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Abstract
The chaîne opératoire (CO) methodology is a well-established approach to the analysis of thought processes involved in the making, use and discard of tools.  Its effectiveness in this regard has however, been challenged in recent years.  We briefly review key critiques of its epistemological and methodological limitations and consider alternative options.  A suggested new epistemological position and new methodology are offered which have the potential to link CO with alternative models of cognition and with the archaeological record of long-term changes in stone tool technology. 

We argue that thought processes behind a tool-making gestural sequence are not  static entities selected from memory but arise, change and flow with and through bodily activity, and as such are the product of constant interaction between body, mind and environment (Edelman & Tononi 2000; Roux & Bril 2005b; Malafouris 2013).  The cognitions involved are thus better described as an ongoing process of task-structuring (Bleed 2011), rather than as objectified concepts or symbols.  

The new methodology analyses the process rather than the product of tool-making.  It needs to be able to highlight similarities and differences in the motor or gestural patterns of different technologies.  Identified differences in these patterns should have the capacity to indicate potential differences in the associated cognitive strategies of the tool-makers concerned.  Perception-action and embodied cognition theory are proposed as the basis of a new epistemological position,  and observational analysis (OA) drawn from Occupational Therapy as its methodological foundation.

Introduction
Our main aim is to identify a reliable theoretical framework and methodology that allow an analysis of differences between cognitive strategies underlying a range of different prehistoric technology types.  A subsidiary aim is to establish a methodology that can detect gradual as well as discontinuous or step-wise cognitive changes over evolutionary time.  The desired theoretical framework should describe a set of competencies which vary across individual agents and are capable of change in response to environmental factors.  From an evolutionary perspective, these competencies should be able to contribute to increased fitness and be heritable via one or more routes (Jablonka & Lamb 2006).  The methodology should also be able to detect motor differences between tool-making sequences, and be sensitive to potential differences between tasks that might reflect differences between the cognitive strategies of individual tool-makers. The combined approach must be applicable to stone-tool technology which provides the most durable evidence of technological and cognitive evolution, but should also be relevant to organic material technologies (Barham 2013a).  

The chaîne opératoire (CO) approach to the analysis of technology, and in particular to Palaeolithic stone tool-making, ostensibly provides a widely applicable approach which seeks to understand underlying cognitive processes.  Recent reviews of this method highlight its primary practical limitation as an over-emphasis on the analysis of technical skills in tool-making at the expense of an engagement with underlying cognitive processes.  The result has been the construction of typologies of tool reduction that subsume individual variability within a framework of group-based norms of artefact making. The normative approach offers no mechanism for describing how technologies and associated cognitive strategies can change over evolutionary time, or even within the lifetime of an individual.  This fundamental limitation has been recognised and an effort has been made to revise the CO methodology to incorporate a more modular view of tool-making tasks (Haidle 2009, 2010; Lombard & Haidle 2012).  This modular approach describes tasks as constituting separate units of action arranged as part of a flexible hierarchy of optional pathways.  While such descriptions support the concept of cognition as a task-structuring process, they do not correspond with the pre-formed linear sequence more common to the traditional CO model. 

The linear concept inherent in CO is the the product of a deep-seated philosophical view of cognition called cognitivism (Malafouris 2013).  This Cartesian tradition characterises human cognition as the product of algorithmic brain processes fully completed before the commencement of activity.  The processes are dependent on internal representations or intellectual concepts which control all bodily activity in humans, but not in animals.   We discuss how perception-action and embodied cognition theories challenge cognitivism, and we offer a cognition-in-action view of tool-making together with an example application of the approach.

Our pilot study is a trial run of new methodology based on observational analysis (OA).  This methodology is essentially qualitative in origin and is used by occupational therapists to assess hospital-patients’ behavioural sequences.  A number of qualitative behavioural variables are introduced which are used to describe and compare sets of tool-making tasks.  Three expert tool-makers are observed making tools associated with general patterns of development seen in the European Palaeolithic and African Stone Age.  Each tool-making episode is described using the behavioural variables outlined and comparisons are made between their relative levels of importance across tasks.  Although the number of participants is small, some correspondence is identified between the type of task and variations in the levels of behavioural variables.

We discuss the parameters of the methodology and how best to adjust them in order to maximise descriptions of changes in motor patterns and cognitive strategies across tasks.  We also discuss how well the methodology links with perception-action theory and provides a preliminary sketch of cognitive change operating over the Early to Middle Stone Age.  We conclude that OA builds on the framework of the CO approach and may offer solutions to its theoretical and practical limitations.      

Chaîne Opératoire’s potential as a methodology for analysing cognition
The CO approach to the analysis of tool-making was pioneered by Leroi-Gourhan (1964 [1993:274]) as part of his grand vision of human evolution.  In his view pre-industrial human technology was characterised as the work of artisans whose “…operational sequences remained essentially the same:  Workers considered the materials they were to process, drew on traditional knowledge to select a certain series of gestures, and then manufactured and possibly rectified the products of which they were the authors. Throughout the process, their expenditures of muscular effort and of thought were in balance.”  This holistic perspective on tool-making could be applied to all materials which accounts for the wide appeal of the CO approach across the humanities and social sciences (see Tostevin 2011 for a summary).  Of particular interest to cognitive archaeologists is Leroi-Gourhan’s concern with the mental plan of the artisan as expressed through socially learned gestures of manufacture which guided the making of an object.  The holism of this approach comes from its recognition of the central role of the body as the interface between mind, materiality and society where the gestures of the tool-maker are learned through activity.   This description contains the potential to form the basis of an integrated social and cognitive archaeology, based on evolutionary and lifetime changes in social, cultural and biological enablers of learning processes (Nonaka et al 2010; Tostevin 2011; Shettleworth 2012; Malafouris 2013; Overmann 2016).

That potential, however, has not yet been realised largely as a result of a narrow technical application of the CO approach by archaeologists (Bleed 2011; Soressi and Geneste 2011; Tostevin 2011).  Bar-Yosef and van Peer (2009) in their review of its application in Middle Palaeolithic research identify an over-emphasis on the definition of  master reduction sequences for specific tool types at the expense of understanding individual variation.  Adherence to established classification systems can restrict understanding of variability within technological sequences by limiting options for describing technical skills and strategies for problem solving.  Equifinality is squeezed out of the range of potential options for meeting a particular goal.  This narrowing of analytical perspective arises from a closed-loop process in which technological end-products are the starting point from which steps of manufacture are reconstructed within the confines of a classification scheme.  The tool-maker’s thought processes can only be described as an initial decision about the tool-type she wishes to make, followed by memory recall as she accesses the appropriate reduction sequence, and then an acting out of the sequence without error.  De la Torre & Mora (2009) stress the related tendency of the CO approach to place the unit of technological significance at the level of the group.  The master reduction sequence is a combined cultural product.  Individual variations by different makers are considered erratic and are not included in statistical representations.  The resulting generic models of tool-making deny any personal content to underlying cognitions (Bleed 2011), and describe individual technological processes as either containing or not containing errors.  

