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Doctor of Philosophy

Essays in Money, Liquidity and the Wider Economy

by Michael ELLINGTON

The thesis investigates the impact of money and liquidity for the wider economy. Chapter 1 di-
cusses the primary motivations of this work, introduces the content of the chapters, and briefly
positions each essay. Following the brief overview, Chapter 2 uses tools from the classical the-
ory of inflation for UK data. We provide an empirical comparison between broad money and
Divisia money aggregates from both a domestic and global scale for two measures of UK in-
flation. We find that global liquidity yields inflationary pressures in the UK over and above
the impact of domestic monetary conditions and spare capacity. Our non–linear models show
that monetary effects are dependent on the state of domestic liquidity within the economy. Our
empirical findings point against the immediate risk of strong inflationary pressures.

In Chapter 3, we provide a comprehensive reduced–form and structural analysis of evolving
macroeconomic dynamics using theoretically founded Divisia money aggregates and a time
series spanning the Great Recession. We fit a Bayesian time–varying parameter VAR model
with stochastic volatility to US and UK data from 1979 to 2015. Models using Divisia money
growth rates pseudo–forecast GDP growth and inflation with a higher precision than simple–
sum aggregates up to a 2–year horizon. Structural variance decompositions reveal that mon-
etary policy shocks during the Great Recession contribute the lion’s share of variation in real
GDP growth and inflation volatility.

Chapter 4 examines the dynamic impact of liquidity shocks resonating in stock and housing
markets on real GDP growth. We fit a Bayesian time–varying parameter VAR model with
stochastic volatility to US data from 1970 to 2014. GDP becomes highly sensitive to house
market liquidity shocks as disruptions in the sector start to emerge, yet more resilient to stock
market liquidity shocks throughout time. We provide substantial evidence in favour of asym-
metric responses of GDP growth both across the business cycle, and among business cycle
troughs. Stock and house market liquidity shocks, on average, explain 15% and 36% of the
variation in real GDP growth during the Great Recession respectively.

Finally, Chapter 5 provides concluding comments and suggestions for future research.
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Chapter 1

Introduction

This thesis explores the impact of money and liquidity conditions on the wider econ-
omy. The primary motivations of this work stem from the financial turmoil in 2008 and
following policy responses by the Federal Reserve and Bank of England respectively.
Since the Great Recession, both the real effects of liquidity conditions, and measuring
monetary aggregates in a theoretically consistent manner are becoming key research
areas (see e.g. Longstaff, 2004, Næs, Skjeltorp, and Ødegaard, 2011, Florackis et al.,
2014, Barnett, 1980, Barnett and Chauvet, 2011 and Barnett, Chauvet, and Leiva-Leon,
2016). In conjunction with this, the necessity of accounting for different sources of
time–variation, or structural breaks, in econometric models is also becoming a prime
topic (see, among many others Primiceri, 2005, Milas, 2009, Barnett, Groen, and Mum-
taz, 2010, Abbate et al., 2016). We offer three empirical essays that contribute to these
strands of literature.

In Chapter 2, we provide a concise examination of movements in liquidity through the
lens of monetary aggregates. We model the rates of UK Retail Price Inflation (RPI) and
Consumer Price Inflation (CPI) using both linear and regime–switching models. Our
time series sample for RPI inflation spans from 1983 to 2014, and for CPI inflation from
1989 to 2014 respectively. Motivation of this work derives from UK policy response to
the financial turmoil in 2008. This consisted of three rounds of Quantitative Easing (QE)
summing to £375bn, preceded by cuts to the policy rate, which froze at 0.5% in March
2009. During the first round of QE broad money (M4) growth did not rise, however
Divisia money did. This raises the question: what measure of money matters for UK
inflation? Our study builds on Milas, 2009 who finds that UK CPI inflation dynamics
are dependent on the rate of broad money (M4) growth. Following the recommenda-
tions in the aforementioned, we compare the econometric properties of UK inflation
and Divisia money growth with UK inflation and broad money growth respectively.

Specifically, we borrow from the classical theory of inflation and connect prices to the
interactions in the demand and supply of money. Following the theoretical underpin-
nings in Friedman, 1988 and Setzer and Greiber, 2007, we include financial assets and
housing into our money demand specifications. Our choice of these variables is co-
herent with the views expressed in Goodhart and Hofmann, 2008. In particular, one

1



2 Chapter 1. Introduction

of the preconditions for the financial turmoil being inflated and persistent asset prices.
We combine the classical theory of inflation with standard Phillips curve analysis and
also relax the assumption that the UK economy is closed. In doing so, we construct
global liquidity aggregates following D’Agostino and Surico, 2009. Modelling the UK
economy in an open–economy framework implicitly assumes a channel through which
fluctuations, in international flows, and more integrated financial markets can be cap-
tured. Setzer and Greiber, 2007 note that movements in the money supply of one na-
tion has the possibility to be absorbed elsewhere, and that contemporaneous shifts in
major economy’s money supplies can result in spillovers to domestic inflation rates.
Belke, Orth, and Setzer, 2010 posit that domestic money aggregates are becoming in-
creasingly more difficult to interpret because of increases in the volume of international
capital flows. Therefore extending the information set and accounting for spillovers in
international money movements is intuitive.

Our initial results show that linear models fail to document any real significant re-
lationship between inflation, money (both domestic and global) and spare capacity.
However, we find that both CPI and RPI inflation exhibit regime–switching behaviour
and estimate Quadratic Logistic Smooth–Transition Autoregressive (QLSTAR) mod-
els where inflation regimes are governed by domestic money movements. Interest-
ingly, we find that both the RPI and CPI inflationary process are conditional on do-
mestic money movements. More specifically, when domestic money growth is con-
tained between two endogenously determined thresholds, inflation is well specified
by a standard Phillips curve augmented with global money movements. Yet when
money growth surpass these thresholds, domestic monetary conditions dominate the
inflationary process. Additionally, we show that our non–linear models are not cap-
turing high and low inflation regimes, by comparing the time–varying impact of alter-
native specifications of regime–switching models. Finally from a purely econometric
perspective, we find no evidence in favour of using Divisia money over conventional
simple–sum aggregates.

In Chapter 3, we extend our investigation of the empirical properties of Divisia indices.
In spite of the theoretical benefits of Divisia money, the Federal Reserve and the Bank
of England maintain focusing their attention on theoretically flawed simple–sum (or
broad) measures of money. Adding to this, there is growing literature advocating Di-
visia indices and that these measures of money could better signal financial crises (e.g.
Barnett and Chauvet, 2011). Chapter 3 explores the evolution of macroeconomic dy-
namics in the US and UK economies from 1979 to 2015. We fit Bayesian Time–varying
Parameter VAR (TVP–VAR) models with a stochastic volatility structure. This study
directly extends Benati and Mumtaz, 2007 and Benati, 2008 by estimating economic
systems of real GDP growth, GDP deflator inflation, the 3–month Treasury Bill rate,
and replacing atheoretical simple–sum measures of money with Divisia money growth



Chapter 1. Introduction 3

respectively. By employing this methodology, we offer a Bayesian time–varying analy-
sis of macroeconomic fundamentals using Divisia indices; a novel feature of this study.
We set out to answer the following questions: Can we predict real GDP growth and
inflation with more precision using theoretically sound measures of money? Are there
differences in the transmission mechanism of monetary policy shocks throughout time,
and how do these shocks influence macroeconomic volatility?

In answering these questions, Chapter 3 contributes to three main areas of empirical
literature. To begin with, we extend the previous work of Cogley and Sargent, 2005,
Primiceri, 2005, Bianchi, Mumtaz, and Surico, 2009 and Barnett, Groen, and Mum-
taz, 2010 by offering a time–varying Bayesian perspective of evolving macroeconomic
dynamics of over the Great Recession and the following recovery period for the US
and UK economies, respectively. The aforementioned consider post–WWII data and
examine the Great Inflation and Great Moderation. Second, we add to the existing
forecasting literature advocating the use of Divisia indices in macro–econometric mod-
els (e.g. Schunk, 2001, Albuquerque, Baumann, and Seitz, 2015, Florackis et al., 2014
and Barnett, Chauvet, and Leiva-Leon, 2016). Finally, our results correspond well with
studies employing structural VAR (SVAR) models using Divisia money (e.g. Keating
et al., 2014, Belongia and Ireland, 2015 and Belongia and Ireland, 2016).

Our results in Chapter 3 support the use of Divisia indices over simple–sum measures
of money. We provide an in–depth reduced–form and structural analysis of US and
UK economies using Divisia money growth, and compare these results by replacing
Divisia money growth rates with the economy’s broad money growth rate, respec-
tively. Our analysis reverberates the importance of allowing for time–variation in the
parameters, covariances, and volatilities. Specifically, we link the persistence of our
macroeconomic data to the dynamic predictability of our TVP–VAR models. Notably,
we find clear differences in the pseudo–forecastability of the US and UK economies at
the beginning and end of our sample. Likewise, our analysis shows significant differ-
ences in the transmission of monetary policy shocks during the Great Recession and
the final year of our sample. We also show that systems using Divisia money produce
more accurate pseudo–forecasts than those using simple–sum counterparts which em-
phasises the importance of measuring money correctly. Finally, we offer time–varying
variance decompositions of US and UK macroeconomic data in the frequency domain
as in Barnett, Groen, and Mumtaz, 2010, and show that monetary policy shocks during
the 2008 recession explain 60% and 42% of real GDP growth volatility in the US and
UK, respectively.

In the final Chapter of this thesis, Chapter 4, we assess the influence of stock and house
market liquidity shocks on US real GDP growth throughout time from 1970 to 2014, us-
ing a TVP–VAR model, allowing for four sources of uncertainty. We construct proxies
of aggregate stock market liquidity conditions, using daily data for all common stocks
listed on the New York Stock Exchange (NYSE), from 1968 to 2014 using the Amihud,
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2002 measure. In a similar manner, we propose a price–impact ratio to capture liquid-
ity movements in the US property sector from 1968 to 2014. The prime contribution of
this essay is to explore the real effects of liquidity shocks from stock and house markets
on US real GDP growth over time. To the best of our knowledge, there are no empirical
studies on the economic impact of market specific liquidity shocks. The majority of ex-
isting literature focuses on the explanatory and forecasting performance (see e.g. Næs,
Skjeltorp, and Ødegaard, 2011 and Florackis et al., 2014). Uncovering a link between
market specific liquidity shocks is of major importance for policymakers. If structural
links between market specific liquidity shocks and the real economy are conditional on
time (or the business cycle), model misspecification can result in erroneous inference
and policy recommendations.

Chapter 4 extends the empirical literature accounting for time–varying macro–financial
linkages. Conventionally, empirical studies accounting for the financial sector of an
economy typically capture conditions through one variable that aggregates the finan-
cial sector into one financial ‘conditions’ or ‘stress’ proxy (e.g. Hubrich and Tetlow,
2015). However, aggregating financial conditions from different asset markets immedi-
ately omits any contemporaneous links between those markets themselves. Therefore,
we cannot distinguish between the impact of shocks from individual markets that build
the proxy. Empirical literature allowing for different asset markets is small, but grow-
ing (see e.g. Björnland and Leitemo, 2009 and Prieto, Eickmeier, and Marcellino, 2016).
We extend the work of Prieto, Eickmeier, and Marcellino, 2016, and isolate the liquidity
component from stock and house prices overcoming the complex web of information
contained in the asset’s price (Harvey, 1988).

