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Abstract 

The transverse vibration of an elastic disc, excited by a preloaded mass-damper-

spring slider dragged around on the disc surface at a constant rotating speed and 

undergoing in-plane stick-slip oscillation due to friction, is studied. As the vertical 

vibration of the slider grows at certain conditions, it can separate from the disc 

and then reattach to the disc.   

Numerical simulation results show that separation and reattachment between the 

slider and the disc could occur in a low speed range well below the critical disc 

speed in the context of a rotating load. Rich nonlinear dynamic behaviour is 

discovered. Time-frequency analysis reveals the time varying properties of this 

system and the contributions of separation and in-plane stick-slip vibration to the 

system frequencies. One major finding is that ignoring separation, as is usually 

done, often leads to very different dynamic behaviour and possibly misleading 

results. 

Keywords: disc, slider, moving load, friction-induced vibration, contact, 

separation, reattachment, non-smooth/nonlinear. 

 

1. Introduction 

Elastic discs are key components in a wide range of mechanical applications such 

as rotors and stators in some engines, brakes and clutches, computer hard disc 

drives, and saws. During the operation of these mechanical devices, dry friction 

plays an important role on the dynamic behaviour. Generally speaking, dry 
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friction dissipates energy and thus reduces vibration, but it can also sustain self-

excited oscillation and even cause vibration to grow under certain conditions. For 

example, brake squeal is a well-known friction-induced vibration phenomenon in 

car brakes. The annoying noise can cause customers to doubt the quality of their 

automobiles. Friction-induced vibration has been generally accepted as the main 

reason for brake squeal [1-4]. Another consequence of friction-induced disc 

vibration is data losses of a computer hard disc drive because of its undesirable 

vibration.  

Several physical mechanisms that attempt to explain unstable friction-induced 

vibration have been proposed in the literature and were reviewed in [5]: the 

negative friction slope [6], sprag-slip instability [7] , mode-coupling instability 

[8], and stick-slip instability [9]. However, there has been no universal acceptance 

of an explanation for brake squeal [10] and the dynamic behaviour of friction-

induced vibration is not fully understood.  

Stick-slip vibration occurs when the static friction coefficient is greater than the 

kinetic friction coefficient [9]. Numerous investigations have focused on dry 

friction-induced stick-slip instability [11-14]. Popp and Stelter [9] studied the 

chaotic behaviour of several simple systems, which provided an insight into stick-

slip instability. In [15], the critical speed for the initiation of stick-slip oscillation 

from pure sliding oscillation was derived by an analytical method. The results 

indicated that stick-slip motion took place in a wide speed range of the moving 

belt. Kinkaid et al. [16] examined the dynamics behaviour of a four-degree-of-

freedom model with friction force in two orthogonal directions at the contact 

interface. Since the friction in [16] followed the Amontons-Coulomb’s law of 

friction, a new mechanism due to the combination of the stick-slip instability in 

both directions was presented. Stelter [17] investigated the nonlinear stick-slip 

behaviour of a cantilever beam excited by dry friction via numerical analyses and 

experiments. In [18], the influences of the non-smooth Coulomb’s law of friction 

on the stability of the self-excited vibration of a one-degree-of-freedom model 

with negative damping were studied. Pascal [19] explored the sticking and non-

sticking orbits of a two-degree-of-freedom model with dry friction under 

harmonic excitation. Feeny et al. [20] presented a very interesting review of stick-

slip vibration.  
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Research on the vibration of an elastic disc excited by a rotating slider system has 

been reported in [21-25]. Mottershead [21] reviewed vibration of stationary and 

rotating discs under various loads, including friction. In [26], parametric 

resonances in a disc with a rotating mass-spring-damper system were studied in 

the subcritical speed range, in which friction force was treated as a follower force. 

Ouyang et al. [23] examined the transverse instability of an elastic disc under the 

action of a rotating friction slider with stick-slip vibration. The influence of 

system parameters on the disc’s transverse vibration and the slider’s horizontal 

stick-slip vibration was investigated through numerical simulations. In a later 

paper [27], a model consisting of an elastic disc with two rotating oscillators 

acting on each side of the disc was developed. In that model, a bending couple 

was produced by the unbalanced friction forces on the lower and upper surfaces of 

the disc. The instability of the disc due to the friction couple was studied. The 

rotating speed of the mass-spring-damper slider system studied in these papers is 

in the subcritical range. 

Other work on friction-induced vibration in discs was reported in [28-34]. 

Spelsberg-Korspeter et al. [29] proposed a new model containing a rotating 

Kirchhoff plate and an idealised elastic pad, which was in friction contact with the 

rotating plate. In that paper, both the in-plane and bending vibration of the rotating 

plate due to distributed friction forces were investigated. In [32], the wave pattern 

and the limit cycle of the stick-slip motion of a rotating disc, which was in the 

frictional contact with a pad under uniform pressure, in a simplified brake system 

were analysed.  

Loss of contact at the friction interface of the disc has been neglected in most of 

the studies mentioned above. Sinou [33] investigated the transient and stationary 

dynamics of a nonlinear automotive disc brake model due to friction. He showed 

that more unstable modes took part in the transient vibration because of the 

nonlinearity and loss of contact at the friction surface. However, the specific roles 

of separation and its importance to the friction-induced vibration have not been 

studied. The main purpose of the current paper is to investigate the friction-

induced transverse vibration of a disc subjected to a rotating slider undergoing 

vertical vibration and in-plane stick-slip vibration.  
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In the present paper, a model containing an elastic disc in friction contact with a 

rotating oscillator is developed. Stick-slip motion of the slider takes place on the 

disc surface due to friction governed by the Coulomb’s law of friction, which 

leads to the coupling between the transverse vibration of the disc and the 

horizontal (in-plane) vibration of the rotating slider. Theoretical formulations of 

the system in stick and slip states are derived, and the conditions for staying in 

individual motion states are discussed in Section 2. In Section 3, the conditions 

and equations of motion for separation and reattachment are given, meanwhile 

impact at the instant of reattachment is considered. In Section 4, dynamic 

behaviour of the model is analysed and numerical results show that separation can 

happen during unstable vibration at a low rotating speed level. Moreover, 

comparisons between the dynamic behaviour of the disc considering and ignoring 

separation indicate the importance of considering separation. Then, the effects of 

key system parameters on the friction-induced vibration of the system are 

examined via a numerical parametric analysis. Finally, the evolutions of the 

frequencies of the system with time are studied through the short time Fourier 

transform that reveals the time varying nature of the whole system due to the 

transverse separation-reattachment and in-plane stick-slip events. 

