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When old age shall this generation waste,
Thou shalt remain, in midst of other woe
Than ours, a friend to man, to whom thou say’st,
“Beauty is truth, truth beauty,”—that is all
Ye know on earth, and all ye need to know.

John Keats
Ode on a Grecian Urn (1820)
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Abstract

This thesis presents SPEDE (SPectrometer for Electron DEtection) and documents its
construction, testing and performance during commissioning at Jyvaskyla, Finland, before
deployment at the HIE-ISOLDE facility at CERN coupled with the MINIBALL array
to perform in-beam electron-gamma spectroscopy using post-accelerated radioactive ion
beams. Results from the Coulomb excitation of 22! Rn in 2012 are presented as an example
of the need for the construction of a device like SPEDE. In-beam testing and initial
commissioning experiments with stable beams took place in four stints during November,
February, and May 2015, coupled with detectors from JUROGAMII.

This spectrometer will help aid in fully understanding exotic regions of the nuclear
chart such as regions with a high degree of octupole deformation, and in those nuclei
exhibiting shape coexistence.

For the first time, electron spectroscopy has been performed at the target position from
states populated in accelerated nuclei via Coulomb excitation. The FWHM of SPEDE is
approximately 7 keV at 320 keV, and Doppler correction was possible to improve Doppler
broadened peaks to a resolution of 8.9 keV at a peak position of 186 and 196 keV.

The results are intended to give the reader a full understanding of the detector and
electronics, as well as the performance, capabilities, and usefulness of the spectrometer,

both in simulated and in real-world situations.
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Motivation

“The way the mind will lean under stress is strongly influenced by training.”

1.1 Introduction

There are four fundamental forces of nature described by our current knowledge of physics
(although the existence of a fifth force is often speculated [1]). From weakest to strongest
these are gravity, the weak nuclear force, electromagnetism, and the strong nuclear force.

The strong interaction, responsible for the strong nuclear force, is carried by gluons,
binding quarks together within mesons and baryons. It is also responsible for binding
nuclei together, with gluons bound within virtual 7 and p mesons transmitting a force
within the quantum mechanical system. Nuclear physics attempts to understand and
describe the strong nuclear force, to further humanity’s understanding of our universe.

In the Rutherford model of the atom [2], which superseded the ‘plum pudding’ model
by J. J. Thomson, an inner positively-charged nucleus of protons surrounded by a cloud
of negatively-charged electrons, was developed in 1911 by Ernest Rutherford, following an
experiment at the University of Manchester, U.K., by Hans Geiger and Ernest Marsden
two years prior [3]. In 1920, Rutherford suggested particles with a neutral charge were
also present in the nucleus [4], which were later detected in 1935 by James Chadwick
at the Cavendish Laboratory, Cambridge [5]. Parallel to this, developments were made
in the new field of quantum mechanics. Ultimately, these discoveries and theories led
to the nuclear shell model, proposed by Dmitry Ivanenko and Gapon in 1932 [6], which
structures the nucleus within energy levels using the Pauli exclusion principle [7]. The
energy well that is binding nucleons together can be described (in a simple sense) by
a Woods-Saxon potential, and through modification of this potential by incorporating a
spin-orbit interaction ‘magic numbers’ can be predicted which give the number of nucleons
needed for the most stable spherical nuclei [§].

As the number of nucleons within the nucleus increases, collective modes begin to dom-
inate the shape of the nucleus, resulting in quadrupole, octupole, hexadecapole, dotriacon-

tapole, and so on, deformations generally (but not exclusively) decreasing in magnitude
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as order increases [9]. Theorising the shape and exact energy level values of excited nuclei
is challenging due to the many-body nature and finite size of the nucleus, and so there-
fore experimental information is needed across the nuclear chart to refine and determine
model parameters. As a requirement for these experimental searches, detector and com-
putational technology is continually improved, resulting in direct ‘real-world’ applications
beyond a fundamental understanding of the world in areas such as chemical synthesis,
environmental monitoring and healthcare.

In the last decade, there has been a number of radioactive ion beam (RIB) facilities that
have come online, such as REX-ISOLDE (recently upgraded to HIE-ISOLDE) at CERN in
Switzerland, ISAC at TRIUMF in Canada, and RIBF at Riken in Japan [I0]. These allow
previously unexamined areas of the nuclear chart to be studied in detail, but typically have
a relatively low number of particles per second reaching the target position, compared to
stable beam facilities (10%-10° compared to rates as high as 1010) [I1]. Nevertheless, RIBs
provide a new and exciting look on untouched areas of nuclear structure pushing current
theories and models to their limits.

The consequence of the lower rates when using RIBs is that information needs to
be extracted from fewer nuclei available, meaning examining levels or reactions that are
populated with a low cross-section is more difficult. This is combined with the fact that
many radioactive nuclei have limited existing spectroscopic information known, especially
nuclei of odd-mass. Whilst there are several existing y-ray array spectrometers that have
been combined with the RIB facilities mentioned, such as MINIBALL, TIGRESS, and
CNS-GRAPE respectively [12], there are currently no RIB facilities where 7-ray detection
instruments are combined with those for detecting electrons to perform the spectroscopy
of both simultaneously in-beam.

Information about nuclear structure can be obtained by looking at the resulting spec-
trum from the radiated particles emitted during the decay of a nucleus to a lower energy
state. This includes emissions such as high-energy photons (y-rays), « particles, protons,
electrons, and so on, first identified by Madame Curie [13]. However, there are only three
principal ways a nucleus can decay without changing the proton or neutron number; that
is, they are electromagnetic decay processes. These are either internal pair production
(which can be largely ignored apart from high energy decays over twice the mass of an

electron at 1.022 MeV), ~-ray emission, or internal conversion.

1.2 On the nucleus

The atomic nucleus is a quantal many-body system, and so the properties of this system
are determined by the number of protons and neutrons making it up. Macroscopic be-
haviour is however exhibited, and nuclear shapes are described by collective parameters
and transition strengths. These can be measured both directly and indirectly by several

methods suited for various different applications and areas of the nuclear chart.
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Overall, the shape of the nucleus is given by

R(0,¢) =Ry [1+> oYY (eq. 1.1)
A

where R is the radius given as a function of the angles 6 and ¢, Ry is the radius of a
sphere with the same volume as the nucleus, Y}" are the normalised spherical harmonics,
and a), are expansion coefficients (which are the polar coordinate transformation of the
deformation parameter (). With axial symmetry, all coefficients with p # 0 are also 0.
With reflection symmetry, all terms other than those where A is even vanish.

The intrinsic multipole moment is related to the deformation parameter (to first-order,

and where the multipolarity A > 1), by

_ 3RyBy
Qi = OreE (eq. 1.2)

Single-particle effects are important for the matrix elements used to determine the dipole
operator, but for greater multipolarities the collective nature of superimposed nucleons

dominates [14].

1.3 Example applications: Octupole-deformed nuclei

Octupole deformation is expected to be greatest in regions just above closed shells, with
proton or neutron numbers ~ 34, 56, 88 and 134, as octupole correlations are an essential
contribution to the mean field interaction immediately above closed shells where (N, j,1)
intruder orbitals interact strongly with the (N — 1,5 — 3,1 — 3) natural parity states. In
these regions, the Fermi level is situated between these orbitals [I5], with the strength
of the octupole-octupole interaction dependent on the matrix elements of Y between
these single-particle states. As the energy difference between the interacting orbitals is
minimised, and the density of the states is maximised, the interactions become strongest,
implying octupole correlations increase with the mass of the nucleus, and are enhanced
for doubly magic nuclei, as seen in *4Ba [16].

The reflection asymmetry expected in octupole deformation gives rise to a pear shape
(the nuclei are axially symmetric), which itself implies the centre of mass does not lie at
the centre point of the nucleus spatially, and is instead displaced to one end. The centre
of charge is also displaced from the centre of mass, as charged particles gather in the area
where the radius of the electric potential contour is smallest, which is at the narrow end
of the nucleus as it tapers [I7]. This octupole shape presents itself with regards to the
nuclear structure by having strong E1 and E3 transitions, due to the number of low-lying

states with opposite parity, first observed in heavy nuclei such as >'*Ra [18] and ??>Th [19].
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Nuclei exhibit static deformation due to spontaneous symmetry breaking; the eigen-
values of a single-particle Hamiltonian around the Fermi level are degenerate, but due to
instabilities from shape vibrations, one state will always become lower in energy. The re-
sulting asymmetric shape can be attributed to an odd-multipolarity parity violation of the
weak interaction. One signature of octupole deformation then, the presence of strong E1
(dipole) transitions, is induced by the presence of an intrinsic electric dipole moment [20].
If a nucleus is permanently octupole deformed, all terms in [eq. 1.1| except aog and asg
vanish.

By using Coulomb excitation, the matrix element of the collective state can be mea-
sured directly in even-even nuclei via the reduced transition probability B (E3;0" — 37),
and is the only way to provide unambiguous and direct evidence of octupole collectivity.
This was done at the ISOLDE facility on ?2°Rn and ??*Ra showing for the first time a
permanent octupole deformation [2I]. Pursuing odd-mass nuclei in particular is of inter-
est due to parity doublets lying very close together in energy [22], enhancing the Schiff

moment leading to a possible non-zero electric dipole moment (EDM).

Vv V Vv
A A
0 311 0 33 U 33
P &2'
—_—tit I —yppr 2 MY
—wn T % —ar e 8126

—7* —in? w— 0

Figure 1.1: Nuclear potentials as a function of the octupole deformation
parameter B3 [23]; from left-to-right, a quadrupole deformed nucleus with an octupole
vibration averaging zero, an intermediate case with a small potential barrier separating
two degenerate deformed minima and an ideal rigid deformation. Red colours indicate

the shape raising out of the page, with bluer colours representing areas less raised.

The Schiff theorem states that for a system made of point-like, charged particles which
interact with each other and with an arbitrary external field, the electronic shielding is
complete, and therefore, theoretically, in a neutral atom, the nuclear EDM is screened,

however the finite size of the nucleus can break this. A nuclear Schiff moment can enhance
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the effect, which can lead to a non-zero static atomic EDM, implying (separately) charge-
parity-, and time-, symmetry violation. This in turn provides good test extensions of the
standard model that violate the symmetry. Reflection-asymmetric nuclear shapes enhance
the Schiff moment by approximately 3 orders of magnitude [24], and so they offer much
greater increased sensitivity for EDM searches.

The Schiff moment S is further enhanced by odd-mass nuclei in the octupole region,

where parity-doublet splitting occurs, and is given by

2J <S'Z > VPT>

S=-711 AE

(eq. 1.3)

where J is the total angular momentum of the nucleus, Vpr is the nucleon-nucleon inter-
action violating parity and time, AFE is the difference in energy between the two states
making up the parity doublet and Sy is an operator dependent on the mean-square charge
radius and number of protons in the nucleus.

An illustration of the effect of the octupole deformation parameter 3 can be seen
in for an odd-mass nucleus. Transitions between the doublets seen in odd-mass
octupoles would have a very low energy, around 50 keV or lower, and are more likely
to occur in heavier nuclei. The analysis of these odd-mass nuclei is complicated by the
effect of the single valence particle on the collective effect of the coupled nucleons [25],
thus experimental evidence is needed to provide limits on theoretical models. The parity
doublets expected enhance the Schiff moment by a factor of 103. Leander and Chen [26]
have had some success previously in calculating decoupling parameters using a reflection-
asymmetric particle-plus-rotor model, to the same order, assuming non-zero 53. A detailed
review of odd-A actinide nuclei, and other nuclei around this region, is provided by Leander
and Sheline [27], as well as Sheline and Sood [28] and others.

1.4 Example applications: Shape-coexistence

In the case of 0 — 0% EO0 transitions, which are observed in shape coexistence, there is no
angular momentum to give to an emitted photon (which must have a spin of 1); since there
is no angular momentum available to the photon, any emission would be a violation of the
conservation of angular momentum and break rotationally-invariant symmetry. This leaves
two principal electromagnetic decay processes, the first being internal pair production,
where an electron-positron pair are created and are emitted back-to-back; this requires
a transition energy of at least 1.022 MeV, which is twice the rest-mass energy of an
electron (0.511 MeV). The other possibility is for internal electron conversion (although
higher order processes such as two-photon decay are possible, but rare [30]). Low-lying 0T
excited states are indicative of shape coexistence, and so the importance of detecting F0

transitions is seen again as they can only proceed by internal conversion. The strengths
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of these transitions depend on the mixing of configurations with differing mean-square
charge radii, and give a model-independent perspective of the 0% configurations resulting
in the transition [31]. A prime example of shape coexistence can be seen with ¥Pb, as

seen in |Figure 1.2

Shape-coexistence is a stringent test of microscopic nuclear models and mean-field
descriptions [32], as it involves the complex interactions of nuclei in competing orbitals
typically in regions far away from the stable nuclei where the empirical shell model was
formed. A thorough review is undertaken by Heyde and Wood [33], where it is argued that
modelling shape coexistence ‘is arguably one of the greatest challenges faced by theories

of nuclear structure’.

Shape coexistence is apparent due to a mixture of the stable, spherical shape of closed
shells and sub-shells coupled with residual interactions between protons and neutrons
driving the nucleus into a deformed shape. Regions of maximum coexistence tend to lie
therefore far away from closed shells, at the ‘magic numbers’, where shell gaps have the
greatest influence. The interpretation of low-energy vibration of nuclei has been proven
incorrect in cadmium isotopes, and a reliable characterisation of these nuclei is needed to
interpret the data in a cromulent way. Although some regions of shape-coexistence which
lie along one stability line, such as Z ~ 50, are easily accessible, many other regions require

the use of RIBs, especially to determine whether the emerging picture (that coexisting

Energy (MeV)

p,cos(y+30)

Figure 1.2: Calculated potential energy surface of 186 Pb [29]. Spherical, oblate and
prolate shape deformations are respectively indicated from left to right by the thicker
vertical lines.
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structures are present in all nuclei) is true.

1.5 Why electron spectroscopy?

The benefits of an electron spectrometer compared to one used for y-rays are apparent

when looking at the internal conversion coefficient, «, which is given by

> de-excitations via electron emission
= = Z a; (eq. 1.4)

> de-excitations via y-ray emission

where the subscript 7 indicates the partial internal conversion coefficient, obtained from
the conversion electrons from each individual electron shell (K, L, M, ...), or transition
types (E1, M1, E2, ...). As the proton number Z of a nucleus increases, so does «, and
the same is true for lower-energy decays; as the transition energy between two levels tends

to 0, « tends to infinity:

li = 0. . 1.5
z%éanﬁoO‘ > (eq )

This is of particular interest when looking at radioactive beams not only because these
are often beams of heavy nuclei, and therefore high Z, but because some of these nuclei
have low energy transitions of particular interest, such as in the octupole-deformed region,
where low-energy transitions between parity doublets can be expected to be observed [34],
or in regions where shape-coexistence is observed, where decays between 07 — 07 levels
within the same nucleus are generally only observable by use of an electron spectrometer
(unless the transition energy is over 1.022 MeV, where internal pair production can occur,
or other rare instances), as a photon has a spin of 1 i [35] and therefore cannot be emitted
for an F0 decay. In general, since octupole nuclei are predicted to have low-lying states,
transitions between them are are highly converted, and thus often decay with the emission
of a conversion electron, the likelihood of which only increases when considering odd-mass
octupoles due to the parity doublets. In the actinide region, with Z ~ 88, there are
currently very few measurements, and even fewer of the odd-mass nuclei in this region,
due to the particular challenges odd-mass nuclei present. Therefore the need of an electron
spectrometer when studying these nuclei is apparent. Proposals have been submitted to
study this region further using radioactive beams at the ISOLDE facility in CERN, for
which work presented here on 22! Rn was done to test the feasibility of such an experiment,
and which is presented later in this thesis. Although no results of shape-coexistence will
appear in this thesis, it is an important application of SPEDE in the future to study this
region in more detail than has been possible until now with RIBs.

Additionally, the multipolarity and parity are directly observable from subshell ratios

when looking at the resulting electron spectra, as is the possibility to directly access



8 CHAPTER 1: MOTIVATION

mixing ratios [36]. The transition multipolarities can be determined either by comparing o
directly to theoretical predictions, or simply looking at the ratio between partial conversion
coefficients. Similarly, looking at the ratio of « from differing transition types (commonly
M1, E2) will directly give the value of the appropriate mixing (typically E2/MT1).

SPEDE (SPectrometer for Electron DEtection) is a 500 pm thick 24-segmented n-
type silicon detector that, through the detection of electrons, will yield information on
transitions in nuclei excited via Coulomb excitation direct from the ground state. By
being combined with the MINIBALL it will help to help unlock the secrets of nuclei
and further collective knowledge in nuclear physics. Other internal conversion detectors
coupled with ~-detecting facilities are under development, such as SPICE (SPectrometer
for Internal Conversion Electrons) at TIGRESS [37], but SPEDE is the first internal
conversion spectrometer studying beam excitation situated at the target position without
electron transport.