This linear CO model makes it difficult for its users to study technological and cognitive evolution.  The reality is that socially situated differences in individual performance “fuel technical change” (de la Torre and Mora 2009:20 – and see Delagnes & Roche 2005; Harmand et al 2015).  The viewpoint that variability is an essential component of evolutionary selection without which change cannot occur is reflected in the wider evolutionary community (Reed 1996; West-Eberhard 2003), but not by archaeological CO users (Jablonka & Lamb 2006).  Current archaeological users of the model also lack Leroi-Gourhan’s emphasis on the integration of mind with body during the act of making tools.  The tool-making individual as an embodied participant in the process of creating the archaeological record is obscured by our focus on classifying the by-products of tool-making.  A cognitivist epistemology has undermined the potential of Leroi-Gourhan’s vision.  

The Influence of Cognitivism
Descartes’ (1641 [Cottingham et al 1998]) belief in a body-mind dualism lies at the heart of modern cognitivism (Reed 1996; Chemero 2009; Malafouris 2013).  Humans, like other animals, must use their bodily senses to collect information about their environment.  This information is always partial and unreliable (Elman et al 1996; Gibson & Pick 2003; Roux & Bril 2005a & b; Chemero 2009; Malafouris 2013; Wilson & Golonka 2013).  While animals’ resulting behaviours are basic and automatic in nature, humans can use their minds to store and manipulate environmental information and transform it into plans of action for the body which can then be goal-directed and effective.  The transformation is effected through the use of the human ability to form mental representations (Gibson 1979; Reed 1996; Gibson & Pick 2003; Chemero 2009; Wilson & Golonka 2013).  Modern human cognition consists of the formation and manipulation of these symbols or intellectual concepts.  The model presents cognition as entirely internal to the brain and focusses on trying to establish links between representations and neurology (Malafouris 2013).  Modern cognitivists directly associate the brain and its representations with the software and hardware of computers (hence the importance of ‘symbolism’ in some archaeological theory – Barham 2013b) .

This model results in various insuperable difficulties for CO researchers trying to understand how cognition changes through evolutionary time.  Most importantly it does not describe any way in which a hominin cognitive process can become more or less complex;  there is no mechanism of change.  An agent is either an animal or a modern human.  This means that at some stage in evolutionary history a step-change must occur in the hominin line to account for the appearance of ‘behavioural modernity’ (Shea 2011).  A gradual accretionary model of behavioural change is not easily accommodated in the cognitivist framework.

In terms of tool-making technology, the cognitivist model demands that any user must make a decision as to whether or not the hominin species responsible for the material record that they are dealing with was capable of forming internal representations or not.  Most researchers assume that hominins can ‘plan’ a tool-making session by retrieving from memory the exact tool-making sequences for the particular type of tool they wish to make (but see Rogers et al 2016).  Any plan must be complete before execution as it is the product of internal representations and is unaffected by environmental or embodied variability.  The hominin must be aware of the full plan before acting on it and must mechanistically carry it out to perfection as originally conceived.
Cognitivist epistemology has reinforced the tendency of CO methodology users to concentrate on presenting prehistoric tools as standardised members of conceptual categories rather than as products of momentary interactions between agents and their local environments.  It encourages the characterisation of tool-making tasks as single conceptual units which cannot be broken down into smaller components.  The cognitivist model also denies the body and its effector organs any significant role in cognitive processes, and thus prohibits any useful enquiries into interactive evolutionary processes between morphology, perceptual ability and cognition (Bar Yosef & van Peer 2009; de la Torre & Mora 2009; Soressi & Geneste 2011).  Finally it inhibits any description of embodied cognition-in-action that allows for the flexible and adaptive application of learned task-structuring cognitive strategies (Wilson & Golonka 2013).

There is in fact a widespread recognition that our application of the CO approach has been flawed.  There is a need for archaeologists to engage with cognitive theory and areas of applied psychological research and better understand the evolution of task-structuring cognitions (Bleed 2011; Soressi and Geneste 2011; Bloch 2012; Garofoli & Haidle 2014).  Perception-action theory is a particularly valuable source of new ideas which incorporates an embodied cognition approach (Chiel et al 1997; Clark 1999; Anderson 2003; Chemero 2009; Chiel et al 2009; Wilson & Golonka 2013).  Motor activity allows increased perception of environmental factors.  And perception directly informs the nature of appropriate motor responses, including the control through biological effector organs of tools (Baber 2006; Bleed 2011; Prinz et al 2013).

Perception Action Theory 

In contrast to cognitivist theory, perception-action theory, derived from ecological psychology (Gibson 1979), describes perceptual information obtained from the environment by organisms as complete.  There is no need for an internal cognitive reconstruction or for representations.  Instead the organism, whether animal or human, can often react quickly and appropriately without conscious deliberation (Reed 1996; Baber 2006; Prinz et al 2013; Wilson & Golonka 2013).  This cognitive model offers a framework for the description of both individual and group learning processes.  The correct immediate active response to variable perceptual stimuli by an organism or group of organisms has to be learned through experience or action (Lerner & Benson 2013; Prinz et al 2013), and this learning process can be framed both as a lifetime (ontogenetic) process (Thelen & Smith 1996; Lockman 2000; Gibson & Pick 2003; Smith & Thelen 2003; Lockman 2005; Baber 2006; von Hofsten 2013), and as an evolutionary (phylogenetic or cultural) process (Reed 1996; Clark 1999; Malafouris 2013; Andersson et al 2014; Overmann 2016).

The perception-action model renders differences between individuals both inevitable and informative.  It allows the analysis of cognitive processes at a level common to primates, hominins and modern humans.  Units of analysis can be set at levels that allow comparison between their different activity sequences, and patterns of variation can be considered as relevant data for understanding cognitive change.  Above all the model offers multiple mechanisms of change for use by students of evolutionary developmental processes (Lerner & Benson 2013).  Because the theory considers motor activity as a form of cognition-in-action, gestural performance becomes a source of information in its own right and OA becomes a possible new methodology for analysing prehistoric tool-making sequences.

Bleed (2011) identifies the importance of trying to understand cognitions related to task-structuring.  As well as references to expert learning and the maintenance of consistent task context as good task-structuring strategies, he refers specifically to the potential benefit to CO researchers of understanding the term ‘affordance’.  The term was framed by Gibson (1979) as part of ecological psychology theory, and is a central concept in perception-action theory.  Chemero (2009:98) describes affordances as “aspects of the environment that guide action”.  They are an interactive feature that only take on meaning as part of the environmental substrate when an organism is able to perceive them as accessible, is physically competent to take advantage of them, and is motivated by some kind of goal attainment (Roux and Bril 2005a & b).  Bleed (2011) points out that the presence of particular affordances such as available rock nodules, must have helped hominins to cognitively structure technological tasks.