2. Disc model and theoretical development 

Fig. 1 presents the mechanical model studied in this paper. The system contains an 

elastic annular disc, which is clamped at its inner radius a and free at its outer 

radius b, and a slider system in friction contact with the disc. The annular disc is a 

Kirchhoff plate which exhibits only transverse motion. The mass (slider) has a 

vertical branch and a horizontal (in-plane) branch, each having a spring and a 

damper in parallel. A vertical displacement Δ is applied on the top of the vertical 

branch and is kept constant throughout the subsequent vibration, so that a vertical 

pre-load is generated and is always present. The horizontal branch is connected 

with a drive point that moves around on the surface of the elastic annular plate at a 

constant rotating speed Ω. In this paper, the Coulomb’s law of friction is used with 

a static friction coefficient 𝜇s and kinetic friction coefficient 𝜇k. The slider is 

capable of stick-slip oscillation in the horizontal direction. Such a system was 

studied in [22] in which loss of contact and subsequent reattachment were 

excluded. 
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Fig.1.The annular plate and slider system in the cylindrical coordinate system (top: view from the side; 

bottom: view from the top) 

 

2.1 In-plane stick-slip motion of the slider 

As the friction coefficient 𝜇s is assumed to be greater than 𝜇k in this work, the 

slider can undergo stick-slip oscillation in the horizontal direction. When the 

slider is sliding, its in-plane equation of motion is expressed in Eq. (1): 

𝑟0(𝑚�̈� + 𝑐p�̇� + 𝑘𝑝𝜓) = 𝜇ksgn(�̇�)𝑃 (1) 

in which 𝜓 denotes the circumferential angular position of the slider relative to 

the drive point and 𝜑 is the absolute circumferential angular position of the 

slider, r0 is the radial position of the slider; 𝑐p is the in-plane damping coefficient 

of the slider, 𝑘p is the in-plane stiffness of the slider, and P is the (total) contact 

force between the disc and the slider. 

The sliding motion can be maintained if the following conditions are satisfied: 

𝑟0|𝑐p�̇� + 𝑘p𝜓| ≥ 𝜇s𝑃 (2) 
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or  

�̇� ≠ 𝛺 (3) 

The relation between the relative motion represented by 𝜓 and absolute motion 

𝜑 is: 

𝜑 = 𝛺𝑡 − 𝜓, �̇� = 𝛺𝑡 − �̇�, �̈� = −�̈� (4) 

where 𝑡 is time. 

Otherwise, the slider sticks to the plate. In this motion phase, the slider’s absolute 

circumferential velocity �̇�  and its acceleration �̈�  equal to zero, and its 

circumferential position is referred to as 𝜑stick. The relative motion of the slider 

is given by Eq. (5): 

𝜓 = 𝛺𝑡 − 𝜑stick (5) 

The condition for the slider staying in the stick phase is: 

𝑟0|𝑐p�̇� + 𝑘p𝜓| < 𝜇s𝑃 (6) 

 

2.2 Transverse vibration of the disc  

The equation of transverse motion of the disc under the action of the moving 

slider is given by Eq. (7): 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗𝛻4�̇� + 𝐷𝛻4𝑤 = −

1

𝑟
𝛿(𝑟 − 𝑟0)𝛿(𝜃 − 𝜑)𝑃 (7) 

where w denotes the transverse displacement of the plate, 𝑟 and  are the radial 

and circumferential coordinates in the cylindrical coordinate system respectively; 

D* is the damping coefficient of the disc, ρ is the mass-density of the disc, 𝐷 is 

the flexural rigidity of the disc; and δ(●) is the Dirac delta function. 

P can be obtained from the equation of vertical motion of slider m: 

𝑃 = 𝑁 +𝑚�̈� + 𝑐�̇� + 𝑘(𝑢 − 𝑢0) (8) 

where 𝑢 and �̇� are the vertical motion and vertical velocity of the slider, 𝑢0 is 

the initial vertical displacement of the slider, c is the damping coefficient and k is 
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the stiffness of the vertical branch of the slider, N is the pre-load as a result of the 

vertical displacement Δ applied. 

In this paper, contact force P is defined as positive when there is contact (so that P 

is a compressive force). Thus the condition for maintaining contact is: 

𝑃 > 0 (9) 

If there is contact between the slider and the plate, the relationship between the 

transverse displacement 𝑤 of the plate and the vertical displacement 𝑢 of the 

slider is [35]: 

𝑢(𝑡) = 𝑤(𝑟0, 𝜑(𝑡), 𝑡) (10) 

and therefore  

�̇� = �̇�
𝜕𝑤

𝜕𝜃
+
𝜕𝑤

𝜕𝑡
 (11) 

�̈� = �̈�
𝜕𝑤

𝜕𝜃
+ �̇�2

𝜕2𝑤

𝜕𝜃2
+ 2�̇�

𝜕2𝑤

𝜕𝜃𝜕𝑡
+
𝜕2𝑤

𝜕𝑡2
 (12) 

By substituting Eqs. (8), and (10) - (12) into Eq. (7), the equation of transverse 

motion of the disc can be derived as: 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗𝛻4�̇� + 𝐷𝛻4𝑤 = −

1

𝑟
𝛿(𝑟 − 𝑟0)𝛿(𝜃 − 𝜑) (𝑁 +𝑚(�̈�

𝜕𝑤

𝜕𝜃
+ �̇�2

𝜕2𝑤

𝜕𝜃2
+

2�̇�
𝜕2𝑤

𝜕𝜃𝜕𝑡
+
𝜕2𝑤

𝜕𝑡2
) + 𝑐 (�̇�

𝜕𝑤

𝜕𝜃
+
𝜕𝑤

𝜕𝑡
) + 𝑘(𝑤 − 𝑤0)) (13) 

where w0 is initial transverse displacement of the disc as a result of applying  to 

the vertical branch of the slider. 

Although Eq. (13) is applicable to both stick and slip motion states, as �̇� and �̈� 

are zero in the stick phase, Eq. (13) is simplified to Eq. (14) which represents the 

equation of motion when the slider sticks to the disc. 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗𝛻4�̇� + 𝐷𝛻4𝑤 = −

1

𝑟
𝛿(𝑟 − 𝑟0)𝛿(𝜃 − 𝜑) (𝑁 +𝑚

𝜕2𝑤

𝜕𝑡2
+ 𝑐

𝜕𝑤

𝜕𝑡
 + 𝑘(𝑤 − 𝑤0))

 (14) 

 

2.3 Coupled equations of motion of the whole system in modal coordinates 



8 

The transverse displacement of the disc can be expressed as an infinite series in 

modal coordinates: 

𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝛹𝑘𝑙(𝑟, 𝜃)𝑞𝑘𝑙(𝑡)
∞
𝑙=−∞

∞
𝑘=0  (15) 

where 𝛹𝑘𝑙(𝑟, 𝜃) is the mode shape of the plate given by Eq. (16): 

𝛹𝑘𝑙(𝑟, 𝜃) =
1

√𝜌ℎ𝑏2
𝑅𝑘𝑙(𝑟)e

i𝑙𝜃 (16) 

in which 𝑅𝑘𝑙(𝑟) is a combination of the Bessel functions and the modified Bessel 

functions. Subscript k denotes the number of nodal circles and l denotes the 

number of nodal diameters; i = √−1. 

