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Abstract 11 

 12 

As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern 13 

Ocean it plays an important role in the ocean biological carbon pump. We deploy a set of focussed 14 

sensitivity experiments with a state of the art global model of the ocean to examine the processes 15 

that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing 16 

the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES 17 

section data, we find that stabilisation of hydrothermal iron is important in some, but not all regions. 18 

The impact on the Southern Ocean biological carbon pump is dominated by poorly explored 19 

southern ridge systems, highlighting the need for future exploration in this region. We find inter 20 

basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the 21 

Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation 22 

kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon 23 

pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better 24 

constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron 25 

and carbon.  26 

 27 

1. Introduction 28 

 29 

Via the process known as the biological pump, carbon fixation by marine phytoplankton and 30 

subsequent sinking of organic carbon to depth is able to affect the global carbon cycle and 31 

atmospheric CO2 concentrations [1]. As such, variations in the availability of the resources that 32 

regulate phytoplankton growth and the sinking (or export) of organic carbon will have important 33 

ramifications for the carbon cycle. An area of particular focus in this regard is the Southern Ocean, 34 

where due to the formation of deep water, modifications to the biological pump have a particularly 35 

strong impact on atmospheric CO2 [2]. Until the mid 1980s, our conceptual view of resource 36 

limitation in the ocean focussed on nitrogen and phosphorous, but at this time the emergence of 37 

new contamination-free measurement methods emphasised an important role for the trace metal 38 

iron (Fe) [3-5]. Following a spate of in situ experiments, the central role of iron in regulating 39 

phytoplankton activity and the biological pump in the Southern Ocean is now well established [6-8]. 40 

 41 

A focus of research in the ocean iron cycle has been the evaluation of the strength of different iron 42 

sources. Until relatively recently, the only significant source of Fe to the open ocean was 43 

considered to be the deposition of Fe-rich mineral dust [9]. Accordingly, variations in the dust 44 

supply of iron during the geologic past are often invoked as drivers of the glacial – interglacial 45 

changes in atmospheric CO2 [10]. However, recent findings are challenging this paradigm and 46 

pointing to the importance of other sources in regulating the global ocean iron-cycle. One such 47 

source is that associated with deep sea hydrothermal vents where the interaction between 48 

seawater and rock at elevated temperatures and pressures produces hydrothermal fluids with 49 

greatly elevated Fe concentrations [11]. These hot Fe-rich fluids rise above the seafloor producing 50 

hydrothermal plumes with Fe concentrations 100s of times greater than background values [12]. 51 

Despite this noted enrichment in Fe, our conceptual view of the impact of hydrothermalism on the 52 

iron cycle was that virtually all of this Fe was precipitated close to the vent sites, with little far field 53 

impact [9, 13, 14]. 54 

 55 

In the past five to ten years, the progress made by the GEOTRACES programme 56 

(www.geotraces.org) has revolutionised our conceptual view of how hydrothermal vents affect the 57 
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oceanic cycling of Fe.  A discrete set of observations finding elevated Fe close to hydrothermal 58 

systems [15] or distal anomalies in Fe linked to the noted hydrothermal tracer 3-Helium (3He) [16] 59 

provided initial indications of the importance of hydrothermal Fe. But it was the first large scale 60 

GEOTRACES sections conducted as part of the international polar year that noted widespread Fe 61 

signals linked to noted hydrothermal sites in the Southern [17] and Arctic [18] Oceans. When a 62 

hydrothermal Fe source was added to an ocean biogeochemical model, it was found to have a 63 

large influence on the interior ocean Fe concentrations and improved the ability of the model to 64 

reproduce Fe observations [19]. Importantly, hydrothermally sourced Fe is ventilated primarily in 65 

the Southern Ocean and so has a direct impact on carbon export in this important region [19].  66 

 67 

An important component of hydrothermal Fe supply concerns the residence time of hydrothermal 68 

Fe, which ultimately drives its ability to influence Southern Ocean carbon export. Follow up work 69 

has confirmed distal Fe signals associated with hydrothermal systems in the Atlantic and Pacific 70 

Oceans, with effort focussing on constraining the gross global hydrothermal Fe flux [20-23]. A 71 

focussed GEOTRACES section that crossed the mid-ocean ridge axis in the south east Pacific 72 

demonstrated an unprecedented propagation of a hydrothermal Fe plume for more than 4,000km 73 

off-axis [24]. Importantly, this study noted quasi-conservative behaviour of dissolved Fe within the 74 

plume, indicating that it must be largely stabilised. When this process was accounted for in a global 75 

biogeochemical model, the impact of hydrothermal Fe on Southern Ocean carbon export doubled 76 