Significant numbers of researchers into the cognitions associated with tool-use and manufacture are now explicitly using the perception-action model (see all contributors to Roux & Bril 2005a, and also Roux & Bril 2005b; Baber 2006; Bril et al 2009; Stout & Chaminade 2007; Stout et al 2008; Stout & Chaminade 2009; Nonaka et al 2010; Stout 2010; Bril et al 2011; Stout 2011; Stout et al 2014; Bril et al 2015; Wilson et al 2016).  Other authors attempting to explore interesting new ideas are constrained by their continued implicit involvement with a cognitivist framework.  Rogers et al (2016) use cognitivist ideas to express the difference between modern human and animal cognition, and to define the kind of ‘planning’ cognition that is unique to modern humans.  The bar for recognising modern human cognition in the archaeological record is set so unrealistically high that it renders impossible any attempt to posit a gradual change between the important animal systems that they discuss, and human cognition (Shettleworth 2012).

Haidle’s cognigram papers (Haidle 2009, 2010; Lombard & Haidle 2012) are explicitly intended to develop Leroi-Gourhan’s imperative of explaining evolved cognition through the study of tool-making sequences (Haidle 2010).  She inherits a cognitivist framework from the CO tradition and also through her reliance on working memory theory  (Wynn & Coolidge 2011; Wynn et al 2016).  Rogers et al (2016) correctly identify the theoretical problems that result from this epistemological stance although ironically it is a position that they also occupy.    

It becomes clear that Haidle’s nuanced understanding of changes in task structuring over evolutionary time as represented in her cognigrams, ultimately allows her new insights into cognitive change.  The papers contain an emerging emphasis on the ‘modularity’ of tasks.  Haidle (2010) describes tasks as hierarchical constructions of separate units of action (Baber 2006; Barham 2010, 2013 a & b).  She identifies the quality of modularity as a source of increasing task complexity and flexibility over time (Lombard & Haidle 2012).

A hierarchical, modular task is not compatible with a linear CO description of tool-making.  A modular task may not be a swift and simple product of a felt need of one individual (Haidle 2009).  Instead it might be an extended product of several communicating individuals or groups with different motivations and needs (Hallos 2005; Wragg Sykes 2015).  Lombard & Haidle (2012) interpret the gradually increasing modular nature of tasks over evolutionary time as a proxy for gradual cognitive change.  They reject a step-change model thus challenging their original implicit epistemological position.  They also state that modularity supports the increased cognitive effort of more complex task-structuring.  This position looks like an unacknowledged move from cognitivism to some kind of ideomotor or perception-action cognitive theory, but the dichotomy is not explicitly resolved.

Observational Analysis
OA is proposed as a new method that can bring together these disparate treatments of activity analysis and provide a common procedure based on informative theoretical foundations.  It takes the form of experimental archaeology made possible by the data from accumulated CO analyses.  The resulting reconstructed tool-making sequences can be thought of as a cognitive reconstruction allowing the reenactment of original thinking processes in front of an observer.  The modern tool-makers involved have embodied cognitive systems  containing a huge variety of specialised and perception-action based information.  They can select, sequence and adapt modules of tool-making activity (Ericsson et al 1993; Ericsson & Charness 1994; van Merrienboer & Sweller 2005; Baber 2006; Russell 2011; Paas & Sweller 2012; Sinclair 2015).  This reconstructed ongoing interaction between information perception, outcome prediction (Prinz et al 2013) and motor activity will only become manifest if the tool-makers act within a normal framework of constraints and affordances.  Controlled experiments may inhibit the expression of this highly individual and interactive process (Reed 1996).

Stout and Chaminade (2007) and Stout et al (2008) argue that active networks stimulated in the brain of an Oldowan knapper are essentially the same as those used by experienced modern human knappers when striking flakes from cobbles.  While modern humans have a larger cognitive capacity than the earliest reductive tool-makers, they do not make full use of it when engaged in a task demonstrably within hominin capabilities.  Modern human groups are assumed here to have systems which have developed out of older hominin systems, but which have subsequently become more complex in connective architecture and potential function (Elman et al 1996; Greenberg et al 1999; Barton 2001; Damasio 2010; Barton 2012; Herculano-Houzel 2012a & b; Shettleworth 2012; Malafouris 2013).

The lead author has experience of using observational techniques as an Occupational Therapist (OT).  The core skill of an OT is activity analysis (Turner et al 1999; Parkinson et al 2006; Kielhofner 2008).  It was part of her job to assess brain-damaged patients by observing their behaviours in order to try and establish whether underlying cognitive processes were still intact.  Reduced cognitive function leads to changes in action sequences in terms of goal outcome, sequence duration, sequence structure, the number of gestures employed, tool-using skills, and the degree to which the observed individual is able to react appropriately when not acting within an accustomed context.  The observing OT explicitly or implicitly uses a checklist of behavioural variables across all observed sequences.  The level at which variables appear across tasks varies.  An aim of the pilot study was to establish whether a list of pre-determined variables could be used to describe the differences between observed tool-making sequences and indicate possible underlying cognitive differences.  A diagrammatic approach was also used in order to try and describe the comparative modular quality of the tasks and to establish whether transitions between modules corresponded with behavioural variable changes.

The data collected were derived from the observation of expert tool-makers who replicated tools typically associated with the long-term developmental changes seen in the African Stone Age and Eurasian Palaeolithic.  The specific tools replicated included flakes struck from cobbles or chunks (Oldowan), flake-based bifaces (Acheulean), prepared flakes and hafted tools (Middle Stone Age/Middle Palaeolithic).  The transition to hafted tools has been characterised as either a radical new approach to imagining, planning and making tools (Ambrose 2010; Barham 2010; Barham 2013a; Wragg Sykes 2015), or alternatively as an incremental development (Lombard & Haidle 2012; Rogers et al 2016).  One of the main intentions here was to assess the potential of OA as a method for distinguishing between gradual and stepped change in the evolution of technology.

Given the multiplicity of raw materials used when making a hafted tool, the separate production processes that lie behind each of them, the lack of guarantee of a single tool-maker being responsible for all components, and the extended lengths of time potentially involved (Barham 2013a; Hardy 2008; Wragg Sykes 2015), it was felt that a modular perspective was likely to be appropriate for the combinatorial tasks, but its suitability for other technologies had to be demonstrated as part of the pilot study. 