Liquidity conditions in stock markets is thought to affect the real economy through
a variety of different channels. Florackis et al., 2014 state that stock market liquidity
can behave as a signalling process revealing the information set of investors. During
periods of excess uncertainty or depleting confidence regarding the future state of the
economy, investors adjust portfolio holdings and move funds from high risk assets into
‘safe havens’; known as flight to safety. Similarly, if investors anticipate sharp declines
in liquidity, then portfolio compositions change with more funds being allocated to liq-
uid assets; known as flight to liquidity (Longstaff, 2004). Adding to this, Brunnermeier
and Pedersen, 2009 establish a reinforcing mechanism between funding and market liq-
uidity during periods of financial stress. A shock to funding liquidity causes providers
to shift liquidity provision into low margin stocks.

Additionally, liquidity in the housing market can also affect the real economy. He,
Wright, and Zhu, 2015 state that house prices contain a liquidity premium. In equilib-
rium, people will be willing to pay more than the fair value of the house since owning
a house signals financial security; a favourable factor in obtaining credit. Likewise pur-
chasing a house requires a substantial down payment, therefore the liquidity of the
prospective buyer directly influences the demand for housing. Stein, 1995 deduces a
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tractable model under the assumption a deposit is required to participate on the hous-
ing market. The theoretical model reveals that demand in the housing market is sen-
sitive to the extent of market participants liquidity. Diaz and Jerez, 2013 formulate a
model able to reproduce the cyclical time series properties of the US housing market
using the median number of months to sale (i.e. time–on–the–market) as a proxy for
liquidity. In particular they form an intuitive link between liquidity and uncertainty
in the housing market, and show that as liquidity decreases in the US property sector
before and during the 2008 recession, volatility intensifies and the real effects of shocks
propagate onto future periods.

The findings in Chapter 4 highlight the importance in accounting for different asset
markets in models because the transmission of market specific liquidity shocks is in-
deed different. Stock market liquidity shocks result in contractionary effects for real
GDP growth across every observation of our sample, although the impact is declining
throughout time. Furthermore, we show that liquidity shocks from the US housing
market result in contractionary effects from 2005 onwards; the response of real GDP
growth pre–2005 is negligible to these shocks. Building on this, we document distinct
differences in the real effects of liquidity and uncertainty shocks. We show that un-
certainty shocks from the US stock market yield a counter–intuitive response of GDP
growth, which supports the findings in Levine and Zervos, 1998; a robust link be-
tween stock market liquidity and the real economy. In a similar manner, comparing
the response of US real GDP growth to house market liquidity shocks with uncertainty
shocks, uncovers a distinct structural change in the relationship between house market
liquidity shocks and real GDP growth; a change that uncertainty shocks and real GDP
growth do not possess. Therefore we argue that our liquidity proxy is, in fact, capturing
liquidity conditions and not price uncertainty. Finally, structural variance decomposi-
tions report that stock and house market liquidity shocks explain, on average, 15% and
36% of real GDP growth variation during the financial crisis, respectively.

The rest of this thesis proceeds as follows: In Chapter 2, we investigate the links be-
tween global liquidity, money growth and UK inflation. We provide insights into the
evolution of US and UK macroeconomic dynamics using correctly measured mone-
tary statistics, in Chapter 3. In Chapter 4, we focus on the real effects of market spe-
cific liquidity shocks on the US economy. Chapter 5 offers concluding comments and
directions for future research. To enhance the reader’s experience of this thesis, we
make each chapter self–contained. Therefore we (re)introduce variables, notations and
acronyms in each chapter. Where possible, we use the same acronyms across chapters
to aid readability.





Chapter 2

Global Liquidity, Money Growth
and UK Inflation

2.1 Introduction

The recent global financial crisis witnessed a detrimental shock to liquidity and credit
conditions followed by a somewhat staggered recovery. In response to the financial
turmoil, monetary policymakers in major economies pursued an unprecedented path
of interest rate cuts and repeated rounds of asset purchase facilities involving, predom-
inantly, the purchase of long-term government bonds and other related assets (more
commonly known as Quantitative Easing, (QE)). Preconditions for this global phe-
nomenon, as observed by Goodhart and Hofmann, 2008, consisted of inflated asset
prices, house price persistence, surging money growth rates, and low capital market
yields. This implies that asset markets were “awash with liquidity". Common to other
developed countries, the UK’s experience of the financial trauma comprised of a pro-
longed recession followed by a fragile recovery. The UK’s response to the financial
crisis saw the government attempt to stimulate the property sector through schemes
such as ‘help to buy’ (HTB). This provides equity loans of up to 20% of a property’s
value (on properties up to the value of £600,000), given the buyer has 5% of the value
of the property as a deposit (with the remaining 75% requiring a mortgage). This is
consistent with the view, alluded to by Bank of England (BoE) Governor Mark Carney
in the June 2014 Financial Stability Report press conference that historically, recessions
preceded by a property bust are more severe than those without1.

In parallel with this, the UK’s monetary policy response consisted of successive inter-
est rate cuts which froze at 0.5% on March 5th 2009 and have remained there since;
along with three rounds of QE from March 2009 to July 2012 summing to £375bn. QE
is thought to work via three main channels: the macro–policy/news channel; the sig-
nalling channel, and the portfolio rebalancing channel (for a critical analysis see e.g.

1The UK housing market is thought to affect the economy through three channels: domestic demand
(documented in the BoE’s November 2013 Inflation Report as having prospects for medium–term infla-
tionary pressure); financial stability; and debt levels and resource allocation.

7
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Martin and Milas, 2012). However, during the first round of QE, M4 (or broad money)
growth, the usual monetary aggregate monitored by the Monetary Policy Committee
(MPC), did not pick up. Yet Divisia money did, thus raising the question as to what
measure of money matters for inflation. Divisia money assigns weights to the com-
ponent assets of M4 in accordance to their liquidity, such that those bearing higher
interest payments (thought to be less useful for transaction purposes) are allocated a
lower weight. With this in mind, Hancock, 2005 argue that compared with M4, Divisia
money has a closer relationship to expenditure2.

A monetary explanation of inflation requires a classical approach toward price growth.
The classical theory of inflation links the aggregate price level to the interactions of the
demand for and supply of money. This characterises inflation towards its appropri-
ate definition; an erosion of the purchasing power of money. Our approach, however,
utilises the classical theory alongside standard Phillips curve equations that attribute
current inflation to expected inflation and the output gap. Another novelty in our ap-
proach is the construction and inclusion of global money movements. It is reasonable
to assume the UK is an open economy that is receptive to fluctuations in international
capital flows, and more integrated financial markets. As noted in Giese and Tuxen,
2007, the integration of financial markets and fluctuations in the money supply of one
country has the potential to be absorbed by demand elsewhere. More importantly, con-
temporaneous shifts in the money supply of major economies could result in spillover
effects into domestic rates of inflation. Furthermore, global aggregates are thought to
embody cross–country movements in monetary aggregates as a result of capital flows
between different regions. This can hinder dissemination of the link between inflation,
money and output (Sousa and Zaghini, 2008). Belke, Orth, and Setzer, 2010 argue that
domestic money aggregates/national liquidity have become more difficult to interpret
due to the vast increase in the volume of international capital flows. To the best of
our knowledge, there are no studies examining (simultaneously) global and domestic
liquidity effects onto a nation’s inflationary dynamics.

The main contribution of this chapter looks to offer a “classical" explanation of infla-
tion, by comparing the relationship between broad money and Divisia money, with
two measures of UK inflation (using retail and consumer prices indices (RPI, CPI)),
from 1983Q4–2014Q1 and 1989Q2–2014Q1, respectively. We show that housing and
financial assets exhibit wealth effects on the demand for money, based on the theoret-
ical arguments in Friedman, 1988 and Setzer and Greiber, 2007. We add an interna-
tional dimension to our approach by constructing proxies of global liquidity following
D’Agostino and Surico, 2009. We employ non–linear models to allow for asymmetric
adjustment of inflation expectations, domestic and global liquidity, and spare capac-
ity; depending on liquidity conditions within the UK economy. However, we diverge

2There are various theoretical motivations for the use of Divisia aggregates. For surveys advocating
their attractiveness; see e.g. Barnett, 1980; Belongia, 1996; Drake and Mills, 2005.
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from the aforementioned in that we focus on the inflationary impact of liquidity con-
ditions over and above excessive demand, proxied by the output gap, from both an in-
ternational and domestic perspective. Inflation dynamics are modelled both in a linear
and regime–switching framework. This also distinguishes our chapter from previous
UK inflation studies, namely Osborn and Sensier, 2009 who consider regime–switching
with respect to a time trend and past inflation, and Milas, 2009 who considers regime–
switching with respect to M4 growth and M4 disequilibria without allowing for the
effects of the property sector, financial asset markets, or international liquidity effects.

Our results are summarised as follows: First, global liquidity yields inflationary pres-
sures in the UK over and above the impact of domestic monetary conditions and spare
capacity. Second, the demand for money is positively influenced by the property sec-
tor and financial asset markets. Third, in general, our results show that when domestic
liquidity is contained within sensible bounds, inflation is well specified by a standard
Phillips curve. Yet, when liquidity surpasses these bounds, domestic monetary effects
become prominent. However, our results imply inflation expectations are independent
of liquidity conditions. More specifically, CPI inflation is mainly driven by spare ca-
pacity considerations and global liquidity effects when M4 growth is contained within
regime boundaries. On the other hand, domestic monetary effects dictate inflation
movements when M4 growth is either “too high" or “too low". Fourth, we find em-
pirical evidence in favour of M4 money (over Divisia money) in modelling UK CPI
inflation.

The implications of our results are that the Bank of England’s MPC should monitor
closely domestic money growth as the inflationary effects of both domestic, and global
liquidity, depend on money growth boundaries. Further, noting that UK CPI infla-
tion dynamics are currently governed by a monetary regime in which money growth
is weak, our empirical findings point against the immediate risk of strong inflation-
ary pressures. With this in mind (and at the time of writing), the BoE’s MPC are not
under immediate pressure to raise the policy interest rate; in fact, before the July 2016
Inflation Report, there was speculation of interest rate cuts to 0.25% following the UK’s
vote to leave the European Union. The rest of this chapter is organised as follows. Sec-
tion 2.2 provides a brief description of the data, money demand equations and global
liquidity. Section 2.3 gives a discussion of the econometric methodology. Section 2.4 re-
ports our empirical findings. Finally, section 2.5 provides a summary, discusses policy
implications and outlines potential avenues for future research.
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2.2 Data Description, Money Demand and Global Liquidity

2.2.1 Data Description

We use quarterly data over the period 1983Q4–2014Q1 (for models of RPI inflation) and
1989Q2–2014Q1 (for models of CPI inflation). We adopt a break adjusted M4/M4ex

series which splices M4ex (the BoE’s preferred broad money measure) with aggregate
M43. The former along with Divisia money, the 10–year and 5–year government bonds
and the 3–month Treasury Bill rates are available from the BoE’s database. The RPI,
CPI and GDP series are available from the Office for National Statistics (ONS). FTSE
All–Share prices, house prices and the house price–earnings ratio are available from
Thomson Reuters DataStream. Figure 2.1 plots the annual rates of RPI and CPI inflation
along with the output gap estimate. Figure 2.2 plots the UK annual M4/M4ex and
Divisia money growth rates.

Our output gap measure is constructed as the proportional difference between GDP
and the average of two alternative measures of equilibrium output; the Hodrick and
Prescott, 1997 trend and a simple quadratic trend4. It is worth mentioning here some
policy issues and difficulties occurring in the measurement of the output gap. Or-
phanides, 2003 demonstrates how short term policies focussing predominantly on the
output gap have previously failed policymakers (in the US). Further, Orphanides and
Van Norden, 2002 discuss the unreliability of output gap estimates in real–time, as in-
formation becomes more readily available and revisions reveal a clearer picture of the
economy’s true position within the business cycle. This is particularly relevant for the
post–2007 period within our sample in which major revisions to UK GDP data have
occurred.