[24].  77 

 78 

In this work we take a state of the art ocean biogeochemistry model that accounts for the ocean 79 

iron-cycle in a relatively complex manner to explore hypotheses regarding the influence of 80 

hydrothermal Fe on Southern Ocean carbon export. We assess the role of gross hydrothermal 81 

fluxes and Fe stabilisation via a suite of GEOTRACES sections, quantify the relative role played by 82 

ridges in different ocean basins, the importance of gross Fe-fluxes and Fe-stabilisation in the 83 

plume, and emphasise the need to place results in the context of ocean ventilation pathways to 84 

assess the ultimate impact on the Southern Ocean carbon cycle. 85 

 86 

2. Methods 87 

 88 

We conducted twelve 500-year simulations with the PISCES model [25] as described in Resing et 89 

al [24] that are detailed in Table 1. The first four experiments included a control experiment with 90 

the flux of hydrothermal Fe only (CTL), a ten-fold increase in hydrothermal Fe flux (CTL-10), no 91 

hydrothermal Fe-flux (CTL-NOHYD) and an equimolar flux of iron and iron-binding ligands (CTL-L). 92 

We then conducted a set of experiments that aimed to examine the contribution of Fe from ridges 93 

in specific ocean basins. We conducted experiments where hydrothermal Fe flux came only from 94 

ridges south of 40°S, which we name ‘Southern ridges’ (SOC) and a parallel set of experiments 95 

where hydrothermal Fe flux came only from ridges north of 40°S.  Under these scenarios, we then 96 

consider the specific contributions of ridges in the Atlantic (ATL), Pacific (PAC) and Indian (IND) 97 

ocean basins. This definition of the Southern ridges aims to isolate the contribution from the 98 

circum-Antarctic ridge system, but will include a small portion of the most southerly parts of 99 

Atlantic, Pacific and Indian ridges. These four simulations were then repeated with an equimolar 100 

ligand flux from hydrothermal supply (ATL-L, PAC-L, IND-L and SOC-L). We note here that while 101 

the response of the iron cycle is not linear, the mismatch between the total response and the sum 102 

of the individual ridge experiments amounts to 7% and 14% for the runs without and with ligand 103 

stabilisation. 104 

 105 

The PISCES model has a state of the art Fe-cycle that is one of the best in capturing global trends 106 

from the latest Fe datasets [26]. PISCES has Fe sources from dust, sediments, rivers and 107 

hydrothermal vents and employs a dynamic model of ligand cycling that explicitly accounts for 108 

ligand sources and sinks [24, 27]. The lifetime of iron binding ligands is modelled via a ligand 109 

continuum with prescribed minimum and maximum lifetimes of 1 and 1000 years. As an example, 110 

when the ligand concentration is 2 nmol L-1 the lifetime is 20 years, while at 0.4 nmol L-1 the lifetime 111 

is increased to 450 years. Fe is lost via particle scavenging of free Fe, as well as colloidal pumping 112 

/ aggregation with a variable colloidal Fe fraction [24].  Phytoplankton have a flexible requirement 113 
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for Fe and Fe limitation of growth follows a quota model approach where the required demand 114 

varies in response to their growth environment [25].  115 

 116 

3. Results 117 

 118 

3.1 Hydrothermal iron along the GEOTRACES transects 119 

  120 

The GP-16 ran zonally from Ecuador to Tahiti in the southern sub-tropical Pacific (Fig 1a), 121 

documenting a substantial hydrothermal plume that propagated westward for over 4000km [24] 122 

(Fig 1b). As discussed in [24], the model simulation that includes hydrothermal Fe only (Fig 1c) is 123 

not able to capture the spatial extent of the observed Fe plume, even when hydrothermal inputs 124 

are increased ten-fold Fig 1d). A significantly long-lived hydrothermal iron plume is only generated 125 

by the simulation that includes equimolar fluxes of iron and stabilising ligands (Fig 1e).  The model 126 

simulation that eliminates hydrothermal-Fe input mostly fails to reproduce abyssal Fe distributions 127 