A wide range of complementary theories were used to inform the selection of Behavioural Variables and the design of the Task Diagrams:

· Perception-action theory (Gibson & Pick 2003; Roux & Bril 2005a; Chemero et al 2009)

· Embodied and radical embodied cognitive science (Chiel et al 1997; Chemero 2009)

· Connectionist and dynamic theories (Simon 1962; Elman et al 1996; Greenberg et al 1999; Roux & Bril 2005b; Bloch 2012)

· Material engagement theory (Malafouris 2013; Overmann 2016)

Aims
The aims were to establish: 

1. whether or not differences between tasks could be described using behavioural variables

2. the usefulness of each behavioural variable

3. the best method for illustrating the modular quality of tasks

4. the most useful units of analysis

5. the usefulness of theory-bases

Method
Expert tool-making activities were filmed on three separate occasions using a Samsung HMX-F90 hand-held camcorder.  After each filming session the footage was closely viewed.  It was used to identify the presence and level of the selected behavioural variables (Table 1).  This information was not formally recorded as accurate quantification of so many variables posed serious problems.  The lead author drew on the relevant footage and on her experience as an OT in order to give an overall description of what she believed to be the important changes.  She also used the footage to construct Task Diagrams which showed a potential modular structure for each task analysed, and behavioural variables marking the module boundaries.

Limited instructions were given to the experts in order to minimise constraints during the course of the task.  They carried out the tasks in their own workshop spaces and used their own materials (Baber 2006).  The Reductive Tool Maker (RTM) was asked to (a) knap an Oldowan core with several flakes and to retouch one of the flakes (Figure 1); (b) knap a biface from a flint flake (Figure 2); (c) prepare a core, detach prepared flakes, and choose one flake for retouch (Figures 3, 4).  East Anglian flint was used for all sequences.

Both Combinatorial Tool Makers (CTMs) were asked to produce two hafted tools each.  They used East Anglian flint for their inserts, either ash or hazel for their shafts, and a mixture of pine resin, wax and charcoal for their adhesive.  CTM1 constructed a hafted scraper and an arrow (Figures 5, 6, 7) and used dried, twisted flax for binding.  CTM2 constructed an atlatl spear and another arrow (Figures 8, 9) and used strips of wretted lime bark.

OTs use a wide range of different behavioural variables during observation and therapy sessions.  Their variation is not quantified during sessions but is summarised afterwards.  Table 1 shows the behavioural variable groups that were used when analysing the footage.

Postural, Mobility, Tool and Object Moving, Tool and Object Choice, and Tool and Object Organisation Variables:
The contents of these groups should be self-explanatory.  The observer looked to see if and why their presentation changed in frequency.  It was thought likely that increases in these variables would be connected with an increased need for perceptual awareness, accurate responses, self-organising and tool-handling skills.

Handling Variables:
An increase in frequency of grip change is an indicator of increasing task complexity.  This group also includes variations in the extent to which the tool-maker differentiates the roles of each hand (handedness).  Recent literature suggests that this is not an inherited genetic feature but rather a developmental product of the increasingly complex tasks that we have undertaken regularly through ontogenetic and evolutionary time (Corbetta 2005; Steele & Uomini 2005; Hill & Khanem 2009; Uomini 2009; Mosquera et al 2012).

Flows and Paces:

Flow describes the smoothness of transition between gestures.  It tends to be inversely related to the levels of information search and hesitation present.  Pace usually corresponds with increased flow, and thus with a lack of need to search for information.  Both flow and pace are more present where gestures are rhythmically repeated.  Rhythmical repetition may represent a type of gesture that requires reduced cognitive effort (Thelen 1979, 1981; Sakai et al 2004;  Schaal et al 2004).

Muscle Synergy Variables:

This group contains important variables that are only partially observable through postural and handling variables.  They include calibration, and other combinations of musculoskeletal interactive elements that allow more controlled tool-use (Hadders-Algra 2002; Biryukova et al 2005; Ivanova 2005; Biruyokova & Bril 2008; Bril et al 2009; Nonaka et al 2010; Bril et al 2011; Rein et al 2013; Parry et al 2014; Williams et al 2014; Bril et al 2015).

Sequencing Variables:

This group contains variables used to create modules.  The cognitive ability to initiate is specific and can be lost through brain damage, as can the attentional abilities involved in maintaining ongoing activity and terminating it appropriately (Grieve 1993).

Search for Information and Appropriate Reaction Variables:

Perception, or information-gathering, is an ongoing activity throughout all tasks alongside motor activity.  It was assumed that it should be observable, as should the appropriate reactions provoked by the perception of events that had changed the affordance layout (Chemero et al 2003).  Information search is easiest to observe in its visual form, but aural and haptic processes can also be observed.  It was assumed that information search would correlate negatively with flows and paces and positively with increases in all of the other groups.

Task Diagrams:
Task Diagrams were drawn to show to what extent each task could be broken down into units with clear boundaries (Task Stages).  Each Task Stage was further divided into Action Sets consisting of grouped similar gestures.  For example the Oldowan task diagram which has three coloured blocks marking Task Stages.  The horizontal divisions within each colour block mark Action Sets.  The left hand column of the diagram shows the type of gestures being used.  Single gestures were not judged to be meaningful units of analysis where so much repetition was involved, but it would be possible to subdivide the Action Sets further into ‘Actions’.  The right hand column shows how changes in behavioural variables correspond to Action Set and Task Stage divisions.  It also contains a description of the affordance that allowed the tool-maker to move from one Action Set to another.

Results
Changes for each group of variables across all tasks is summarised below.  The usefulness of variable groups in describing change across different task-types is confirmed.  Each group was assessed in terms of whether or not it was sensitive enough to show changes between every task type (gradual change), or whether it could only be used to show change between reductive and combinatorial technologies (step change).
Postural Variables:

These were highly predictable for the Reductive Tool Maker (RTM).  A seated knapping posture was maintained throughout each task and standing was only observed at the beginning and end of tasks.  For the Combinatorial Tool Makers (CTMs) a seated posture was common but varied more due to changing muscle synergies provoked by different gesture and tool types.  Both CTMs’ mobilised during tasks and their posture often changed at the boundaries between different Action sets.  But across both reductive and hafted tasks postural variables only showed a step change at the transition to hafted tools.

Mobility Variables:

This group changed in the same way.  The RTM only mobilised at the beginning and end of tasks.  Both CTMs mobilised at the boundaries of Action Sets in order to organise new objects or tools.

Handling Variables:

The RTM’s grip types remained constant.  The only tools were hammerstones so the hand grips only changed with tool and object size.  Until the object being knapped became small it was balanced on the left thigh in a cup grip.  Small objects like points were held freehand in a pinch grip.  When searching for information on the large boulder (Table 3), the RTM had to repeatedly put down his hammerstone in order to use both hands for manipulation.  Otherwise visual information search was effected by moving the non-dominant hand.

The CTMs’ grip types varied constantly as a wide range of tools requiring specific grips was used for each task and objects varied in terms of size and rigidity.  A change in this group was essential at every Action Set boundary, and even during Action Sets.