This thesis will deal with the detection of electrons emitted during the internal conver-
sion process using SPEDE, including the methodology of the work, the spectrometer design
and simulated performance, and the results of in-beam commissioning experiments from
the JYFL laboratory, Finland, using decays from nuclear states populated via Coulomb
excitation, as well as results from a Coulomb excitation experiment on 22!Rn used to show

direct motivation for this work.



Experimental methods

“Philosophy cannot be taught; it is the application of the sciences to truth.”

2.1 Nuclear transitions

Nuclei in an excited state can decay by various pathways. However, for an internal tran-
sition, where a nucleus does not change isotope, three first-order processes are possible;
internal pair production (for transitions with an energy over 1.022 MeV), ~-ray emis-
sion, or internal conversion. Internal transitions result in the emission of radiation with

multipolarity L, corresponding to a change of state of a nucleus, as shown in

g mp) = L|Js, mi) (eq. 2.1)

where J is the total angular momentum of the state, 7 is the parity of the state, and the
subscripts ¢ and f correspond to the initial and final states respectively.

A series of selection rules apply for electromagnetic transitions. First, angular mo-
mentum must be conserved [38], such that J; = J_} + L. This leads to the fact that the
allowed values of L are such that |J; — J| < L < |J; + J¢|. Secondly, parity must also be
conserved; this leads to an equation where m (T'L) = mymy = (-5 with T € E, M, and

t € 0,1 with a one-to-one correspondence.

2.1.1 Internal conversion

SPEDE will be used to detect electrons emitted during the process of internal conversion.
Internally-converted electrons are monoenergetic electrons emitted due to a coupling of
the electron and nuclear wavefunctions. This is then typically followed by an X-ray, with
the vacancy in the atomic shell of the atom filled by an electron from a higher shell if

available. This energy of the internally converted electron is given by

EIC = Ez - Ef - Eb (eq. 22)
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where E is energy, and the subscripts IC, i, f and b correspond respectively to the energy
of the ejected electron, the energy of the initial state of the excited nucleus, the energy of
the final state of the nucleus, and the binding energy of the atomic shell that the electron
was ejected from.

It is important to note that the internally converted electron differs to that seen in,
for example, § decay. Rather than a continuous distribution in emission energies, an
internally converted electron is seen as a single, sharp peak, as seen in Three
peaks above the 8 background can be seen, which correspond to the K-shell, L-shell, and
(in the right tail of the L-shell peak) M-shell conversion electrons. The counts in these
peaks show that the partial conversion coefficient varies for different electron shells and
indeed sub-shells.

Nfl

0 Ampl2

Figure 2.1: This plot shows the decay spectroscopy of 2> Hg. A broad peak can be seen,
corresponding to B particles, with three peaks from internally converted electrons
observable on the right-hand side [39].

The internal conversion process increases in likelihood as the mass of the nucleus in-
creases; since atomic radius is generally proportional to number of nucleons, it is apparent
to see that an electron is more likely to be influenced by nuclear effects. The probability
also increases with multipolarity of the nuclear transition due to the fact that it is easier
for an electron to carry more angular momentum from a nucleus and is thus the quicker,
and therefore preferred, way for the nucleus to fall into the minimum of its potential well.
The likelihood compared to vy-ray emission is dictated by An example of the inter-
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nal conversion coefficient magnitude as a function of energy is demonstrated for a radon
nucleus, using theoretical values, in This dependence on multipolarity means
that the difference in spin and parity of a nucleus can be obtained directly by comparing
either the total internal conversion coefficient, or the partial internal conversion coeffi-
cients, against theoretical values or each other to obtain an unequivocal transition type,
therefore inplying the nuclear state that the detected electron could be emitted from.
Since internal conversion requires the emission of an atomic electron, there is a depen-
dence on the atomic shells of the atom being filled. In a fully-ionised atom, with a net
charge of Z, internal conversion could not occur since there are no electron wavefunctions
for the nucleus to overlap with. Likewise, if the energy between the two states is higher
than the binding energy of an electron shell, emission cannot occur from that shell. There-
fore, nuclear transitions which lie below the binding energy of the innermost electrons in
the K-shell, any converted electrons must come from a higher shell, such as one of the
L shells. However, these are less likely to couple to the nucleus due to the quantum me-
chanical wavefunction of the electron-nucleus system resulting in the electrons spending
less time in and around the nucleus, even though the number of electrons in higher-order
atomic shells is greater than the two present in the K-shell. This is apparent from exam-
ining the real representations of the spherical harmonics, where increasing the quantum
number for the electron shell results in a probability distribution of electrons which are

increasingly further displaced from the origin.

2.1.2 FEO transitions

Monopole transitions (L = 0) cannot proceed via y-decay due to the photon having unit
intrinsic spin. A 07 — 0T decay then is strictly forbidden with the emission of only one
photon. However, it is possible to observe an FQ transition via an internally converted
electron.

For transitions between states, the wavefunctions must overlap in order for the config-
uration mixing to occur [4I]. There is also a requirement that AK = 0, and thus provide
a probe of the K quantum number of a band (the projection of the total angular momen-
tum J along the symmetry axis of the nucleus). EO0 transition strengths offer a model
independent description of off-diagional matrix elements of the mean-square charge radius
operator. Therefore, the mixing of configurations with different charge radii 72 greatly
influences the E0 transition strength, making them important probes of deformed nuclei.
The transition strength p? of EO decays can be expressed in terms of differences in 72 or

quadrupole deformation 32 via [42]

T <52>>2 ) (ZQamA <r2>>2 (eq. 2.3)

2 —
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Figure 2.2: Theoretical values for internal conversion in radon, as a dependence of
energy, and also multipolarity of the transition. Note the kinks in E1, M1, and M2
transitions, which are due to the K-shell binding energy. Data is obtained from
calculations used for the Brlcc program [40].

where Z is the proton number of the nucleus, Ry is the nuclear radius, and « is the mixing
amplitude of the coexisting configuration.

A 0T — 0~ transition violates parity rules with the emission of only one quanta, but can
proceed via two photons or two conversion electrons being emitted. A magnetic monopole
is not known to exist with currently known physics, although suggestions have been made

that an MO transition could occur with a cascade of virtual E1 and M1 pairs [43].

2.1.3 ~v-ray emission

High energy photons are emitted by most radioactive sources and excited nuclei, for all
transition multipolarities greater than one, due to the unit nature of the spin on a photon.
These photons can be lower in energy than X-rays; however, y-rays are categorised as being
emitted from the nucleus, rather than as a consequence of electric transitions in atomic
shells. It is typically the dominant mode of decay within excited nuclei. The energy of the
detected photon is not the exact transition energy between states; to conserve momentum,
the nucleus must have some recoil energy when emitting a photon, but this correction is
of the order of 1075 and so can be neglected for all but the most precise of measurements.

The likelihood of a high-order transition decreases with increasing L. Magnetic tran-
sitions are also slower. Assuming a spherical nucleus, so-called Weiskopfl estimates [44]

can be obtained for the transition rate of each state. For the fastest transitions, these are



2.2: COULOMB EXCITATION 13

A(E1) = 1.0 x 101445 E3
A(E2) = 7.3 x 107 A3 B
A(M1) =5.6 x 103 E3

A(M?2) = 3.5 x 107 A3 E5

(eq. 2.4)

where E is the energy of the transition and A is the mass number of the nucleus. These
estimates can differ by large amounts according to the structure of the nucleus, such as
FE1 transitions occurring faster in octupole-deformed nuclei.

It is not possible to obtain direct information of the multipolarity of the transition,
or of the type, from the detection of a ~-ray, although polarisation techniques can be
employed to determine this, by cooling the nuclei to low temperatures, placing them in
a magnetic field, or comparing observed distributions from a cascade of previous states.
However, high-energy photons are essential to the study of nuclear physics as they are

emitted in abundance across the nuclear chart at all energies and masses.

2.1.4 Internal pair production

If the energy difference between states is greater than twice the mass of an electron
(1.022 MeV), mass-energy equivalence dictates that a positron-electron pair may simul-
taneously form, with excess energy given to the particles in the form of kinetic energy.
The likeihood of this process increases as the transition energy increases, and is especially
important in light elements, which often have large energy differences between states, al-
though the dependence on the proton number otherwise is negligible. Pair production can
occur anywhere within the field of the nucleus [45].

This is a valid process for all transitions, including E0, and can be used to determine
multipolarities of transitions [46]. Detection can take place by either detecting the emitted
positron and electron pair, or by detecting the two photons emitted when the positron

annihilates with an electron within the material.

2.2 Coulomb excitation

Nuclei during the in-beam experiments used to test SPEDE were excited via Coulomb
excitation. A nucleus can be excited from the ground state by a time-dependent electro-
magnetic field generated by passing another nucleus. This process is Coulomb excitation.
Ensuring the energy used is below the Coulomb barrier, the interaction is purely an elec-
tromagnetic one, a force which is well understood. By keeping the energy low, distance
between the nuclei involved in the reaction remains large enough that any effects from the
nuclear forces can be ignored, since the range of the strong nuclear force is ~107° m, the
size of a typical nucleus, and the range of the weak nuclear force around a thousand times

smaller, with a range ~107'% m
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Due to the computation required to complete a full quantum mechanical treatment
of the nucleus, a numerical approach is needed. First- and second-order perturbation
theory is sufficient for one- or two-step excitation, but is of no use when considering the
population of many states with heavy ions. The equations describing this are summised
here. For an exhaustive treatment, refer to Alder and Winther [47].

Coulomb excitation can be approximated using a semi-classical method, similar to that

of Rutherford scattering, given by

2
do [ Z,Ze L0
_ v 25
dQ) (87reom1)2> @ (cq )

where Z, and Z; are the proton number of the projectile and target respectively, m is the
reduced mass of the projectile-target system, v is the velocity of the projectile and @ is
the deflection angle in the centre of mass reference frame.

For this classical treatment to be valid, the quantum-mechanical wave packet must be

smaller than the distance between nuclei, which requires the Sommerfeld parameter

n= %b = Zpgta >>1 (eq. 2.6)
where b is the distance of closest approach between the projectile nucleus and the target,
A is the de Broglie wavelength of the beam, « is the fine-structure constant and [ is the
speed of the projectile relative to the speed of light ¢. The Sommerfeld parameter is a
dimensionless quantity that represents the number of exchanged photons needed to force
the nuclei on a hyperbolic orbit.

Rutherford scattering trajectories are symmetrical about the point of scatter, and so
also requires the scattering to be inelastic. Although this is not true for Coulomb exci-
tation, inelastic scattering can be approximated to elastic scattering if the energy trans-
fer, AE, is much smaller than the projectile energy E,, implying incoming and outgoing

energies are similar enough to be treated classically. This results in the condition

P

For heavy-ion beams, such as those that will be typically used with SPEDE at HIE-
ISOLDE, the condition on the Sommerfeld parameter is met, and typically, due to the
production method and acceleration of the beams, the beam energy is much greater than
the excitation energy. Therefore, the semi-classical approximation is valid. The final
Coulomb excitation cross-section is then given by a product of the Rutherford cross sec-
tion o and the probability P, of exciting a given state |n). Thus, the Coulomb excitation

cross-section is
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dop, _  dog
ol an (eq. 2.8)

The collision time in these reactions is of the order of 1072! seconds, around 10® times
quicker than the nuclear lifetimes of the low-lying states typically involved. Therefore
the excitation and subsequent decay can be treated as separate processes. Using this
fact, and the knowledge that in the expansion of the electromagnetic potential the mutual

multipole-multipole interaction is weak and can be neglected, the Schrédinger equation

can be expressed, independently for target and projectile, as
0 0 _
ihgr l2) = (Hp + Viz (7 (9) ) [r.2) (eq. 2.9)

where the V term with an index of 1 represents the monopole-multipole interaction be-
tween an unexcited (monopole) nucleus and the excited (multipole) nucleus, and vice-versa
with an index of 2. The H term represents the monopole-monopole interaction and de-
termines the time-dependence of the potential by the classical trajectory 7 ().

To solve the time-dependent Schrodinger equation given by the wavefunction
|t (7,t)) can be represented as a superposition of individual nucleon wavefunctions ¢ (7),

along with time-dependent coefficients a (t), such that

1Ent
Zan ) [¢n (7 (eq. 2.10)

where HO |¢,,) = E,, |fn).

It can be shown (as it is in the GOSIA manual [48]) that the excitation amplitudes
a, taken into account the orthonormality of the nucleon wavefunctions |¢,) such that
(ok|dn) = Okn, when differentiated by the dimensionless orbit parameter w (such that

t = l% (esinhw +w), € = sin? ™,  is the centre-of-mass scattering angle, a is half the

2
distance of closest approach if the nuclei collide head on and vy is the magnitude of the

interaction velocity), is given by

da . 7 esinh w+w
O = i3 Qu ) G (I M (V) 1) () €555 (eq 211)

Aun

where @ represents the dimensionless collision functions for electric or magnetic excita-
tions, { = — Ny, = 4125 (i — i) is the symmetrized adiabaticity parameter that rep-
resents the difference in wavenumber between the initial and final states, and the reduced
matrix elements replace the multipole operator matrix elements (IsMg| M (A, p) [1My)

via the Wigner-Eckart theorem such that
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<ISM5|M<A,M>|Ifo>=<—1>fsMs(_gys ) ]\ij><ISI\M(A)HIf> (eq. 2.12)

I, XN Iy . .
where < M, u M ) is the 3-7 symbol.

The complex expansion coefficients defined by ay (t) can be expressed before the in-
teraction as ay, (t = —00) = d;,0, where O is the ground state (the typical initial state),
and k represents a state of the nucleus. After the collision, the nucleus is then described
by the set of aj, (t = —o0) defining excitation probabilities where Py, = ayaj, before which
the excited nuclei can then decay back to the ground state by either y-ray emission or by
internal conversion.

The electromagnetic matrix elements connecting two states can be calculated by using
the above Wigner-Eckart theorem in for electric transitions, such that

(Ls| [EA[Hp) = /215 + 1 (TymyAms|Isms) Qrax (eq. 2.13)
: - 2 a=1
where (IymgAmg|lsmg) is the Clebsch-Gordan coefficient, and ay = .
BEH A >2
- >

Q. is given in The strength of an electromagnetic transition can then be defined

as

2y +1
A [17) 2 = S (Tpm i Ln.)? Q3a3. (ea. 2:14)

B(EN I, — If) = T 1
S
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Radiation detection and
measurement

“In nature’s infinite book of secrecy
A little I can read.”

3.1 Electron spectroscopy

Electron spectroscopy is an analytical technique used to study the structure of atoms and
nuclei. It encompasses the study of electrons emitted from atomic systems by a variety
of different processes, such as electrons emitted from [ decay, Auger electrons (electrons
emitted from atomic shells to fill in a hole akin to X-ray photons), or, as in the case of

SPEDE, conversion electrons.

3.1.1 Electron interaction

Electrons are directly ionising radiation. In general, when a charged particle enters a
material, it will slow down and change direction due to electromagnetic interactions with
atoms in the incident material. The reduction in velocity of a charged particle is given by
the Bethe-Bloch formula [49], which is

dE ze? 2 2mec? B2 C
== = NaZpAr A [In—"rc — 3% — 6 — — .31
dx (cﬁeo> ALPET (lnI(1—62) pr=o Z (eq. 3.1)

where z is the incoming particles charge in terms of e, e is the charge on an electron, c is
the speed of light, 3 = 7 is the speed of the incoming particle relative to the speed of light,
€0 is the permeability in a vacuum, N4 is the Avogadro number, Z is the atomic number
of the material, p is the density of the material, A is the molar mass of the material, m, is
the mass of an electron, I is the mean excitation potential, § is a density correction term
and C' is the shell correction parameter.

However, due to the small mass of an electron, a key assumption for (that

an incoming particle will not alter direction after interacting with the material) cannot
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hold. Additionally, when two electrons interact, the resulting wave function is inseparable.
Bremsstrahlung (‘braking’) radiation must also be accounted for as the energy of the
electron increases to around 1 MeV; this radiation is the result of photons emitted as a
particle changes velocity as a result of an electromagnetic interaction with another particle,

which must be emitted to conserve momentum. The cross-section for this Bremsstrahlung

2\’
o= <m02> . (eq. 3.2)

In a detector, a bias voltage is applied, creating an electric field within the detector itself.

radiation [50] is given by

When particles interact with matter, they cause electron-hole pairs to be created, with
electrons removed from atomic orbitals by the ionising radiation. Electrons and holes
then move to the positively-charged anode, which causes a current to flow with a voltage
corresponding to the energy incident on the detector.