(Fig 1f). 128 

 129 

The GA-02 cruise was a meridional section running down the entire Atlantic basin (Fig 2a). The 130 

section generated information on a number of Fe features, including a signal of a remote 131 

hydrothermal plume at around 2-3.5km water depth centred on ~5S [28] (Fig 2b).  Neither the 132 

hydrothermal-Fe model simulation, nor the simulation with ten-fold more hydrothermal Fe is able to 133 

reproduce this feature (Fig2 c and d). Only the simulation that includes hydrothermal-Fe 134 

stabilisation is able to generate a broadly similar feature, albeit smaller in magnitude (Fig 2e). The 135 

simulation without hydrothermal Fe emphasises the hydrothermal origin of this feature (Fig 2f). 136 

 137 

The GA-03 cruise made a zonal transect across the North Atlantic sub-tropical gyre (Fig 3a) and 138 

observed a hydrothermal signal from the TAG site over the mid-Atlantic ridge (MAR) [20] (Fig 3b). 139 

Simulations where only hydrothermal Fe is considered greatly underestimate this feature (Fig 3c). 140 

However, when hydrothermal Fe is either increased ten-fold, or added with stabilising ligands the 141 

magnitude and lateral extent of the observed feature are reproduced reasonably well (Fig3d and 142 

e).  143 

 144 

The CoFeMUG cruise, undertaken between Namibia and Brazil in the south Atlantic ocean (Fig 145 

4a), observed a strong hydrothermal signal over the MAR [21] (Fig 4b). As discussed in [21], a 146 

model simulation with only hydrothermal Fe is unable to reproduce this plume (Fig 4c), while a ten-147 

fold greater supply of Fe does a much better job (Fig 4d). When hydrothermal iron stabilisation is 148 

included the plume magnitude also increases in line with that observed but its lateral extent is 149 

largely overestimated (Fig 4e). 150 

  151 

3.2 What is the impact of specific ridges to the Southern Ocean biological pump? 152 

 153 

Our model includes hydrothermal Fe input from ridges in the Indian, Atlantic, Pacific, and Southern 154 

ocean basins with a gross global hydrothermal input of 11.3 Gmol Fe yr-1 [29]. The CTL, CTL-L 155 

and CTL-NOHYD simulations produce estimates of total Southern Ocean (south of 40°S) export 156 

production of 139, 142 and 146 Tmol C yr-1, respectively, which compare well to data-based 157 

estimates that range from 70-260 Tmol yr-1 [30-32]. By region, the Indian, Atlantic, Pacific, and 158 

Southern ridges account for 9, 14, 41 and 35% of the total hydrothermal iron input, respectively 159 

(Fig 5). If we separately consider each of these ridge systems as the sole source of hydrothermal 160 

Fe to the ocean, the relative impact on Southern Ocean export production is greatest from Pacific 161 

and Southern ridges (37 and 57%, respectively, Fig 5) and is relatively low for the Atlantic and 162 

Indian ridges (2 and 12%, respectively, Fig 5). When the simulations are repeated including 163 

hydrothermal-Fe stabilisation, the relative impact of Atlantic and Southern ridges increases to 164 

around 6 and 65%, respectively (Fig 5), with a corresponding decline in the relative impact of 165 

Pacific and Indian ridges (to 32 and 11%, respectively, Fig 5). In absolute terms the impact on 166 

carbon export in the Southern Ocean for the Indian, Atlantic, Pacific, and Southern ridges is 4.0-167 

8.0 x1011, 0.7-4.4 x1011, 12.8-22.6 x1011 and 19.5-45.9 x1011 mol C m-2 yr-1, respectively (the range 168 

accounts for simulations without and with a flux of stabilising ligands, Table 2). 169 

 170 
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Our results also demonstrate the relative response of carbon export in the three different 171 

geographic sectors of the Southern Ocean to hydrothermal input (with and without stabilisation) 172 

from specific ridges (Fig 6, Table 2). Pacific ridges have the largest carbon export response in the 173 

Pacific sector of the Southern Ocean, however their influence is also seen in the Atlantic and 174 

Indian sectors (Fig 6). Indeed, the Atlantic sector of the Southern Ocean responds much more 175 

strongly to Pacific Ocean ridges (2.6-5.9 x1011 mol C m-2 yr-1, without and with stabilisation, 176 

respectively) than to Atlantic Ocean ridges (0.2-1.1 x1011 mol C m-2 yr-1, without and with 177 

stabilisation, respectively). Ridges in the Indian Ocean have a roughly equal impact on carbon 178 

export in both the Indian (1.7-3.0 x1011 mol C m-2 yr-1, without and with stabilisation, respectively) 179 

and Pacific (1.6-3.0 x1011 mol C m-2 yr-1, without and with stabilisation, respectively) sectors of the 180 