However, this group was thought to have the potential to indicate gradual change (see choice of tool and object group below).

Flows and Paces:

The RTM’s Oldowan task was audibly rhythmic with a high level of flow.  These qualities were affected during the Biface task by the need to deal with the poor quality of the raw material resulting in information search and hesitation.  Loss of both variables increased during the Prepared Core task as more time was taken up searching for information to inform the next flake removal.  The CTMs displayed rhythmic flow during reductive Action Sets such as wood shaving or knapping.  However the variables were lost during Action Sets concerned with haft creation.  

Durations (pace) for the reductive tasks were taken as follows:

Oldowan
Reduction  3.17 mins      Retouch 1.22 mins
Total  4.39 mins

Acheulean
Reduction  8.25 mins      Retouch 4.26 mins
Total 12.51 mins

Preformed
Reduction 10.04 mins     Retouch 6.04 mins
Total 16.08 mins

This group was judged to be an indicator of gradual change.

Object Moving Variables:

This group co-varied with Mobility Variables and tool and object choice and organisation.  It was felt that results from this group could be incorporated into the tool and object choice results.

Muscle Synergy Variables:

These could not be directly observed and changes had to be inferred from postural changes, changes in tool and object choice, handling variables and calibration changes.  It was decided to retain this group despite its lack of immediate observability because it provided a good link with significant bodies of work by other authors (see Method above).  The group was judged to be an indicator of gradual change.

Sequencing Variables:

The increasing need to use initiation and termination skills through a task, and the increasing need to maintain attention for longer periods are linked to increasing numbers of  Action Sets and tool changes.  This group was judged to indicate gradual change.

Choice of Tool and Object:

For the CTMs each new Action Set required a new tool, and tool changes also occurred within Action Sets.  Even where the same debitage flake was used on several occasions, it was used differently or retouched in relation to a new Action Set.

Although the reductive tasks did not present much variability in this group it was felt that this was slightly unusual.  No thinning processes were carried out which might have required the use of a soft hammer, and a separate abrading tool for platform preparation was not used throughout the Biface and Prepared Core tasks.  It was decided that this group and the handling variable group had the potential to indicate gradual change.

Organisation of Tools and Objects:

It was decided that this group was adequately represented by the choice of tool and object group above.

Appropriate Reaction Variables:

Within a perception-action framework it is important to identify gestures performed in response to an unexpectedly altered layout of affordances.  Appropriate reactions were present in the reductive tasks, such as when a step fracture occurred or the biface flint turned out to be of poor quality.  They were observed more frequently during combinatorial sequences.  With the increased number of raw materials and processes there was simply more that could go wrong, more to monitor, and a wider number of alternative responses to choose between.

Search for Information:

This group is also directly linked to the perception-action model.  Information search became more intrusive during the reductive tasks, particularly during assembly Action Sets concerned with bringing cleft, insert, binding and adhesive together.  For CTM2’s tasks, assembly Action Sets became recursive as active gestures were followed by marked information search and subsequent adjustment several times over.  Both this group and the appropriate reaction group were deemed to show gradual change.

Task Diagrams - Reductive Tool Maker
The Oldowan task has three Task Stages (Table 2) while the Biface (Table 3) and Prepared Core (Table 4) tasks each have four.  The internal repetition within each Action Set is not well-defined by the diagrams but they show repetition of entire Action Sets for all tasks, and alternation between them for the Prepared Core.  The latter task took 16 minutes and 8 seconds compared with 12 minutes and 51 seconds for the Biface.  The diagrams are not detailed enough to provide reasons for this duration difference.

The number of tools used stays relatively constant.  Tools and objects often change at the boundaries of Task Stages but there is only ever one object and one tool in use.  All three sets of Task Stages can only be performed in one order.  Cognitions associated with task-structuring may not be highly challenged.  Some flexibility of sequencing may be present within the Action Sets but this is not shown in the diagrams.

Affordances allowing transition are generally closely related to physical characteristics of the core being worked in all three tasks.  A less obvious kind of affordance-detection is required for the selection of an appropriate flake for retouch.

Task Diagrams – Combinatorial Tool Makers

CTM(1) made two tools in parallel (Table 5) so as to avoid repetition of the adhesive stage.  The five Task Stages concerned with the Hafted Scraper are in two shades of pink while the seven Task Stages for Arrow(a) are in blue and green.  The two adhesive preparation Task Stages are white.  The number of Task Stages per tool is thus seven for the Hafted Scraper, and nine for Arrow(a).  The increased number of combinatorial Task Stages over reductive tools is due to an increased requirement for different Action Set types.  CTM(1) does not repeat Action sets recursively which is reflected in his later comments that he intended to demonstrate how quick and simple hafting can be.  Effectively he prioritised pace over reliability.

CTM(2)’s arrow (Table 6) takes thirteen Task Stages, while his Atlatl Spear (Table 7) only takes five.  He did not apply adhesive to the spear haft.  There is also a markedly recursive element to the haft creation stage of Arrow(b), as compared with the Atlatl Spear, which resulted in extra Action Sets.  It is likely that CTM(2) balanced the relative requirements of tool reliability and pace differently from CTM(1), especially in relation to Arrow(b).

In all sequences tool and object changes occur at every Action Set boundary.  There is often more than just one tool and object pair in use.  This means a wider range of specific gestural types and of affordance-detection skills.  All behavioural variable groups change in some way along with every change of tool and object, and these variations frequently self-organise around Action Set boundaries.

The Task Stage sequence is more flexible for combinatorial tools than for reductive tools.  Preparatory Task Stages can be done in any order desired and the sequence only becomes fixed with haft creation, insert placement and subsequent haft-securing.  Increased sequencing flexibility requires increased planning but allows greater adaptiveness in the face of varying constraints.

There is a potentially gradual change in the nature of affordances being used to move between Action Sets and Task Stages which requires further investigation.  Increasingly the tool-maker does not just take advantage of existing affordances but creates them as well.

Discussion
The question being asked by this initial OA was what the best parameters might be for designing future observational analyses of tool-using behaviours.  We used a dual approach of a behavioural variable analysis together with Task Diagrams showing the division of the tasks into Task Stages and Action Sets.   The behavioural variable changes dove-tailed well with the modular structure shown by the Task Diagrams.  The combined approach provided a holistic view of the tasks although there was a significant lack of detail about the content of individual Action Sets.

It was established that six of the behavioural variable groups would be sufficient for future analyses.  They were those sensitive enough to provide information about gradual change between tasks: 

Handling variables

Flows and paces

Sequencing variables

Choice of tool and object

Appropriate reaction variables

Search for information variables

In relation to establishing the best units of analysis it was decided that a complete-task unit was unsustainable.  Local variations in constraints and affordances, individual experience and cultural background all contribute to inherent variability which is not necessarily the result of differences in cognitive function.  Even during the OA executed here the RTM used differently-sized pieces of flint left over from previous knapping sequences (resource scarcity) and so the time spent reducing the raw material varied significantly between sequences.  In respect of the biface his initial intention was to produce a handaxe, but the poor quality of the flint prevented its completion.