The current incident on an electrode from moving charges is given by the Shockley-
Ramo theorem [51], which states that

i =qU- Ey(T) (eq. 3.3)

where ¥ is the velocity of charge ¢, and Ey (7) is the electric field at the position of the
charge.

Assuming a particle that enters the detector does not leave the detector again (that
is, escapes), the detector captures the full energy of the incident radiation. This can
be worked out directly; knowing the ionisation potential of a material or gas (such as
the band-gap between the valence band and conduction band in a semiconductor), and
knowing the number of electron-hole pairs created by the incident radiation, it is possible

to establish the initial energy of the particle.

3.1.2 Jd-electrons

A major difficulty in performing electron spectroscopy is dealing with the d-electron back-
ground. These are produced when heavy particles, such as the beam nuclei used in ex-
perimental studies, collide with electrons in the atoms of other nuclei, such as within a
target, leading to a large low-energy background of scattered electrons. These electrons
can then go on to collide with other electrons and produce further ionisation. However,
the d-electron distribution is not isotropic, and as can be seen as seen in is
concentrated in the direction of the beam, as well as being generally a much lower energy
than the conversion electrons of interest., The background can be significantly reduced by

placing the detector in the backwards direction, upstream of the target. This technique is
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Figure 3.1: §-electrons produced from a collision between 5.88MeV/u U*T on
C3Fg [52]. The energy range is low, and drops quickly within the first 10 keV.

used with SPEDE, meaning the setup is much simplified by avoiding the use of magnetic

transport fields; these can severely decrease the efficiency of the detector and complicate

the setup greatly.
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3.2 ~-ray spectroscopy

~y-ray spectroscopy is a technique using an energy-sensitive detector for photons emitted
from the nucleus, akin to electron spectroscopy. By collecting the radioactive emissions,
a characteristic spectrum can be produced which can be used to infer properties of the
radioactive nucleus or source under study [53].

All materials used for this spectroscopy are sensitive to photons, interacting via the
photoelectric effect, Compton scattering, and pair production, as shown in

The dominating process of interaction is energy-dependent.
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Figure 3.2: Photon interaction methods in aluminium (a), copper (b) and lead (c). Note
the energy dependence of all effects, and the starting energy of pair
production (1.022 MeV), as well as the Z dependence of the interactions, with the
dominating interaction varying with element [57).

In the photoelectric process, all of the energy of the incident ~-ray is transferred to a
bound electron of an atom in the detector. This electron is then ejected from the atom

with a kinetic energy given by the Planck-FEinstein relation

E=hv—¢ (eq. 3.4)
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where v is the frequency of the incoming photon, and ¢ is the energy needed to remove
the bound electron. This process mainly involves electrons closely bound to the nucleus
in the K- and L-shells. If the energy of the incident photon is less than the work function
¢ of the K-shell then the photoelectric effect can not occur.

The second process that can occur is Compton scattering, where the incoming photon
transfers only part of its energy to an electron, with the remaining energy carried by a new
photon of lower energy in a scattered direction. The probability of a Compton interaction
increases with the atomic number of the detector, however depending on geometry of the
detector array not all the energy of the original y-ray photon may be absorbed. Since
the scattering is not constrained purely to the detector, and since any real detector must
have a finite size, there is a probability photons can scatter out of the detector, taking
with it any excess energy. This results in an effect on the spectrum called the Compton
continuum. Another effect from Compton scattering is backscatter, which can cause ~y-rays
that did not originally enter the detector material, but rather the surrounding shielding
and equipment, to enter the detector and also result in less than the full energy being
absorbed [55].

The third effect seen in is pair-production. As a consequence of energy-
mass equivalence, from the special theory of relativity, particles can be converted from an
amount of energy, assuming all other conservation laws and symmetries are held. There-
fore, photons with an energy greater than 1.022 MeV (twice the mass of an electron,
511 keV) can spontaneously create an electron-positron pair, which then travel in oppo-
site directions with any excess energy from the photon shared equally between the pair as
kinetic energy, in an effect seen also in high-energy transitions within nuclei. The positron
then annihilates with electrons in the detector, causing two 511 keV photons to be emit-
ted, again in opposite directions, which are subsequently detected, causing an annihilation

peak at 511 keV in any resultant spectra [56].

3.3 Heavy-ion detection

Many nuclear physics experiments require particle identification. Identifying the particle is
important for decrease background levels, kinematic correction, or radiation identification
using techniques such as recoil decay tagging. Particles can be identified directly from
energy and position, or by searching for subsequent [ electrons, v rays, or « particle
(another heavy ion).

Heavy ion detection differ to the detection of particles already discussed in several
ways. They will often have more energy, between 100 and 10' MeV for an « particle,
or up to 103 for heavy nuclei from beam or target interactions. Their masses are several
times that of an electron, and they are often in a highly charged state. These properties
are both important in the stopping power defined in Most deposition of energy

occurs at the end of a particle’s trajectory; as a heavy particle slows down, it deposits an
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increasing amount of its energy, until coming to a stop. This differs to photons, neutrons,
or electrons, which deposit most of their energy near the surface of a material. The effect
is demonstrated for different ions in with the sharp increase and subsequent
decrease in energy depositied for hydrogen and carbon ions known as the Bragg peak of
the ion. Heavier ions shed some energy after the Bragg peak via a fragmentation of the

particle; the effect of this is especially important when studying damage from ion beams.
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Figure 3.3: Energy deposition of particles in water as a dependence of depth. Relative
dose, which is proportional to —%, varies with depth for different types of particles [57].

The requirements for any particle detector follow from the above properties. Clearly, a
resolution on the order of 1 keV is not needed, since the energy magnitude is much larger,
although good resolution is always desirable. Detector thickness is very important and
dependent on what the detector will be used for, since most of the energy of the heavy
ion is deposited at the end its path. The position is also integral to the experimental
setup; with most ions from a beam focused in the forward direction, a particle detector
placed at a backwards angle would see much fewer counts, whereas the distribution of «
particles would be much more isotropic. For reasons common to much of spectroscopy,

segmentation is desirable to be able to clarify position and increase count rate capabilities.
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3.4 Doppler correction

SPEDE will be used with post-accelerated beams at HIE-ISOLDE, at energies of 4-
5 MeV/u. For the heaviest beams, this could mean a total energy of around 1.1 GeV,
approximately 10% of the speed of light for the nuclei in question. Therefore, any radia-
tion from excited recoiling nuclei, either from the beam or target, will have an observed
energy shifted in the laboratory frame compared to the actual radiation energy in the
nuclear frame of reference. Classically, a wave which has been Doppler shifted will have

its frequency f’ altered by

f = - (eq. 3.5)

where f’ is the frequency of the observed wave, fq is the frequency of the wave in the
source frame of reference, ¥ is the velocity of the source away from the observer, and c is
the velocity of the waves in the medium.

In the case of a photon, the velocity of the waves can be taken to be absolute, and
therefore the speed of light ¢g. The source is either a beam or target nucleus, scattering
at different angles . Using and changing the reference frame to that of the motion

of the source, this can be rewritten as

E/

Ey=——1—
0 1— Bcosh

(eq. 3.6)

where E’ is the energy of the observed radiation at the detector, Ey is the energy of the

radiation emitted in the nuclear frame of reference, § = % = ,/ﬁiﬁ > is the speed of the
projectile relative to the speed of light ¢y (and E,, m, are the energy and rest-mass of the
detected particle, respectively), and € is the angle of the emitted radiation relative to that
of the emitting particle; at 0 radians, the source is travelling towards the observer, hence
the change in sign when compared to

Due to relativistic effects at the high speeds of the nuclei, the time period of the

massless de Broglie waves will be retarded by the Lorentz factor
1

V= ——
Vi—=

and since frequency is the reciprocal of (and therefore energy is inversely proportional to)

(eq. 3.7)

the time period, the equation for the massless Doppler shift is given by

El
Ey =

=0 et (eq. 3.8)
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However, since the electrons have mass, [eq. 3.8 must be modified according to relativistic
dynamics. Under the same treatment as for a photon, the Lorentz shift for the radiated

electron is
/ p/C

It can be shown through a detailed treatment of the Lorentz transformation of the mo-

mentum four-vector that

R 2mec? 9
Eoy=~E"[1-054/1+ = cosf | +mec” (y—1) (eq. 3.10)

where symbols are analogous to that seen for the Doppler shift for a photon, and m.

represents the electron mass. Further, cos must be measured as a function of detector
angles.

A z-axis can be defined as that which the ‘perfect beam’ travels on; that is, an infinites-
imal beamspot travelling exactly through the centre of the system. The z- and y-axis then
bisect this, z running vertically and y horizontally. In spherical coordinates, a variable ¥
can be defined corresponding to the angle, clockwise, in the detectors, ¢ corresponding to
the angle between the hit and the beam axis, and r as magnitude. By rearranging
(vector dot product)

A- B = |A||B|cos¥, (eq. 3.11)

and using trigonometric identities, it is possible to relate cos# in terms of angles in the

detector system by

cos ) = sin 1 sin @y cos (U1 — ¥2) + cos 1 cos Y2 (eq. 3.12)

where the subscript 1 corresponds to the CD detector, and 2 corresponds to a detector
segment in MINIBALL, JUROGAM, or SPEDE.

Therefore the fractional relativistic Doppler shift in terms of laboratory angles is given
by

E, 2mec? | | .
E(,):'y(l—ﬁ 1+ Ee’ (smgolsmgagcos(??l—192)—|—cosg01cosg02))+m602(fy—1).

(eq. 3.13)
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Care should be taken since the particle and electron detectors are facing in an opposite
direction to each other. If the 19 angle is given clockwise around the detector, then the
detector facing in a ’backwards’ angle (that is, behind the target position) has segments
in ¥ equal to 27 — #. Thus, the cos? term in becomes cos (Vprn + Yspppp) in
terms of detector angles. Equally, ¢ for the detector should be taken from 7 in order to
preserve the coordinate system.

Due to a variety of different recoiling energies, and a variety of angles of emission of
the radiation, different amounts of Doppler shift occur. With no kinematic correction,
this results in a peak that is Doppler broadened. In order to correct this, good position
resolution is required. This then leads to a requirement for segmentation of a detector,
not only to be able to increase possible count rate and reduce capacitance, but to be able
to correct for the effect of Doppler shift as much as possible. The same is applicable to
the recoiling particle itself; since the amount of Doppler shift is dependent on the energy
of the particle the radiation is emitted from, it is critical to be able to measure the energy
and angle of incidence of the particles of study. Uncertainties in the precise position
of de-excitation, path taken through the target, uncertainties in angles due to strip or
crystal width, and in the recoil velocities will all result in the fact that an experiment
which requires Doppler correction will never get as good a resolution as that from a static
source. These can be mitigated to a certain extent however by various methods such as
using thin targets and small segments.

Other effects can contribute to diminish the resolution of a detector, other than that
dealt with in this section, but these are minimal compared to the effect of studying nuclei
with a high 8. It is however important to note that there will always be some finite
resolution due to the uncertainty principle contributing to a ‘natural line-width’. Another
broadening effect, from the nuclei themselves as opposed to the detector, includes the
Boltzmann distribution of the velocities arising from the thermal motion of the particles
under study. Resolution can also be affected by so-called pressure broadening. However,
this is mostly applicable to much lower energy radiation, and arises typically in molecular
spectroscopy, where the low energy of the states of study mean these factors are a larger

component of the error from the resolution.

3.4.1 Kinematics

To be able to accurately determine the Doppler correction factor for emitted radiation
from nuclei, the position and angle of the emitting nucleus must be determined, with
more precise measurements of these values leading to a more accurate correction. Due to
experimental configuration, it may not always be possible to detect the nucleus of interest,
owing to for example the finite size of a particle detector not being able to detect nuclei
scattered at certain angles, or because of dead-time in a detector.

In experiments where nuclei are excited via a Coulomb interaction, a correction can
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still be made if one of the particles is detected. For the trivial case where the particle
corresponds to that of interest, # and ¢ angles are those as detected. For the more
complex case, where the corresponding beam or target nucleus is detected but the nucleus
of interest is not, angles can be determined by using the laws of conservation of energy
and of momentum. In the closed system of the interacting nuclei, energy is conserved,
with the difference in the kinetic energy of the sum of the final velocities to the sum of
the initial velocities equal to the energy of the emitted radiation. To conserve momentum
in the centre of mass frame, the nuclei scatter with a difference of 7 in the centre-of-mass
system, but in the lab system the scattering angle will be such that the forward direction
of the momentum vector in the lab system is still preserved. This then reduces to a

trigonometric problem to determine the angle of scattering for the undetected particle, as

seen in |[Figure 3.4

M
undetected

9 undetected

9

etected

Figure 3.4: The detector may not always be able to detect both nuclei scattered during a
collision. However, a solution can still be found via the use of trigonometric identities.

Using the above, it is apparent that by precisely determining the position of the scat-
tered nuclei, and precisely knowing the value of the emitted radiation, recoil velocities
of the scattered nuclei can be accurately determined generally to better precision than
the resolution of the particle detector. The problem becomes more complicated in inverse
kinematics, where the solution for the recoiling particles is two-valued, but by placing a

gate on the energy of the nuclei, the solution becomes single-valued.

3.4.2 Mott scattering

In the case of two identical particles scattering, the scattering angles are modified by a
quantum mechanical effect [58]. Under the operation of the interchange of particles X in
the Hamiltonian, the symmetry of the wavefunctions must be taken into account, and the
positions defined by R do not commute, resulting in a phase factor difference of k € R, as
described by

[R, X’} = iK. (eq. 3.14)
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When the identical particles are fermions, the wavefunctions are symmetric, « is zero
and there should be no change in the resulting wavefunction. In the case of bosons, where
the wavefunctions are anti-symmetric, and a shift occurs when considering the resulting
wavefunctions of the scattered particles. However, it remains impossible to determine
which nucleus radiation is emitted from. Therefore, the resulting correction Doppler cor-
rection is only correct for half the particles; in half the cases, the scattered nucleus detected
corresponds to the detected electron, whereas in the other half the scattered nucleus de-

tected is not excited and the radiation quanta emerges from the undetected nucleus.

3.5 Detector types

There are three types of detectors in regular use, each with advantages for different types
of applications.

The first, gas detectors, are most typically used for neutron detection and ion tracking,
and are not particularly suited for the spectroscopic detail required, and thus will not be

discussed in this thesis. For a detailed review see [59].

3.5.1 Scintillation detectors

The second is the scintillation type, which emit light when ~-rays interact with atoms in
the crystal lattice. The intensity of the light is proportional to the energy deposited in
the crystal. Scintillators are connected to photomultipliers in a light-tight environment,
which converts the photons emitted by the detector into electrons and amplifies the signal.
Sodium iodide (Nal) detectors can be produced in large crystals, meaning they have a high
efficiency, but suffer from poor resolution, mostly due to the thermal motion of electrons
varying the light output of the crystal, and lanthanum(III) bromide (LaBrs) crystals are

particularly suited for fast-timing applications [60].

3.5.2 Solid-state detectors

The third type of detector, a solid-state device, is semiconductor-based. The SPEDE
spectrometer is a solid-state device made from silicon.

Interactions from incident radiation excite electrons from the valence band of the semi-
conductor to the conduction band, which respond to a bias voltage applied to the detector
that creates an electric field, and moves electrons to the anode. The corresponding hole
moves to the cathode. These electrons cause a current to flow which is then amplified and
processed [61].

To process the pulses from the detecting semiconductor requires electronics to amplify
and process the signal. A high-voltage power supply will be used to bias the detector

where needed and supply necessary voltages to the rest of the system. Normally, the
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output signal from the detector will be passed through a preamplifier to increase the
size of the signal, the output from this then subsequently sampled by digital electronics
using an analogue-to-digital conversion (ADC) process to convert the analogue voltage
information to a digital format that can be processed by a computer [62].

The majority of modern detector arrays typically use HPGe-type detectors for ~v-rays,
which have excellent resolution, but are not readily an option for any portable application,
and silicon for the detection of directly ionising particles, such as electrons or « particles.
To minimise thermal noise, detectors are typically cooled; silicon requiring much less
coolant to deplete due to a smaller band gap, and being cooled to temperatures around
250 K. With germanium liquid nitrogen cooling is required in order to minimise the thermal
noise resulting from the very small band gap of the material (0.74 eV at 0 K, compared

to Si with 1.17 eV at the same temperature of absolute zero).