3Specifically, we splice headline M4 with M4ex since M4ex data starts in 1997Q4. To construct our break
adjusted UK broad money series, we follow the procedure at http://www.bankofengland.co.uk/
statistics/Pages/iadb/notesiadb/Break_adjusted_levels_data.aspx.

4The Hodrick and Prescott, 1997 approximation of the output gap was thought to under–estimate the
amount of spare capacity, and the quadratic trend approximation was deemed as an over–estimate; see
also Ahmad, Martin, and Milas, 2014. We also considered the Office for Budget Responsibility’s output
gap estimate in earlier analysis; models using this output gap produced parameter estimates similar to
those reported here, yet they resulted in inferior statistical fit.

http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/Break_adjusted_levels_data.aspx
http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/Break_adjusted_levels_data.aspx
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FIGURE 2.1: Annual UK Rates of Inflation (%) and the Output Gap
Estimate (%) from 1983 to 2014

Notes: This Figure plots UK RPI and CPI annual rates of inflation along
with our estimate of the output gap which is an equally weighted av-
erage of a Hodrick and Prescott, 1997 and quadratic trend respectively

from 1983Q4–2014Q1 respectively.
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Notes: This Figure plots annual UK broad and Divisia money growth

rates from 1983Q4–2014Q1 respectively.
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2.2.2 The Demand for Money

Bernanke and Blinder, 1988 characterise the biggest challenge to the classical theory of
inflation as the “Achilles heel of Monetarism". This stems from ambiguous stability of
the money demand equation. For the UK, specifications using conventional variables
by, for example, Haldrup, 1994 only amplify this issue. However, a stable money de-
mand function implies the ability for inflation targeting nations (such as the UK, USA
and the Euro area) to extract information regarding medium–term (and even long–
term) price stability. Friedman, 1988 and Setzer and Greiber, 2007 offer theoretical
underpinnings for the inclusion of financial assets and housing variables into money
demand specifications. Additionally, Sousa, 2010 states that financial markets embed
content regarding agent’s expectations on a number of issues including economic ac-
tivity and inflation. Furthermore, an economy’s housing market represent major assets
within households’ portfolios, from which direct utility is derived. This only echoes
the importance of these markets which are paramount for monetary policy; and the de-
mand for money. Thus, we advocate their inclusion into UK money demand functions.
Our expectation is that housing and financial assets should exhibit wealth effects onto
the demand for money. The observed sign upon estimation indicates the dominant net
effect. This assumption is not new; empirical specifications, as in Dreger and Wolters,
2010; Dreger and Wolters, 2014 show housing and financial assets exhibit wealth ef-
fects on Euro area money demand. Our “money disequilibrium" constructions are the
residuals (multiplied by 100) from the Engle and Granger, 1987 long–run regressions
given by5:

diseqrpi,M4
t = (m4− prpi)t + 11.30− 1.40yt − 0.05(i10yr − i5yr)t − 0.12ht − 0.13ft (2.1)

diseqrpi,DMt = (dm− prpi)t + 11.72− 0.81yt − 0.07(i10yr − i5yr)t − 0.33ht − 0.05ft (2.2)

diseqcpi,M4
t = (m4− pcpi)t + 12.81− 1.72yt − 0.01(i10yr − i3m)t − 0.13h(p/e)t (2.3)

diseqcpi,DMt = (dm− pcpi)t + 14.50− 1.28yt − 0.01(i10yr − i3m)t − 0.40h(p/e)t (2.4)

where diseqx,yt is the money disequilibrium construction, the x superscript denotes the
price index used and the y superscript denotes the money aggregate used in each spec-
ification; (m4− px)t, (dm− px)t denote the log level of real M4 and real Divisia money
balances where the x superscript denotes the price index used as a proxy for prices; yt is
the log level of real GDP; i10yr

t , i5yrt are the 10–year and 5–year government bond rates,
respectively and i3mt is the 3–month Treasury Bill rate. The interest rate differential
used in specifications (2.1)–(2.4) is therefore the slope of the respective term structures.
The variable ht is the log level of real standardised average UK house prices; ft is the
log level of real stock prices proxied by the FTSE All–Share index and h(p/e)t is the
log level of the UK house price–earnings ratio (calculated as the average standardised
house price scaled by the average earnings of a full–time male UK employee).

Figure 2.3 plots the house price–earnings ratio, real house prices and real asset (FTSE

5All variables within these systems were confirmed to be unit root processes. To save space, we refrain
from reporting the test results (these are available on request).
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All–Share) prices (in logs); we note the rapid increase in all three indices pre–2007, fol-
lowed by an abrupt decline afterwards. The FTSE All–Share index bounces back up
rapidly since QE implementation whereas the housing variables only show a gradual
increase. Figure 2.4 plots the interest rate spreads. All variables enter with either the
correct theoretical or anticipated sign and the magnitude of each variable is also con-
sistent with existing empirical applications (e.g. Milas, 2009)6.

Table 2.1 reports a battery of tests that explore the stationarity properties of the dise-
quilibrium constructions. The tests reported are: the EGS test Elliott, Rothenberg, and
Stock, 1996; the KPSS test (Kwiatkowski et al., 1992) and the ERS test (Elliott, Rothen-
berg, and Stock, 1996). The former and the latter test the null hypothesis of a unit root,
whereas the KPSS test, tests the null hypothesis of stationarity7. As can be seen from Ta-
ble 2.1, tests results in columns 2–4 confirm that the money disequilibria are stationary.
However, there appears to be some ambiguity in column 1 where only around half of
the test statistics confirm marginal stationarity of the money disequilibrium (using RPI
and M4 in construction). As a form of robustness analysis, we turned to the Johansen,
1988; Johansen, 1995 methodology. All VAR estimates support evidence of cointegra-
tion with at least one of the tests (either Johansen’s λ–trace or λ–max test) in favour of
one cointegrating vector (for the sake of brevity, we do not report these results but are
available on request)8.

6Specifications are quite different depending on which price index nominal money holdings are de-
flated. One possibility is the time horizon considered for each sample. To investigate this further, we
estimated the long–run regressions as in (2.3) and (2.4) deflating money holdings by retail prices for the
sample 1988Q1–2014Q1. Results were quantitatively similar to those reported in (2.3) and (2.4).

7For (2.1), Augmented Dickey Fuller (ADF) test statistics are: ADF(0 lag)=-2.25, ADF(1 lag)=-2.67,
ADF(2 lags)=-2.66. For (2.2), ADF test statistics are: ADF(0 lag)=-2.68, ADF(1 lag)=-2.62, ADF(2 lags)=-
2.87. For (2.3), ADF test statistics are: ADF(0 lag)=-2.11, ADF(1 lag)=-2.83, ADF(2 lags)=-2.84. For (2.4),
ADF test statistics are: ADF(0 lag)=-1.45, ADF(1 lag)=-1.64, ADF(2 lags)=-2.05. The MacKinnon, 1991 5%
critical value for (2.1)–(2.2) is -4.53 and for (2.3)–(2.4) is -4.20, ADF tests were unable to reject the null
hypothesis in these cases; we return to this issue below when reporting our non–linear model estimates.

8From a statistical point of view, it should be noted that money disequilibrium constructions without
the property sector and financial asset variables show much clearer evidence of non–stationarity (detailed
results are available on request). For VAR estimates using log levels of Divisia money, cointegration was
conditional on the inclusion of trend into the cointegrating vector.
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FIGURE 2.3: UK House Price to Earnings Ratio, Real House Prices and
Real Asset Prices from 1983 to 2014

Notes: This Figure plots the logarithmic values of the the UK house
price–earnings ratio, real house prices and real stock prices from

1983Q4–2014Q1 respectively.
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TABLE 2.1: Stationarity Tests for Money Disequilibria

Sample: 1983Q1–2014Q1 1988Q1–2014Q1

diseqrpi,M4
t diseqrpi,DMt diseqcpi,M4

t diseqcpi,DMt

EGSa

Lag length
0 -1.27 -2.07** -1.00 -1.49
2 -1.71* -2.31** -1.70* -2.07**
4 -1.65* -1.79* -1.84* -2.15**
6 -1.33 -1.56 -1.88* -2.15**

KPSSb 0.13 0.13 0.15 0.20
Bandwidth 8 8 8 8

ERSc

Lag length
0 10.26 4.11* 15.58 5.04
2 4.68 2.84** 4.83 2.61**
4 3.77* 2.92** 2.83** 1.84***
6 4.46 2.53** 2.20** 1.44***

a The 10%, 5% and 1% critical values for the EGS test are -1.61,
-1.94 and -2.58, respectively
b The 10%, 5% and 1% critical values for the KPSS test are 0.347,
0.463 and 0.739, respectively
c The 10%, 5% and 1% critical values for the ERS point optimal
are 4.20, 3.12 and 1.94, respectively
Notes: Stationarity tests for the money disequilibrium constructions in (2.1)–(2.4). The
EGS test is a unit root test developed by Elliott, Rothenberg, and Stock, 1996. This test
works off generalised least squares (GLS) detrending the residuals before running the
ADF test equation. The KPSS test is an LM–type test proposed by Kwiatkowski et al.,
1992 with the null hypothesis that the data is trend stationary. The ERS test (Elliott,
Rothenberg, and Stock, 1996) is a point optimal test that works off quasi–differenced
data before running two test regressions. In order to test the null hypothesis of a
unit root, the test statistic is then computed as the difference of the sum of squared
residuals of the test equation under the alternative hypothesis and under the null
hypothesis of conventional ADF tests scaled by an estimator of residual spectrum at
frequency zero. In this case we used an autoregressive spectral density estimator. *,
** and *** denote a rejection of the null hypothesis at 10%, 5% and 1% significance,
respectively.

Figures 2.5 and 2.6 plot the money disequilibrium constructions as in (2.1)–(2.4). Plots
in both Figures show that mean crossings are relatively frequent with substantially
more variability in the money disequilibria using real M4 balances. Positive deviations
from the long–term equilibrium show excess money holdings within the economy pos-
sibly linked to the risk of inflationary pressures. On the other hand, negative deviations
from the long–run equilibrium imply a lack of money holding in the economy possibly
linked to a period of disinflation.
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FIGURE 2.5: Money Disequilibrium using RPI as a Proxy for Prices
(%) from 1983 to 2014

Notes: This Figure plots the money disequilibrium constructions which
are computed as the residuals from the Engle and Granger, 1987 long–
run regressions (multiplied by 100) in equations 2.1 and 2.2 from

1983Q4–2014Q1 respectively.
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FIGURE 2.6: Money Disequilibrium using CPI as a Proxy for Prices
(%) from 1989 to 2014

Notes: This Figure plots the money disequilibrium constructions which
are computed as the residuals from the Engle and Granger, 1987 long–
run regressions (multiplied by 100) in equations 2.3 and 2.4 from

1989Q2–2014Q1 respectively.

Notice (from Figures 2.5 and 2.6) that, towards the end of the sample, there is con-
siderable divergence between M4 money disequilibria and Divisia money disequilib-
ria. In the former case, money has reverted towards equilibrium (or is now moving
below equilibrium). In the latter case, however, money is above equilibrium. These
differences arise because Divisia money holds greater informational content regarding
liquidity conditions/perceptions in the UK that M4 cannot capture. This stems from
the assumption nested within simple–sum monetary aggregates. That is, component
assets are assumed perfectly substitutable. This condition is noted to be strongly re-
jected (empirically) in Belongia, 1996. The implication of the above helps explain this
divergence between M4 and Divisia disequilibria. Money disequilibria utilising Divisia
aggregates are capturing purely internal substitution effects between component assets
of M4, from illiquid to liquid components; possibly through the portfolio rebalancing
channel of QE9.