CTM1 made two hafted tools in parallel and thus only carried out one task unit.  After binding Arrow(a) he started on the scraper and then applied adhesive to both at the same time (economy of effort).  CTM2 applied adhesive to Arrow(b) but not to the atlatl spear (resource scarcity).  CTM1 prepared his insert by removing blades off a pre-prepared blade core (planning).  CTM2 re-used two points – one had to be lengthily pressure-flaked (resource scarcity).  CTM1 had enough prepared twine to use on the scraper, but had to prepare more twine before he could bind Arrow(b).  CTM2 had enough prepared lime-bark for both tools.  In the case of the binding and adhesive for both CTMs, lengthy but different back-processes of preparation were involved which were not assessed at all in this study (planning).  Finally CTM2 was more recursive in the modules concerning haft preparation than CTM1 (economy of effort versus tool reliability).
It was, however considered that there were benefits in retaining both Task Stages and Action Sets as units of analysis and cross-task comparison.

All observations using this approach were found to be consistent with perception-action theory and an embodied approach.  Increased task complexity was accompanied by more information search and increased variability of muscle synergies and physical gesture. Tool-makers appeared to be involved in a clear in-task perceptual assessment of events, and selected the next appropriate Action Set type as appropriate in the moment.

Based on this pilot study we recommend future adjustments to the OA methodology to extend its applicability and reliability.  A larger number of sequences should be filmed and analysed in order to increase information on variability across tasks and through evolutionary time.  The content of each Action Set should be recorded in greater detail so that analyses of differences across tasks can be more robust and quantified.  Analyses should focus more on a precise identification of the behavioural variable changes which reflect changes in task-structuring strategies.  The boundaries between Action Sets and Task-Stages are of particular interest in terms of revealing continuities and changes in cognitive strategies.  These transitions and the affordances that make them possible also warrant closer attention in future studies.

Conclusion
Despite the limited number of individuals observed, it is possible to use these data to outline a cognitive process that changes over the time-period represented by the tasks attributed to the Early to Middle Stone Age (Lower to Middle Palaeolithic).

We posit a foundational cognitive system that is reliant on a store of modular motor sequences whose appropriate selection in the moment and consequent adaptation is a learned skill.  Basic tasks are rigid in their construction, but we see an increasing development  of modular groups of Activity Sets that are sequenced and adapted in response to local affordances and constraints.  Their structure is defined by familiar contextual elements, repetition and rhythmic action.  Over time the ability to add in new Task Stages, Action Sets, tools and objects increases flexibility and possibly triggers the development of new task-structuring skills.  Affordance-detection and tool-use skills are initially limited but begin to be challenged as the tasks change internally.  It is possible that manual dexterity and the need for hand-use differentiation increase as a result.

With the emergence of hafted tools this gradual change reaches the point where the preparatory as opposed to assembly-stage modules are independent units.  They need to be sequenced anew for each task and might be carried out by different individuals across potentially wide gaps of time.  The load on task-structuring skills is now much higher and context, rhythm, repetition and limited affordance-detection no longer suffice.  More sophisticated affordance-detection skills become necessary and planning skills at individual and group levels are required. 

Our preliminary results show the value of using loosely-structured experimental observations to document the real-time flow of action sequences at the level of the individual, from which more general patterns of cognitive change can be inferred and subsequently more rigorously tested.  The integration of OA with perception-action and embodied cognition theory allows for the study of cognitive processes at a level common to primates, hominins and modern humans.  Gestural performance as an important source of information links well with Leroi-Gourhan’s vision of integrating mind and body in the study of the evolution of technology and society.

Cognitivist theory is well-entrenched in current analytical approaches including applications of the CO methodology.  It offers an accessible understanding of artefacts as symbols or tightly-packed ciphers which, if read properly, might yield information about the concept-forming abilities of their makers.  Newer cognitive models, however, describe cognition as something more complex, harder to grasp and more difficult to assess archaeologically.  Our thought processes are the product of an ongoing dynamic interaction with a wide range of other variables also in the process of constant change, such as ecological substrates, social, physiological and cultural structures all of which collectively modulate behaviours.  For these reasons we need a more holistic theoretical and methodological approach to the study of cognitive evolution which recognises the complexity of the contexts in which tools are planned, made and used.  This pilot study is an attempt to initiate a different perspective that treats artefacts as ‘screen shots’ of lost processes of cognition-in-action.  The challenge ahead is to develop robust experimentally-based methods to recreate and analyse those processes.
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Table 1 – Behavioural Variable Groups

	Behavioural Variable Groups
	Example Variables

	Postural
	Seated, crouched

	Mobility
	Walking, bending down

	Handling
	Grip, hand differentiation

	Flows and paces
	Smooth transition between gestures and performance duration

	Tool and object moving
	Drag, lift, push, tilt

	Muscle synergy
	Force of blow, fix / activate muscles

	Sequencing
	Initiate, continue, terminate

	Tool and object choice
	Change tool, change object

	Tool and object organisation
	Fetch more binding, cache good flakes

	Appropriate reactions
	Repair step fracture, straighten wooden shaft

	Information search
	Examine core surface, listen to hammer noise


Table 2 – RTM Oldowan Core and Flakes

	Oldowan Core and Flakes
	Tools Objects and Final Affordances

	Mobilise; choose raw material
	Medium hs and core

	Mobilise; assume seated posture
	Hammerstone & raw material stable

	Tilt core to search
	Suitable area located visually

	Prepare striking platform, tap, strike
	Flake detached

	Assess flake visually and haptically
	Keepers stored separately

	Repeat previous 3 action sets as a unit until end of Stage
	Enough keepers collected (6)

Put down medium hs

Put down core

	Select flake for retouch
	Flake

	Retrieve small hammerstone
	Small hs

Hammerstone and flake stable

	Small unifacial removals from ventral side around perimeter
	Retouch completed
Hammerstone and flake put down


Table 3 – RTM Flake Biface

	Biface
	Tools, Objects and Final Affordances

	Mobilise; choose raw material
	Core

	Mobilise; assume seated posture
	Core stable

	Two-handed lift boulder view full surface
	Suitable area located visually

	Retrieve large hammerstone
	Large hs

Hammerstone & raw material stable

	Tap identified area with hammerstone
	Suitable area located aurally

	Strike
	Flake detached

	Repeat previous 4 actions sets as a unit until end of Stage
	Core correct size and shape

Put down large hs

	Retrieve medium hammerstone
	Medium hs

Hammerstone & core stable

	Tilt core to search for suitable area
	Suitable area visually located

	Prepare striking platform, tap, strike
	Flake blank detached

	Assess flake visually and haptically
	Keepers stored separately

	Repeat previous 3 action sets as a unit until end of Stage
	Enough keepers collected
Put down core