3.6 Historical review

The progress of electron spectrometers compared to y-ray spectrometers has often been
much slower. There are some similarities between the types, such as materials used or
features such as high degrees of segmentation, and of course many differences due to the
different interaction processes and energies. Spectrometer materials can be gas, liquid, or
solid, and can vary from devices such as Geiger-Miiller tubes, electron or photon multipli-
ers, semiconductors, or Cherenkov detectors. Additionally, for electrons only, the detectors

can be combined with electromagnetic fields for electrostatic- or magnetic-type devices.

3.6.1 ~-ray spectroscopy

The first detection materials used were Geiger-Miiller tubes, gas-filled cavities where ra-
diation causes electrons to be ionised which are then collected at an anode. These have
been displaced in modern times eventually by solid-state detectors, where the charge pro-
duced by photon interactions is collected directly. A semiconductor, which has electrons
and holes that can move freely, is used as the bulk volume, typically germanium, cou-
pled with an electrode biased at a relatively high voltage to create a high electric field
in the crystal, which is then passed to a preamplifier to increase the voltage pulse from
this charge collection. These can be combined with other electronics, for example with
Compton-suppression shields, to result in spectra with high peak-to-background ratios.
Combining multiple detectors in turn led to the development of arrays currently at the
forefront of y-ray detection development, named GRETINA (Gamma Ray Energy Track-
ing In beam Nuclear Array, US collaboration) [63] and AGATA (Advanced GAmma Track-
ing Array, 12 country European collaboration) [64]. These are arrays of highly segmented
Ge detectors that track -rays through the array, eliminating the need for shields, with

excellent position resolution and efficiency, that ultimately will cover a full 47 geometry.
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More on these arrays, including other arrays not mentioned here, can be found in [65],
and illustrations can be seen in One array in particular, MINIBALL, has been
a focus of this work. A brief summary is given in

Figure 3.5: A wvariety of previous y-detecting arrays are seen in the figure, clockwise

from top-left: TESSA, EUROGAMII, AGATA. References are given in the text.

3.6.2 Electron spectroscopy

There are three main categories of in-beam electron spectrometers. These either use an ar-
rangement of magnets transverse to the direction of electron travel to transport electrons
around a barrier, a solenoid to transport electrons to the detector (with a longitudinal
magnetic field), or use no magnetic fields to transport the electrons. This latter category
is what SPEDE falls into, and is currently unique. Another in-beam spectrometer, SPICE
(SPectrometer for Internal Conversion Electrons) is under development, but will incor-
porate a magnetic lens to increase the natural angular coverage of the detector. Some

examples on different types follow.
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Effective Resolution| Relative
Name Year Location v @ 1 MeV | Efficiency
Segments
keV %
Nal(T1) 1948 - - 60 3,} f‘;f,)
Ge(Li) 1964 - - ~2 -
HPGe 1978 - - ~2 -
TESSA 1980 | Risg, Denmark 4 ~2 25 (per
detector)
TESSA3 1986 | Daresbury, UK 16 ~2 25 (per
detector)
25 (per
HERA 1987 | Berkeley, USA 21 ~2 detector)
EUROGAM | 1992 | Daresbury, UK 45 ~2 65 (per
detector)
85 (per
GaSp 1992 | Legnaro, Italy 40 ~2 detector)
R 60 (per
JUROGAMII | 2008 | J¥Vaskvld, Fin- 39 2.1 clover
land
detector)
MINIBALL | 2007 | CERY, Switzer- 40 2.3 53.9 (per
land detector)
AGATA - Europe 180 2.1 43.3 (total)

Table 3.1: A selection of y-ray detecting setups, showing progress through the years

3.6.2.1 ‘Mini-orange’

SilLv)
- Detector
L Vs %e',' '
|
J "
‘e—z w
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Figure 3.6:  Typical layout of ‘mini-orange’ type detector [66]. The design was later
combined into a multiple-element array called
Pitt ICEBall (Pittsburgh Internal Conversion Electron Spectrometer Array) (akin to how
TESSA was a combination of y-ray detectors), and was placed inside an array of v-ray
detectors.
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Figure 8.7:  Electron spectrum from a mini-orange type detector [67]. The resolution in
this uncalibrated spectrum is enough to make out electrons emitted from different shells.

Mini-orange detectors, so-called because of their size and geometry, are a combina-
tion of permanent magnets that enhances the detection efficiency of conversion electrons
and suppresses background such as positrons and alpha particles, resulting in peak-to-
background ratios by a factor of up to 80. It falls into the first category as introduced
at the start of this section, and the layout can be seen in First developed by
J. van Klinken in Germany [68], the method relies on the principle that a charged parti-
cle moving through a magnetic field experiences a different path depending on its charge
and velocity, and advanced earlier toroidal electron spectrometers (‘orange’ detectors) by
making use of small permanent magnets to make the size of the device more compact.
Using a magnetic transport field to transport the electrons, and a shield such as lead
to absorb direct radiation from the target, relatively clean spectra can be obtained. To
select for different energies of emitted electrons, the position of the target, the strength
of the magnetic field, or the position of the spectrometer must be altered in order for the
radiation to reach the detector, which can increase beamtime requirements substantially.
An example spectrum using such a detector setup is shown in Separation can

be seen between K- and L-shell electrons on top of a smooth background.

3.6.2.2 SACRED

SACRED (Solenoid and Array for ConveRsion Electron Detection) as seen in [Figure 3.8
was another type of spectrometer situated in Jyvaskylé using a 25x25 mm square matrix of

PIN (positive-intrinsic-negative) silicon consisting of 25 individual elements, each 5x5 mm,
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Figure 3.8: The SACRED detector [69].
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Figure 3.9:  Electron spectra from SACRED [70]. Spectrum a) was obtained using a
static 33 Ba source. Spectrum b) shows the conversion electron spectrum gated on the
characteristic o decay of **° U. Spectrum c) is the simulated equivalent to b).

where electrons are transported to the detector array by means of 3 superconducting coils

creating a solenoidal field, combined with a high voltage electrostatic barrier to remove
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low energy delta electrons. As the name suggests, the magnetic field lies along the axis of
electron travel. SACRED could also be combined with a germanium detector, to obtain
~-ray spectroscopic information at the same time as obtaining spectroscopic information
from the electrons. Compared to the spectrum from a mini-orange device, [Figure 3.9 shows
peaks with a much better resolution. Primarily, SACRED allowed a precise kinematic
correction to be applied to the electrons and obtain energies closer to the true value, with
a resolution comparable to that seen from a static source.

Latterly, SACRED was combined with RITU (Recoil Ion Transport Unit) in order to
do recoil-decay tagging [71]. This is a method of using the time-of-flight information for
recoiling products of reactions that are magnetically separated, combined with a silicon

strip detector for detecting the fragments, which can remove large amounts of background

and result in much cleaner spectra.

3.6.2.3 SAGE

E 3 (b)\ Electrons in coincidence with y-rays
N

~~

%)

e? g

8 \%L\VM

1 H

- !

o '

L o !
xo lllllllllllllllll] "‘li‘“‘—JlllljilllILJJl

0 50 100 150 200 250 300 350 400 450

Figure 3.11: Gated electron spectrum from SAGE [T3]. Here, electrons detected in
cotncidence with y-rays are shown, resulting in a clean spectra where multiple transitions
from different shells can be observed.

SAGE (Silicon And GErmanium) as seen in [Figure 3.10| is a highly-segmented spec-
trometer with 90 channels that is coupled with the JUROGAMII ~-ray detector array in
Jyvaskyld, and builds on the experience with similar setups such as SACRED. Electrons

are transported from the target position again with the use of a solenoid, and is placed



34 CHAPTER 3: RADIATION DETECTION AND MEASUREMENT

in the backwards geometry with a HV (High Voltage)) barrier, in order to further reduce
background, similar to SPEDE. SAGE is specifically designed to be used with the RITU
separator for recoil-decay tagging experiments at JYFL, and employs the use of a carbon
foil to separate the spectrometer from the helium-filled volume of RITU. It has proven
successful in the study of superheavy elements, and at simultaneously examining electrons
and v-rays, as seen in

A major limitation of SAGE however is the effect on ~y-detecting efficiency of the setup
and the added complication of using a longitudinal magnetic field used to transport the
electrons to the target; although the size is kept to a minimum by avoiding supercon-
ducting cells as in SACRED, it introduces difficulties in making the experimental setup
more complicated. This magnetic field however is required, since the detector is positioned
at a fixed angle relative to the target, the magnetic field increases the effective angular
acceptance of the spectrometer. SAGE is also situated at an angle of 3.2° off the cen-
tre of the beam-axis in order to improve the detection efficiency. Work with SACRED
showed Doppler broadening was minimised when there is a collinear geometry between the
beam axis and the detector, as SPEDE is (although SPEDE will not employ a solenoidal
magnetic field like the others).

These design choices are made with a particular view to the experiments that SAGE
is especially designed for, namely high-multiplicity experiments and investigations into
superheavy nuclei, and thus is not suitable the low beam intensities typically seen in
radioactive beam facilities. The laboratory where SAGE is situated uses stable beams,
limiting the nuclei where the strength of the B(E3) transition can be measured directly
(although isotopes with relatively long half-lives, such as ??Ra can be analysed directly
from the ground state). SPEDE however will be situated at MINIBALL where very
clean beams of a particular isotope of interest can be coupled with Coulomb excitation
experiments to result in low-contaminant experiments exciting a much wider selection of

beam nuclei from the ground state.

3.7 Beam production and transport

Many nuclear physics experiments use a charged particle beam, directed by magnets,
impinging on a target. Different beam energies result in different processes dominating,
such as fusion evaporation, Coulomb excitation, or deep inelastic scattering.

The main aims of beam delivery are several [74]. A beam delivery system should ensure
that it is clean as possible; only isotopes of interest should be sent to the target and detector
position. It should deliver beams of high intensity, to ensure that good statistics or rare
events can be observed during the experiment. It should also be consistent; energy spread
across the beam at the target position should be at a minimum, to minimise errors in
experimental analysis, as well as to ensure the expected reactions occur.

Beams can be produced in a variety of ways. For stable, or very long-lived, nuclei,
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beams are often extracted from an ion source of that material, which can then be acceler-
ated to a given energy. Radioactive beams, first produced in the 1950s [75], are produced
as a result of secondary reactions (known as the Isotope Separation On Line (ISOL) tech-
nique), since their often short-lived nature means that having a source of the isotope is
not possible. These can be produced using either thin or thick target reactions, with dif-
ferent setups suitable for particularly short-lived isotopes or production cross-sections. In
production techniques using a thick target, the product must be able to diffuse out of the
target at a reasonable time. A thorough review of ISOL production techniques is given
in [76].

Beam particles, ionised either in their production or with lasers, have an overall
charged, and so experience a force as per

—

F=q(E+7xB) (eq. 3.15)

where E and B represent the electric and magnetic field respectively. This means their
path can then be manipulated with magnets. Typically, one or two dipole magnets are put
in place to bend the beam and separate particles using a selection based on mass number A
divided by the charge on the atom (). Tuning the magnet strength means only a targeted
% selection will be bent the required amount. A clean beam can then be accelerated to a
given energy, in either a linear accelerator, cyclotron or synchrotron (which is essentially a
linear accelerator in a loop), before being delivered to an experimental setup. Quadrupole
or hexapole magnets are often used after this to focus the beam so that the resulting beam
spot at the target position is small. Several additional steps may occur in addition to these
steps, for example to increase the ionisation of the particles, to bunch them together, or

to further separate them.

3.7.1 ISOLDE beam lines

Housed within the ISOLDE hall at CERN, Switzerland, is the HIE-ISOLDE (High In-
tensity and Energy at ISOLDE) linear accelerator, which is capable of producing ra-
dioactive beams with a final energy of 5.0 MeV/u. This is recently upgraded from the
REX-ISOLDE (Radioactive beam EXperiment at ISOLDE) facility, which was capable of
producing beams up to 3.1 MeV /u; the upgrade also increased the quality and intensity
of the beams [77], and will eventually be upgraded to produce beams with energies up to
10.0 MeV /u.

A schematic of this HIE-ISOLDE beamline is shown in 1.2-2 pA DC pro-
ton beams from the proton synchrotron booster of energy 1.4 GeV are incident upon a
thick target of metal, carbide or oxide, for example thorium oxide, which creates a variety
of radioactive nuclides by fission, fragmentation or spallation. These beams are passed to

one of two separators; either the General Purpose Separator (GPS), which allows three
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different simultaneous beams to be selected and sent to the experimental hall via one
bending magnet, or the High Resolution Separator (HRS) which delivers one isotope at
a time through two bending magnets. Beams from either separator can be sent into the
HIE-ISOLDE beamline.

17 ions are bunched together in a Penning trap, REXTRAP, and cooled, with bunches
then sent to REXEBIS, a charge breeder that strips electrons from the ions to give a mass-
to-charge ratio below 4.5. Tons from REXEBIS are then sent through a mass analyser and
on to the linear accelerator, which has a total length of approximately 10 m, consisting of 7
sections. The output from this device results in a pulsed beam which typically decreases in
flux over the pulse time. Initially the ions are boosted in energy from 5 to 300 keV /u using
a RFQ (Radio Frequency Quadrupole) accelerator, and re-bunched. The beam then passes
through an interdigital H-type structure that boosts the energy to 1.2 MeV /u, followed by
three seven-gap resonators. These resonators control the final energy of the beam. They
are then followed by a 9-gap resonator, before the beam is sent to experiments at the end
of the beamline. More detail on the ISOLDE facility is given in Kugler (2000) [78].
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Figure 3.12: A schematic of the HIE-ISOLDE linear accelerator [79).

3.8 Electronics

Interactions of radiation with detectors results in a change in voltage, resistance, or ca-
pacitance in the device. For the energy of the radiation to be quantified, the detector
is coupled with a pre-amplifier. These can be voltage-, current-, or charge-sensitive [80].
Current-sensitive are useful for large or fast rising signals with very low impedance devices.
Voltage-sensitive simply amplifies any voltage at the input of the amplifying circuitry.
However, they require the capacitance of the detector to remain constant, and since semi-
conductor intrinsic capacitance varies with temperature (altering theke current), they are
not typically suitable for silicon or germanium devices. A charge-sensitive preamplifier
allows the incoming charge to be integrated over a feedback capacitor placed in parallel
to the amplifier. SPEDE uses the charge-sensitive Amptek 250NF preamplifier.

The output of the preamplifier can be passed to an acquisition system using analogue or
digital electronics. By using digital electronics, the signal, which is digitized into a binary

sequence immediately after the preamplifier, additional noise from analogue processing
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and shaping is minimised. Triggering can also be done offline, or changed quickly online,
with digital electronics. Additionally, a large factor in maximising collected data for an
experiment is to minimise dead time; this is much easier to avoid using digital electronics
compared to traditional analogue systems [81].

SPEDE uses the Lyrtech digital electronic system used to acquire data have a MWD
(Moving Window Deconvolution) to capture data from pulses. An ADC (Analogue-to-
Digital converter) captures the analogue voltage signal and samples it, quantising the
amplitude into a discrete signal which is then interpreted by the data reader. The software
produces a trapezoid from the captured pulse, from which information of the pulse can be
read. A series of parameters is input into the MIDAS control software in order to shape
this trapezoid, in order that the captured data is an accurate representation of the energy

deposited in the detector. A detailed treatment of this process is given in [82]
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SPEDE

“It’s the job that’s never started as takes longest to finish.”

4.1 Specifications

Three n-type silicon wafers, of diameter 47.6 mm, were ordered. Each is 500 um thick,
although there are plans to possibly order thicker variants (1000, 1500 pm) in the future.
The detector is electronically segmented into 24 areas (average size 53.2 mm?), with 3
rings of 8, arranged as can be seen in This geometry was chosen in 2012 from
Geant4 simulations by J. Konki. Five options, shown in were tested, with
various angular and radial segmentations. The final design had a FWHM of 9.2 keV after
Doppler correction, compared to the best of 8.1 keV from option 5. The third option
has larger segments and thus larger capacitance and leakage current, but this is negligible
compared to the resolution being decreased from kinematic broadening. With 24 channels,
as opposed to 36 or 48, the number of electronic channels needed is minimised, meaning
that the overall size of the detector is kept as small as possible, and the effect on y-ray
efficiency is as negligible as possible. Guard rings, designed to minimise leakage current
at the edge of the depletion zone in the detector [83], take up 3 mm of the inner and outer
circumference of the detector.