9This may be driven by the closer relationship Divisia money has with aggregate spending; as noted
by Florackis et al., 2014
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2.2.3 Global Liquidity

Next, we turn our attention to measures of global liquidity. Monetary aggregates and
GDP data for the constructions of global liquidity are from the Organisation for Eco-
nomic Co-operation and Development (OECD) and the Centre for Financial Stability
(CFS). The levels of broad and Divisia global liquidity are given by:

glbroadt =
4∑
i=1

ωi,tmi,t (2.5)

ωi,t = GDPi,t/GDP
Agg
t (2.6)

and

glDivisiat = dmUS,t (2.7)

In (2.5) mi,t represents the level of country i’s money aggregate converted at PPP ex-
change rates (i= Canada, US, Japan and the Euro area; we use the term “country" in
a loose manner for the Euro area). This is then weighted by ωi,t which is country i’s
share in an aggregated GDP series, GDPAggt (i.e. GDPi,t/GDP

Agg
t ) in (2.6). Similarly

in (2.7), global Divisia is approximated by US Divisia money, dmUS,t, converted at PPP
exchange rates.
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FIGURE 2.7: Global Liquidity Growth Rates (%) from 1983 to 2014
Notes: This Figure plots the annual growth rates of broad money and

Divisia money global liquidity from 1983Q4–2014Q1 respectively.

Figure 2.7 plots the annual growth in broad and Divisia money global liquidity, where
the annual growth rates of (2.5) and (2.7) used in our models of UK inflation, are de-
noted as GLbroadt , and GLDMt respectively. Notice the sharp decline in both proxies of
global liquidity at the time of the financial crisis. Furthermore, our proxies show that
the decline in global Divisia is more severe than that for global broad money; possi-
bly explained by the differences in weighting schemes for each series (for global broad
money we rely on four countries whereas for global Divisia we rely solely on the US).
For both proxies, there is a surge post–2009 (back into positive growth rates for global
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Divisia), suggesting these variables are picking up QE effects. Notably, the surge is
more abrupt in global Divisia growth, indicating a quicker response of this aggregate
to expansionary monetary policies10.

2.3 Econometric Methodology

Our analysis starts with a linear model of the form:

πxt = β0 + β
′
iXt−l + νt (2.8)

where πxt is the annual rate of inflation, the x superscript denotes the price index the
rate of inflation derives from; Xt−l is a vector of control variables, namely: lagged in-
flation πt; M4 growth (M4t); Divisia money growth (DMt); global liquidity growth
(GLbroadt /GLDivisiat ), or the rate of change (acceleration) of global liquidity growth; the
output gap (gapt) (or the rate of change in the output gap); and the money disequilib-
rium (diseqt)11. β

′
i denotes the coefficient associated to the respective control variable,

where the subscript (i = πt, M4t, DMt, GLt, gapt, diseqt), and νt is an error term12.

Specifications are then subject to a battery of diagnostics testing whether the model’s
parameters are time invariant (see Lin and Teräsvirta, 1994) or neglect any potential
non–linearity (using tests for fourth order ARCH effects and bootstrapped p–values
of the BDS (see Brock et al., 1996) independence test based upon varying correla-
tion dimensions). Upon rejection of parameter constancy in favour of parameters that
change smoothly throughout time, we consider non–linear models that allow for pos-
sible asymmetries relative to a given transition variable. More formally, inflation is
modelled as:

πxt = β0 +
(
β
′
i,1Xt−l

)
αδt−l +

(
β
′
i,2Xt−l

)
(1− αδt−l) + ηt (2.9)

where

αδt−l = 1−
[
1 + exp

{
−γ((δt−l − τ1)(δt−l − τ2))/σ2

δt−l

}]−1
(2.10)

10However, the rapid response of global Divisia might also rest on the fact that the proxy utilises only
the US Divisia aggregate for which we have data. This might be picking the sizeable QE policies of the
Fed. Indeed, in June 2014, the balance sheet of the Fed stood at $4.4 trillion, five times its pre–crisis size.

11The rate of change in the output gap eradicates any measurement error in the approximation and may
be regarded as more favourable than the raw output gap estimate (see e.g. Walsh, 2003); our models of
RPI inflation favoured the output gap’s first difference. For proxies of global liquidity, the acceleration
rate of global liquidity resulted in a preferable statistical fit for models using the CPI measure of inflation.

12Regressors do not explicitly share a common lag length. We include lagged values of all variables
up to lag 4; empirical specifications are given in Table 2.2. Model selection criteria were based on the
empirical models that yielded the best statistical fit in terms of the regression standard error and the
Akaike Information Criterion (AIC).
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Equation (2.9) states that inflation is modelled as a weighted average of two linear
models. Xt−l are the regressors from the linear specification in (2.8), δt−l is the transi-
tion variable and ηt is an error term. αδt−l, as defined in (2.10), is the quadratic logistic
transition function as discussed in Dijk, Teräsvirta, and Franses, 2002. According to
(2.9) and (2.10), inflation exhibits regime–switching behaviour depending on whether
δt−l is between or outside of two endogenously determined regime boundaries τ1, τ2

where τ1 < τ2; with regime weights given by αδt−l and (1−αδt−l), respectively. When δt−l
is between τ1 and τ2, αδt−l → 1 and the inflationary impact is given by β

′
i,1. When δt−l is

outside of the regime boundaries, αδt−l → 0 and inflation is given by β
′
i,2. The parameter

γ(γ > 0) determines how rapid the transition is from one regime to another and is made
scale–free by dividing (2.10) by the variance of δt−l13. This type of model allows us to
assess the impact of spare capacity, domestic and global money movements during a
“contained regime" and an “uncontained regime". Since the focus of this study is on
the link between UK inflation and liquidity conditions, we consider regime–switching
behaviour with respect to liquidity variables (that is, M4 money growth, Divisia money
growth, the money disequilibria constructions, and our proxies for global liquidity)14.

In general, our models might be thought of as augmented Phillips curve type equa-
tions. Our non–linear specifications allow for asymmetric adjustment of parameters
based upon observable variables. In considering liquidity proxies as the transition vari-
ables, our model implies that the policymaker can identify what is driving the dynamic
behaviour of inflation throughout time. Thus, in contrast to (say) Markov–Switching
models, which are based upon unobserved variables defining regimes, our model may
be used to make informed monetary policy decisions, conditional on states of domestic
liquidity.

13Notice in (2.10), as γ → ∞, the models become Threshold Autoregressive (TAR) type models as a
special case.

14We abstain from reporting results of these non–linear models simply because our models with do-
mestic liquidity transition variables (a) exhibit a better statistical fit in terms of parameter constancy and
(b) have important economic meaning for policy–makers. We omitted the output gap as a possible can-
didate as there is already evidence within the literature that inflation does not adjust asymmetrically to
movements in the output gap (see Clements and Sensier, 2003).



20 Chapter 2. Global Liquidity, Money Growth and UK Inflation

2.4 Empirical Evidence

2.4.1 Results

Our empirical specifications for different versions of the linear model in (2.8) are re-
ported in Table 2.2. We report four versions of the linear model, two models of RPI
inflation and two models of CPI inflation, using combinations of: M4 growth; Divisia
money growth; the output gap; global liquidity; and the money disequilibrium. In all
models reported, inflation is highly persistent (measured by the coefficient on lagged
inflation which acts as a proxy for forward–looking expectations; see e.g. Blanchard,
1990). Models of RPI inflation, reported in columns i) and ii), show that Divisia money
growth is statistically significant and has a more prominent inflationary impact than
M4 growth. Columns iii) and iv) show instead that M4 seems to exert a stronger and
more significant impact on CPI inflation than Divisia money growth.

The impact of the rate of change in the output gap is strong and highly significant for
models of RPI inflation. For CPI inflation, instead, the output gap is found to exert a
positive impact; however, this is statistically weak. In all models, money disequilib-
ria have a positive (inflationary) but nevertheless, statistically insignificant effect; we
return to this issue below as we find (for some non–linear models) cointegration ef-
fects when money growth drops outside a range of thresholds. Only for CPI inflation
model iv), global liquidity, proxied by the rate of change in US Divisia growth, exerts
a statistically significant impact.

All linear models show evidence of residual autocorrelation and heteroskedasticity
based on tests for AR and ARCH effects15. Bootstrapped p–values from the BDS tests
report no evidence of independence (with the exception of models iii) and iv))16. There
is also substantial evidence that parameters of each respective model vary throughout
time. The only exception is model ii) where test results imply parameters are time–
invariant17.

Having rejected parameter constancy, we proceed by estimating non–linear specifica-
tions of the inflation models discussed in Table 2.2. We report the tests for the ap-
propriate lag length of transition variable candidates (i.e. domestic money growth or
money disequilibria) and functional form of the logistic function in Section 2.6.1 Ap-
pendix A (see Dijk, Teräsvirta, and Franses, 2002) for details)18. For models of RPI

15All t–ratios reported in Table 2.2 and Table 2.3 below are based on Newey–West Heteroskedasticity
and Autocorrelation robust standard errors.

16These tests are implemented as an indication for any non–linearity neglected by the models (see e.g.
Clements and Sensier, 2003).

17Given this model rejects the null for AR, ARCH and BDS tests, we also proceed to test for regime–
switching behaviour.

18Lagged transition variable candidates of up to and including 6 lags were considered, see Section 2.6.1
Appendix A for further details.
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TABLE 2.2: Linear Estimates of UK Inflation

i) πrpit = β0 + βππ
rpi
t−1 + βM4M4t−1 + βgap∆gapt−1 + βGLGL

broad
t−4 + βdiseqdiseq

rpi,M4
t−3 + νt

ii) πrpit = β0 + βππ
rpi
t−1 + βDMDMt−1 + βgap∆gapt−1 + βGL∆GLDivisiat−1 + βdiseqdiseq

rpi,DM
t−3 + νt

iii) πcpit = β0 + βππ
cpi
t−1 + βM4M4t−1 + βgapgapt−1 + βGL∆GLbroadt−4 + βdiseqdiseq

cpi,M4
t−4 + νt

iv) πcpit = β0 + βππ
cpi
t−1 + βDMDMt−1 + βgapgapt−1 + βGL∆GLDivisiat−1 + βdiseqdiseq

cpi,DM
t−3 + νt

Sample: 1983Q4–2014Q1 1989Q2–2014Q1

Dependent: πrpit πcpit

i) ii) iii) iv)
β0 -0.01 (-0.06) -0.002 (-0.01) -0.12 (-0.87) -0.05 (-0.26)
βπ 0.87 (16.67) 0.88 (15.17) 0.91 (18.70) 0.94 (19.52)

βM4 0.03 (1.14) 0.05 (1.75)
βDM 0.06 (2.61) 0.03 (1.12)
βgap 0.45 (2.90) 0.31 (3.45) 0.04 (1.27) 0.04 (1.44)
βGL 0.04 (0.74) 0.08 (1.37) 0.09 (0.81) 0.09 (1.98)
βdiseq 0.02 (0.89) 0.05 (1.11) 0.03 (1.36) 0.02 (0.71)

R̄2 0.86 0.87 0.91 0.90
Regression S.E 0.71 0.69 0.52 0.52

AIC 2.20 2.13 1.58 1.59
PC F–test p–value 0.00 0.27 0.00 0.00

AR(4) p–value 0.00 0.00 0.01 0.00
ARCH(4) p–value 0.01 0.02 0.02 0.07

BDS [bootstrapped p–values]
Dimension

2 0.02 0.01 0.10 0.03
3 0.04 0.05 0.27 0.10
4 0.05 0.12 0.35 0.11
5 0.02 0.08 0.11 0.04
6 0.02 0.06 0.05 0.02

Notes: Estimates of linear models for UK RPI and CPI inflation from 1983Q4–2014Q1 and
1989Q2–2014Q1, respectively. t–ratios are given in parentheses (Newey–West Heteroskedastic-
ity standard errors). AIC stands for Akaike Information Criterion. PC is an F–test for parameter
constancy testing the statistical significance of the cross product of all regressors in the linear
model and a time trend, a quadratic trend and a cubic trend (Lin and Teräsvirta, 1994). AR(4) is
an F–test for fourth order serial correlation. ARCH(4) is an F–test for fourth order ARCH effects.
BDS (Brock et al., 1996) is a test for independence of the residuals from the linear model based
on correlation dimension 2–6; bootstrapped p–values are reported based on 10,000 repetitions.
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inflation and M4, and both models of CPI inflation, our reported specifications use do-
mestic money growth rates as the transition variable. For the model of RPI inflation
and Divisia money growth, we utilise the money disequilibrium term as the transition
variable19.