Put down medium hs

	Select flake for biface blank
	Flake blank

	Retrieve small hammerstone
	Small hs

Hammerstone and flake blank stable

	Bifacial removals around perimeter
	Small regular shape achieved


Table 4 – RTM Prepared Core and Flakes

	Prepared Core and Flakes
	Tools, Objects and Final Affordances

	Mobilise; choose raw material
	Core

	Mobilise; assume seated posture
	Core stable

	Retrieve medium hammerstone
	Medium hs

Hammersone and core stable

	Tilt core to search for suitable area
	Suitable area located

	Tap identified area with hammerstone
	Suitable area aurally located

	Prepare striking platform, tap, strike
	Flake detached

	Repeat previous 3 action sets as a unit until end of Stage
	Potential preformed flake identified as ready for removal

	Prepare platform and strike
	Preformed flake detached

	Alternate between 2 previous Stages (core preparation and preformed flake removal)
	Enough preformed flakes detached (5)

Put down core

Put down hammerstone

	Select preformed flake for retouch
	Flake

	Retrieve small hammerstone
	Small hs

Hammerstone and flake stable

	Small unifacial removals from ventral side around perimeter
	Small point completed


Table 5 – CTM(1) Parallel Production of a Hafted Scraper and Arrow(a)

	Parallel Hafted Scraper and Arrow(a) Sequences
	Tools, Objects and Final Affordances

	Mobilise; choose raw material

Mobilise; assume seated posture
	Blade core

Blade core stable

	Tilt blade core to search for suitable area
	Suitable area located visually

	Retrieve soft hammer
	Soft hammer

Hammer and blade core stable

	Prepare striking platform, strike and cache blade

Repeat Action Set several times
	Several blades detached
Put down soft hammer

Put down blade core

	Retrieve small hammerstone
	Small hammerstone

Blade and hammerstone stable

	Retouch flint blade unifacially from ventral side around perimeter
	End scraper completed
Put down small hs and end scraper

	Retrieve prepared wooden shaft; assess visually and haptically
	Wooden shaft 
Assessed as appropriate for the task

	Retrieve debitage blade
	Debitage blade

Wooden shaft and blade stable

	Use debitage blade to clear nodules and trim proximally
	Area designated is clear

	Retrieve soft hammer (bone)
	Soft hammer

Soft hammer, blade and shaft stable

	Insert lateral edge of debitage blade into distal end of shaft and hammer in with soft hammer
	Cleft long enough

Put down debitage blade and hammer

	Retrieve scraper insert
	Insert

Handle and insert stable

	Place insert into cleft and assess visually and haptically
	Scraper blade held in place by cleft

	Mobilise; retrieve length of prepared twine 
	Twine

Incomplete tool and twine stable

	Bind twine tightly around distal part of cleft
	Haft strongly bound

Put down incomplete tool

	Mobilise; retrieve two unprepared dried flax strips
	Flax strips

Flax strips stable

	Use specific binding technique to create length of twine
	Length of twine completed

Put down twine

	Retrieve blade debitage and assess visually
	Blade debitage

Assessed as appropriate for insert

	Retrieve small hammerstone
	Small hammerstone

Blade debitage and hs stable

	Retouch debitage unifacially from ventral side along one lateral
	Small point completed
Put down small point

	Retrieve prepared shaft and assess visually and haptically
	Wooden shaft

Slight deviation from the straight

	Gently bend shaft in direction to opposite to deviation and re-assess
	Slight deviation persists

	Repeat previous action set until end of Stage
	Shaft assessed as straight

	Retrieve debitage blade
	Debitage blade

Blade and shaft stable

	Strip bark from entire length of shaft using dorsal side of debitage blade
	Designated area clear

	Retrieve soft hammer
	Soft hammer

Soft hammer, blade and shaft stable

	Insert lateral edge of debitage blade into distal end of shaft and gently hammer in with soft hammer
	Cleft created

Put down blade and soft hammer

	Retrieve point
	Insert

Insert and shaft stable

	Place insert into cleft and assess visually and haptically
	Insert held in place by cleft

	Mobilise; retrieve length of twine 
	Twine

Twine and incomplete tool stable

	Bind twine tightly around cleft
	Haft strongly bound

Put down incomplete tool

	Mobilise; retrieve gas ring and match box 
	Match

Striking surface

Gas ring

Match, striking surface and gas ring stable

	Strike match and apply flame to gas ring
	No flame
Remove gas cylinder and dead match

	Mobilise; replace gas cylinder and re-light repeating Action Set above with new match
	New gas cylinder

New match

Flame

	Mobilise; retrieve pan of solid adhesive and place over flame – repeatedly assess visually, haptically and using sense of smell
	Pan of solid adhesive

Adhesive melted

	Mobilise; retrieve goose feather and incomplete tool
	Goose feather

Incomplete tool

Feather and incomplete tool stable

	Use feather to spread melted adhesive over bound area of scraper
	Bound area fully covered
Put down goose feather

	Assess adhesive coverage visually
	Excessive coverage

	Retrieve piece of hide
	Hide

Hide and incomplete scraper stable

	Pass incomplete scraper over flame and wipe excess adhesive onto piece of hide
	Coverage appropriate
Put down complete scraper

Put down hide

	Mobilise; retrieve goose feather and incomplete arrow
	Goose feather and incomplete arrow

Feather and incomplete arrow stable

	Use feather to spread melted adhesive over bound area of arrow
	Coverage appropriate

	Use feather to spread melted adhesive between shaft and insert – assess visually
	One shoulder of haft protrudes too far
Put down goose feather

	Retrieve debitage blade
	Debitage blade

Blade and incomplete arrow stable

	Use debitage blade to press protruding shoulder of haft inwards – assess visually and haptically
	Aerodynamic shape achieved
Put down debitage blade and complete arrow

	Mobilise; turn off gas ring
	No flame


TABLE 6 – CTM(2) Arrow(b)

	Arrow(b) Sequence
	Tools, Objects and Final Affordances

	Retrieve existing flint point and assess visually and haptically
	Point too large for arrow insert

	Retrieve antler tine and hide pad
	Antler tine

Hide pad

Pad, tine and point stable

	Pressure flake to create smaller point
	Point appropriate size for arrow

Put down pad and tine

	Tilt point to visually assess
	Distal end too wide for hafting

	Retrieve antler tine and hide pad
	Antler tine

Hide pad

Tine, point and pad stable

	Thin the base
	Appropriate size and shape for insert

Put down pad, tine and insert

	Retrieve debitage flake and shaft
	Debitage flake

Shaft

Flake and shaft stable

	Use two hands on flake to scrape bark off entire shaft and remove bud points – visually and haptically assess
	Shaft devoid of bark and feels smooth
Put down flake

