epilayer was cleaned in oxygen plasma 

that was found to increase the rectification ratios by more than an order of magnitude. The InSe 

flakes were not cleaned after the exfoliation as they are stable in air [11], they have a smooth 

surface with a low-density of surface states, and a well-defined thickness [9].  

For the measurements of the photocurrent, I, light from a 250 W quartz halogen lamp was 

dispersed through a 0.25 m monochromator and modulated with a mechanical chopper (at a 

frequency f = 187 Hz); a Stanford SR830 lock-in amplifier was used to measure the voltage drop 

VR across a series load resistor (R = 1k) from which we derived I = VR/R. Figure 2 shows the 

spectral dependence of I at V = 0 for two representative heterojunctions: we observe a broad-band 

photoresponse from the NIR to the VIS range with a peak at a photon energy hv = 1.25 eV, which 

corresponds to the excitonic absorption of bulk InSe [10]. The photocurrent spectra also reveal 

regular interference fringes with periodicity E. The interference condition for a maximum in the 



5 
 

interference pattern and light propagating in the direction perpendicular to the layers (see the inset 

in Figure 2) is given by Em=mhc/2nt, where t is the flake thickness, n = 2.7 is the refractive index 

of InSe [18], h is the Planck constant, e is the electron charge, m is the order of interference, and 

Em is the photon energy corresponding to the mth-order.  

From the periodicity E = hc/2nt of the interference pattern, we estimate the thickness of the 

InSe flake, which is t = 3.5 and 5.7 m for the two heterojunctions shown in Figure 2. Further 

inspection of the spectra reveals that the two junctions have a slightly different spectral response. 

As the thickness of the InSe flake increases, the photocurrent becomes smaller at high photon 

energies. For thick InSe layers, the high energy incident photons are mostly absorbed near the 

surface of InSe where they recombine before reaching the depletion region of the junction.  

In reverse bias the photocurrent increases with increasing intensity of the incident light 

(Figure 3a) or with increasing applied voltage (Figure 3b). From the power P of light incident at 

the interface of the junction and the exponential attenuation of light across an InSe flake of 

thickness t = 5.7 m, we estimate the photoresponsivity, R = I/[P×exp(-t)]. For V = 0V and = 

5.2x105 m-1 (1.0x105 m-1) at 633 nm (984 nm) [19], we find values for R of up to 0.2 A/W (0.02 

A/W) at = 633 nm (984 nm) and P ~ 10-7 W (see Figure 3c). A photoresponse was also observed 

at MIR wavelengths ( = 2000 nm), but with responsivity (< 10-4 A/W) significantly smaller than 

that in the NIR.  

For positive applied voltages, the contribution of the photocurrent to the total current is 

relatively small compared to that for negative biases. For example, for V = -1V, the current can 

increase by nearly 2 orders of magnitude for P = 6 W, whereas at the corresponding positive bias 

V = +1V, the change in the current is much smaller (see Figure 3a). Also, we note that around the 

‘knee’ in I-V, the change in the current is more significant. As shown in the inset of Figure 3a, 
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under light illumination the current decreases relative to the dark value for V < 1.8V and increases 

for V > 1.8V.  

To explain our findings, we model the energy band diagram of the junction by solving the 

Poisson’s equation (Figure 4). Since the band alignment at the InAs/InSe heterostructure interface 

is not known, to estimate the height of the potential steps (EC and EV) of the conduction band 

(CB) and valence band (VB) edges at the heterostructure interface, we use the electron affinity () 

and band gap energy (Eg) of InAs (= 4.9 eV, Eg = 0.35 eV) and InSe ( = 4.6 eV, Eg = 1.26 eV). 

This gives EC = 0.30 eV and EV = 0.61 eV (Figure 4a). Furthermore, from the concentration of 

dopants in the n-InAs and p-InSe layers [20], we calculate the built-in potential B = 0.58 V at V = 

0V and the corresponding depletion region width W = Wn+Wp = 694 nm, where Wn = 44 nm and 

Wp = 650 nm are the depletion widths in the n- and p-type layers, respectively [21].  

The energy band profiles from this simple model explain the rectification behavior of the 

junction: The built-in potential increases for V < 0 (Figure 4b) and decreases for V > 0 (Figure 4c), 

thus leading to a corresponding decrease and increase of the current, respectively. To explain the 

steep increase of the dark current at V ~ 1 V (Figure 3a, inset), we should examine the energy band 

diagram around the flat band condition and the contribution to the current due to thermionic 

emission and tunnelling of electrons. As shown in Figure 4c, electrons can accumulate at the 

InAs/InSe interface from which they can tunnel from the n-type InAs into the p-type InSe layers. 

At the flat band bias, V = B, electrons are injected from n-InAs to p-InSe through a potential barrier 

of height EC = 0.30 eV. By increasing the bias to V = B+EC/e = 0.88 V, the chemical potential 

in the n-type InAs aligns with the CB minimum of InSe, thus leading to a steeper increase of the 

current, as seen in the measured I-V at V ~ 1V (Figure 3a, inset). Similar “knees” in I-Vs were 

reported in GaAs/(AlGa)As tunnel diodes and attributed to  the formation of an accumulation layer 
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at the GaAs/(AlGa)As interface [22], a phenomenon analogous to that envisaged in our devices, 

and in hybrid p-n Ge/MoS2 junctions [6], where they are attributed to tunneling. 