The ortho-normality conditions of modal functions are: 

∫ ∫ 𝜌ℎ
2𝜋

0

𝑏

𝑎
�̅�𝑘𝑙𝛹𝑟𝑠𝑟d𝑟d𝜃 = 𝛿𝑘𝑟𝛿𝑙𝑠, ∫ ∫ �̅�𝑘𝑙𝛻

4𝛹𝑟𝑠𝑟d𝑟d𝜃
2𝜋

0

𝑏

𝑎
= 𝛿𝑘𝑟𝛿𝑙𝑠 (17) 

in which �̅�𝑘𝑙 is the complex conjugate of 𝛹𝑘𝑙. 

Then by multiplying �̅�𝑘𝑙 on both sides of Eqs. (13) and (14), then integrating 

them over the whole disc surface, and by using the ortho-normality conditions 

shown in Eq. (17), Eqs. (13) and (14) are rewritten in terms of modal coordinates 

 𝑞𝑘𝑙(𝑡) shown below. 

In the stick phase, the equation of transverse motion of the disc in terms of modal 

coordinates is expressed as:   

�̈�𝑘𝑙 + 2𝜉𝜔𝑘𝑙�̇�𝑘𝑙 +𝜔𝑘𝑙
2 𝑞𝑘𝑙 = −

𝑁 − 𝑘𝑤0

√𝜌ℎ𝑏2
𝑅𝑘𝑙(𝑟0) exp(−i𝑙𝜑) − 

1

𝜌ℎ𝑏2
∑ ∑ 𝑅𝑟𝑠(𝑟0)𝑅𝑘𝑙(𝑟0)exp(i(𝑠 − 𝑙)𝜑)(𝑚�̈�𝑟𝑠 + 𝑐�̇�𝑟𝑠 + 𝑘𝑞𝑟𝑠)

∞
𝑠=−∞

∞
𝑟=0  (18) 

in which  

𝜑 = 𝜑stick (19) 

and the relative motion of the slider in the stick phase has been given by Eq. (6). 

The condition for remaining in stick phase given by Eq. (6) is transformed into 

Eq. (20): 
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𝑟0|𝑐p�̇� + 𝑘p𝜓| < 𝜇s (𝑁 − 𝑘𝑤0 +
1

√𝜌ℎ𝑏2
∑ ∑ 𝑅𝑟𝑠(𝑟0)exp(i𝑠𝜑)(𝑚�̈�𝑟𝑠 + 𝑐�̇�𝑟𝑠 +

∞
𝑠=−∞

∞
𝑟=0

𝑘𝑞𝑟𝑠)) (20) 

During the sliding motion, the equations of transverse motion of the disc and the 

equation of horizontal motion of the slider are given by Eqs. (21) and (22): 

�̈�𝑘𝑙 + 2𝜉𝜔𝑘𝑙�̇�𝑘𝑙 +𝜔𝑘𝑙
2 𝑞𝑘𝑙 =

−
𝑁−𝑘𝑤0

√𝜌ℎ𝑏2
𝑅𝑘𝑙(𝑟0) exp(−i𝑙𝜑) −

1

𝜌ℎ𝑏2
∑ ∑ 𝑅𝑟𝑠(𝑟0)𝑅𝑘𝑙(𝑟0) exp(i(𝑠 − 𝑙)𝜑) {𝑚[�̈�𝑟𝑠 +

∞
𝑠=−∞

∞
𝑟=0

i2𝑠�̇��̇�𝑟𝑠 + (i𝑠�̈� − 𝑠
2�̇�2)𝑞𝑟𝑠] + 𝑐(�̇�𝑟𝑠 + i𝑠�̇�𝑞𝑟𝑠) + 𝑘𝑞𝑟𝑠} (21) 

and 

𝑟0(𝑚�̈� + 𝑐p�̇� + 𝑘p𝜑) =

𝑟0(𝑐pΩ+ 𝑘pΩ𝑡) − 𝜇ksgn(�̇�) (𝑁 − 𝑘𝑤0 +
1

√𝜌ℎ𝑏2
∑ ∑ 𝑅𝑟𝑠(𝑟0)exp(i𝑠𝜑){𝑚[�̈�𝑟𝑠 +

∞
𝑠=−∞

∞
𝑟=0

i2𝑠�̇��̇�𝑟𝑠 + (i𝑠�̈� − 𝑠
2�̇�2)𝑞𝑟𝑠] + 𝑐(�̇�𝑟𝑠 + i𝑠�̇�𝑞𝑟𝑠) + 𝑘𝑞𝑟𝑠}) (22) 

And because of the axial symmetry of the annular disc, the relationships in Eq. 

(23) are satisfied [25]: 

𝑅𝑟,𝑠(𝑟) = 𝑅𝑟,−𝑠(𝑟), 𝜔𝑟,𝑠(𝑟) = 𝜔𝑟,−𝑠(𝑟), 𝑞𝑟,𝑠(𝑡) = �̅�𝑟,−𝑠(𝑡) (23) 

The conditions for staying in the slip phase (Eqs. (2) and (3)) can be expressed in modal 

coordinates as: 

𝑟0|𝑐p�̇� + 𝑘p𝜓| < 𝜇𝑠 (𝑁 − 𝑘𝑤0 +
1

√𝜌ℎ𝑏2
∑ ∑ 𝑅𝑟𝑠(𝑟0)exp(i𝑠𝜑){𝑚[�̈�𝑟𝑠 +

∞
𝑠=−∞

∞
𝑟=0

i2𝑠�̇��̇�𝑟𝑠 + (i𝑠�̈� − 𝑠
2�̇�2)𝑞𝑟𝑠] + 𝑐(�̇�𝑟𝑠 + i𝑠�̇�𝑞𝑟𝑠) + 𝑘𝑞𝑟𝑠}) (24) 

 

3. Separation and reattachment  

In this paper, separation takes place when contact force P(t) drops to zero. During 

the numerical calculations, it is important to monitor P(t) at each time step, 

because if separation happens, a new set of equations of motion of the slider and 

disc needs to be used. When P(t) becomes negative, the bisection method is used 

to find the critical point at which P(t) satisfying |P(t)| ≤ ε, in which ε is a small 

tolerance defined in the Matlab codes. During separation, the contact force is zero 

and the sliding friction force vanishes. 

The transverse motion of the disc and the vertical motion of the slider during 

separation are governed by Eqs. (25) and (26) respectively: 
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𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗𝛻4�̇� + 𝐷𝛻4𝑤 = 0 (25) 

𝑚�̈� + 𝑐�̇� + 𝑘(𝑢 − 𝑢0) + 𝑁 = 0 (26) 

The new equation of horizontal motion of the slider is expressed in Eq. (27): 

𝑚�̈� + 𝑐p�̇� + 𝑘p𝜓 = 0 (27) 

Separation can be maintained when Eq. (28) is satisfied: 

𝑢 >  𝑤 (28) 

After separation, the slider may get into contact with the disc again. Reattachment 

takes place when the displacement of the slider u equals to the displacement w of 

a point on the disc having the same coordinate as the slider. During the very short 

time interval of reattachment, denoted by (𝑡r
−, 𝑡r

+), impact may happen. 𝑡r
− and 

𝑡r
+ are the starting and the ending time moments of the impact. The states of the 

disc and the slider at time 𝑡r
+ are determined based on the momentum theory. The 

procedure for determining the dynamic states immediately after reattachment, 

which was presented in [36] for a moving-mass-on-beam problem, is derived for 

the present problems below. 