Southern Ocean. Atlantic ridges have a muted influence throughout the Southern Ocean, when 181 

only Fe is considered; when stabilisation is included their impact on other Southern Ocean basins 182 

increases. Finally, the largest response in absolute terms (apart from the Pacific sector) is found in 183 

response to Southern Ocean ridges (Fig 6, Table 2), which increases greatly when stabilisation is 184 

included for, and overwhelms the impact of distal sources in the Atlantic and Indian sectors. 185 

Overall, while stabilisation changes the magnitude of the carbon export responses in each sector, 186 

the inter-sector patterns and trends are unaffected (Fig 6). 187 

 188 

3.3 Importance of ventilation pathways 189 

 190 

For hydrothermal Fe to stimulate carbon export in the Fe-limited Southern Ocean it needs to be 191 

transported and ventilated at the surface. The ventilation pathways for hydrothermal Fe can be 192 

investigated by examining the density surface at which hydrothermal Fe is supplied and the 193 

eventual outcrop region for this isopycnal layer in the Southern Ocean. In general, we find broad 194 

inter-basin distinctions in the potential density (σ0) layer where hydrothermal Fe is supplied 195 

between the Atlantic, Pacific, Indian and Southern ridges (Fig 7a). When we focus on ridges 196 

between 1000 and 4000m (Fig 7b), we find hydrothermal Fe is supplied to relatively heavy 197 

potential density surfaces by Atlantic ridges (σ0=27.84±0.04) and lighter surfaces by Pacific ridges 198 

(σ0=27.71±0.09) with Indian (σ0=27.76±0.07) and Southern (σ0=27.78±0.07) ridges falling in 199 

between. 200 

 201 

When the isopycnal layer to which hydrothermal Fe is supplied is combined with the average σ0 of 202 

the upper Southern Ocean in our physical model (Fig 7c), we can compute the potential area of the 203 

Southern Ocean impacted by hydrothermal supply from different ridge systems. Due to their supply 204 

of Fe to relatively heavy isopycnal surfaces, Atlantic ridges only influence 7x1011 m2. Alternatively, 205 

Pacific ridges influence 50x1011 m2, with Southern and Indian ridges affecting 25x1011 m2, and 206 

17x1011 m2, respectively. In other words, Pacific ridges have a potentially 7 fold greater influence 207 

than Atlantic ridges. We note that this is the maximum possible area over which we might 208 

anticipate carbon export to be affected. What is not accounted for is the transit time, which will be 209 

important due to the loss of Fe via scavenging, colloidal pumping etc. This explains why there is 210 

not a direct connection between these areal extents and the relative carbon export affected by 211 

each ridge system (Fig 5). For example, the greater impact of Pacific ridges, relative to Atlantic 212 

ridges in terms of carbon export can be linked to the fact that hydrothermal Fe originated from 213 

Atlantic ridges can only reach a small surface area of the Southern Ocean. On the other hand, 214 

Southern ridges have a greater carbon export impact that might be expected from the outcrop area 215 

of the hydrothermal Fe they supply due to the shorter transit times to Southern Ocean surface 216 

waters, which results in reduced Fe losses.  217 

 218 

4. Discussion: 219 

 220 

4.1 Evidence of the stabilisation of hydrothermal Fe from GEOTRACES sections 221 

 222 

Across our modelling experiments we find some support for the role of Fe stabilisation in 223 

hydrothermal plumes. The models with stabilisation do a much better job for the GP-16 and GA-02 224 

sections, perform similarly to those with greater absolute Fe fluxes for GA-03 and overestimate the 225 

hydrothermal anomaly for the CoFeMUG section. This suggests the need for an improved process-226 

level understanding of biogeochemical processes occurring at different ridge crests and within their 227 
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associated plumes; this includes understanding the nature, abundance, and ultimate impact of Fe 228 

stabilisation. Taken at face value, stabilisation of Fe within plumes appears less important for the 229 

Atlantic sections, but this may rather reflect the fact that there is at present no study mapping the 230 

extent of hydrothermal plumes in the Atlantic Ocean (as has been done in the Pacific). Indeed, the 231 

distal signal of hydrothermal Fe seen in the GA-02 transect that occurred away from any known 232 

ridge site does require stabilisation for our model to be able to reproduce it. On the other hand, the 233 