The dead-layer of the detector is 0.5 um, or 0.1% of the thickness. The expected
penetration depth of § electrons of 1 keV directly incident on the silicon, as calculated
by ESTAR [85], would be approximately 57 pm, which is about 100 times the dead layer
thickness of the silicon. It should be noted however that anything that would stop in the
dead layer does not necessarily imply none of the interaction is seen. An example of this
typical elementary model of the dead layer resulting in no charge collection being incorrect
is demonstrated by Wall et al. [86] for the KATRIN neutrino-mass experiment. A plot of
the stopping power of electrons in silicon, generated using ESTAR, is seen in [Figure 4.3
The thickness of SPEDE means that electrons with an energy of up to approximately
600 keV can be detected. This figure cannot be determined exactly as it depends on the

distance from target to detector and the angle that an electron strikes the detector at, as
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Figure 4.1: Inner and outer diameters of SPEDE are shown above. Detector segments
are shown as blue areas between black lines, with guard rings illustrated by brown
colouring.

Figure 4.2: 5 designs for SPEDE are shown [87)].

the apparent thickness will generally be larger than 500 pm.

The detector sits on a printed circuit board (PCB) with a diameter of 120 mm with all
signal processing taking place on-board using Amptek 250NF preamplifiers. This board
then clips into a copper cooling block with fins on ensuring good thermal contact between
the heat-producing preamplifiers and the copper, as well as ensuring thermal noise in the
silicon is kept to a minimum, with the setup being cooled to -20°C.

In place in the chamber, the detector sits in the backwards angle. That is, the beam
passes through the centre of the detector before interacting with the target, thus minimis-
ing the direct exposure to delta electrons. In order to further suppress the delta electron
flux incident on SPEDE, the target ladder is also biased with a positive voltage in order
to attract the low-energy electrons back towards the ladder. Additionally, to suppress the

effect of UV light and further reduce the low-energy electron background, an aluminised
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Figure 4.3: Stopping power of electrons in silicon, generated using the ESTAR program.

Mylar foil is placed directly in front of the silicon, on a tri-star rig. A cross-section of this
simulated setup, without the foil, can be seen in

4.2 MINIBALL array

SPEDE will be coupled with the MINIBALL array at the ISOLDE (Isotope Separa-

tor On Line Detector) facility located at CERN near Geneva on the Franco-Swiss border.

MINIBALL is situated at the end of this beamline, and is shown in MINI-
BALL consists of 8 cluster detectors each consisting of 3 individually encapsulated 6-fold
segmented HPGe detectors, giving a total of 144 segments, covering 65% solid angle. This
granularity is important in order to reduce the Doppler-broadening of ~-rays emitted by
nuclei, which are travelling at speeds of up to 0.1 c¢. Full-energy peak efficiency is given as
20% for E, = 1.3 MeV, and 5% for E, = 11.7 MeV. Geant4 simulations show a resolution
of about 7 keV at a y-ray energy of 1.3 MeV at 0.045 c for an observation angle of 90°

with respect to the direction of the velocity vector of the emitting nucleus.

The target chamber consists of a thin target foil made of isotropically pure material,
which the beam is aimed at, resulting in the (separate) Coulomb excitation of nuclei in
both the target and beam. Particles are detected by a double-sided silicon strip detector
(DSSSD), called the CD-detector. Data from this is used to determine if v-rays detected
by the MINIBALL array are prompt or random, and whether they are emitted from the
beam nuclei or the target; since Coulomb excitation has well defined scattering angles,
there is a maximum scattering angle for the projectile, which can be used to separate the

nuclei.
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Figure 4.4: A computer-aided design (CAD) drawing of SPEDE is seen on the left of
the picture. The beam enters from the left side, through the centre of the detector,
interacting with the target in the position selected by the adjustable target ladder. Decays
from excited nuclei are subsequently detected by SPEDE and the surrounding MINIBALL
detectors. Particles are detected in the CD detector on the right.

4.3 Simultaneous electron-gamma spectroscopy

As outlined in the introduction of this thesis, combining electron- and ~-spectroscopy is
a powerful tool of nuclear spectroscopy, but is fraught with challenges. The detectors
outlined above have all been combined with other detector facilities to enhance the infor-
mation available from any experiments, but have failed to maximise the potential for both
full electron and 7-ray spectroscopic information, with the exception of SAGE which was
built expressly to be combined with JUROGAMII.

There are several challenges to performing electron spectroscopy coupled with gamma-
ray spectroscopy. Perhaps the largest, in any spectroscopic study, is a high level of back-
ground counts drowning out any real signals. This can be because of two reasons; number
one being low-energy pile-up in the detector or the electronics smothering any real signal,
or number two because of a broad range of electron energies being detected with high
count rates. Secondly, there is a problem with balancing the efficiency of each type of
spectroscopy. It is important to ensure any electron spectrometer included with an exist-
ing y-ray array attempts to minimise any loss of efficiency of this array, whilst maximising
the efficiency of the electron spectrometer. This can lead to a problem with, for exam-
ple, mini-orange type spectrometers, which are large and contain a lot of excess material
beyond the detector component. Thirdly, there is the issue of Doppler broadening. Since
nuclei especially suited for simultaneous spectroscopy will typically be moving at speeds

up to 0.2 c it is very important that the position of source emission can be determined

precisely [87].
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Figure 4.5: The MINIBALL array of HPGe detectors, in place at the end of
REX-ISOLDE.

There are several methods to minimise these problems however, by the choice of elec-
tronics used, the geometry of the detector and positioning, and increasing the granularity

of the device.

4.4 Electronic tests

The first tests of electronics took place in March 2013, at the University of Jyvaskyla, and
used a simple setup of an Amptek test board in conjunction with a PIN (positive-intrinsic-
negative) diode to determine whether the 250NF amplifiers could be used in order to drive
a 50 Q output directly into a Lyrtech digital electronic system. The test board had the
same layout as an individual SPEDE channel, and is described in The setup
was placed inside a small aluminium enclosed vacuum chamber shown in [Figure 4.6 in
order to provide a dark, low pressure environment for the electronics and PIN diode to be
situated, to minimise unwanted noise. Two open '33Ba sources were used. Initially, source
JYFL-66 (strength 16.2 kBq) was used, before being replaced by the stronger JYFL-90
(284.7 kBq), which were attached to the ceiling of the chamber using a bespoke aluminium
hanger.

A PB-5 pulse generator by Berkeley Nucleonics Corp was used to generate a 1 kHz
square wave, with a rise time of 50 ns, fall time of 500 ns, delay of 250 ns, width of 100 us,
and amplitude 40 mV. This waveform, plus the output after passing through the Amptek
preamplifier, can be seen in

It was noted that although the tests were successful and proved a direct Lyrtech

connection was possible, results were better with a GO (Gain-Offset) box, however the
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Figure 4.6: The figure on the left shows the PCB layout for an individual SPEDE
channel, with the large pad on the left indicating the detector and the top line the bias
connection. The bottom circuit, labelled test, was only present during preamplifier tests

in March 2013. The testing chamber is seen on the right.

resulting pulses do not remain sharp, with a smooth transition between the rise and decay
time, as opposed to the sharp well defined edge of a peak one would expect. This effect is
due to the time constant used in the GO boxes effectively smearing the signal such that
it becomes rounded, illustrated in Data from the 133Ba source was collected,
and is shown in

Initial electronics tests with the SPEDE PCB were carried out in the Oliver Lodge
laboratory at the University of Liverpool, UK, during Autumn 2013. A large steel vacuum
chamber, shown in the centre of was used in order to provide a dark, low
pressure environment for the electronics and detector silicon to be situated in during the
first tests. Thermal foam was used to attach a cooling block inside the chamber to the

copper cooling block on the SPEDE PCB, in order to help facilitate heat transfer from the
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Figure 4.7:  The input pulse is shown on the left, and the output on the right. The
output has a rise time of about 100 ns, and returns to the baseline after about 350 ns.

51.2nV

Figure 4.8: The pulse directly from the preamplifier is shown on the left, and from the
GO bozx on the right, with each pulse zoomed in on the lower right of the picture. The top
of the pulse from the GO bozx is elongated and appears flat before decaying, although the
effect is slight and not an issue for pulse detection using Lyrtech electronics, which uses
the initial sharp rise of the pulse for information. The two images are not directly
comparable in terms of amplitude as the GO box has a gain of -2.5, and the time division
for the scope has also been doubled to view pulses from the GO box.

detector itself, with an active refrigerator circulating ethanol at approximately -20 °C. An
open 33Ba source, of strength 72 kBq, was again attached to a bent piece of aluminium
for the same purpose as the initial preamplifier tests, approximately 30 mm above the
detector.

Due to the final SPEDE chamber not having been produced, and its dimensions not
decided upon, only two ribbon cables were available to provide power to the preamplifiers,
and to get the signals out. Thus, four channels were tested at a time using several Amptek
250NF amplifiers, each of which was also tested. Two of these proved to be faulty, and
another failed during testing due to a faulty resistor. A 15-pin D-type connector was
used to provide the power and signals to and from the PCB using boards identical to the

ones used in the final design. Data acquisition was done using two Ortec Aspec 927 dual-
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Figure 4.9: 133 Ba spectrum from preamplifier test, March 2013. This is uncalibrated;
the 320 keV peak corresponding to the strongest transition at channel 377.5(2) has a
FWHM of 13.9(4), which using a single point calibration would correspond to a FWHM
of 11.9 keV.

Figure 4.10: The setup used for initial testing of SPEDE in the Oliver Lodge laboratory,
Liverpool

channel analysers, passing through an Ortec 671 amplifier, recording data to the maestro
data acquisition software suite. An energy spectrum of channel 1 from SPEDE is shown
in

Several problems were identified on the PCB itself, but no issues were seen with the
detector silicon. As expected, The application of a bias voltage decreased the leakage
current, shown in [Figure 4.12] resulting in a slight reduction of peak-to-peak noise on the

baseline.

Several frequencies were identified on the oscilloscope using a fast Fourier transform,
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Figure 4.11: 133Ba spectrum from SPEDE channel 1, during initial electronics testing,
November 2018. This is uncalibrated; the peak corresponding to 320 keV at channel
665.7(5) has a FWHM of 22.6(1.0), which using a single point calibration would
correspond to a FWHM of 10.9 keV.
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Figure 4.12:  Plot of voltage against current, illustrating the saturation voltage of the
SPEDE detector at room temperature in a vacuum, with the flat area at approximately
50 V.

which were investigated using the OFCOM (UK regulatory body for communications)
website [88], and were possibly identified as seen in [Table 4.1
Upon the completion of the final SPEDE chamber, final electronic tests were done with

a dedicated Lyrtech system in situ, with all channels connected to the digital electronics.
This resulted in a drop in the baseline peak-to-peak noise of about 2 mV when compared
to the system only having 1 channel connected, most likely because each channel was fully

grounded and could not introduce stray charge into the system.

The final electronics setup tested was subsequently used for in-beam tests and com-
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Frequency MHz Possible source

0.05 Unknown

2.4 Railway /shipping radio

7.75 Railway/shipping radio

50-62.5 University of Liverpool security

115 Aviation

2000 Mobile phone networks

6000 Point-to-point fixed links

Table 4.1: Frequency components in noise in the Oliver Lodge laboratory

missioning. It consisted of an Ortec 428 bias supply, as used in testing in Liverpool, an
unnamed power supply for preamplifiers, Lyrtech VHS-200 system for recording data, and
a bespoke GO box with a gain of -1 designed at the University of Liverpool, used to ensure
the signal from the detector was able to traverse the long cabling in the experimental hall

to the data acquisition (DAQ) systems.

4.5 Mechanical tests

The SPEDE chamber was produced at the University of Jyvaskyla engineering workshop
and was designed by Kimo Kohtiolevy. The design is partly based upon the T-REX cham-
ber [89] that was previously used in conjunction with the MINIBALL array, as opposed
to the typical spherical MINIBALL chamber which allows for optimum position of the
~-ray detectors but only has room for one PCB. In order to minimise any impact on the
efficiency of MINIBALL, the chamber was designed with two wide-angled cones joining
onto a short cylinder, necessary to facilitate the insertion and removal of the target ladder
and high-voltage circuitry.

The SPEDE PCB is mounted on a brass cylinder inside the aluminium chamber which
allows the device to move respective to the target position. This also helps separate
the signal and cooling cabling from the actual beam pipe, and serves the purpose well.
Initially, PT100 thermistors were mounted along this beam pipe and on the back of the
SPEDE PCB but seemed to contribute majorly to electronic noise in SPEDE, and so were
removed, leaving only the PT100 on SPEDE PCB itself.

From the bottom, a 6 mm diameter tube passes which circulates an ethanol cooling
liquid. Electronics cables pass through two feedthrough boxes on either side of the cham-
ber. Particle detection electronics pass out the other side of the chamber, fitting to the
pre-existing MINIBALL feedthrough chamber segment. However, this was not used for
in-beam tests in Jyvaskyld due to the size of this segment not fitting between the SPEDE
chamber and the RITU separator device.

It was initially noted that there were several issues with the fitting together of the
3 main separate segments, which were principally an issue with O-ring diameter and

thickness. Subsequently, the main point of failure for system was in the signal connector
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feedthroughs, which were redesigned resulting in a less fragile fitting with a more secure
weld. The most fragile point of the chamber is the support for the target ladder. This
has an internal weld between a short-length tube with a large diameter and a hole cut out
in the cylindrical middle segment of the chamber. It appears there may be microscopic
cracks in this weld which result in the chamber not being completely airtight, a hypothesis
confirmed by the increase in measured amounts of helium entering the chamber when a
helium stream is introduced to this area. However, whilst the system is being pumped it

has a pressure of around 1075 Pa, satisfactory for the experimental conditions required.

Beyond the chamber itself the target ladder is also an integral part of the spectrometer.
It operates by hand, with a piston that is moved up or down and fixes into place with
a notch, in four positions. Running through this mechanism is a wire which applies a
positive 5 kV potential difference to the target position, affixed by a spring clip. The
ladder was changed for the second part of commissioning in Finland in order to ensure a

better alignment.

Dimensions and drawings of the SPEDE chamber are given in [Figure 4.13

Figure 4.18:  An overview of the full SPEDE chamber presented from the original
mechanical drawings. Access to SPEDE is by removing the bellows, and the chamber
sliding freely on the guide rail.
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4.6 In-beam tests

In-beam testing took place in the ‘“y-RITU’ area of JYFL laboratory, situated on the
Ylistonrinne campus at the University of Jyvéskyld, as mentioned previously. The labo-
ratory has a K-130 cyclotron, details of which are presented in used to provide
beams of up to 130 MeV to a variety of experimental setups. Rather than being cou-
pled with the MINIBALL array, tests were performed coupled with detectors from the
JUROGAMII detector array (although the full array was never used), and a series of
expedient PIN diode arrays in place of the CD detector used in conjunction with the
MINIBALL setup.

4.6.1 In-beam electronic setup

Data was recorded using the Total Data Readout (TDR) DAQ system developed by the
GREAT collaboration with analysis done using the GRAIN software package. GRAIN is
a Java analysis framework developed by Panu Rahkila for the TDR system. This software
is used to sort through the data in order to make sense of the time-stamped raw energy
events recorded by the detectors. A full description of the TDR system and GRAIN can
be found in [91], with a schematic shown in (taken from the same publication).

The TDR system is a triggerless DAQ system where each channel operates individually,
with each event timestamped using a 100 MHz clock signal. This has an advantage over
traditional setups that use a hardware trigger to store data. By storing all events and the
time they occur, triggers can be set via software, ensuring maximum efficiency from the
data processing setup for studying nuclei and their decays.

Due to the way GRAIN is structured, it is very simple to create new sort code for each
experiment. However, it is not possible to define a new detector system, which SPEDE
is. A user creates sort code by extending the GRAIN sorter. This sorter initially sorts
each event into event arrays separately for each type of detector array at Jyvaskylé, for
example GREAT or JUROGAM clover detectors. SAGE, an existing electron spectrometer
at the University of Jyvéskyld, is also one of these existing detector arrays included with
GRAIN, and so therefore the event sorting for SPEDE, and subsequent analysis, was
done using channels defined in the program as belonging to SAGE. Since this is merely
a way of arranging the data from a group of segments into a similar array of events,
without confusing it with other type of events such as y-rays detected by the JUROGAMII
detectors, it is a valid approach.

GRAIN writes data to an AIDA (Abstract Interface for Data Analysis) file, which was
developed by researchers at CERN, LAL, and SLAC, to define a set of interfaces and
formats for representing common data analysis objects. AIDA files are written using a
compressed version of XML, but which is not directly compatible with the C++ ROOT

libraries for displaying data. However, ROOT does include algorithms from libxml2, a
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Figure 4.14: A schematic for the TDR DAQ system at the JYFL laboratory, Finland.
This system was used to capture and process the events seen by SPEDE during in-beam
testing.

software package written in ANSI C for parsing XML documents. Therefore, a parser was
created to extract data from the AIDA files and use it to create ROOT files, as there is
no method to create the ROOT file from the timestamped data produced by the TDR.