For simplification, a simple perfectly plastic impact is assumed, and slider sticks 

onto the disc after the impact. Thus the slider takes the displacement and the 

velocity of the disc at time 𝑡r
+. Suppose the impulse at 𝑡r is p, the equation of 

motion of the disc is: 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗𝛻4�̇� + 𝐷𝛻4𝑤 = −

𝑝

𝑟
𝛿(𝑟 − 𝑟0)𝛿(𝜃 − 𝜑)𝛿(𝑡 − 𝑡r) (29) 

By using the same modal expansion process described in Section 2.3, Eq. (29) can 

be converted to Eq. (30) in modal coordinates: 

�̈�𝑘𝑙 + 2𝜉𝜔𝑘𝑙�̇�𝑘𝑙 +𝜔𝑘𝑙
2 𝑞𝑘𝑙 = −𝑝�̅�𝑘𝑙(𝑟0, 𝜑(𝑡r))𝛿(𝑡 − 𝑡r) (30) 

The velocity jump as a result of the impact can be solved from Eq. (30) and given 

by Eq. (31): 

�̇�𝑘𝑙(𝑡r
+) − �̇�𝑘𝑙(𝑡r

−) = −
𝑝

√𝜌ℎ𝑏2
𝑅𝑘𝑙(𝑟0) exp(−i𝑙𝜑(𝑡r)) (31) 

Similarly, the velocity jump of the slider can be acquired: 
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�̇�(𝑡r
+) − �̇�(𝑡r

−) =
𝑝

𝑚
 (32) 

The combination of Eq. (31) and (32) gives: 

�̇�𝑘𝑙(𝑡r
+) − �̇�𝑘𝑙(𝑡r

−) = −𝑚(�̇�(𝑡r
+) − �̇�(𝑡r

−))�̅�𝑘𝑙(𝑟0, 𝜑(𝑡r)) (33) 

For perfectly plastic impact, the slider takes the displacement and the velocity of 

the disc at time 𝑡r
+. �̇�(𝑡r

+) can be expressed as Eq. (34): 

�̇�(𝑡r
+) = (�̇�

𝜕𝑤

𝜕𝜃
+
𝜕𝑤

𝜕𝑡
) |𝜃=𝜑(𝑡r+) =

∑ ∑ (𝛹𝑘𝑙(𝑟0 , 𝜑(𝑡r
+))𝑞𝑘𝑙̇ (𝑡r

+) + �̇�(𝑡r
+)

𝜕𝛹𝑘𝑙(𝑟0 ,𝜑(𝑡r
+))

𝜕𝜃
𝑞𝑘𝑙(𝑡r

+))∞
𝑙=−∞

∞
𝑘=0  (34) 

Because the transverse displacement is continuous and in-plane motion of the 

slider does not change by the vertical impact, one gets: 

𝑞𝑘𝑙(𝑡r
+) = 𝑞𝑘𝑙(𝑡r) = 𝑞𝑘𝑙(𝑡r

−), 𝜑(𝑡r
+) = 𝜑(𝑡r), �̇�(𝑡r

+) = �̇�(𝑡r) (35) 

By substituting Eq. (34) into (33), and combining Eq. (35), then modal velocity 

�̇�𝑘𝑙 and vertical velocity �̇� at time 𝑡r
+ are derived as: 

�̇�(𝑡r
+) =

∑ ∑ (𝑚�̇�(𝑡r
−)𝛹𝑘𝑙(𝑟0 ,𝜑(𝑡r

+))�̅�𝑘𝑙(𝑟0,𝜑(𝑡r))+𝛹𝑘𝑙(𝑟0 ,𝜑(𝑡r
+))�̇�𝑘𝑙(𝑡r

−)+�̇�(𝑡r
+)
𝜕𝛹𝑘𝑙(𝑟0 ,𝜑(𝑡r

+))

𝜕𝜃
𝑞𝑘𝑙(𝑡r

+))∞
𝑙=−∞

∞
𝑘=0

1+𝑚∑ ∑ (𝛹𝑘𝑙(𝑟0 ,𝜑(𝑡r
+))�̅�𝑘𝑙(𝑟0,𝜑(𝑡r)))

∞
𝑙=−∞

∞
𝑘=0

 (36) 

�̇�𝑘𝑙(𝑡r
+) =

�̇�𝑘𝑙(𝑡r
−) −

𝑚

(

 
 
∑ ∑ (𝛹𝑘𝑙(𝑟0,   𝜑(𝑡r

+))�̇�𝑘𝑙(𝑡r
−)+�̇�(𝑡r

+)
𝜕𝛹𝑘𝑙(𝑟0,   𝜑(𝑡r

+))

𝜕𝜃
𝑞𝑘𝑙(𝑡r

+))∞
𝑙=−∞

∞
𝑘=0 −�̇�(𝑡r

−)

1+𝑚∑ ∑ (𝛹𝑘𝑙(𝑟0,   𝜑(𝑡r
+))�̅�𝑘𝑙(𝑟0,   𝜑(𝑡r)))

∞
𝑙=−∞

∞
𝑘=0

)

 
 
�̅�𝑘𝑙(𝑟0, 𝜑(𝑡r)) (37) 

 

4. Numerical study  

As the state of the system switches between stick and slip phases, and between 

separation and contact phases, the dynamic behaviour of the system needs to be 

obtained by solving three different sets of governing equations, which brings 

about some difficulties in the numerical computations. In this paper, Runge-Kutta 

method appropriate for the second-order differential equations [37] is used to 

solve this non-smooth dynamic problem. The states of the disc and the slider 

during vibration, including the contact force, the absolute circumferential speed of 
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the slider and the force in the horizontal spring and damper, are monitored at each 

time step. If the results at the end of a time step do not satisfy the conditions for 

the system to stay in the same motion phase as at the start of the time step, then 

the bisection method is used to find the critical point where the dynamics switches 

from one phase to another phase. After getting the critical point, the current set of 

equations of motion changes to another set. Rich dynamic behaviour, some of 

which has not been seen in the literature, is found. Due to the limited space, 

however, only some distinct and interesting results are presented in this paper. The 

basic parameter values used in the numerical examples are listed in Table 1. 

Table 1. The values of system parameters 

a b r0 h E ν D
*
 

0.044 m 0.12 m 0.1 m 0.002 m 150 GPa 0.211 10
-5 

N m s 

𝜇s 𝜇k k kp m ρ c cp 

0.4 0.24 5×10
4
 

N/m 

2×10
4
 

N/m 

0.1 kg 7200 

kg/m
3
 

0 0 

To avoid expensive computations, truncated modal series of the disc’s 

displacement is used in this paper. The first five distinct natural frequencies are 

obtained: 1491.92, 1516.76, 1823.88, 2774.19 and 4383.04 rad/s, which are 

237.45, 241.40, 290.28, 441.53, and 697.58 in Hz respectively. Except for the zero 

nodal circle mode (indices k=0 and l=0) which is a single mode, all other 

frequencies each has two natural (nodal diameter) modes. In order to obtain more 

dynamic information, long time calculations are carried out. It is found that nine 

disc modes are good enough since more modes do not lead to noticeable change in 

vibration behaviour. 