CoFeMUG and GA-03 sections were zonal and sampled across both the ridge crest and the 234 

prevailing meridional transport.  235 

 236 

At present there are three working hypotheses for chemical processes governing the longevity of 237 

Fe in hydrothermal plumes [33]. The first emphasises stabilisation of Fe by organic ligands [15, 238 

34], the second highlights an important role of Fe-Sulphur nanoparticle pyrite [35, 36], while a third 239 

emphasizes the importance of colloidal Fe(III)-oxyhydroxide phases. Each mechanism will have 240 

distinct influences on the residence time and reactivity of Fe within the plume. Laboratory studies 241 

on synthesised pyrite have documented relatively slow Fe(II)-S2 oxidation rates of which may 242 

enhance long range transport [37]. Moreover, the role of nano-pyrite may not be well documented 243 

because in filtered samples acidified with hydrochloric acid (as it typical for trace metal sampling), 244 

colloidal Fe(II)-S2 may not oxidise significantly and this Fe therefore may not be detected by 245 

analytical techniques employed for the different sections discussed here. Additionally there is a 246 

lack of detailed information on the organic iron binding ligands in hydrothermal fluids and plumes 247 

and in particular, whether they are functionally distinct to those that make up the wider ocean Fe-248 

binding ligand pool. Finally colloidal Fe(III)-oxyhydroxides may represent 30 to 91 % of the 249 

dissolved Fe pool [38] and their formation and lifetime likely depends on the abundance of particles 250 

in the plume.  It should be noted that, all things being equal, each process could act in an 251 

interconnected manner. For instance, when colloidal Fe(III)-oxyhydroxides dissolve they may be 252 

complexed by organic ligands. Similarly, as the Fe(II)-S2 is slowly oxidised, the produced Fe(III) 253 

can form oxyhydroxides or be organically complexed. The prevalence of these potential stabilising 254 

mechanisms is likely to vary between different hydrothermal sites, even within one ridge system. 255 

For example, for the well-studied MAR, there is a strong distinction in the sulphide concentrations 256 

between the high sulphide system of the Trans-Atlantic Geotraverse (TAG) site as compared to the 257 

low sulphide Rainbow vent sites [39]. Wider afield, Fe(II) was a notable component of the plume 258 

signal at TAG [40], but not for the southern East Pacific Rise [24]. Understanding the drivers of 259 

these inter-site variations and how they impact on the Fe cycle is a priority.  260 

 261 

Generally, high temperature focused hydrothermal sources are considered when the hydrothermal 262 

flux of dissolved Fe into the ocean is examined. However lower temperature, potentially diffuse 263 

sources, also play an important role as Fe sources. There are several important factors affecting 264 

the relative importance of high versus low-temperature flow to hydrothermal Fe fluxes. While high 265 

temperature sites release very large amounts of Fe, they also produce copious amounts of 266 

particles, which scavenge dissolved Fe in an auto catalytic manner. Additionally, high temperature 267 

vents are thought to contain little if any metal binding ligands [15], with relatively low 268 

concentrations documented [41]. By comparison, lower temperature, often diffuse, sites that 269 

surround high temperature sources have much higher ligand concentrations [41], which can then 270 

be entrained into the broader scale plume [15]. Another consideration is that fluids from lower 271 

temperature sources have lower Fe concentrations, resulting in a lower abundance of particles. As 272 

a result, the lower overall Fe concentrations and lesser scavenging may allow both Fe-colloid and 273 

Fe-ligand complex formation to occur within the plume. Recent work suggests that low temperature 274 

sites are more prevalent than previously thought, present both near to and distal from high-275 

temperature sources [42]. These remote sites can thus be additional sources of both Fe and 276 

ligands that are vented into a low particle environment; thereby enhancing stabilization both 277 

through the formation of Fe-ligand complexes and/or nano-particle Fe(III)-oxyhydroxides (colloids).  278 