4.6.2 In-beam detector setup

Due to the upgrades at the ISOLDE facility in CERN, and for advantages in flexibility,
it was decided to combine SPEDE with facilities at the University of Jyvaskyla, including
the JUROGAMII germanium array. JUROGAMII is an array of Compton-suppressed
HPGe detectors provided by the EUROBALL collaboration and the UK-France detector
loan pool, and includes 24 clover detectors (each in four segments) surrounding the target
position, and 15 ‘phase-1’ detectors at backwards angles. Compton suppression is provided
by BGO shields. The array is seen in For the series of experiments shown in
this thesis, three clover detectors were used for initial commissioning, and one phase-I
specifically mounted for part two of commissioning.

Typically, particles that interact at the target position of JUROGAMII pass through
into RITU (Recoil Ion Transport Unit), a large gas-filled recoil separator. Due to the size
requirements of RITU, and that of the electronic feedthroughs for the CD particle detector
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Figure 4.15: The JUROGAMII array

used with MINIBALL, new solutions were required for particle detection. Initially, a small
1 cm? PIN diode was used as a beam dump to have a reliable method of observing whether
beam was successfully reaching the chamber, but it was not sufficient for particle-electron
coincidences. Subsequently, an 8-PIN diode particle detector was made (Figure 4.16|),
on two rings corresponding roughly to expected high- and low-COM scattering angles of
197 Au, with output mediated by a Mesytec preamplifier box. However, the resistance of
this device could not be increased enough to compensate for the relatively high energy of
the beam particles interacting with the detectors, and thus no energy information could
be obtained. The same applied for a particle detector which consisted of one ring of 6 PIN
diodes , but this was successfully coupled with an attenuator for the final

experimental run.

In the scenario outlined, where particle detection can take place but no energy infor-
mation can be obtained, it may appear that since position information has been obtained,
a Doppler correction can be obtained, especially since Coulomb excitation can be approx-
imated using Rutherford scattering (see giving us a possible energy range. One
could suggest some average value is used, such that the energy dependent terms become
constant, and the fractional Doppler shift is represented purely by some function of 6. In

the case of the single ring PIN diode array, (1 is also constant, such that the variables
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Figure 4.16: Left, the 8-PIN diode array particle detector used for the first part of
SPEDE commissioning in February 2015. Right, the 6-PIN diode array particle detector
used for the second part of SPEDE commissioning in May 2015, due to issues noted in

the first commissioning Tun.

of interest are 91, ¥J2 and ws. This leads to, in the case of the 6 PIN array, 144 possible
fractional shifts. Since radiation is emitted isotropically in the nuclear frame of reference
(ignoring multipolarities), any segment in each ring is equally likely to detect an emitted
electron; although between rings the likelihood of detection decreases as the distance from
the centre of the detector increases. This is one reason why segmentation is important

when dealing with moving sources of radiation, in order to determine cosf accurately.

Going on, the largest Doppler shift at a given energy will occur when the radiated
electron is ejected in an opposite direction to the velocity of the projectile; that is, where
0 is 180°. Similarly, the shift is minimised when the radiated electron is ejected at the
smallest possible angle to the direction of travel. The Doppler shift also tends to infinity
as the speed of the projectile tends towards the speed of light. However, due to the
finite width of both SPEDE segments and the PIN diodes, an upper and lower bound
can determine how effective a Doppler correction would be. One would expect at beam
energies used for 7Au on 97 Au reactions in this experiment a minimum fractional shift
of about 1%, and a maximum fractional shift of around 8%. The expected scattering of
the beam would lead to nuclei with an energy range of around 88 keV /u being detected
(about a 3% range compared to the energy of the scattered nuclei). Clearly, this implies
that due to the well-known scattering distribution, if the detector positions are known to
a high degree of accuracy an energy shift can be inferred that is accurate to less than
0.1 MeV. Without any specific energy information, a distribution of expected shifts can
be created using some mean expected energy, and in fact, due to the angular resolution
of each segment or PIN diode, this should lead to an accurate Doppler correction within

approximately 0.5 keV from the shift that would be measured with the true particle energy
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detected. However, the experimental setup is still limited by the angular resolution of each
segment. It is important to note then that the error in 6 can increase rapidly, especially
in the case where detectors are close to the target.

The error on ignoring the intrinsic resolution of the detectors, is

B — cosf

ABy = E¢ (U A0+ (SR AGE (eq 4)

1— Bcosb

and the error on cos @ is given by

Af = (cos 1 sin @y cos(P) — ¥2) — sin 1 cos p2)Ap;
+(sin ¢y cos pg cos(¥1 — ¥2) — cos 1 sin Y2) Ape (eq. 4.2)
— sin 1 sin g sin(¥; — J2) (AYy + Ady).

4.7 Simulations

The SPEDE setup was simulated using the Geant4d (GEometry ANd Tracking) toolkit
provided by CERN. Geant4 is a library of classes which can be used to model the interac-
tions of particles and matter, with applications encompassing a wide range such as high
energy hadronic, nuclear, and accelerator physics, plus medical and space science [92].

Initial simulations were developed by Joonas Konki at the University of Jyvaskyla,
which were used to determine the optimum number of silicon segments for use in SPEDE
that minimised Doppler broadening. This work is summarised in [84].

One change shown here has been to incorporate the use of ‘low energy’ physics libraries
as opposed to the standard electromagnetic Geant4 libraries for simulating particle inter-
actions. This was of particular importance to the simulations as one requirement was
to attempt to recreate the J electron flux from any beam-target interactions, however
Geant4 does not model these interactions well, even when using libraries that are more
suited to the energy range, principally because it is a framework that was designed with
the collisions and resulting jets of particles from high-energy interactions in colliders such
as LEP (Large Electron-Positron) and LHC (Large Hadron Collider). These result in
fragments with energies orders of magnitude higher than § electrons, and subsequently
the very low-energy data can be ignored.

A major difficulty in simulating a low energy background came from optimisations to
the Geant4 package which puts the lower energy for interactions at 0.25 keV. Geant4,
compared to Geant3, uses a minimum penetration depth to determine the cut-off energy
for ignoring particles. Although this can be set to a very small number, this comes at
a high computational cost, as it requires a large number of calculations for each single

particle. Even with pulsing, we would expect to see several thousand § electrons per
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second, however when simulating a realistic beam-on-target event most events generated
were in the forward direction. Although these can be in effect voided by stopping any
calculation on deltas that are produced in forward angles, it was still computationally
difficult to reproduce a realistic d electron background. The decision instead was made to
simulate three low-energy Gaussian distributions of electrons, with an average energy of
1, 5, and 10 keV.

This is a realistic simulation of the environment that SPEDE is subject to in exper-
imental conditions. There is a noticeable detrimental effect of the number of electrons
detected when there is an inclusion of the full geometry of the additional parts of the
chamber, as would be expected. The simulations illustrated here do not use nuclear cross-
sections for exciting and de-exciting nuclei, but instead, generate a realistic emission of
electrons at a given energy. This leads to a more efficient computation, as beam nuclei
which do not interact with the target nucleus will not be registered by SPEDE (as no
electrons of interest will be emitted), and so can be ignored; not doing so would lead to

wasted CPU cycles tracking particles which are of no interest.

The initial package used for simulating the electron paths was standard electromagnetic
library 4, included with Geant4. Two packages which are optimised for low energy were
used to study any differences at the region where § production would be expected; these
were the Livermore package, produced by the Lawrence Livermore laboratory, and the
PENELOPE (PENetration and Energy LOss of Positrons and Electrons) package. These
have been evaluated separately as well as in great detail, and, especially PENELOPE,
were developed with low energy Monte Carlo simulations in mind [93]. These physics lists
use models with an energy range of 250 eV up to 100 GeV for ~-rays, and 10 eV up to
100 GeV for radiated electrons. A cut of 10 um was used to ensure electrons with low
energy would not be discarded by the simulation, whilst ensuring those that would not
react significantly were still discarded. 1x10°% events were created for each simulated run,

and each run used the same random seed to ensure results were fully reproducible.

The changing of physics libraries did not result in any noticeable difference between
the resulting histogram spectra, neither when simulating a static source, or a beam-target-
like production of electrons (that is, with recoiling nuclei). The standard libraries from
Geant4 have been used satisfactorily for many other simulations in nuclear physics, such as
SAGE and MINIBALL, at the energy range of most gamma-rays and converted electrons.
Differences noted between simulated and experimental results could be explained by the
low energy thresholds in the data acquisition system used in reality, or be an effect of

low-energy pileup that is not simulated well.

Interactions at low energy are in theory best simulated by the alternative physics
libraries used, but do not seem to manifest as a noticeable effect seen with different energy
events in SPEDE. It is feasible that under actual experimental conditions, many low-

energy events occurring within a very short time frame (as would be expected with ¢
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electrons) would be recorded as one large continuous pulse.

Other changes in the simulations were to include a more realistic geometry (with the
inclusion of the target ladder and chamber), and the addition of MINIBALL detectors,
rather than JUROGAMII, although none of the data from v-rays is presented here.

Shown in after changes that had been made to materials and detector
distances from target, a simulation was run to ensure that the result was still similar to
that presented by J. Konki, with a 18Pb beam of energy 2.82 MeV /u incident on a '2Cd
target. The simulated FWHM was 10.4 keV, compared to the 9.2 keV seen by Konki.

Raw energy deposited in SPEDE

188

— *ppon 12

Cd, raw

4000 188

— pp on *?cd, DO

Counts/1lkeV

3500

3000

2500

2000

1500

1000

500

;lr-llllllllllII|IIII|IIII|IIII|IIII|IIII|III

600 800 1000
Energy/keV

1
|

o
N
o
o
N
o
o

Figure 4.17:  Simulated '®8 Pb on "2 Cd, with Doppler correction. This is simulated using
the standard electromagnetic libraries. As expected, a clear peak emerges from the
particle-gated but kinematically uncorrected data.

This was followed by checking the effect of different energy libraries on the lead data
at high energies. Some slight differences were seen in individual counts (illustrated in
, but no change in distribution is noted, implying that they are all equally valid
at this energy range.

In order to examine the effect of different beams, beam energies, and electron energies,
several different examples were run in order to ensure consistency. Taking an example
of a gold beam at 4.1 MeV/u on a cadmium target, nothing unusual is seen within the
modified simulations (Figure 4.19)).

These initial simulations were used as proof-of-concept that with kinematic correction
a segmented silicon detector could produce precise measurements of electron energies. For
the experimental runs, with a physical detector, the CD detector was not available for

practical reasons in the laboratory environment, and so an array of PIN diodes was used.
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Figure 4.18: Simulated '®8 Pb on 12 Cd using different energy libraries
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Figure 4.19: Simulated " Au on 2 Cd, with Doppler correction
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These were incorporated into the simulation to determine what the expected results should
look like. Since the experimental runs did not have an accurate energy measurement, an
expected value was used for kinematic corrections for those runs as well as simulated data.
As can be seen in the peak after Doppler correction has much fewer counts
than that seen with the simulation using the CD detector. This is principally due to the
much smaller combined area of the particle detection as compared to that of the CD,
which essentially covers a large majority of the particle scattering solid angle. A hit map
for the two detectors is shown in

Energy depOS|ted |n SPEDE —— “Auon 197Au, raw, CD
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Figure 4.20: Simulated 7 Au on 97 Au, with Doppler correction, using different particle
detectors. Using the CD detector, the number of electrons detected in coincidence with a
particle is higher. Additionally, the resolution is slightly improved.

Two low-lying transitions in 97 Au are separated by only 10 keV in energy. These would
be expected to appear as a doublet in resulting electron spectra. Using the probability
of decay calculated from GOSIA, the simulated spectra were combined, with the results
shown in [Figure 4.22] The calculated yields from GOSIA are shown in [Figure 4.23

Of particular interest was the effect of different libraries on the low-energy range of
the electrons. To do this, three Gaussian distributions of electrons, with a mean of 1, 5,
and 10 keV, were simulated with a FWHM of 7 keV. However, the distributions remained
very consistent with each other, at all energy ranges. The same was true whether HV
was applied or not; in with no HV applied, and in with 5 kV
applied to the target ladder and the resultant EM field simulated, each dataset is consis-
tent with the others within that energy range. The application of the HV does however

show the expected effect of shifting the distribution to lower energies. This is illustrated
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Particle hitmap for '*”Au on '*’Au

50
30— : = =
- —800
20—
10—
= —600
o
10
- —400
20
30
-40[—
_50_IIIIIII\IIIIIIIIII\|IIII|II\IIIIIIII\\IIIIIIIIIII 0
“50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 4.21: Here, the CD detector is shown in colour, with number of simulated hits of
17 Ay on 197 A given according to the colour scale on the right. A PIN diode array is
shown in black on top of this CD illustrating the difference in cross-section for each
detector setup.
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Figure 4.22: Simulated 82 Kr on 197 Au, combining the 269 keV and 279 keV K-shell
decay lines according to a GOSIA simulation of the probability of excitation. The FWHM
of each peak is 11.7(1) keV.
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Figure 4.23: Calculated yields of electrons emitted from target nuclei, with a 2 Kr beam
incident on 7 Au. Calculations were performed using GOSIA, and normalised to the
279 keV transition between the g+ — %+ transition.

in using the standard electromagnetic libraries.
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Figure 4.24: Simulated low-energy electron distributions, using different energy libraries.
No statistically significant differences appear.



60 CHAPTER 4: SPEDE

1keV HV (standard EM (4))
1keV HV (Livermore)
1keV HV (PENELOPE)

Raw energy deposited in SPEDE

104

5keV HV (standard EM (4))
5keV HV (Livermore)

5keV HV (PENELOPE)
= 10keV HV (standard EM (4)
= 10keV HV (Livermore)
10keV HV (PENELOPE)

10°

Counts/0.1keV

102

10

0 5 10 15 20
Energy/keV

Figure 4.25: Low-energy electron distributions, using different energy libraries, with
high voltage simulated. This is similar to but it is worth noting that the
1 keV distributions have very few counts. This is expected, and shows the high voltage is
being applied in the simulation correctly.
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Figure 4.26: Here we can see three distributions using the standard electromagnetic
libraries, both with and without high voltage applied. The shift is very clear, although it
should be noted that both the 5 keV and the 10 keV distribution appear to shift by only

4 keV rather than the expected 5 keV. There is also a drop in the electron flux when

voltage is applied, which is the expected behaviour.
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Type Compact

Bending limit 130 MeV

Focusing limit 90 MeV /u

Average field 177 T

Number of sectors 3

Hill angular width 51 - 81 deg

Spiral 58 deg

Pole diameter 2.40 m

Extraction radius 0.94 m

Hill gap 0.174 m

Valley gap 0.330 m

Trim coils 15x 2

Harmonic coils 4 sets

Main coils 2

Total Ampere Turns 400000 At

Max current 1000 A

Iron weight 308 tons

Total coil weight 15 tons

Main coil power (max) 130 kW

Trim coil power (max) 22.5 kW

Frequency 10 - 21 MHz

Harmonic modes 1,2,3

Number of dees 2

Dee angular width 78 deg

Voltage (max) 50 kV
Multicusp (H-, d-),

Ton sources 6.4 GHz ECR,
14 GHz ECR

External injection Axial

Buncher

Single gap, 1st and 2nd harm

Elements

Electrostatic deflector
Electromagnetic channel
Passive focusing channels
Stripper

50 kV (max)

1250 A (max)
Horizontal + vertical
For negative ions

2 cryo pumps
Vacuum

5000 1/s each
de-6 Pa

Table 4.2: Full description of K-130 cyclotron [90]
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In-beam experiments

“Forty-two,’ said Deep Thought, with infinite majesty and calm.”

Three phases, of testing and development, initial commissioning and final commissioning
took place in November 2014, February 2015, and May 2015 respectively. The initial
proposal to the JYFL PAC asked for 2 periods of 2 days for testing, and 4 days for
commissioning, however due to problems with the cyclotron during the runs this was
extended. The GRAIN analysis software was used to sort the data from the acquisition
system, outputting AIDA files in a compressed XML format, with that data then sent
through an XML parser to produce ROOT files (which are binary files of consecutive
data records). Plots in this thesis are presented using the ROOT package, a C++ object-
oriented framework for large scale data analysis developed at CERN mentioned previously.
Data for fitting parameters, such as for a FWHM (Full Width Half Maximum), were done
using the Theuerkauf peak fitting function [94] from HDTV, a successor to the TV program
produced at IKP that is integrated with ROOT.

5.1 2?2'Rn

~-ray data was taken for 22! Rn, with results presented here. This provides more motivation
for SPEDE by providing a proven experimental need for the later results presented in

commissioning.