4.1 Separation during vibration 

Firstly, the occurrence of separation is illustrated by a numerical example. The 

time response of the contact force and transverse vibration of the disc are shown 

in Figs. 2-3. In this example, the rotating speed of the driving point is Ω=20 rad/s, 
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and the pre-load is N=200N. A long time calculation is run. Fig. 2 (a) shows the 

time response of the contact force during the entire calculation time. Although 

details of the vibration cannot be observed easily from Fig. 2 (a), it can be 

observed that the oscillating range of the contact force grows, and the contact 

force can drop to zero, which means that separation can occur during the 

vibration. Then for a clearer observation, the zoom-in view of Fig. 2 (a) within a 

short time interval is given in Fig. 2 (b). It shows that when the contact force 

decreases to zero, separation takes place, then contact force remains zero during 

separation. Moreover, multiple separation events can happen. The results of 

transverse vibration of the disc and the vertical vibration of the slider during one 

full event of the separation and reattachment process are shown in Fig. 3. As 

shown in Fig. 3, separation happens while the disc moves upward, therefore the 

growing vibration of the disc is bounded due to loss of contact. It shows that the 

duration of the separation is very short, which can be explained as follows: the 

pre-load acts on the slider all the time even during separation, so the slider quickly 

gets into contact with the disc again under these parameter values. 

  

(a)In the entire time duration (b)Its zoom-in plot during t=[602.115, 602.15] s 

Fig. 2. Time response of the contact force when N=200 N and Ω=20 rad/s  
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Fig. 3. The enlarged time response of the transverse displacement of the disc and the vertical displacement of 

the slider 

Secondly, the influences of the separation on the in-plane vibration of the slider 

and the transverse vibration of the disc are studied by comparing the results of the 

system with considering and ignoring separation. The transverse vibration of the 

disc is observed at a fixed point on the disc at r=r0 and φ=1.Three sets of 

examples, at different values of pre-load N and driving speed Ω, are illustrated in 

Figs. 4-9 in terms of Poincare maps in order to reveal the dynamic behaviour. For 

clear observation, the results of the entire simulated time duration are divided and 

shown in several stages. As to the results of ignoring separation, shown in Figs. 4, 

6 and 8, the entire time interval is divided into two stages. Blue crosses denote the 

motion of the first half of the total computing time, and the green dots denote the 

motions of the next half. In the results with separation, shown in Figs. 5, 7 and 9, 

blue crosses denote the motion before the first separation which is called ‘In 

contact-period1’; green dots denote the motion that occurs when contact reoccurs 

and is maintained after the first separation, which is called ‘In contact-period2’; 

and red triangles denote the motion during separation. 

It can be seen from the Poincare maps (the sampling rate is the driving point’s 

speed) in these comparison cases shown in Figs. 4 and 5, Figs. 6 and 7, and Figs. 

8 and 9 that ignoring and considering separation result indifferent dynamic 

behaviour. In the Poincare maps of the in-plane motion of the slider, the dots or 

crosses forming the horizontal straight line represent motion in the stick phase and 

those dots and crosses away from this line represent motion in the slip phase. In 

all the cases when the contact is assumed to be maintained during vibration, 

shown in Figs. 4, 6 and 8, the trajectories of horizontal stick-slip motion exhibit 
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transient behaviour initially, but finally settle down to a steady state of stick and 

slip motion(given by the green dots). The stick and slip motion can be always 

maintained during the steady state, which are not affected by the values of the pre-

load and the rotating speed. However, when separation is considered, shown in 

Figs. 5, 7, 9, separation changes the patterns of the trajectories formed by the 

Poincare points, which indicates that a variety of complex dynamic behaviour of 

the system can be produced, depending on system parameters like the pre-load 

and the rotating speed. With respect to the transverse vibration of the disc, more 

frequencies actually join in during the steady state when separation is considered, 

as there are more points on the Poincare plane in Figs. 5 and 7 (considering 

separation) compared with Figs. 4 and 6 (ignoring separation). As to the 

horizontal vibration of the slider, it is periodic at the steady state (in stage 2) when 

separation is ignored (Figs. 4 and 6), as confirmed by their phase portraits. 

However, it is quasi-periodic at steady state (in contact-period 2 and during 

separation) in Figs. 5 and 7 as new non-commensurate frequencies take part when 

separation is considered, which is also confirmed by their phase portraits. The 

phase portraits of the transverse vibration of the disc in Figs. 4 and 5 are shown in 

the Appendix. Further investigations on the vibration frequencies of the system 

are carried out in Section 4.4. 

  

Fig.4. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the disc 

(right) when separation is ignored（N=200 N, Ω=20 rad/s） 
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Fig.5. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the disc 

(right) when separation is considered（N=200 N, Ω=20 rad/s） 

 

  

Fig.6. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the disc 

(right) when separation is ignored（N=300 N, Ω=20 rad/s） 

  

Fig.7. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the disc 

(right) when separation is considered (N=300, Ω=20 rad/s) 
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Fig. 8. Poincare maps of the relative horizontal motion of the slider (left) and the vertical motion of the disc 

(right) when separation is ignored（N=200 N, Ω=50 rad/s） 

 

  

Fig.9.Poincare maps of the relative horizontal motion of the slider (left) and the vertical motion of the disc 

(right) when separation is considered（N=200 N, Ω=50 rad/s） 

Additionally, the vibration ranges of the disc when considering separation are 

much smaller than those when ignoring separation, shown by Fig. 10. The reason 

for this can be explained. Because of separation, the disc cannot get further 

excitation from the slider (note that the rotating slider is the source of excitation), 

unlike the cases when contact is assumed to be always maintained even though 

the contact force has dropped to a negative value. Therefore, separation serves to 

contain the vibration in a smaller range of magnitude. 
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(a)Separation is ignored (b)Separation is considered 

Fig.10. The time history of the transverse vibration of the disc for N=200 N and Ω=20 rad/s. 

Consequently, the necessity of considering separation in friction-induced vibration 

of this system is obvious. As this paper focuses on the dynamic behaviour of 

friction-induced vibration with separation, more numerical results with separation 

for various parameter values are provided in Section 4.3. 