We note that the band offset and bending of the InSe/InAs heterostructure is likely to be 

influenced by defect states at the interface [23]. Also, whereas surface states are not present in high 

concentration in InSe, they are known to exist in InAs, thus leading to the formation of a surface 

accumulation layer for electrons [24-25]. To examine its effect on the energy band profile of the 

InAs/InSe junction, we have solved the Poisson’s equation for a junction containing a thin (1 nm) 

layer of ionized donors at the heterostructure interface with density of up to about 100 times the 

density of donors in the n-type InAs epilayer. We have found that this extra charge induces only a 

small change of the energy band profile. Thus, although we do not exclude the presence of defects 

at the InAs/InSe interface, our data and analysis suggest that these do not play a significant role in 

the rectification behavior observed in our devices. 

The photoresponsivity of the junction is in line with the energy band diagram of Figure 4. 

Light creates photocarriers (electron-hole pairs) throughout the junction. In reverse bias (Figure 4d 

and V < 0), the photoelectrons are swept by the depletion field into the positively biased n-InAs, 

whereas the photogenerated holes move towards the negatively biased p-InSe. Because of the small 

dark current in reverse bias, the relative change of current due to the photogenerated carriers can 

be high. In particular, since the thickness of the depletion region W extends primarily into the p-

InSe side of the junction (Wp/Wn ~ 16), the photocurrent is dominated by carriers photogenerated 

in InSe. Thus decreasing the photon energy from the band gap energy of InSe (Eg = 1.25 eV) 

towards that of InAs (Eg = 0.35 eV) causes a steep decrease of the photocurrent, as observed in the 

experiment at V = 0 and V < 0 (Figure 2).  

In forward bias instead, the current arises from diffusion of majority carriers across the 

junction and the contribution of photogenerated carriers to the current should be generally smaller. 
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However, we observed a significant photoresponse around the “knee” in I-V at V ~ 1V. We explain 

this behaviour by considering the potential step EC at the heterojunction interface where the 

photogenerated electrons tend to accumulate on the n-side of the junction (Figure 4d and V > 0). 

Since this negative charge acts to screen the external electric field, under light illumination a larger 

applied voltage is needed to sustain the same current as in the dark. Thus under light illumination 

the “knee” in I-V shifts to higher biases and the current becomes smaller than that in the dark 

(Figure 3a, inset). Due to this electrostatic effect, the photocurrent is comparable to the dark 

current. Furthermore, this electrostatic effect disappears for sufficiently large biases as the 

photogenerated electrons acquire enough energy to cross the junction.  

In summary, n-InAs/p-InSe heterojunctions exhibit diode-like behaviour and photoresponse 

in the visible and infrared spectral ranges with photoresponsivity of up to 0.2 A/W at =633 nm. 

The electrical properties can be explained by a type I band alignment for electrons and holes at the 

heterojunction interface. In our devices, the photoresponse originates primarily from light 

absorption in the p-InSe, which has a depletion width significantly wider than that for n-InAs. An 

InAs layer with a lower background concentration [26] comparable to that of p-InSe (1020 m-3) and 

a small density of defect surface states may enable the fabrication of junctions with depletion 

regions equally distributed across both sides of the junction, thus leading to an improved 

photoresponse in the MIR range ( < 3.5 m).  
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FIGURE CAPTIONS  

Figure 1. (a) Crystal structure of rhombohedral -InSe and zincblende InAs. (b) Current-voltage, 

I-V, characteristics for a series of n-InAs/p-InSe heterojunctions (T = 300 K) with in-plane area      

A = 2-5 mm2. Inset: bias-dependence of the absolute current on a semi-logarithmic scale for two 

representative junctions.  

Figure 2. Photocurrent spectra for two n-InAs/p-InSe heterojunctions at V=0 V and T=300 K. The 

insets show the calculated dependence of the periodicity E of the interference pattern seen in the 

spectra on the thickness t of the p-InSe layer. As sketched in the inset, light propagates in the 

direction perpendicular to the layers of the heterojunction. 

Figure 3. (a) Current-voltage, I-V, characteristics of an n-InAs/p-InSe heterojunction in the dark 

and under illumination with light of power P and wavelength  = 984 nm (T = 300 K). Inset: I-Vs 

at P = 0 (orange) and 6 W (blue) revealing a steep increase of the current at V ~ 1V. (b) 

Dependence of the photocurrent I on V in reverse bias (P = 6 W;  = 984 nm). (c) 

Photoresponsivity R versus P at = 633 nm and 984 nm (V = 0 V). 

Figure 4. Energy band diagrams for an n-InAs/p-InSe heterojunction at (a) V = 0 V, (b) V < 0 V, 

and (c) V= B > 0, where B is the built-in potential at thermal equilibrium. The arrows show two 

transport processes: thermionic emission and tunnelling. (d) Sketches of the depletion region and 

of photogenerated carriers at V < 0 and V > 0. For V > 0 photogenerated electrons tend to 

accumulate at the heterojunction interface due to the potential step EC. 
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