	Retrieve sharp piece of flint rubble 
	Flint rubble

Flint rubble and shaft stable

	Taper distal end of shaft to encourage aerodynamic shape in haft
	Sufficient wood removed

Put down flint rubble and shaft

	Retrieve debitage flake and assess non-working edge haptically
	Debitage flake

Debitage flake has non-working edge sharp enough to cut flesh

	Retrieve flint rubble
	Flint rubble

Debitage flake and flint rubble stable

	Use flint rubble piece to dull non-working edge of debitage flake and re-assess haptically
	Debitage flake backed
Put down flint rubble

	Retrieve shaft
	Shaft

Backed flake and shaft stable

	Push backed flake into distal end of shaft
	Backed flake partially inserted

	Retrieve flint rubble 
	Flint rubble

Flint rubble, shaft and backed flake stable

	Use rubble to hammer backed flake in further
	Cleft created

Put down rubble and backed flake

	Retrieve insert 
	Insert

Insert and shaft stable

	Put insert in cleft and assess visually and haptically
	Cleft acts as secure vice but more tapering needed
Put down insert

	Retrieve backed flake
	Backed flake

Backed flake and shaft stable

	Continue to taper distal end of shaft using slow controlled strokes and assess visually
	Distal end of shaft tapered further
Put down backed flake

	Retrieve insert 
	Insert

Insert and shaft stable

	Put insert into cleft – assess visually and haptically
	Insert being pushed more strongly by one side of haft than by other side
Put down insert

	Retrieve backed flake
	Backed flake

Backed flake and shaft stable

	Reduce one side of the haft
	Both sides of haft appear equal

Put down backed flake

	Retrieve insert 
	Insert

Insert and shaft stable

	Put insert into cleft – assess visually and haptically
	Point secure in haft
Put down incomplete tool

	Mobilise; retrieve gas ring, match and striking surface
	Match

Striking surface

Gas ring

Match, striking surface and gas ring stable

	Strike match and put lit flame to gas ring
	Flame

	Mobilise; retrieve pan of solid adhesive and place over flame – assess visually, haptically and using sense of smell
	Adhesive not melted


	Leave adhesive to melt
	Flame and pan of adhesive stable

	Mobilise; retrieve strips of wretted, dried lime bark 
	Wretted lime bark strips

Wretted bark stable

	Split wretted bark into narrow bands
	Strips completed

Put down strips

	Mobilise to heating adhesive and retrieve stick
	Stick

Stick stable

	Assess adhesive visually, haptically and using sense of smell
	Adhesive melted

	Retrieve shaft
	Stick and shaft stable

	Use stick to apply melted adhesive to distal end of shaft
	Sufficient adhesive applied
Put down stick

	Retrieve insert
	Insert

Shaft and insert stable

	Put insert into cleft and apply pressure to close cleft while moulding adhesive around point
	Haft tightly closed and covered in sticky adhesive

	Mobilise; retrieve wretted bark strips
	Wretted bark strips and incomplete arrow stable

	Bind over adhesive to tightly constrain haft
	Haft stable

	Pass bound area of arrow over flame to remove binding hairs
	Haft smooth

	Retrieve stick
	Stick and incomplete arrow stable

	Use stick to apply melted adhesive over binding 
	Adhesive applied evenly over binding

Put down stick 

	Manually shape adhesive aerodynamically – assess visually and haptically
	Haft completed

Put down arrow

	Mobilise to turn off gas ring
	No flame


TABLE 7 – CTM(2) Atlatl Spear

	Atlatl Spear Sequence – No Adhesive Stages
	Tools, Objects and Final Affordances

	Mobilise; retrieve long wooden shaft
	Shaft

Shaft not stable

	Mobilise; retrieve flat piece of broken stone and place it on open ground 
	Flat stone

Flat stone stable

	Prop shaft upright on flat stone and hold steady with one hand
	Shaft stable
Put down shaft

	Mobilise; retrieve large debitage flake and return to flat stone
	Large debitage flake

Flat stone

Shaft

Stone, shaft and flake stable

	Crouch to hold shaft near base with one hand, strip distal end and taper it with flake in other hand
	Stripping completed and some tapering completed
Put down large debitage flake

	Mobilise to chair and assume seated posture
	Shaft stable

	Retrieve small debitage flake
	Small debitage flake

Shaft and small flake stable

	Use small flake to finish tapering using slow movements controlled by both hands
	Tapering shaft completed
Put down shaft

	Assess small debitage flake visually and haptically
	Non-working edge sharp enough to cut flesh

	Retrieve large debitage flake
	Large debitage flake

Small and large flakes stable

	Use large debitage flake to back small debitage flake and assess non-working edge of small flake haptically
	Non-working edge blunted
Put down large debitage flake

	Retrieve shaft
	Shaft

Shaft and backed flake stable

	Push backed flake into distal end of shaft using small slicing movements
	Backed flake held in cleft to half of its depth

	Retrieve large debitage flake 
	Large debitage flake

Shaft, backed flake and large flake stable

	Use large flake to hammer backed flake further into cleft
	Backed flake fully inserted in cleft
Put down large flake

	Visually assess depth of cleft
	Cleft created

Put down backed flake

	Retrieve wooden splinter
	Wooden splinter

Wooden splinter and shaft stable

	Put wooden splinter into cleft as a wedge – visually assess cleft
	Cleft held open and depth of cleft controlled

	Retrieve pre-prepared lanceolate point
	Insert

Put down wedge

	Put insert into cleft – visually assess cleft
	Cleft at optimal depth for point but has twisted slightly around shaft
Put down insert

	Visually assess cleft
	Further tapering required

	Retrieve backed flake
	Backed flake

Backed flake and shaft stable

	Use backed flake to taper distal end of shaft
	Tapering completed
Put down backed flake

	Retrieve insert
	Insert

Insert and shaft stable

	Put insert into cleft and visually assess ability of tapered points of cleft to hold point
	Points not aligned due to twist in cleft

	Manually alter alignment of cleft points so that they are parallel with each other and hold
	Haft stable

	Retrieve two strips of wretted lime bark and use side by side
	Wretted lime bark strips

Haft and wretted bark stable

	Bind double strand of lime bark around haft – assess stability of haft visually and haptically
	Haft stable and bound
Put down completed tool
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Figure 1.  RTM – Retouched Oldowan flake
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Figure 2.  RTM – Acheulean biface
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Figure 3.  RTM – Removing prepared flake
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Figure 4.  RTM – Retouched prepared flake
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Figure 5.  CTM1 – Hafted scraper
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Figure 6.  CTM1 – Arrow(a)
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Figure 7.  CTM1 – Twisting dried flax into twine

Figure 8.  CTM2 – Atlatl spear (no adhesive)
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Figure 9.  CTM2 – Arrow(b)
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