4.2 The critical speed for separation 

Firstly, two numerical examples are shown to give a brief description of the 

critical rotating speed Ωc for separation. Figs. 11-14 illustrate the dynamic 

responses of the system in cases with different but close driving rotating speeds: 

Ω=15 rad/s and Ω=15.1 rad/s. Fig.11 clearly indicates that separation does not 

happen at Ω=15 rad/s, and the disc vibration does not grow and only oscillates in a 

small constant range. However, at a slightly higher rotating speed of Ω=15.1 rad/s, 

the oscillation range of the contact force grows, as shown in Fig. 13 (a), and then 

several separation events take place. In this case, the disc vibrates in a larger range 

in Fig. 13 (b). The Poincare maps of these two cases shown in Figs. 12 and 14 

indicate that the dynamic behaviour of the system can be very different when the 

system becomes unstable. This rotating speed is referred to as the critical speed 

for separation. 
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(a) Time history of the contact force (b)Time history of the disc’s transverse vibration  

Fig.11.Transient responses (N=385 N, Ω=15rad/s) 

 

  

Fig.12.Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(N=385 N, Ω=15rad/s)  

 

  

(a) Time history of the contact force (b)Time history of the disc’s transverse vibration 

Fig.13.Transient responses(N=385 N, Ω=15.1rad/s)  
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Fig.14.Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(N=385 N, Ω=15.1rad/s)  

In order to study the critical speed range of this system, numerical calculations for 

various values of initial pre-load and rotating speed are carried out. Fig. 15 shows 

the changes of critical rotating speed Ωc for the occurrence of separation with pre-

load N. When the rotating speed is smaller than the critical speed, the contact is 

always maintained during vibration. Otherwise, when the rotating speed is greater 

than Ωc, the slider can lose contact with the disc along with growing vibration. It 

can be seen that the critical speed for the loss of contact of this system can be low, 

which is much lower than the conventional critical speed (defined as the speed 

value of a rotating constant load which causes the resonance of the disc). 

Moreover, with the initial increase of pre-load N, the system becomes unstable 

and separation occurs at a lower rotating speed; from a certain value of N, with 

further increase of N, the system becomes unstable and separation takes place at a 

higher rotating speed.  

 

Fig.15. The critical speed for separation  

4.3Influencesof significant parameters 
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To reveal various dynamic behaviour of the system when separation is considered, 

parametric studies are carried out. In this section, the effects of the pre-load N are 

examined firstly. The results of three pre-load cases (N=385, 50 and 200N) are 

illustrated in Fig. 12, Figs. 16 and 17 respectively. The rotating speed in these 

examples is fixed at 15 rad/s. When the initial pre-load is small (N=50 N), the disc 

vibrates periodically at a small amplitude and there is no separation during the 

vibration; the in-plane vibration is periodic as well, shown in Fig 16. At a larger 

pre-load (N =200 N), both of the slider’s in-plane vibration and disc’s transverse 

vibration become unstable and separation occurs, as shown in Fig. 17. As to the 

in-plane motion of the slider, the stick phase gets longer because of the larger pre-

load, but then due to separation, the stick-slip vibration becomes very 

complicated. However, with further increase of the normal force (N=385 N), the 

vibration of the system becomes stable again and no separation occurs, as shown 

in Fig. 12 in Section 4.2. Therefore, pre-load N plays a complex role in the 

stability of this system and does not have a monotonous effect on the friction-

induced disc vibration. Initial increase of N destabilises the system, while further 

increase of N leads to a stable system.  

Although the specific reasons for its complex role in this model is difficult to 

identify because of coupling of non-smooth in-plan vibration of the slider with 

out-of-plane vibration of the slider, two extreme situations can shed some light 

onto this matter. One extreme situation is: when N is zero, there is no friction 

force, and thus the slider undergoes pure sliding motion in the horizontal 

direction; as the running speed in this case (Ω =15 rad/s) is far below the critical 

speed (Ω =608 rad/s) for the unstable vibration of the disc in the moving load 

problem, the system is stable when the normal force is zero at low rotating speed. 

The other extreme situation is: when N is extremely large, the slider can hardly 

move, which means that the slider sticks to the disc within the time duration of 

observation and the system is also stable. Between the two extreme situations, 

horizontal stick-slip motion appears and is affected by the value of the normal 

force N; as the horizontal motion of the slider is coupled with the vertical motion 

of the slider and the transverse motion of the disc, the whole system dynamics is 

affected by the normal force in a complicated way. 
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Fig.16. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(N=50N, Ω =15 rad/s) 

 

  

Fig.17. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(N=200 N, Ω =15 rad/s) 

Secondly, the effects of damping, including the disc’s damping, damping of the 

horizontal and vertical dampers, are examined. When pre-load N is at 200 N and 

the disc’s damping D* is 10
-5

, critical rotating speed Ωc for separation is 12.6 

rad/s. When there is no disc’s damping (D*=0), the vibration of the system 

becomes unstable and separation occurs at a lower rotating speed shown in Fig. 

18, Ω=10 rad/s, at N=200 N. The trajectory of the in-plane motion of the slider 

changes after the first separation, which is shown by the green dots in the left 

Poincare map of Fig. 18. Additionally, when D* is at 2×10
-5

, both the horizontal 

vibration of the slider and the transverse vibration of the disc become stable.  
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Fig. 18. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(D*=0 , N=200 N, Ω =10 rad/s) 

It is found that the influences of the in-plane damping on the transverse vibration 

of the disc are more complicated, as contact force P is changing during the 

vibration. The in-plane damping can destabilise the system, in a large pre-load 

range, shown in Fig. 19, in comparison with the vibration of this system when the 

in-plane damping is zero, shown in Fig. 12, which indicates that the system is 

stable at cp=0, N=385 N and Ω =15 rad/s. However, when there is in-plane 

damping (cp=0.5), the vibration of the disc increases and it becomes unstable, and 

loss of contact happens as a consequence of the increase of vibration. From the 

Poincare map in Fig. 19, after separation both of the slider’s in-plane stick-slip 

motion and disc’s transverse vibration are unstable periodic motion.  

  

Fig. 19. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(cp=0.5, N=385 N, Ω =15 rad/s) 

The influences of the vertical damping coefficient are also studied. When there is 

vertical damping, as shown in Fig. 20, the slider’s in-plane motion is a periodic 

stable stick-slip motion; and the vibration of the disc is also stable and it oscillates 
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within a small range around its static equilibrium position. Therefore, vertical 

damping coefficient appears as a stabilising factor to the system. 

  

Fig.20. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(c=0.5, N=200 N, Ω =20 rad/s) 

Then the effects of the stiffness of the disc, and the stiffness of the vertical and 

horizontal springs on the vibration of the system when separation is considered 

are studied. Increasing the elasticity of the disc and the stiffness of the vertical 

spring stabilises the unstable transverse vibration of the disc. On the other hand, 

decreasing the value of the elasticity and the vertical stiffness makes the vibration 

more unstable. At sufficiently small value of E, the transverse vibration of the disc 

seems quasi-periodic with irregular Poincare points, but separation does not 

happen during the vibration, shown in Fig. 21 (E=100GPa, Ω=11 rad/s) in which 

blue crosses denote the motions of the first half of the total computing time (stage 

1), and the green dots denote the motions of the last half (stage 2). 

  

Fig. 21. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(E=100GPa, Ω =11 rad/s) 
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When k becomes smaller, the system becomes unstable sooner and separation 

takes place more easily. The system becomes stable when k is large enough (i.e. 

k=2×10
5
 N/m).  