Furthermore, we report additional diagnostics to assess the adequacy of the estimated
non–linear models. First, we subject each of the non–linear models to an F–test with the
null, H0: No remaining non–linearity (based on the statistical significance of the cross
product of the regressors in the non–linear model and the respective transition variable;
see Dijk, Teräsvirta, and Franses, 2002)20. Second, we test the non–linear model against
a linear model via an F–test (H0 : β′i,1 = β

′
i,2 such that there is no difference in the

impact of regressors across regimes). Third, we report the ratio of standard deviation
of the estimated residuals from the non–linear model and the linear model, σ̂NL/σ̂L.
This assesses the fit of the non–linear model conditional on the AIC for the regime–
switching model being less than its linear counterpart.

19The non–linear models reported in Table 2.3 provided the most favourable statistical fit. For these
models, sequential tests do not favour potential transition candidates over one another.

20Assuming a common transition variable for regimes.
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Table 2.3 reports the non–linear estimates of the baseline specifications reported in Ta-
ble 2.2. Columns i)–ii) report the non–linear models of RPI inflation using M4 growth
and Divisia money growth, respectively and columns iii)–iv) report the non–linear
models of CPI inflation using M4 growth and Divisia money growth, respectively21.
First, consider specification i) in Table 2.3. This allows for regime–switching behaviour
of RPI inflation relative to M4 growth being within, or outside of, the band of thresholds
τ1, and τ222. The model indicates that when M4 growth is contained between 2.34% and
7.60%, inflation is driven by global liquidity effects (t–ratio=1.61). In the uncontained
regime, inflation is driven by M4 growth (t–ratio=2.37)23. Lagged inflation and the out-
put gap exert significant but, nevertheless, regime–independent effects. As indicated
in the second half of Table 2.3, diagnostics for specification i) reveal that the model is
only marginally favourable over its linear baseline. Although the model’s parameters
are time–invariant, the inability to reject no remaining non–linearity is negligible.

Consider next specification ii) in Table 2.3. Regime–switching dynamics depend on
whether the money disequilibrium is between (or outside of) -2.86% (t–ratio=-16.33)
and 2.40% (t–ratio=11.38). When domestic liquidity is contained, inflation is driven
by lagged inflation (regime–independent), Divisia money growth (t–ratio=1.19), global
Divisia (t–ratio=1.40), and the output gap (t–ratio=4.38) respectively. When the money
disequilibrium exceeds either boundary, the output gap effects diminish sharply (since
γ=11.25) and inflation is governed by domestic liquidity effects. Divisia money growth
in this uncontained regime is highly significant (t–ratio=3.07)24. Diagnostics imply that
parameters are constant and the non–linearity is adequately captured.

Next we turn our attention to models of CPI inflation. Specification iii) allows for
regime–switching behaviour depending on whether M4 growth is between (or sur-
passes) the statistically significant thresholds of 7.34% and 12.89% respectively. The
smoothing parameter is estimated at 23.94 (t–ratio=0.86), suggesting a sharp transition
from one regime to another. When M4 growth is contained, inflation is determined
by past inflation (again regime–independent), the output gap and global liquidity ef-
fects (both statistically significant). When M4 growth surpasses one of the thresholds,
domestic liquidity effects significantly dominate the inflationary process (βM4,2=0.08,
t–ratio=5.97, βdiseq,2=0.05, t–ratio=2.79). Diagnostics for this model imply no remaining

21We found statistical evidence across all models in Table 2.3, that inflation persistence was not regime
dependent based on an F–test under the null hypothesis H0 : β

′
π,1 = β

′
π,2.

22As in Dijk, Teräsvirta, and Franses, 2002 to examine whether we have sensible regimes we order the
values of the transition candidate then trim the highest and lowest 15% of values. So long as at least
30% of the trimmed values lie in one regime, we deem them sensible. For specification i), 45% of M4t−6
observations are within the contained regime. For specification ii), 55% of diseqrpi,DMt−2 observations are
in the contained regime. For specification iii), 43% ofM4t−6 observations lie within the contained regime
and for specification iv), 60% of DMt−2 are within the contained regime.

23The γ estimate in the models reported in Table 2.3 is shown to be insignificant. Dijk, Teräsvirta, and
Franses, 2002 discuss the difficulty in getting accurate estimates of γ. The likelihood function is very
insensitive to γ and therefore, precise estimation of this parameter is unlikely.

24We tested H0 : βDM,1 = βDM,2, p–value=0.02. This is the only model where asymmetric adjustment
of domestic money growth was found to be statistically significant.
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TABLE 2.3: Non–linear Estimates of UK Inflation

Sample: 1983Q4–2014Q1 1989Q2–2014Q1

Dependent: πrpit πcpit

i) ii) iii) iv)
β0 -0.20 (-0.84) 0.08 (0.33) -0.12 (-1.45) 0.08 (1.09)
βπ 0.88 (16.51) 0.87 (16.33) 0.87 (24.09) 0.89 (22.66)

βgap 0.34 (2.68) 0.06 (2.79)
Regime when τ1 < M4t−6 τ1 < diseqt−2 τ1 < M4t−6 τ1 < DMt−5

< τ2 < τ2 < τ2 < τ2
βDM,1 0.03 (1.19)
βgap,1 0.49 (4.38) 0.10 (2.20)
βGL,1 0.16 (1.61) 0.09 (1.40) 0.44 (2.60) 0.15 (3.31)

Regime when τ1 > M4t−6, τ1 > diseqt−2, τ1 > M4t−6, τ1 > DMt−5,
τ2 < M4t−6 τ2 < diseqt−2 τ2 < M4t−6 τ2 < DMt−5

βM4,2 0.07 (2.37) 0.08 (5.97)
βDM,2 0.09 (3.07) 0.07 (3.43)
βdiseq,2 0.07 (1.34) 0.05 (2.79) 0.03 (1.28)

γ 11.22 (0.78) 11.25 (0.86) 23.94 (0.86) 24.05 (0.64)
τ1 2.34 (4.15) -2.86 (-16.33) 7.34 (41.11) 4.05 (26.79)
τ2 7.60 (16.09) 2.40 (11.38) 12.89 (3.89) 8.93 (85.88)

R̄2 0.87 0.89 0.93 0.92
Regression S.E 0.69 0.65 0.43 0.49

AIC 2.14 2.04 1.26 1.48
PC F–test p–value 0.66 0.11 0.42 0.3

AR(4) p–value 0.00 0.00 0.16 0.02
ARCH(4) p–value 0.01 0.03 0.45 0.04

NRNL F–test p–value 0.06 0.37 0.28 0.21
LIN F–test p–value 0.24 0.00 0.01 0.01

σ̂NL/σ̂L 0.96 0.93 0.83 0.92

BDS [bootstrapped p–values]
Dimension

2 0.04 0.17 0.52 0.03
3 0.13 0.89 0.79 0.05
4 0.14 0.68 0.43 0.04
5 0.04 0.99 0.27 0.02
6 0.03 0.74 0.20 0.02

Notes: Estimates of non–linear models for UK inflation from 1983Q4–2014Q1 and 1989Q2–2014Q1,
respectively. t–ratios are given in parentheses (Newey–West standard errors). PC is an F–test for
parameter constancy testing the statistical significance of the cross product of all regressors in the
non–linear model and time trend, (Eitrheim and Teräsvirta, 1996). AR(4) is an F–test for fourth
order serial correlation. ARCH(4) is an F–test for fourth order ARCH effects. NRNL is an F–
test for testing no remaining non–linearity. This involves testing the statistical significance of the
cross product of the regressors in the non–linear model and the transition variable used (see Dijk,
Teräsvirta, and Franses, 2002). LIN is an F–test indicating whether the model may be simplified to
a linear model. σ̂NL/σ̂L is the ratio of estimated volatility within the residuals generated from the
non–linear model and the linear baseline. BDS (see Brock et al., 1996) is a test for independence of
the residuals from the linear model based on correlation dimension 2–6; bootstrapped p–values are
reported based on 10,000 repetitions.
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non–linearity (p–value=0.45), parameters are time-invariant (p–value=0.42) and cannot
be simplified to a linear model (p–value=0.01). Furthermore, this model is free from
autocorrelation as indicated by the AR(4) test (p–value=0.16)25.

In specification iv) Table 2.3, regime–switching dynamics are conditional on whether
annual Divisia growth is between (or drifts away from) the statistically significant
regime boundaries of 4.05% and 8.93%. When Divisia growth is contained between
4.05% and 8.93%, inflation is driven by lagged inflation, the output gap (both regime–
independent and statistically significant) and a strong inflationary impact stemming
from global liquidity (i.e. βGL,1=0.15) (which is regime–dependent and statistically sig-
nificant). When Divisia growth surpasses a regime boundary, there is a sharp switch
(γ=24.05) from global liquidity effects to domestic liquidity effects (more specifically,
βDM,2=0.07, t–ratio=3.43, βdiseq,2=0.03, t–ratio=1.28). Diagnostics for specification iv)
imply that the model has constant parameters, there is no remaining non–linearity and
the model cannot be simplified to a linear specification.

By comparing specification i) with specification ii), we notice that models of RPI infla-
tion with domestic Divisia outperform those with M4 money in terms of fit (AIC, R̄2,
regression standard error and σ̂NL/σ̂L). Furthermore specification ii) also outperforms
specification i) in terms of diagnostics (i.e. parameter constancy (PC), AR, ARCH, no
remaining non–linearity (NRNL), test against linear model (LIN), and BDS tests). How-
ever, by comparing specification iii) with specification iv), we notice that models of CPI
inflation with domestic M4 outperform those using domestic Divisia.

Notice the difference between M4 and Divisia regime boundaries for models of CPI
inflation; this arises due to less variability within the Divisia money series. Yet, the
contained regime across both models allows for 5.5% and 4.9% between regime bound-
aries26. Thus, it is unsurprising to observe quantitatively different thresholds; what our
thresholds seem to capture are ranges of “sensible" money growth. Theoretically, the
Divisia index should be less volatile than its simple–sum counterpart (in fact sample
volatilities confirm this: σM4=3.53 > σDM=2.52). In effect the weighting component
insulates the Divisia index from large surges in (illiquid) capital flows.