 279 

4.2 Relative importance of different ridge systems 280 

 281 

Overall, Southern ridges are responsible for 57-65% of the total response of the Southern Ocean 282 

carbon cycle, with Pacific ridges contributing 32-37% (depending on whether plume stabilisation is 283 

included or not). Indian ridges and Atlantic ridges are only responsible for 9-12% and 2-6% percent 284 
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respectively. We emphasise that, while the addition of Fe stabilisation increases total carbon 285 

export (Table 2), it only slightly modifies the relative regional breakdown. Overall our results point 286 

to a key importance of ridges located south of 40°S in driving the carbon-cycle impact of 287 

hydrothermal Fe. However, there have as yet been relatively few discoveries of hydrothermal 288 

ridges along the circum-Antarctic ridge system (but see: [43]) in the inter-ridge database [44]. 289 

Indeed a synthesis study suggests a significant number of ridge systems remain to be discovered 290 

in the Southern Ocean, pointing out that only 8 sites have been recorded along the ~20,000km 291 

ridge system around Antarctica [45].  Apart from one study near the Bouvet Triple junction [17], 292 

much of our understanding of the broader biogeochemical impacts of hydrothermal vents on the 293 

ocean Fe cycle comes from studies that have taken place in the Atlantic [20, 21], Pacific [24] and 294 

Indian [46] Oceans.  As discussed in Sec 4.1, it is important to consider how generalised these 295 

inferences are for ridges in the Southern Ocean, which we have demonstrated to be the main 296 

driver of the carbon cycle response.  297 

 298 

Our examination of how hydrothermal Fe affects carbon export in a ventilation framework can be 299 

useful to contextualise how observations in the ocean interior may be connected to the surface 300 

ocean response. This implies that even if slow spreading ridges on the MAR are supplying more 301 

Fe than would be expected from the input of 3He, this will only influence a relatively small region of 302 

the Southern Ocean as Fe is being supplied onto relatively heavy isopycnal surfaces with a small 303 

outcrop area.  On the other hand, hydrothermal Fe originating from Pacific Ocean ridges has the 304 

greatest potential impact due to its supply onto relatively light isopycnal surfaces with a larger 305 

Southern Ocean outcrop area. Another important consideration in this regard are the greater 306 

oxygen and pH levels in the Atlantic versus the Pacific Ocean. This is important, as it will modify 307 

the oxidation rate of Fe, which will then affect its retention in dissolved forms. For example, half 308 

lives of Fe(II) range between 17 minutes at Atlantic hydrothermal sites and 6 hours at Pacific sites 309 

[47]. Thus, the combination of relatively faster oxidation kinetics that reduce the lifetime of 310 

hydrothermal Fe and the relatively small outcrop area due to the flux onto relatively heavy 311 

isopycnal surfaces implies a muted carbon cycle influence of Atlantic Ocean hydrothermalism. 312 

 313 

5. Synthesis 314 

 315 

Much progress has been made on understanding how hydrothermalism affects the ocean iron 316 

cycle in recent years, with implications for the global carbon cycle via iron regulation of Southern 317 

Ocean export production. The stage is now set for innovative multi-disciplinary studies to address 318 

the uncertainties that have been identified via distinct, but complementary studies and tools. We 319 

propose that tractable progress can be made by identifying the key questions at a range of scales.  320 

First, at the scale of individual vent systems, we need to better understand what sets the end 321 

members signals of Fe and 3He (which is still an excellent conservative tracer in this context) at 322 

different vent sites. Second, in the buoyant plume we need to appraise what sets the plume 323 

characteristics at local scales, e.g. presence of sulphur, organic ligands, Fe colloids and 324 

nanoparticles. Third at the scale of ridge crest segments we need to understand the distribution of 325 

different venting styles, i.e., diffuse versus focused and high versus low temperature, and their 326 

relative importance in driving Fe stabilisation and transport away from its source. Fourth, in the 327 

non-buoyant and dispersing plume we would benefit from a better understanding of what sets the 328 

residence time of the different forms of Fe at the 100-1000km scale, e.g. degree and manner of 329 

stabilisation, redox kinetics and soluble-colloidal interactions. Finally, at basin scales the surface 330 

ventilation pathways for Fe supplied onto different isopycnal surfaces and the associated transit 331 

times, iron cycling processes and degree of Fe fallout should be considered more deeply. As 332 

discussed above, it is likely the nature of the processes that dominate at these different scales will 333 

vary between different vent sites (e.g. high and low sulphur systems), ocean basins (e.g. high and 334 

low oxygen levels in the Atlantic and Pacific) and for high temperature and lower temperature 335 

diffuse flow systems. Linking the new ocean section data from GEOTRACES with long standing 336 

knowledge of ocean physical pathways and the on-going detailed work by the hydrothermal 337 