The role of the in-plane stiffness of the slider on the vibration of the system is 

complex. When kp=2×10
3
 N/m, the vibration of the disc initially vibrates quasi-

periodically. However, after separation occurs, the points, shown by green dots, on 

the Poincare section of the disc wander within a certain range and become 

unpredictable, shown in Fig. 22. When kp=2×10
4
 N/m, the unstable vibration 

grows faster and separation takes place earlier. However, a large enough kp (2×10
5
 

N/m) then appears to stabilise the system. 

  

Fig. 22. Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the 

disc (right)(kp=2×103 N/m, N=300 N, Ω =50 rad/s) 

Finally, the value of the slider’s mass is found to affect the separation location in 

the vertical direction. In all the results shown above, separation happens while the 

disc is moving upward. In Fig. 23, however, the position of separation is changed 

if the mass is small (m=0.01). In this example, separation happens when the mass 

reaches its lowest vertical position. This information is not available from 

Poincare maps and can only be obtained from the time response of vibration. 
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Fig. 23. The enlarged time response of the transverse displacement of the disc  

(m=0.01, N=200 N, Ω =20 rad/s) 

Therefore, the vibration of the disc induced by the frictional moving slider is quite 

complex. Unstable vibration of the disc happens in a low speed range, and 

separation takes place along with the growing vibration of the disc. After 

separation, the transverse vibration of the disc becomes bounded; the horizontal 

slider exhibits pure slip vibration and the stick phase disappears under some 

parameter values. The different dynamic behaviour between the situations when 

separation is considered and when separation is ignored can be seen. Numerical 

results through a parametric analysis reveal the roles of key system parameters on 

the vibration of the system. It is notable that small and large values of the pre-load 

appear as stabilising factors to the system, but the intermediate values are 

destabilising. However, when the normal pre-load is large enough, the in-plane 

damping then appears as a destabilising factor to the system. 

4.4Nonstationary Dynamic Behaviour 

As the system actually experiences distinct motion states during vibration, the 

vibration frequencies in these motion states can be different, and thus the system 

is nonstationary and FFT analysis is no longer suitable. In this sub-section, time-

frequency analysis through the short time Fourier transform is carried out to 

explore evolution of the vibration frequency of the system studied in this paper. 

In the following, the time-frequency analysis of three examples is carried out. The 

results of the first example are shown in Figs. 24 and 25. The time history of the 
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contact force, shown in Fig. 13 in Section 4.2, indicates that separation starts to 

take place at 54.5s, followed by events of repeated reattachment and separation. 

From Fig. 24, it can be seen that there are roughly three kinds of behaviour during 

transverse vibration of the disc. Its vibration frequency during four time segments, 

marked as (a), (b), (c), and (d) in Fig. 24, are calculated, and the corresponding 

time-frequency results are shown in Fig. 25 (a), (b), (c), and (d) respectively.  

 

Fig. 24.The time history of the transverse displacement of the disc (E=150Gpa, N=385 N, Ω=15.1 rad/s) 

  

(a) t=[0, 10] s (b) t=[38, 48] s 
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(c)t=[50, 60] s (d) t=[100, 110] s 

Fig. 25 Time-frequency spectrum of the transverse vibration of the disc  

(E=150Gpa, N=385 N, Ω=15.1 rad/s) 

Firstly, in the starting stage of the transient vibration, the vibration amplitude 

grows, and the main frequencies of the unstable modes are indicated in Fig. 25 

(a). It can be seen that there are several frequencies involved in the vibration. The 

values of the main frequencies, shown in the time-frequency power spectrum, 

making significant contributions to the vibration during t = [0, 10] s are listed in 

Table 2. 

Table 2. Significant frequencies (Hz)found through the time-frequency analysis 

fΩ fh1 fh2 f1 f2 f3 f4 f5 f6 

2.4 65.5 70 133 138 200 206 269 273 

Among these frequencies, fΩ is the predominant frequency, which comes from the 

rotating driving point, and its superharmonic components 2fΩ  and 3fΩ also take 

part in the vibration. Additionally, frequencies fh1 and fh2 are associated with the in-

plane vibration of the slider whose frequency is 70Hz and splits into the two 

frequencies due to the rotation of the slider.  

The main frequencies for the transverse vibration of the disc when the slider and 

the driving point are not rotating are calculated by solving the corresponding 

eigenvalues. The natural frequencies of the first nine modes are 850.86, 1492.55, 

1516.76, 1814.90, 1823.88, 2758.02, 2774.19, 4360.49, and 4383.04 rad/s, which 

are 135.42, 237.55, 241.40, 288.85, 290.28, 441.53, 438.95, 693.99, and 697.58 in 

Hz respectively. It is notable that any pair of natural frequencies corresponding to 

modes of the same number of nodal diameters of this disc with a stationary slider 

are not at the same values as the natural frequencies of the corresponding modes 

of the symmetrical disc given at the beginning of Section 4.  

f1 to f6 in Fig. 25 and in Table 2 are close to but not the same as some natural 

frequencies of the static system (135.42, 237.55 and 288.85 Hz). This is due to the 

effect of the in-plane rotation of the slider. 
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Fig. 25 (b) indicates that, in addition to the main frequencies (fΩ, fh1, fh2, and f1 to 

f6), new vibration frequencies emerge during the transient vibration of the system 

due to unstable horizontal vibration of the slider, which are shifted from the main 

frequencies (fΩ, fh1, fh2, and f1 to f6). Fig. 25 (c) shows that, when separation takes 

place at 54.5s, the frequency spectrum has a sudden change. Higher frequencies 

show up after separation. At the same time, the fuzzy frequencies (in Figs. 25 (b) 

and (c)) in the midst of the main frequencies disappear from Fig. 25 (d), which 

can be explained by the horizontal responses of the slider shown in Fig. 26. Fig. 

26 (a) is the time history of 𝜓 which is very complex as the switching between 

stick and slip motion relies on not only the difference between the static and 

kinetic friction coefficients but also the oscillating contact force. Fig. 26 (b) gives 

the frequency spectrum during t = [50, 60] s which shows that the obviously 

irregular shifting between the horizontal vibration frequency of the slider fh and its 

superharmonics (nfh, n=1, 2, 3…) disappear after separation, and the horizontal 

stick-slip motion becomes periodic which can be also seen from the Poincare map 

shown in Fig. 14 in Section 4.2. When the transverse disc vibration becomes 

steady long after the first separation event, it possesses constant values of 

frequencies (including the fundamental frequency and higher frequencies) due to 

separation, as shown in Fig. 25 (d).  

  

(a) The time history of 𝜓 (b)Its time-frequency spectrum for t= [50, 60]s 

Fig.26.The horizontal response of the slider (E=150Gpa, N=385 N, Ω=15.1 rad/s) 

The second example is computed using the following parameter values: E=150 

GPa, N=300 N, Ω=20 rad/s. Fig. 27 (a) illustrates the time history of the 

transverse displacement of the disc. Firstly, the vibration grows gradually, then 

increases sharply for a while before the growth rate drops, and finally becomes 
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bounded due to separation which firstly occurs around 149.5 s. A time-frequency 

analysis is conducted within the time interval of t = [143, 153] s, since this time 

interval is very special which covers different stages of the vibration (transient 

vibration, transition to separation and steady-state vibration after separation). Fig. 