Following on from the above discussion, a number of conclusions can be drawn. Firstly,
from specification ii), when domestic liquidity conditions are contained within approx-
imately +/- 2.5% of the long run money equilibrium, RPI inflation is driven by the out-
put gap and domestic and global liquidity conditions (the inflationary impact of the
latter are statistically weak). Yet, when there is a divergence of persistently high (or
low) money disequilibrium, the output gap effects diminish. Within this uncontained
regime, domestic Divisia growth exerts a significantly strong inflationary impact (no-
tice, βDM,2 > βDM,1); as does the money disequilibrium.

25In fact this model is free from autocorrelation up to order 12.
26For specification i) in Table 2.3, there is 5.3% between regime boundaries.
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Secondly, from specification iii), when domestic M4 growth is between 7.34% and
12.89%, CPI inflation is driven by the output gap and global liquidity effects. However,
when money growth drifts away from “sensible" bounds, domestic liquidity factors
govern CPI inflation dynamics. In fact, the domestic liquidity effects are highly signif-
icant. More specifically, note the impact of the money disequilibrium on CPI inflation
(βdiseq,2=0.05, t–ratio=2.79); this implies that cointegration effects are “on" only when
“too much" or “too little" domestic M4 growth is observed.

In general, our non–linear models reveal that when domestic liquidity conditions are
contained within sensible boundaries, inflation is well defined by a Phillips curve aug-
mented by global liquidity effects. Our models reveal that global liquidity effects exert
a strong inflationary impact when domestic liquidity is contained. However, when
there is “too much" (or “too little") liquidity within the economy, there is a shift from
global liquidity to domestic liquidity factors. Overall our results suggest that monetary
movements (both domestic and global) matter for UK inflation over and above spare
capacity. Therefore our results advocate a “classical" explanation of inflation; but it is
regime–dependent. In particular, the monetary effects on UK inflation are conditional
on the state of domestic liquidity. Yet, our models imply that inflation expectations are
regime–independent, such that domestic liquidity conditions do not change agent’s ex-
pectations for future inflation. From a policy perspective, the Bank of England’s MPC
should closely monitor these thresholds in order to avoid any strong inflationary im-
pact on the UK economy.

To obtain a better idea of how domestic liquidity (M4 growth) and global liquidity
have affected UK CPI inflation throughout time, Figure 2.8 plots the implied regime–
switching impacts. Regime–switching effects for broad money global liquidity are
calculated as βGL,1αM4

t−6 + βGL,2(1 − αM4
t−6), with βGL,1=0.44, βGL,2=0. For M4 money

growth, the regime–switching impacts are calculated as βM4,1α
M4
t−6 + βM4,2(1 − αM4

t−6),
with βM4,1=0, βM4,2=0.08. The thresholds, τ1, τ2 are τ1=7.34%, τ2=12.89%, and the
smoothing parameter, γ is γ=23.94. Notice that between 2000 and early 2005 (largely
prior to the financial crisis), M4 growth fluctuated initially close to the lower regime
bound; in this case, inflation dynamics were dictated by global liquidity, domestic
money effects, and indeed output gap movements.

Since 2009, however, and despite QE injections, domestic M4 growth has remained
weak and below the lower regime boundary. In this case, the very (admittedly slow)
surge in M4 growth has impacted on inflation, whereas, global liquidity effects have
been negligible. Notice our M4 money disequilibrium from Figure 2.6 is fluctuating
slightly below zero (i.e. 2014Q1). Combining this with low M4 growth and persistent
inflation expectations, our model explains why a significant rise in inflation has been
avoided. Thus it should not come as a surprise that since 2012, CPI inflation recorded
an average of 1.62% (0.38 percentage points below the 2% target), and, in fact, moved
below the target throughout 2014. With current (in 2016Q1) M4 growth at 1.37% and
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CPI inflation at 0.30%, our model implies that there is no significant or immediate in-
flationary pressure for the UK economy. In fact our model correctly indicated that in-
flation would remain low throughout 2015 in conjunction with weak M4 growth rates.
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FIGURE 2.8: Regime–switching Impact of Global and Domestic
Money Growth using M4t−6 as Transition Variable from 1983 to 2014
Notes: This figure shows the regime–switching impact of broad money
global liquidity and M4 annual growth from 1989Q2–2014Q1 calcu-
lated as βGL,1αM4

t−6 + βGL,2(1 − αM4
t−6), with βGL,1=0.44, βGL,2=0, and

βM4,1α
M4
t−6 + βM4,2(1 − αM4

t−6), with βM4,1=0, βM4,2=0.08, τ1=7.34%,
τ2=12.89% and γ=23.94 respectively. These are based on the estimates
reported in Table 2.3 iii) for the non–linear model that includes the an-
nual growth rate of broad money global liquidity and the annual growth
rate of M4, using M4 growth as the transition variable. Shaded areas in-

dicate the periods of QE.

2.4.2 Robustness Analysis

In order to assess the adequacy of our preferred non–linear models, we report alterna-
tive specifications which allow for regime switching behaviour in terms of past infla-
tion. This provides a useful check that our non–linear specifications are not picking up
regimes of high and low inflation; particularly for RPI inflation. The functional form
of αδt−l for non–linear models using RPI inflation is as in (2.10). For models of CPI
inflation, tests favoured a logistic function of the form:

αδt−l = 1−
[
1 + exp

{
−γ(δt−l − τ1)/σδt−l

}]−1
(2.11)

According to (2.11) regime–switching behaviour depends on whether δt−l is below or
above τ1. Thus inflation is modelled as in (2.9) given by the regime weights αδt−l and
(1 − αδt−l), respectively. When δt−l < τ1, αδt−l → 1 and the inflationary impact is given
by β

′
i,1 (and vice versa when δt−l > τ1).

Table 2.4 reports the parameter estimates and diagnostics of our alternatively specified
non–linear models. Model i) in Table 2.4 is directly comparable with specification ii)
in Table 2.3. Model ii) in Table 2.4 is directly comparable with specification iii) in
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Table 2.3. By comparing specification ii) in Table 2.3 with model i) in Table 2.4, we
notice the alternative model in Table 2.4 seems to fit the data preferably relative to our
specification in Table 2.3. However, diagnostics reveal that model i) in Table 2.4 does
not capture the non–linearity sufficiently27. Therefore the model is misspecified and
the ability to make informed policy decisions is (arguably) questionable.

To assess whether our preferred model of RPI inflation is capturing high and low in-
flation regimes, Figures 2.9 and 2.10 plots the regime–switching impact of specification
ii) in Table 2.3 (see Figure 2.9) and model i) in Table 2.4 (see Figure 2.10). If the regime–
switching behaviour in liquidity (both domestic and global) from specification ii) in
Table 2.3 looked similar to model i) in Table 2.4, then our non–linear model would be
tracking regimes of high and low inflation. Figure 2.10 shows pronounced effects of Di-
visia money and effects from global Divisia during the late 1980s, then minimal effects
from global Divisia from around 1990 to 2006. Then from 2007 onwards, we observe
multiple regime changes as inflation surpasses its lower regime boundary before rising
above its upper boundary, in 2010, after the financial crisis.

If our model in Figure 2.9 was only capturing these regimes, we would expect the
regime–switching impacts to be similar for both models. It is clear that the implied
regimes from these models are quite different. More specifically, throughout the Great
Moderation, our model exhibits an abundance of regime–switching behaviour. There-
fore specification ii) in Table 2.3 is indeed capturing liquidity regimes as oppose to
inflation regimes.

Now considering the model ii) in Table 2.4, CPI inflation is given by an AR(1) process
until inflationary expectations surpass 2.61%, in which case, output gap, domestic and
global liquidity effects become the drivers of inflation. However, the test for parameter
constancy is marginally rejected at conventional levels, thus policy recommendations
cannot be made. Our preferred non–linear model (i.e. specification iii) in Table 2.3)
far outperforms model 2 in Table 2.4. The implication here is that it makes sense for
policymakers to track liquidity conditions as dictated by specification iii) in Table 2.328.

27In fact this result implies the presence of multiple regimes; it is beyond the scope of this chapter to
investigate this further.

28Finally, we allowed for the annual growth (current and lagged) in the price of oil (in domestic cur-
rency) to impact on our inflation models. Oil was found to exert a statistically negligible effect; at the same
time, all estimated linear and non–linear models could not reject the null hypothesis, H0 : of parameter
stability (results are available on request).
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FIGURE 2.9: Regime–switching Impact of Global and Domestic
Money Growth using diseqrpi,DMt−2 as Transition Variable from 1983 to

2014
Notes: This figure shows the regime–switching impact of broad money
global liquidity and M4 annual growth from 1983Q4–2014Q1 calculated
as βGL,1α

diseq
t−2 + βGL,2(1 − αdiseqt−2 ), with βGL,1=0.09, βGL,2=0 (imposed),

and βDM,1α
diseq
t−2 + βDM,2(1−αdiseqt−2 ), with βDM,1=0.03, βDM,2=0.09, τ1=-

2.86%, τ2=2.40% and γ=11.25 respectively. These are based on the es-
timates reported in Table 2.3 ii) for the non–linear model that includes
the annual growth rate of Divisia money global liquidity and the annual
growth rate of Divisia money, using the money disequilibrium as the

transition variable. Shaded areas indicate the periods of QE.
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FIGURE 2.10: Regime–Switching Impact of Global and Domestic
Money Growth using πrpit as Transition Variable from 1983 to 2014

Notes: This figure shows the regime–switching impact of broad money
global liquidity and M4 annual growth from 1983Q4–2014Q1 calculated
as βGL,1απt−2 +βGL,2(1−απt−2), with βGL,1=0 (imposed), βGL,2=0.21, and
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π
t−2 + βDM,2(1 − απt−2), with βDM,1=0.06, βDM,2=0.09, τ1=1.20%,

τ2=4.21% and γ=29.26 respectively. These are based on the estimates
reported in Table 2.4 i) for the non–linear model that includes the annual
growth rate of broad money global liquidity and the annual growth rate
of M4, using M4 growth as the transition variable. Shaded areas indicate

the periods of QE.
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TABLE 2.4: Robustness Analysis; Non–linear models using πt as the
Transition Variable

Sample: 1983Q4–2014Q1 1989Q2–2014Q1

Dependent: πrpit πcpit

i) ii)
β0 0.14 (0.15) 0.33 (3.22)
βπ 0.81 (15.19) 0.80 (12.16)

βgap 0.27 (2.99)
Regime when τ1 < πt−2 πt−6 < τ1

< τ2
βDM,1 0.06 (3.33)

Regime when τ1 > πt−2, πt−6 > τ2
τ2 < πt−2

βM4,2 0.05 (1.71)
βDM,2 0.09 (2.32)
βgap,2 0.22(3.43)
βGL 0.21 (5.03) 0.31 (2.95)

βdiseq,2 0.24 (4.68) 0.13 (4.07)
γ 29.26(1.28) 13.95 (2.10)
τ1 1.20 (21.25) 2.61 (24.22)
τ2 4.21 (93.65)

R̄2 0.91 0.92
Regression S.E 0.56 0.45

AIC 1.77 1.31
PC F–test p–value 0.34 0.05

AR(4) p–value 0.00 0.00
ARCH(4) p–value 0.68 0.00

NRNL F–test p–value 0.00 0.45
LIN F–test p–value 0.00 0.00

σ̂NL/σ̂L 0.80 0.87
Notes: Estimates of non–linear models for UK inflation from
1983Q4–2014Q1 and 1989Q2–2014Q1, respectively. These are alterna-
tive specifications to models ii and iii in Table 2.3. t–ratios are given in
parentheses (Newey–West standard errors). PC is an F–test for param-
eter constancy testing the statistical significance of the cross product of
all regressors in the non–linear model and time trend, (Eitrheim and
Teräsvirta, 1996). AR(4) and ARCH(4) are F–tests for fourth order serial
correlation and ARCH effects respectively. NRNL is an F–test for test-
ing no remaining non–linearity. This involves testing the statistical sig-
nificance of the cross product of the regressors in the non–linear model
and the transition variable (see Dijk, Teräsvirta, and Franses, 2002). LIN
is an F–test indicating whether the model may be simplified to a linear
model. σ̂NL/σ̂L is the ratio of estimated volatility within the residuals
generated from the non–linear model and the linear baseline.
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2.5 Conclusions

This chapter uses a classical approach to examine UK inflation and provides an empiri-
cal comparison of the effects of domestic and global liquidity effects through the lens of
money aggregates. We find statistically significant evidence that global liquidity yields
inflationary pressures in the UK over and above the impact of domestic liquidity and
the output gap. Domestic monetary effects are regime–switching and dominant when
domestic liquidity is uncontained. However, inflation expectations are independent
of liquidity conditions; this indicates that regimes of “too high" or “too low" money
growth do not alter expectations. Regime–switching dynamics dependent on monetary
conditions are shown to be robust to models utilising previous inflation expectations to
dictate asymmetric adjustment. Our empirical results suggest that M4 money growth
dominates Divisia money growth (from an econometric perspective) in modelling UK
CPI inflation.