community would potentially be transformative. 338 

 339 

6. Conclusions 340 

 341 
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In conclusion, we used a set of model experiments and newly available GEOTRACES datasets to 342 

explore the importance of the gross hydrothermal flux and the stabilisation of hydrothermal Fe in 343 

governing the observed hydrothermal Fe distributions. Overall, we found that in some ocean 344 

sections that stabilisation was important but on others gross fluxes appeared to play a stronger 345 

role. In general, we need a better understanding of plume chemistry and how it varies between 346 

both different hydrothermal sites and between high temperature and lower temperature fluxes at a 347 

given site. We also examined the role of different ridge systems in regulating carbon export in the 348 

Southern Ocean. Overall, Southern ridges were found to be dominant, followed by Pacific ridges, 349 

with Indian and then Atlantic ridges playing a muted role. Southern ridge systems are relatively 350 

poorly explored and future exploration will be invaluable in better representing their effect. We 351 

highlight strong inter basin differences in the isopycnal layer onto which hydrothermal Fe is 352 

supplied between the Atlantic and Pacific basins, which affects the area of the Southern Ocean 353 

that may be influenced. When linked to the relatively faster oxidation kinetics in the Atlantic Ocean, 354 

this suggests a small influence of Atlantic ridges on Southern Ocean carbon cycling. Overall, we 355 

present a new synthesis of scales, within which further observational and modelling work, bridging 356 

across disciplines may make future progress in better constraining the influence of hydrothermal 357 

Fe supply on the biogeochemical cycling of the oceans. 358 
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Figure 1. GP-16 (a) cruise track and (b) dissolved iron measurements, compared to model output 516 

from (c) CTL (hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal iron 517 

supply), (e) CTL-L (hydrothermal iron supply alongside an equimolar flux of iron binding ligands) 518 

and (f) CTL-NOHYD (no hydrothermal iron supply). 519 

 520 

Figure 2. GA-02 (a) cruise track and (b) dissolved iron measurements, compared to model output 521 

from (c) CTL (hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal iron 522 

supply), (e) CTL-L (hydrothermal iron supply alongside an equimolar flux of iron binding ligands) 523 

and (f) CTL-NOHYD (no hydrothermal iron supply). 524 

 525 

Figure 3. GA-03 (a) cruise track and (b) dissolved iron measurements, compared to model output 526 

from (c) CTL (hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal iron 527 

supply), (e) CTL-L (hydrothermal iron supply alongside an equimolar flux of iron binding ligands) 528 

and (f) CTL-NOHYD (no hydrothermal iron supply). 529 

 530 

Figure 4. CoFeMUG (a) cruise track and (b) dissolved iron measurements, compared to model 531 

output from (c) CTL (hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal 532 

iron supply), (e) CTL-L (hydrothermal iron supply alongside an equimolar flux of iron binding 533 

ligands) and (f) CTL-NOHYD (no hydrothermal iron supply). 534 

 535 

Figure 5. The proportional contribution of ridges in the Atlantic, Pacific and Indian oceans north of 536 

40S and the Southern Ocean (defined as south of 40S) to hydrothermal iron input (black bars) and 537 

their relative contribution to the effect of hydrothermal iron on Southern Ocean export production 538 

without (Grey bars, compared to the CTL simulation) and with (white bars, compared to the CTL-L 539 

simulation) stabilisation by iron binding ligands. For the grey and white bars, the total effect of 540 

hydrothermal iron is first computed by comparing CTL with CTL-NOHYD, then the proportional 541 

effect of each ridge system is computed by relating this to the ridge specific result (i.e. for the 542 

Atlantic ridges, dividing the different between carbon export in ATL and CTL-NOHYD by the 543 

difference between CTL and CTL-NOHYD. 544 

 545 

Figure 6. The absolute impact of hydrothermal iron input from different ridge systems in different 546 

basins of the Southern Ocean, with and without stabilisation by iron binding ligands (i.e. for the 547 

Atlantic, computing the absolute difference in carbon export between ATL and CTL-NOHYD in 548 

different geographic sectors of the Southern Ocean). 549 

 550 

Figure 7. (a) The sigma-0 value at the point in the model where hydrothermal iron is input 551 

(between 1000-4000m, gridded at 5 degrees horizontal resolution to aid visualisation). (b) A 552 

histogram of the results from panel a, focussing on regions south of 60N. (c) The average value of 553 

sigma-0 in the model in the upper 100m in the Southern Ocean. 554 
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Table 1. A short description of the model experiments conducted in this study. All 
simulations were conducted for 500 years and are identical except for the specific 
differences described. 
 