27 (b) shows that the vibration of the disc is mainly governed by its natural 

frequencies, meanwhile a number of fuzzy frequencies (shown by the dense red 

lines between the main system frequencies) start to make contributions to unstable 

transient vibration. After the transition point to separation, higher disc frequencies 

arise. On the other hand, the fuzzy frequencies maintain their contributions to the 

vibration, in contrast they disappear in the first example, which can be explained 

by the in-plane time-frequency results of the slider shown in Fig. 28 (b). Fig. 28 

(b) is obtained during the same time interval t = [143, 153] s, and the time history 

of 𝜓 is illustrated in Fig. 28 (a). From the time-frequency results, it can be seen, 

in Fig. 28 (b), that the in-plane stick-slip vibration of the slider in steady state is 

quasi-periodic.  

 
 

(a) The time history of the transverse displacement  (b) Its time-frequency spectrum for t= [143, 153] s 

Fig.27.The transient response of the disc (E=150Gpa, N=300 N, Ω=20 rad/s) 

 

  

(a) The time history of 𝜓 (b) Its time-frequency spectrum for t= [143, 153] s 
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Fig. 28. The horizontal response of the slider (E=150Gpa, N=300 N, Ω=20 rad/s) 

The dynamic response of the third example is shown in Fig. 29. The parameter 

values used are: E=100 GPa, N=200 N, Ω=11 rad/s. In this case, there is no 

separation during the vibration which has been illustrated in Fig. 21. Although the 

vibration magnitude of the disc, in Fig. 29 (a), is bounded due to the nonlinearity 

of the in-plane stick-slip vibration, how the limit cycle of the vibration evolving to 

is different from those cases in which the transverse disc vibration is non-smooth 

because of repeated events of separation and reattachment. Consequently, the 

time-frequency response in this case does not show any high frequency arising 

above the maximum natural frequency (4383.04 rad/s) of the system with slider 

being stationary, during steady-state vibration, after the transient phase of 

vibration (marked by t in Fig. 29(a)). The vibration of the disc in this case is 

quite erratic as its frequency spectrum shows several prominent incommensurate 

frequencies and many low-amplitude frequencies emerge, vanish or shift with 

time.  

  

(a) The time history of the transverse displacement (b) Its time-frequency spectrum for t= [465, 475] s 

Fig. 29. transient responses of the disc (E=100GPa, N=200 N, Ω=11 rad/s) 

In conclusion, the time-frequency analysis of all three examples reveals that the 

frequencies of the non-smooth self-excited friction-induced vibration problem 

vary with time in a complicated manner. The power spectrum of system 

frequencies is nonstationary and other frequencies arise and shift between the 

main system frequencies. Higher frequencies can arise due to separation. It also 

shows the importance of considering separation from the point of view of 

evolution of the frequency with time. Moreover, the unstable in-plane stick-slip 
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vibration of the slider which couples with the vertical vibration of the slider can 

make significant contributions to the frequencies of the disc’s transverse vibration.  

Conclusions 

In this paper, the dynamic behaviour of a disc modelled as a thin elastic annular 

plate excited by a rotating oscillator which has a vertical branch normal to the disc 

and a horizontal branch in the plane of the disc is studied. Because of the non-

smooth nature of friction between the slider and the disc, the slider undergoes 

stick-slip vibration in the circumferential direction on the disc. The variable in-

plane location of the slider leads to a varying contact force at the interface 

between the disc and the slider, which affects the transverse vibration of the disc, 

and makes the in-plane stick-slip vibration and vertical vibration of the slider 

system coupled and complicated. During vibration the slider can lose contact 

(separation) with the disc and then reattach to the disc again. 

The equations of motion of this discrete-continuous system at three motion states 

(stick motion, slip motion and separation) are derived. The conditions for staying 

in each state are established, and impact at the moment of the reattachment is 

formulated. Then, numerical study is carried out at various values of the key 

parameters. The following conclusions can be drawn: 

(1) Separation can happen during the unstable vibration of the system caused by 

friction. The time duration of separation is very short. Reattachment naturally 

occurs following separation. 

(2) The system become unstable and separation occurs in low speed range of the 

driving point, which is much smaller than the critical speed of the disc in the 

corresponding moving load problem.  

(3) When separation is considered, the disc’s transverse vibration becomes 

bounded within a smaller range; and the in-plane motion of the slider may 

change to a trajectory which is totally different from its trajectory before 

separation, and the stick phase disappears under certain parameter values. On 

the other hand, if contact is assumed to be maintained during vibration (in 

cases of ignoring separation), both the in-plane stick-slip vibration of the 

slider and transverse vibration of the disc can be very different from those 

cases of considering separation.  
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(4) More interesting dynamic behaviour of the disc and the slider when separation 

is considered is revealed through a parametric analysis. The relationship 

between the stability of the system, and the pre-load, in-pane damping and in-

plane stiffness is not monotonous. A pre-load appears destabilising within a 

certain range but stabilising within another range. Disc damping and vertical 

damping of the slider stabilise the friction-induced disc vibration, while the in-

plane damping of the slider destabilises the vibration at some large pre-load 

values. Within the range of the stiffness values of the vertical spring of the 

slider considered in this paper, the stiffness stabilises the system when it is 

large enough. Larger in-plane stiffness makes the vibration grow faster and 

separation occurs earlier, but it becomes a stabilising factor when it reaches a 

large enough value. Additionally, separation may not happen when the disc is 

soft enough. Where separation occurs during disc vibration can be affected by 

the mass of the slider.  

(5) The variation of the frequencies of the system over time is illustrated through 

a time-frequency analysis. The frequency of the rotating speed, the natural 

frequencies of the disc and the horizontal and vertical branches of the slider all 

make contributions to the frequencies of the whole system. Frequencies higher 

than the main frequencies of the disc arise due to separation. The in-plane 

stick-slip vibration results in complex evolution of the frequencies of the 

transverse disc vibration.  

The most important conclusion of this paper is that separation should be taken 

into account in many friction-induced vibration problems. 
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Appendix 

 

Fig. A1 The phase portrait of the relative horizontal motion of the slider when separation is ignored 

（N=200 N, Ω=20 rad/s） 

 

Fig. A2 The phase portrait of the relative horizontal motion of the slider when separation is considered 

（N=200 N, Ω=20 rad/s） 

Figs. A1 and A2 show the phase portraits of the relative horizontal motion of the 

slider under the same operation conditions when separation is ignored and 

considered respectively, which serve as supplements to the discussion on the 

results presented in Figs. 4 and 5.  

Fig. A1 shows that the horizontal motion of the slider lies on a regular stick-slip 

limit cycle, during the steady state, when separation is ignored, which is periodic 

vibration. However, the actual horizontal vibration, when separation is considered, 

is quasi-periodic, as the regular stick-slip limit cycle breaks out, and an intricate 

phase portrait can be observed in Fig. A2.  
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