From a policy perspective, the MPC should monitor domestic money growth as the
inflationary effects of both domestic money and global liquidity depend on money
growth boundaries. Our results show that UK CPI inflation dynamics are currently
governed by a monetary regime in which M4 growth is weak. In this very regime, the
impact of both the output gap and global liquidity is negligible. Therefore, with M4
growth remaining largely subdued at 1.37% (i.e. annual M4 growth rate for 2016Q1)
and CPI inflation fluctuating some 2 percentage points below the target, our findings
reveal no immediate risk of inflationary pressures. In fact, our model correctly implied
low rates of CPI inflation throughout 2015 in conjunction with weak M4 money growth.
The implication of our findings is that the BoE’s MPC are not under immediate pressure
to raise the policy interest rate. In fact, following the UK’s vote to leave the European
Union, there was speculation before the July 2016 inflation report that the Bank rate
would be cut to 0.25%.

Our work can be extended in a number of directions. First, although the focus of our
analysis has been what drives inflation in the UK, our model could also prove attractive
for a number of countries. Both global and domestic money considerations could be
employed in modelling inflation beyond the UK economy. One such candidate is the
Eurozone economy which, since early 2013, has experienced persistently low inflation.
Indeed, Eurozone inflation fell below 2% in February 2013 and since late 2014, has fluc-
tuated around 0%, at the same time when annual M3 growth, at 1.9% in 2014, remained
much lower than its 6% historical average. To understand what drives Eurozone’s low
inflation, it might be worth examining the impact of international liquidity as well as
domestic liquidity along the lines of the models discussed here. Second, it would be
interesting to examine the ability of the non–linear models employed here to forecast
inflation out–of–sample. These issues are left for future research.
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2.6 Appendix to Chapter 2

2.6.1 Appendix A: Additional Results

Here we report test results on the functional form of αδt−l and delay parameter l in
(2.10). There are various popular choices for the functional form of αδt−l; we consider
two. The first is a logistic function as in (2.11), the second is a quadratic logistic function
as in (2.10). It should be noted here that there exists another choice, the exponential
transition function. The exponential transition function assumes asymmetric adjust-
ment to small and large deviations from the threshold value. Furthermore a non–linear
model as in (2.9) collapses to a linear specification if the smoothing parameter in the
exponential transition function γ →∞ or γ → 0.

Once the linear models are specified, we can test against smooth transition type non–
linearity using a third order Taylor expansion:

πt = β
′
0wt + β

′
1w̃tδt−l + β

′
2w̃tδ

2
t−l + β

′
3w̃tδ

3
t−l + εt (2.12)

where εt viid N(0, σ2), wt are the regressors in the linear specification including the
constant, w̃t are the regressors in the linear model excluding the constant and δt−l is the
transition variable. The above specification is estimated for l different values and we
then testH0 : β′1 = β

′
2 = β

′
3 = 0. This is an LM–type test and is carried out for all values

of l considered. The test that yields the lowest p–value determines the delay parameter
of the transition function.

The functional form is found by sequentially testing (2.12) in the following manner:

H03 : β
′
3 = 0

H02 : β
′
2 = 0|β′3 = 0

H01 : β
′
1 = 0|β′3 = 0, β′2 = 0

the decision rule is to choose a quadratic logistic function as in (2.10) if H02 yields the
lowest p–value; otherwise choose the logistic function as in (2.11). We re–estimate the
linear specifications in Table 2.2 with the inclusion of the cross product of the regressors
and the transition candidate; the squared values of the transition candidate; and the
cubed values of the transition candidate, respectively. We assume that inflation adjusts
to domestic liquidity conditions (i.e. domestic money growth or the money disequilib-
rium). The linear specifications in Table 2.2 i), iii) and iv) use domestic money growth
(either M4 or Divisia) and ii) uses the money disequilibrium respectively.

Table 2.5 reports the p–values of the LM–type sequential tests; numbers highlighted in
bold are those that most strongly reject the null hypothesis, H0. For the sake of brevity,
we only report results using the variables discussed above as the transition candidate.
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TABLE 2.5: Tests Against Smooth Transition Non–linearity

i) πrpit = β0 + βππ
rpi
t−1 + βM4M4t−1 + βgap∆gapt−1 + βGLGL

broad
t−4 + βdiseqdiseq

rpi,M4
t−3 + νt

ii) πrpit = β0 + βππ
rpi
t−1 + βDMDMt−1 + βgap∆gapt−1 + βGL∆GLDivisiat−1 + βdiseqdiseq

rpi,DM
t−3 + νt

iii) πcpit = β0 + βππ
cpi
t−1 + βM4M4t−1 + βgapgapt−1 + βGL∆GLbroadt−4 + βdiseqdiseq

cpi,M4
t−4 + νt

iv) πcpit = β0 + βππ
cpi
t−1 + βDMDMt−1 + βgapgapt−1 + βGL∆GLDivisiat−1 + βdiseqdiseq

cpi,DM
t−3 + νt

Specification: i)
δt−l: M4t−l
l: 1 2 3 4 5 6

Null Hypothesis
H0 0.0002 0.0001 0.0025 0.005 0.0001 3.96E-06
H03 0.2104 0.2742 0.2287 0.367 0.2482 0.0249
H02 0.0073 0.0199 0.0894 0.0605 0.001 0.0001
H01 0.0014 0.0001 0.0019 0.0038 0.002 0.0085

Specification: ii)
δt−l: diseqrpi,DMt−l
l: 1 2 3 4 5 6

Null Hypothesis
H0 2.65E-07 7.62E-15 1.81E-05 1.94E-06 0.0005 2.29E-13
H03 0.5256 0.0235 0.0096 1.14E-05 0.2642 0.0849
H02 0.021 0.0018 0.4194 0.8679 0.0793 2.43E-08
H01 0.047 0.2698 0.1405 0.3847 0.3352 0.54

Specification: iii)
δt−l: M4t−l
l: 1 2 3 4 5 6

Null Hypothesis
H0 0.0122 0.0015 0.0004 0.0017 0.0001 0.0001
H03 0.3657 0.015 0.001 0.0107 0.0015 0.0885
H02 0.1699 0.6047 0.7833 0.2209 0.0536 0.0032
H01 0.0036 0.0019 0.0035 0.0141 0.0095 0.0054

Specification: iv)
δt−l: DMt−l
l : 1 2 3 4 5 6

Null Hypothesis
H0 1.28E-07 6.15E-07 1.68E-07 3.11E-15 1.57E-24 1.68E-11
H03 0.2911 0.3876 0.1719 0.2811 0.0093 0.8709
H02 0.4988 0.2448 0.0331 0.0005 0.0029 0.0207
H01 0.0003 0.0003 0.0097 0.0152 0.005 0.001

Notes: bold font numbers highlight the lowest p–values from sequentially testing
(2.12), H03, H02, H01. δt−l denotes the transition variable candidate.
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2.6.2 Appendix B: Data and Sources used to Construct Global Liquidity
Proxies

Table 2.6 reports the data definitions and sources used to construct our proxies of global
liquidity. In order to construct Euro area GDP pre–1995, we spliced the 11 country’s
aggregated GDP that joined the currency union in 1999 with the published Euro area
GDP series commencing from 1995Q1.

TABLE 2.6: Data Sources used to Construct Global Liquidity Proxies

Variable Definition Source

Global Divisia Money USA; Divisia M3 Centre for Financial Stability

Global broad Money USA; M2 US Federal Reserve
Japan; M2 OECD

Canada; M2+ OECD
Euro Area; M3 Eurostat

GDP USA OECD
Japan OECD

Canada OECD
Euro Area post 1995Q1 OECD
Euro Area pre–1995Q1:

Austria OECD
Belgium OECD
Finland OECD
France OECD

Germany OECD
Ireland OECD

Italy OECD
Luxembourg OECD
Netherlands OECD

Portugal OECD
Spain OECD

Consumer Prices USA OECD
(HICP Euro Area) UK OECD

Japan OECD
Canada OECD

Euro Area DataStream

Spot Exchange Rates USA Bank of England
Japan Bank of England

Canada Bank of England
Euro Bank of England



Chapter 3

Evolving Macroeconomic Dynamics:
A Time–varying Structural
Approach using the Correct Measure
of Money

3.1 Introduction

Despite the theoretical appeal of Divisia money aggregates originally derived in Bar-
nett, 1980, central banks still focus their attention on atheoretical simple–sum monetary
aggregates; more commonly known as broad money aggregates1. A growing literature
is emerging discouraging the use of simple–sum measures of money and suggest that
correctly measured monetary statistics provide better signals for financial crises (see
e.g. Barnett and Chauvet, 2011). Divisia indices resolve the innate flaws in broad mon-
etary aggregates that assume the component assets are perfect substitutes for one an-
other. Therefore Divisia indices weight component assets in accordance with their use-
fulness for transaction expenditure; the more liquid the component asset, the greater
the associated weight2.

In this chapter, we examine the evolution in macroeconomic dynamics, by estimating
time–varying parameter VAR models (TVP–VAR) with a stochastic volatility structure,
for the US and UK economies as in Benati and Mumtaz, 2007 and Benati, 2008 from 1979
to 2015 respectively. Our New Keynesian systems augment the former and replace the-
oretically flawed simple–sum monetary aggregates with theoretically founded Divisia
indices. Specifically, the questions we want to answer are: Can we predict macroeco-
nomic fundamentals such as real GDP growth and inflation with more precision using

1The derivations in Barnett, 1980 are based on superlative index number theory in Diewert, 1976. In
this chapter, we use the terms broad and simple–sum interchangeably.

2For a full theoretical breakdown of how Divisia indices are constructed see Barnett, 1980 and Barnett
and Chauvet, 2011.

35
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Divisia money growth in our systems of the US and UK economies? Are there differ-
ences in the transmission mechanism of monetary policy shocks over time, and how
do structural shocks affect macroeconomic volatility when using the correct measure
of money?