Experiment Name Experiment details 

CTL Hydrothermal Fe active globally 
CTL-L As CTL but with equimolar supply of Fe ligands  
CTL-10 As CTL, but 10x greater hydrothermal Fe supply globally 
CTL-NOHYD As CTL, but no hydrothermal Fe input globally 
ATL Only Atlantic ridges north of 40S supply hydrothermal Fe 
PAC Only Pacific ridges north of 40S supply hydrothermal Fe 
IND Only Indian ridges north of 40S supply hydrothermal Fe 
SOC Only ridges south of 40S supply hydrothermal Fe 
ATL-L As ATL but with equimolar supply of Fe ligands 
PAC-L As PAC but with equimolar supply of Fe ligands 
IND-L As IND but with equimolar supply of Fe ligands 
SOC-L As SOC but with equimolar supply of Fe ligands 
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Table 2. The absolute contribution of specific ridge systems in the Atlantic, Pacific, 
Indian and Southern regions to overall Southern Ocean carbon export and the 
sector-specific response, the range reflects the impact without and with hydrothermal 
iron stabilisation.  
 
 Impact on Southern Ocean Carbon Export (x1011 mol C yr-1) 
Ridge System Total Atlantic Sector Pacific Sector Indian Sector 

Atlantic 0.7 - 4.4  0.2 - 1.1 0.2 - 1.1 0.4 - 2.3 
Pacific 12.8 - 22.6 2.6 - 5.9 8.7 - 12.4 1.5 - 4.4 
Indian 4.0 - 8.0 0.8 - 2.1 1.5 - 3.0 1.7 - 3.0 
Southern 19.5 - 45.9 6.7 - 17.3 5.3 - 11.5 7.4 - 17.1 
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GP-16 (a) cruise track and (b) dissolved iron measurements, compared to model output from (c) CTL 
(hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal iron supply), (e) CTL-L 
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GA-02 (a) cruise track and (b) dissolved iron measurements, compared to model output from (c) CTL 
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(hydrothermal iron supply alongside an equimolar flux of iron binding ligands) and (f) CTL-NOHYD (no 
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GA-03 (a) cruise track and (b) dissolved iron measurements, compared to model output from (c) CTL 
(hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal iron supply), (e) CTL-L 
(hydrothermal iron supply alongside an equimolar flux of iron binding ligands) and (f) CTL-NOHYD (no 

hydrothermal iron supply).  
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CoFeMUG (a) cruise track and (b) dissolved iron measurements, compared to model output from (c) CTL 
(hydrothermal iron supply only), (d) CTL-10 (ten times greater hydrothermal iron supply), (e) CTL-L 
(hydrothermal iron supply alongside an equimolar flux of iron binding ligands) and (f) CTL-NOHYD (no 

hydrothermal iron supply).  
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The proportional contribution of ridges in the Atlantic, Pacific and Indian oceans north of 40S and the 
Southern Ocean (defined as south of 40S) to hydrothermal iron input (black bars) and their relative 

contribution to the effect of hydrothermal iron on Southern Ocean export production without (Grey bars, 
compared to the CTL simulation) and with (white bars, compared to the CTL-L simulation) stabilisation by 
iron binding ligands. For the grey and white bars, the total effect of hydrothermal iron is first computed by 
comparing CTL with CTL-NOHYD, then the proportional effect of each ridge system is computed by relating 
this to the ridge specific result (i.e. for the Atlantic ridges, dividing the different between carbon export in 

ATL and CTL-NOHYD by the difference between CTL and CTL-NOHYD.  
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The absolute impact of hydrothermal iron input from different ridge systems in different basins of the 
Southern Ocean, with and without stabilisation by iron binding ligands (i.e. for the Atlantic, computing the 
absolute difference in carbon export between ATL and CTL-NOHYD in different geographic sectors of the 

Southern Ocean).  
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(a) The sigma-0 value at the point in the model where hydrothermal iron is input (between 1000-4000m, 
gridded at 5 degrees horizontal resolution to aid visualisation). (b) A histogram of the results from panel a, 
focussing on regions south of 60N. (c) The average value of sigma-0 in the model in the upper 100m in the 

Southern Ocean.  
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