5.1.1 Experimental background

The analysis of odd-mass nuclei is complicated by the effect of the single valence particle on
the collective effect of the coupled nucleons [25]. Thus experimental evidence is needed to
provide limits on theoretical models. Additionally, odd-mass nuclei provide an important
probe into atomic EDMs. The parity doublets expected enhance the Schiff moment by a
factor of up to 100.

Leander and Chen (1988) [26] have had some success previously in calculating de-

coupling parameters using a reflection-asymmetric particle-plus-rotor model, to the same
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order, assuming non-zero 83. A detailed review of odd-A actinide nuclei, and other nuclei
around this region, is provided by Leander and Sheline (1984) [27], as well as Sheline and
S00d(1986)) [28] and others. Other proposals have been submitted to study this region
further using radioactive beams at the ISOLDE facility in CERN, for which work presented
here on ?2!Rn was done to test the feasibility of such an experiment.

In September 2012, an experiment (code IS475) was performed at the ISOLDE facility
in CERN, using the MINIBALL array situated at the end of the REX-ISOLDE beamline.
Around 30 hours of beam time was obtained with a 22! Rn beam of intensity ~ 6000 par-
ticles/s at an energy 2.85 MeV /u incident on a 29Sn target foil of thickness 2 mg/cm?.
One cluster was missing from the MINIBALL array, meaning 18 channels were unavail-
able for position information, and 3 unavailable for energy information. The disparity in
the number of channels detecting position and energy is due to the fact that the energy
information is taken from the core segment of each hexagonal 6-fold detector.

Positional calibration of the detectors was done using a beam of ?’Ne, and energy
calibration using static '°2Eu and '#2Ba sources in the target position, with activities
of 20 kBq (measured 2012/07/09) and 21.1 kBq (2006/05/12) respectively. The fit used
for the calibration was quadratic, although a linear fit is a good approximation since the
quadratic term is very small. In order to perform the calibration, peaks were analysed
in the HDTV package, with the actual energies for transitions in '*2Eu and '33Ba given
by data from the ENSDF (Evaluated Nuclear Structure Data File) set from the NNDC
(National Nuclear Data Center) [95].

5.1.2 Results

The following figures, [Figure 5.1HFigure 5.6] are the results from the data collected for

experiment 1S475. Acquired data was analysed using the C++ ROOT library provided
by CERN. A sort was made on the raw data to find all «-ray events, and timestamp them,
along with the particle events in the DSSSD. These files were then passed to analysis
code which sorted events in time and energy to create histograms such as those found
in the following figures. This analysis code applied a Doppler correction for both beam
and target nuclei, looked for -+ coincidences, performed a background-subtraction and
was used to fine tune some parameters, for example the time window used for background
subtraction and offsets for the Doppler correction.

~-ray events are coincident with a particle detected by the DSSSD and identified using
2-body kinematics, to determine whether it is a beam (**'Rn) or target (12°Sn) particle.
Doppler correction was done event-by-event, again using 2-body kinematics and angular
information from the DSSSD.

v-v matrices were created by looking at all the events and plotting them in a 3-
dimensional plot against each other, with the z-axis representing the intensity. Gating

was done on the energies of each peak +7.5 keV.



64 CHAPTER 5: IN-BEAM EXPERIMENTS

Ally-rays
o 250
c -
=]
3 -
(&} -
200—
150—
100
0 PP [UPHPYRTRRPIPNY GPTTTRDT YO RVRTRPE YT PO DU ST NN VLD T VN VOV DN RN PN TR TR SR R S T |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Energy (keV)

Figure 5.1: ~-ray spectrum showing all y-rays detected by the MINIBALL array during
the course of the experiment. The 511 keV annihilation peak is clearly visible. It is clear
that there are a large number of background events. Conditions therefore need to be
applied to clear spectra and make peaks visible.

Particle-y singles

Counts

120

100

80

60

40

20

FRUY BRI SRgREr TR AT T 1

0
P T RSN BT SR
1400 1600 1800 2000

Energy (keV)

P
0 200 400 600 800 1000 1200

Figure 5.2: ~-ray spectrum showing all y-rays in coincidence with a particle detected by
the MINIBALL array during the course of the experiment.

5.1.3 Discussion

Very little was known about ?2!Rn before the experiments detailed in this section were
conducted in 2012. Three new transitions were observed for the first time, at energies of
approximately 200 keV, 223 keV and 289 keV. Coulomb excitation was also performed
specifically on odd-mass radon for the first time. As is observed in all the figures
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Figure 5.3: Background-subtracted vy-ray spectrum of ?>' Rn, Doppler corrected for
2L Rn. 3 peaks are clearly visible, at 200.4(3) keV, 223.6(4) keV, and 289.7(4) keV.
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Figure 5.4: Projection of v-v matriz showing all coincident y-ray events.

jure 5.1HFigure 5.6)), the count rate is low, and so few peaks are observed in the spectra.

This could partly be due to the Coulomb excitation process not exciting any more levels
than the 3 shown. However, looking at nuclei around the 2?'Rn region, it would appear
reasonable to expect more levels to be excited. Ignoring X-rays, three peaks are clearly
observed in the spectra, labelled A, B and C in

Efforts were made to look at the possibility of a cascading effect occurring. As peak C
had the least counts, it must lie above B and A as lower states have a higher probability

of being excited in Coulomb excitation. Due to the fact there were only around 36 counts
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Figure 5.5: Gating on the first peak and projecting the v-v matriz, no coincidences with
any other y-ray energies are seen.
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Figure 5.6: Gating on the second peak and projecting the y-v matriz, no coincidences
with any other ~v-ray energies are seen.

in the highest-energy peak C, coupled with the efficiency of the MINIBALL detector (~
10%), the upper limit for counts in any coincidence peak from C would be 3.6 (= 4),
assuming a 100% branching ratio and no internal conversion. This is too low to see in
these spectra; to separate from random ~-rays all coincident rays would have to occur
in the same channel. As a consequence, no conclusions can be made about a cascading

effect from peak C coupled with other data. Gating was done on peaks A and B, as seen

in [Figure 5.5 and [Figure 5.6| respectively. Again, as an upper limit the number of counts
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Label E (keV) | Counts | Intensity (raw %)
K, X-rays | 82.4(1) | 535(28) 505
Kz Xrays | 94.3(3) | 99(16) 93.4

A 200.4(3) | 84(11) 79.2
B 223.5(3) | 106(12) 100
C 288.73(4) | 36.5(8) 34.4

Table 5.1: The energies of the three > Rn y-ray peaks and the X-rays for all the figures
shown in this results section (Figure 5. 1HFigure 5.0). Normalised to the highest-intensity
~v-ray, B. The separate alpha and beta X-rays were not able to be determined.

from coincidences expected in peak A would be 10, and peak B 12 (taking into account
errors on the area of the peaks). No coincidences are seen in peak A or B, however this
may imply a low branching ratio for any cascading effects, or a high probability of internal
conversion. If there is a high branching ratio, and the transitions proceed by ~-ray decays,
then it can be deduced that this is either one state decaying to (probably) the ground state
and another low-lying state, or two states lying close to each other decaying to one state
(probably ground). Simultaneous y-e~ spectroscopy will help in identifying any cascading

effects.

Efforts were also made using the GOSIA Coulomb excitation code to reproduce the
experimental spectrum using the identified peaks and possible structures. However, the
ratios of each transition could not be reproduced with any model. Theoretical predictions

made by Leander and Chen imply the ground state (of spin %+) has a positive parity due
5
29
number of the sum of the total angular momentum of the core electrons, plus the orbital

to band-mixing with a state near the Fermi level with K = 2, where K is the quantum
momentum of the outer electron. This is difficult to incorporate into any predictions made
using GOSIA.

What is possible to conclude is that by looking at the number of counts seen in the X-
ray peaks, it is clear there is a large amount of internal conversion occurring. This indicates
a high internal conversion coefficient, and proves the experimental requirement for SPEDE.
Simultaneous observation is needed to fully understand the de-excitation processes, by
allowing the possibility of determining coincidences between, and the multipolarity of,
de-exciting transitions.

With the capabilities of SPEDE, coupled with the benefits of the HIE-ISOLDE upgrade
and a higher beam current, much more information can be obtained about this nucleus,
making it possible to place the observed transitions into a level scheme, which will in turn
enhance the sensitivity on the measurement of an atomic EDM, with increased sensitivity
from odd-mass octupole-deformed nuclei.

This leads to several specific constraints on the detector required. First, it must be
sensitive to low-energy electrons, since the likelihood for internal conversion decreases

as the energy between states increases. Secondly, it must be shielded somehow from §-
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electrons, occurring from the heavy radioactive beam ions colliding with electrons in the
target. Thirdly, it must have a good position sensitivity, in order to correct for the Doppler
shift of energies from recoiling nuclei. The need for Doppler shift correction is shown from

experiment 1S475; the expected shift for electrons is even greater.

5.2 Choice of nuclei of study

The aim of the experiment was to best simulate the environment at ISOLDE, which
has pulsed low-rate radioactive beams. Several targets were used over the course of the
experiments. Various densities and different elements were required in order to produce
differing levels of J-electrons and examine the effect of mitigating measures. The chosen
beam-target nuclei combinations also should have decays which are well-separated and
so their origin can be easily identified, as well as having good separation with scattering
angles so particle identification is possible. An important criterion for selection is the
likelihood of internal conversion; with stable beams, this leads to a general requirement
for a high proton number. Since the main aim of the experiments was to examine the
capability of an in-beam electron spectrometer as opposed to the study of unidentified
levels, the level scheme should therefore be well known. The abundance of elements was
not important for beam selection, since the number of particles required is small, but
the isotope must be easily separated without risk of contamination in the beam. This is
easier to control for with stable beam production compared to the challenges from the
methods used for rare-beam production. The K130 cyclotron that was used to produce
beams performs separation by using precision resonance to extract the nuclei of interest
at a specific energy. The number of particles reaching the target position were minimised
with the use of a tungsten collimator placed at the very start of the SPEDE chamber.

With the exception of gold beams, other beams were the noble gases neon, argon,
krypton, and xenon. Of these, the lowest-lying level is in ¥?Xe at 668 keV, and so since
the excitation probability of this state is low, coupled with a small internal conversion
coefficient, decay radiation produced from the beam nuclei could be discounted since it
was far above the region of interest for studying the behaviour of SPEDE. Level schemes
of these nuclei, along with targets with high excitation energies, are not provided, but are
summarised in [Table 5.2,

Four nuclei are therefore particularly suited for studies of internally converted elec-

trons. Their level schemes are provided in [Figure 5.7 (1*°Dy), [Figure 5.8 (1™°YDb),
(197 Au) and [Figure 5.10| (2°"Pb). These were generated using the Radware package
with data taken from NNDC, as with radon analysis.

Of these, 197 Au was of particular interest as a beam could be obtained too. Properties
that make it of further interest include low-lying metastable states which are heavily
converted.

The kinematic properties of these beam-target combinations can be seen in
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Nucleus | Type | First excited state (keV) | Number of states below 0.5 MeV
197 Au Both 77.3 3
'Ne | Beam 1633.6 0
OAr [ Beam 1461.0 0
82Kr | Beam 777.0 0
8Kr | Beam 881.6 0
132Xe | Beam 668.0 0
%8Ni | Target 1454.0 0
106Cd | Target 633.2 0
168 | Target 1294.0 0
160Dy | Target 86.8 2
10yb | Target 84.2 2
207pPh | Target 569.7 0

Table 5.2: First excited states of nuclei chosen for beam-target selection.
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Figure 5.9: Low-lying levels of 7 Au.
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Figure 5.10: Low-lying levels of 297 Pb.
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The angular coverage of the particle detectors varied depending on the setup used, but the
majority of results presented (except where specified) use the 6-PIN diode array positioned
35.9 mm upstream of the target, therefore covering an angular range of 27.3-28.5°. The
ideal beam and target combination would have a small change of energy at the position of
the detectors, since the energy measurement of the recoiling nuclei was not very accurate,
as well as a large separation in energy between the different nuclei. Particle identification
for the need of doing a kinematic correction is made much more difficuly by using the

same nucleus for the beam and the target material.
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Figure 5.11: This plot shows the energy distribution with angle of scattered nuclei of
various beams and targets used in SPEDE tests. Some nuclei, with inverse kinematics,
are not seen by the particle detector and therefore can be used for clean gating of the other
nucleus. The translucent box shows the approximate angle covered by the 6-PIN array.

5.3 In-beam development (November)

The initial in-beam runs only involved observing SPEDE behaviour in an environment in
a production environment, without any v-ray data from the germanium detectors in JU-
ROGAMII. The small PIN diode used as a beam dump was sufficient to determine whether
beam was reaching the chamber, but not for creating particle-electron coincidences, as,
with a target in place, no beam could be seen. Two beams were used; “Ar (10+)
and 2°Ne (5+), with an energy of 4.1 MeV/u. These were incident on several targets;
%Ni (0.6 mg/cm?), %Dy (0.575 mg/cm?), 2°"Pb (0.6 mg/cm?), 27Al (2.7 mg/cm?) and

17Yb (1.0 mg/cm?). Plastic was also mounted with beam incident on it in order to deter-
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mine if there was any mistake in beam alignment, as a result of unusual burn marks noted
on the top of the target holder, assumed to have occurred when the target ladder was fully
lowered and was being aligned initially. Calibrations were done using a '33Ba source. The

resulting calibrated spectrum is seen in The PIN diode was uncalibrated, and

used purely for hit identification and beam alignment.

Due to the lack of particle information, it was not possible to normalise the data with
any degree of accuracy in terms of actual excitation events. An aim was set to keep the
time relatively consistent for each run where appropriate. A scaling factor was obtained
by finding the largest bin present in the most populated histogram, and using that as a
multiplication factor. In this way, the distributions of electrons can be compared. It is
a preferred method compared to total beam time or total number of electrons, since the
beam current was too low to be measured with a Faraday cup and no particle normalisation
was possible meaning the production rate of either ¢ or converted electrons was unknown

when comparing runs.

HV that was applied to the target, in order to shift energies of emitted electrons by
-5 keV and thus remove some of the low energy background, was applied with the wrong
polarity until run 70, near the end of the experimental run, resulting in accelerating low
energy electrons towards the detector. Where appropriate, this is noted expressly in the

figure descriptions.

The first run that included beam on a target was 2°Ne on °®Ni, shown in
The beam pulse was set to periods with 100 ps on and 900 us off. The effect of HV
application was not seen with the distribution of electrons and the pileup of d-electrons not
appearing to change, and not enough data is collected to make out any nuclear structure.
For either nuclei to decay via internal conversion would be unusual in any case due to
the relatively high energies of the first excited state; 2+ at 1633.7 keV and 1454.2 keV
for beam and target respectively. This implies a relatively high background. The lack of

effect of HV is noted, as discussed.

With the same parameters, but no target installed (that is, beam was incident on an
empty target), d-electrons were still apparent, as seen in implying either a
large beam spot or poor centring of the beam on target, such that the beam was striking
the target frame. Due to the low beam current and the facilities at Jyvéskylé, the beam
centring was improved by attempting to minimise the noise from d-electrons observed on
an oscilloscope connected to SPEDE channel 17. Additionally, some peaks can be seen
around, for example, 320 keV. This corresponds to a leak of the 133Ba source, which was
later confirmed to have leaked into and contaminated the SPEDE chamber. Again HV
had no effect due to a negative potential difference applied to the ladder.

An example of the result of a different beam to 2°Ne, with “°Ar, is seen in
What is of particular interest to note is the peaks seen in the range of 500-750 keV for the
lead target. They do not appear strongly in the spectrum from '%°Dy, but the number of
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Figure 5.12: Total counts detected by SPEDE from all segments in approrimately
40 minutes from a 133 Ba source. No HV or foils are present, and detector is cooled to
approximately -30 ° C. Position of fitted peak: 320.2(1) keV, FWHM: 7.10(2) keV.
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Figure 5.13: Total counts detected by SPEDE from all segments in approrimately
3 minutes of 2°°Ne on a ®®Ni target. An aluminised Mylar foil is present. The blue line,
illustrating data collected with no HV applied, is scaled to the bin with the mazimum
counts for HV at 19 keV, and shown by the green line.
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Figure 5.14: Total counts detected by SPEDE from all segments in approximately
4 mianutes of 2°Ne on an empty target frame. An aluminised Mylar foil is present.

counts is of the order of 102 less. Peaks would however be expected in any case due to the
number of transitions in Dy at this range. The lower intensity using this dysprosium
target can primarily be attributed to the fact that the pulse off state was 11 times longer;
the entire pulse length was increased to 10 ms, with 9.9 ms off. The broad nature of this
peak is not in fact likely to be due to Doppler-shifted photons, but instead from the energy
of the electrons being greater than the stopping power of the silicon. The broad nature of
it would be expected, since different electrons will see a different apparent thickness from
hitting the detector at different angles.

40Ar incident on 207Pb is again seen in Here, a comparison is shown in
the resultant electron distribution when an aluminised Mylar foil (number 1, as mentioned
before) with a light guard that was placed in front of the detector. The low energy peak
shows a much sharper drop off, implying that the foil performs well in this aspect. It also
has a smaller height ratio when compared to the remaining distribution.

At higher energies, no clear peak is seen when compared to the data without a foil
present. The broad peak seen around The peaks in this data however correspond to '33Ba
contamination, which was removed between the non-foil and foil run.

Although it was not possible during this testing phase to do particle coincidences, it
was possible to observe the effect of the application of HV to the target frame on shifting

the distribution of electrons, to observe conversion electrons likely emitted from the decay
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Figure 5.15: Total counts detected by SPEDE from all segments in approximately 12
minutes of *°Ar on a 2°"Pb (Red) and '°Dy (blue) target. No foil is present. Note
several peak-like areas over 500-750 keV. Peaks at lower energies can be attributed to
contamination from 133 Ba.
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Figure 5.16: *° Ar on 2°7 Pb, with € without foil.

of nuclei excited via a Coulomb interaction, and to note the attenuation effect of foils in
front of the spectrometer. Background from d-e~ production was suppressed enough to see
limited spectroscopic information. This was deemed sufficient to proceed to continue on
to commissioning runs, as the concept of in-beam electron spectroscopy without transport

fields, using low-rate collimated beams, was proven to be possible.

5.4 Initial commissioning (February)

The first part of commissioning used a bespoke particle detection setup, as well as 4 clover
detectors from JUROGAMII. However, one was behaving erratically and could not be
fully biased, meaning 12 channels were available for the detection of ~-rays. Due to the
size of the SPEDE chamber, the angles used by JUROGAMII in the GRAIN sort code
for Doppler correction did not correspond to the true angles in the setup, as the target
location was not that which is typically used in order to ensure the geometry is correct in
GRAIN.

Due to the energy cut-off seen using the particle detector, it was possible to do particle-
gating with an increased count rate compared to the November 2015 runs, but Doppler
correction with a correct particle velocity was able to be applied. In order to perform some
correction, it was possible to plot an expected value for the energy of scattered particles

where the PIN diodes were positioned and able to detect scattered nuclei, although this
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led to a large overall uncertainty due to the uncertainty in this energy. For the first week,
an 8-PIN diode array was used, and in the second, 6-PINs.

Two beams were used in the first weekend; 132Xe (22+4) and 34Kr (+14), with an energy
of 4.1 MeV /u again. In the second week, a 197 Au (35+) beam was used. Again, a selection
of targets were used throughout; several 1%7Au (0.38, 1.2, 1.8 mg/cm?), ®®*Ni (1 mg/cm?),
0¥ (1 mg/cm?), 16Sn (0.5 mg/cm?), and '°Cd (1.1 mg/cm?). Calibrations were done,
as in November 2014, using a 33Ba source. The resulting calibrated spectrum is seen
in The PIN diodes were uncalibrated, as the region of interest was not visible
since the Mesytec preamplifiers could not be adjusted to a suitable gain such that a true
signal could be obtained resulting in a flat top in the output signal. They could however
be aligned using this signal, in order to provide a hit for some kinematic correction across
all diodes outside of electronic noise. An expected value for the energy was obtained by
examining the position of the PIN diodes and working out the expected value of the energy

of detected particles across the range of the detectors.
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Figure 5.17: Total counts detected by SPEDE from all segments in approximately 280
minutes (week 1) and 60 minutes (week 2) from a 133 Ba source. No HV or foils are
present, and detector is cooled to approximately -30° C. Note the adjusted thresholds and
the effect at low energy. Position of a fitted peak at 320 keV: 320.21(1) keV, FWHM:
7.29(8) keV (slightly worse than initial runs in November 2014).

132Xe (22+) and 8*Kr (+14) beams incident on gold targets of varying thicknesses are
seen in and in with HV applied. Assuming a constant number
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of scattered nuclei are detected with different target thicknesses, a normalisation constant
can be applied to see the effect of thickness on d-electron production. A thicker target
results in a smaller low energy peak, but with noticeable straggling in the 100-200 keV

range.
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Figure 5.18: 32Xe and 8* Kr beams incident on gold targets of various thicknesses.

Efforts were made to look at the effect of placing a foil (aluminised Mylar, foil 1) and
light-guard in front of SPEDE again, shown in These runs involved an 8*Kr
beam incident on the second T Au target (1.1 mg.cm™2)). Similar effects are seen when
compared to Runs are normalised to the number of particles seen during the
run.

The second weekend of runs used the 6 PIN diode array. The longest of all runs over

the three session was 197 Au on 197"Au. This makes the kinematics very easy to understand,

as the beam and target particles are scattered equally. In [Figure 5.21| and |[Figure 5.22| a

shift in energy of 5 keV can be seen in the peaks apparent in the spectra. There is a double
peak at 196 (FWHM 22 keV) and 217 keV (FWHM 22 keV). This does not correspond
well to expected decay energies for 197 Au, which are approximately 188 and 198 keV. The
expected yield of electrons from this reaction was calculated using the Coulomb excitation
code GOSIA, and is shown in This implies the main source of electrons in
this reaction is de-excitations of the %Jr state. With HV on, transitions would be expected
at 183 and 193 keV.
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Figure 5.19: '32Xe and 3 Kr beams incident on gold targets of various thicknesses (HV).
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Figure 5.20: 8*Kr on 97 Au, with & without foil. The higher energy background with foil
is lower than without.
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The simulation of 7 Au on 7 Au, with a transition energy of 198 keV, has a FWHM of
11.7(3) keV, after Doppler correction using the PINS, seen in The uncorrected
spectrum has a FWHM of 16.9(4) keV centred at 174 keV. This data contained the longest
continuous run of data collection using SPEDE in-beam. However, the nuclei scattered
in this reaction via Mott scattering. Although the angles and energies can therefore be
determined, it is not possible to determine whether the target or the beam nucleus emitted

the electron of interest. This then means that the data cannot have a Doppler correction

applied.
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Figure 5.21: 97 Au on 7 Au. It is not possible to do kinematic correction with this
reaction.

5.5 Final commissioning (May)

The second part of commissioning aimed to create usable y-e™-particle coincidences. A
different spectrometer was used, with the same thickness and design as used previously.
Additionally, cooling was increased to -40 °C. Only one beam was used; %?Kr (15+),
with an energy of 4.3 MeV/u. A ¥7Au (1.2 mg/cm?) target was used for the majority of
measurements, but data was also collected using °Cd (1.1 mg/cm?) and 5¥Ni (1 mg/cm?).
Calibrations were done, as had been the case in other runs, using a '33Ba source. The
resulting calibrated spectrum is seen in No foil was used in this run.

Some parameter optimisation was performed, improving resolution by an average of
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Figure 5.22: 7 Au on Y97 Au (HV). A shift in peaks is observed compared to the runs
with no HV.
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Figure 5.23: Calculated yields of electrons from 97 Au on 7 Au from GOSIA, normalised
to the 279 keV transition between the %Jr — %Jr transition
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Figure 5.24: Total counts by detected SPEDE from all segments in approzimately 170
minutes from a 3 Ba source. No HV or foils are present, and detector is cooled to
approzimately -°30C. The resolution of each channel that make up this total plot ranged
from 6.00 to 7.05 keV. Position of fitted peak: 319.9(4) keV, FWHM: 6.9(1) keV.
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approximately 0.5 keV. The PIN diodes were calibrated using the ' Am source, and were
able to be fully utilised for this run. However, only one germanium crystal was used, in
a custom position in order to try to obtain ~-spectra with good statistics that can be

Doppler corrected precisely.

Using the particle detector, clean gates could be created that allowed for an accurate
kinematic correction to be applied. The spectra of uncorrected and corrected data can
be seen in Correctly aligned peaks are observed after kinematic correction,

proving it is possible to do kinematically-corrected in-beam electron spectroscopy.
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Figure 5.25: Compared to previous figures, the peaks, Doppler corrected for the target,
appear much cleaner in this plot of 82 Kr on Y7 Au with HV applied. Centroids for the
doublet from the 269 keV and 279 keV transitions appear at 185.6(8) and 195.5(7), with
a FWHM of 8.9(9) keV.

Other beam and target combinations were run, however 82Kr on 7Au provided the
best statistics. However, even with this long run only 13 counts could be obtained with
particle energy and ~ time gates, which offered no statistical significance. A ~v-e~ matrix
was created without gates as illustrated in but the few correlations appear
to be mostly random, with a spectrum of ~-radiation in coincidence with the low-energy
background in SPEDE.
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Figure 5.26: 82Kr on 197 Au v-e~ matriz. Note most coincidences appear in the left
hand-side, implying they are random correlations with low-energy pileup within SPEDE,
rather than true coincidences from higher-lying gamma-emitting states cascading and
being internally converted.
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5.6 Discussion

Improvements in resolution after Doppler correction were better than that predicted by
simulations. This may be due to the large intrinsic resolution of 7 keV used to model the
simulations. However, there is scope to improve the figure further. Firstly, only quick
optimisations were done for Lyrtech parameters. By properly configuring the parame-
ters of the MWD (moving window deconvolution) algorithm, a more precise number can
be obtained for the energy of detected electrons. Some improvement was seen between
February and May . It could also be possible that the low-
energy pile-up could affect the resolution, with the high § production possibly affecting
the maximum peak height which is used to shape the trapezoid in the digital electronics.
Additionally, the spectra examined most, due to typically having the largest number of
counts and the longest experimental runs, were experiments where 7Au was excited.
This was an excellent nucleus for studying the performance of an electron spectrometer
since it has low-lying states which are highly converted. However, it also has states lying
close to each other which result in a double-peak in the resulting spectrum. This has the
result of increasing the resolution of fitted peaks depending on the fitting function used,
especially in a region where background level changes significantly, although the effect of
this is typically minimal if that change is modelled correctly. A further improvement was
also seen in the simulated data when using the CD detector that SPEDE will eventually
be coupled with. It is therefore reasonable to expect that a similar level of improvement
would be expected when using that in final experiments, along with an accurate reading
for particle energy.

~v-e~-particle coincidences could not be performed due to low statistics .
Improvements would be expected when using a full array of detectors, arranged in suitable
positions aimed at the target position. Again, this would be expected when coupled with
MINIBALL, as each detector is independently adjustable, as opposed to JUROGAM where
the frame and detectors are in a fixed position. Although this was resolved in May by
aiming an individual phase I detector at the target position, not enough statistics were
obtained over runs.

The application of +5 kV applied to the target ladder seemed to significantly alter
the distribution of the background electrons without curtailing electrons emitted from
the nucleus (beyond shifting them by the expected 5 keV). The impact of foils is more
debatable and will require further examination in a test environment where internally
converted electron peaks are clearly seen. It would seem that the aluminised foils have
a bigger effect on the distribution, but remains to be seen what the effect on resolution
would be. It also implies that there may be a large contribution to the low energy peak
from ultraviolet light since it is not seen when a simple clear Mylar foil is used. Although

a different distribution is seen clearly in it is not seen in using

a thin gold target. The difference could be attributed to a lower d-electron production
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rate due to the different densities but principally the thicknesses of the foils. They may
be required on a per-case basis; it is shown in that heavier beams and thicker
targets both result in an increased background, probably as the d-electron production rate
is faster.

The thickness of foils used can be determined from the stopping power of particles in

the material using the relation

E2 1

Ax = ———dFE. .51
v=| S(E) (eq. 5.1)

where S(E) is stopping power —%. a particles from an ?*'Am source at the target
position were used to determine the thickness of the foils, with results given in
The resultant spectra are seen in Since the particles pass through different
thicknesses to each different ring, as alphas are incident at different angles from the source,
three values were calculated for the thickness and the average was taken to minimise error,
ensuring that the cosine of the angle between the beam axis and the ring was used to

translate the range that the charged particle was interacting in the material to the true

thickness.
Foil Thickness/mg.pm 2
Aluminised Mylar (1) 24
Aluminised Mylar (2) 12.8
Mylar 2.0
Aluminium (1 mm hole) 3.4
Aluminium (0.8 mm hole) 1.5

Table 5.3: Foil thicknesses obtained using a *** Am source.

No reliable efficiency data could be collected since the '33Ba source, which emits elec-
trons at a variety of energies so a reliable multi-point calibration can be done, was leaking
into the chamber, and the strength could not be reliably determined. Neither were there
enough statistics were available to use the known branching ratios of states to be able
to determine from excitement of nuclei. shows a simulated efficiency plot for
SPEDE generated using Geant4, at two different detector distances (2 cm and 2.5 cm).

5.7 Future

SPEDE was shipped to the ISOLDE laboratory at CERN, Geneva, Switzerland, in June
2015. Some initial work has been done to confirm all channels and equipment is working as
expected still, and a study using SPEDE in-beam, coupled with the MINIBALL array as
intended, took place in November 2015 at the end of the main physics run. This included
the full CD detector, and lead to some successful e™-y-particle coincidence spectroscopy,

something not possible at Jyvaskyla, but several problems with the setup led to a decision
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Figure 5.27: ' Am after passing through various foils, used to determine foil thickness
by looking at the attenuation of energy of the main peak.

being made to take SPEDE back to Finland in order to do further work before final
commissioning with radioactive beams. Further tests, after work done in Jyvaskyla, will
take place in 2016. Already four proposals have been accepted by the ISOLDE and Neutron
Time-of-Flight Committee (INTC), and there are four more letters of intent submitted,

seen in [Table 5.4) and [Table 5.5] respectively.

There is also the possibility of ordering thicker detectors in the future, for higher

energy requirements. 1000 pm is possible, but a thickness of 1500 pym requires research
and development from Micron Semiconductor Ltd, as the laser cutting technique used to

produce the silicon detector has not been tried at this thickness before.

5.8 Summary of work

This thesis has presented work on SPEDE, an electron spectrometer tested and com-
missioned at Jyvaskyla, Finland, for use at the HIE-ISOLDE facility at CERN coupled
with the MINIBALL array to perform in-beam electron-gamma spectroscopy using post-
accelerated radioactive ion beams. Motivation for the need for the detector has also been
presented, particular with regards to application on odd-mass transactinide nuclei in the
octupole region.

Initial tests took place in Liverpool, UK, as well as at the JYFL facility, with in-
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Figure 5.28:  Simulated efficiency of SPEDE at 2 and 2.5 cm. An average efficiency of
about 8% is seen across the region of interest, dropping rapidly at about 30 keV.
Courtesy of D. Coux.
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Experiment .
Experiment name Authors
number

Measurements of octupole collectivity in

15475 odd-mass Rn & Ra nuclei using Coulomb | P.A. Butler, D.T. Joss et al
excitation
Measurements of octupole collectivity in

[S552 Rn & Ra nuclei usingp Coulomb eXC}ifta— P.A. - Butler, D.T. Joss,

) M. Scheck et al

tion
Probing intruder configurations in .

15556 186’18813gb using Coulomb eicitation J. Pakarinen cf al
Coulomb excitation of 82~ 184Hg: Shape | K. Wrzosek-Lipska,

1S563 coexistence in the neutron-deficient lead | D.T. Joss, D.G. Jenk-
region ins, J. Pakarinen et al

Table 5.4: Accepted proposals by the INTC using the SPEDE spectrometer at

HIE-ISOLDE

Experiment name

Authors

Measurements of octupole collectivity
in odd-mass Rn, Fr & Ra isotopes

P.A. Butler et al

Shape studies in the neutron rich
N = 60 region

N. Warr et al

Shape coexistence in the
neutron-deficient region around Z = 82
studied via Coulomb excitation and
few-nucleon transfer reactions

P. Van Duppen, D.T. Joss,
D.G. Jenkins, J. Pakarinen
et al

Shape changes and proton-neutron
pairing around the N = Z line

D.G. Jenkins et al

Table 5.5: Letters of intent for the SPEDE spectrometer at HIE-ISOLDE

beam testing taking place in Finland. A full detector enclosed in the chamber, coupled

with electronics and cooling, operated well in an environment similar to what would be

expected at the HIE-ISOLDE facility, and in-beam electron spectroscopy without magnetic

transport fields was performed for the first time.

Cooling the setup to -30 °C is sufficient enough to get a FWHM of approximately

7 keV at an energy of 320 keV. Effective particle-gating can be used to reduce background

significantly and to view peaks clearly, although in this work the efficiency of this was low,

and the Doppler correction would be expected to be improved upon deployment to CERN
using the CD detector.

Successful physics runs should take place in 2017 at HIE-ISOLDE, CERN.
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