The key contribution of this study is to provide a comprehensive reduced–form and
structural analysis of VAR models for the US and UK using correctly measured mon-
etary aggregates in a time–varying framework. To the best of our knowledge, a study
using Divisia money growth in a multivariate time–varying framework does not exist.
The majority of VAR studies using Divisia indices assume parameters are constant (see
e.g. Schunk, 2001, Albuquerque, Baumann, and Seitz, 2015 and Belongia and Ireland,
2015); yet we provide ample evidence in support for a more flexible framework.

We summarise our results into four main findings: First, we link the persistence of
US and UK economic data to multivariate R2 forecastability, and show that there are
distinct differences in the overall predictability of macroeconomic fundamentals be-
tween 1990 and 2015 respectively. Moreover, in 2015 interest rates in the US and UK
are substantially more predictable than in 1990. Second, TVP–VAR models using Di-
visia money growth provide more accurate (pseudo) forecasts of real GDP growth at
1, 4 and 8–quarter horizons for both respective economies, when comparing them to
systems using simple–sum money growth. Adding to this, at 4 and 8–quarter horizons,
our models using Divisia money growth produce a range of posterior credible intervals
up to 10 percentage points lower than models using conventional broad money growth.
Third, we document an evolution in the transmission of monetary policy shocks and
note a significant change in the response of inflation, Treasury Bill rates and Divisia
money growth in both economies between the periods 2008Q2–2009Q2 and 2014Q2–
2015Q2 respectively; thus echoing the need to account for time–variation. Fourth,
structural variance decompositions reveal that monetary policy shocks are episodic in
their impacts on macroeconomic uncertainty and explain the majority of variation dur-
ing recessionary periods. During the Great Recession, monetary policy shocks explain
60% and 42% of GDP growth volatility in the US and UK, respectively. In the same
period, these shocks explain around 60% of inflation uncertainty in both respective
economies.

The structure of the remainder of this chapter is as follows: Section 3.2 provides an
overview of related literature. In Section 3.3, we discuss data, our modelling strategy
and structural identification. Our empirical results for reduced–form and structural
analysis is given in Section 3.4. Following on from this, we consider the robustness of
our main results in Section 3.5. Finally, Section 3.6 offers concluding comments.
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3.2 Related Literature

Our work relates to three main strands of literature. First, we extend on previous work
concentrating on changing macroeconomic dynamics (see e.g. Kim and Nelson, 1999,
Cogley and Sargent, 2005, Cogley, 2005, Bianchi, Mumtaz, and Surico, 2009 and Bar-
nett, Groen, and Mumtaz, 2010). We offer a time–varying Bayesian perspective on the
evolution of both reduced–form and structural analysis spanning the Great Recession
and the following recovery period; whereas the majority of literature focus on post–
WWII data. Our work directly extends that of Benati and Mumtaz, 2007 and Benati,
2008. In particular, the former focus on the Great Inflation and following Great Moder-
ation using US macroeconomic data and provides counterfactual evidence supporting
the view that the reduced macroeconomic volatility was down to good luck. The latter
offers a similar analysis, but for the UK; with the same conclusions holding.

It is not the purpose of this work to provide a counterfactual examination of US and UK
economic policies, particularly monetary policies, during the financial crisis. However,
an examination of (monetary) policy responses of the US and UK to the 2008 recession
may be found in Hamilton and Wu, 2012 and Kapetanios et al., 2012. Our aims are to
show that Divisia indices provide greater precision for forecasting purposes and more
plausible interpretations from structural analysis over macro–econometric models us-
ing simple–sum measures of money. We extend our structural investigation beyond
the realm of conventional impulse response analysis and provide time–varying struc-
tural variance decompositions of macroeconomic data in the frequency domain in the
spirit of Barnett, Groen, and Mumtaz, 2010. The purpose of this is to attribute the im-
pact of identified structural shocks on macroeconomic volatility implied by our TVP–
VAR models. This exercise provides an idea of how structural shocks propagate onto
macroeconomic uncertainty at high, medium and low frequencies, respectively.

Second, our results are in direct support of existing work on both forecasting and now-
casting using Divisia money. Schunk, 2001 assesses the relative forecasting perfor-
mance of Divisia indices against simple–sum measures from VAR models to forecast
US real GDP and prices. The above authors shows the most accurate forecasting model
is one including Divisia indices. Similarly, Albuquerque, Baumann, and Seitz, 2015
forecast US real GDP using different monetary and credit variables in both a single–
equation and VAR framework. The best forecasts of real GDP including the financial
crisis period are from recursive out–of–sample models including Divisia money ag-
gregates. For the UK, Florackis et al., 2014 show that real–time GDP forecasts from
a regime–switching model including Divisia money growth improve the forecasts of
those models used by the Bank of England. More recently, a growing trend is to look
at nowcasting variables using real–time data. Barnett, Chauvet, and Leiva-Leon, 2016
propose a multivariate nonlinear state space model that produces accurate nowcasts of
US nominal GDP when using Divisia indices. On the whole, the policy implications
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from the above studies are that Divisia indices increase the quality of the information
set for forecasting US and UK GDP. Our (in–sample) pseudo–forecasting exercises car-
ried out following Cogley, Primiceri, and Sargent, 2010 conform to this view.

Finally, our results are important for structural studies, both theoretical and empirical,
using Divisia indices. Keating et al., 2014 show, using a Dynamic Stochastic General
Equilibrium (DSGE) model, that an appropriately parametrised Divisia rule is observa-
tionally equivalent to a Taylor rule. Then, the authors estimate a structural VAR (SVAR)
model in the spirit of Keating, Kelly, and Valcarcel, 2014. Empirical analysis confirms
the theoretical results which have spurred a number of papers to include or replace
conventional policy rates (or Treasury Bill rates) with Divisia money as the monetary
policy variable (see e.g. Belongia and Ireland, 2015 and Belongia and Ireland, 2016).
Results from these studies are not conflicting, these papers confirm plausible monetary
policy rules based on monetary aggregates. We do not take a stance on this issue. Our
view would be to use both interest rates and money as the central bank’s monetary pol-
icy tools; especially in light of combining the US Federal Funds rate and UK Bank rate
being at their respective zero lower bounds, with the implementation of Quantitative
Easing (QE) policies. However, the problem here is how to properly identify a mone-
tary policy shock and an orthogonal shock that captures QE policies through the lens
of monetary aggregates. This is a thought provoking topic which we leave for future
research. Instead, we give a structural examination of a conventional New Keynesian
framework replacing broad money with Divisia money in a fully flexible, time–varying
framework. What our analysis provides is substantial evidence in favour of using cor-
rectly measured monetary statistics and distinct differences in how structural shocks
from these systems affect fluctuations, in macroeconomic variables over different fre-
quencies; a unique element of our study.
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3.3 Data and Modelling Strategy

3.3.1 Data

TABLE 3.1: Descriptive Statistics for Macroeconomic Data from 1979 to
2015

Panel A: USA yt πt it mt

Mean 2.60 2.92 4.79 4.72
Median 2.79 2.27 4.88 5.03

Std. Dev 2.06 1.97 3.66 2.84
Skew -0.68 1.94 0.57 -1.23
Kurt 1.60 3.35 -0.10 3.77

Panel B: UK yt πt it mt

Mean 2.18 4.17 6.68 7.60
Median 2.54 3.10 5.77 7.56

Std. Dev 2.20 3.54 4.36 3.56
Skew -1.38 2.06 0.26 0.21
Kurt 3.17 4.84 -0.79 -0.16

Notes: This table reports the descriptive statis-
tics for US and UK economic data in Panels A
and B from 1979Q1–2015Q2, respectively. yt is
annual real GDP growth; πt is the annual rate
of inflation; it is the 3–month Treasury Bill rate;
mt is annual Divisia M4 money growth. An-
nual growth rates are calculated as annual log-
arithmic differences.

We use US and UK quarterly data on real GDP growth, yt; the rate of GDP deflator
inflation, πt; the economy’s short–term interest rate which we proxy as the 3–month
Treasury Bill rate, it; and Divisia M4 money growth, mt from 1979Q1-2015Q2 (we use
the first 10 years of data to calibrate the initial conditions of the model, therefore the
model estimation samples cover 1989Q3–2015Q2 respectively). Variables are annual
growth rates, which we express as fourth order logarithmic differences, except for the
interest rate. All US data is from the Federal Reserve Bank of St Louis except for Divisia
M4 (including Treasuries) which is from the Centre for Financial Stability3. UK GDP

3Divisia M3, M4 excluding Treasuries and M4 including Treasuries are from http://www.
centerforfinancialstability.org/amfm.php which rely on methods proposed in Barnett, 1980.
A discussion of the underlying data and methodologies are in Barnett et al., 2013. Choice of Divisia in-
dex is dependent on the application at hand. We opt for the broadest measure following Keating et al.,
2014 because Divisia M4 contains a wide variety of component assets through which monetary policy
and money demand transmissions can feed into. Note that our analysis does not change when using the
alternative measures of Divisia made available by the Centre for Financial Stability–although results are
avaialble on request. We choose to report the results using Divisia M4 including Treasuries to keep US
analysis consistent with the UK.

http://www.centerforfinancialstability.org/amfm.php
http://www.centerforfinancialstability.org/amfm.php
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and the GDP deflator are from the Office for National Statistics database; the interest
rate and Divisia money are from the Bank of England’s statistical database4.

Table 3.1 reports the descriptive statistics of our variables. As we can see, on average,
(sample) real GDP growth is higher for the US than the UK. Yet average UK inflation is
1.25 percentage points greater than US inflation within our sample. This is due to rates
of UK inflation of around 20% in the early 1980s. On average, the UK Treasury Bill rate
is 1.89 percentage points greater (and more volatile) than the US Treasury Bill rate. Yet
they have similar estimates of skewness and kurtosis. Divisia M4 growth for the US, is
2.88 percentage points lower, on average, than in the UK. However, the volatilities of
Divisia M4 growth are similar.

Figures 3.1 and 3.2 plot US and UK economic data from 1979Q1–2015Q2 respectively;
grey bars indicate National Bureau of Economic Research (NBER) recession dates. We
add these to our plots of UK data (and where necessary to the following analysis) since
UK recession dates are similar to those in the US5. Clearly from Figures 3.1 and 3.2, we
can see that Divisia money growth tends to decline during recessions. Note also that
from 2010, Divisia money growth surges for both economies; possibly capturing the
implementation of unconventional monetary policies in the US and UK from late 2008
and early 2009, respectively6.

4We use the Bank of England’s preferred Divisia index which includes private non–financial corpo-
rations and household sector (code: LPQB6F3). The previous Divisia aggregate (code: LPQVTSP) was
discontinued in December 2013.

5Sample UK recession dates are: 1980Q1–1981Q3; 1990Q3–1991Q3; and 2008Q2–2009Q2, respectively.
6It is beyond the scope of this chapter to assess the impact of QE policies. A detailed discussion on the

implications of QE can be found in Joyce et al., 2012. An interesting future avenue of research would be
to examine the real effects of QE using Divisia money aggregates.



Chapter 3. Evolving Macroeconomic Dynamics: A Time–varying Structural Approach
using the Correct Measure of Money 41

1980 1990 2000 2010−5

0

5

yt

1980 1990 2000 20100

2

4

6

8

10
πt

1980 1990 2000 20100

5

10

15
it

1980 1990 2000 2010

−5

0

5

10

mt

FIGURE 3.1: US Macroeconomic data from 1979 to 2015
Notes: This figure plots annual growth rates of US macroeconomic data
from 1979Q1–2015Q2 respectively. We express all variables as annual
(%) growth rates as fourth order logarithmic differences; except for the
interest rate. The top left panel shows Real GDP growth, yt; the top
right panel is the annual rate of GDP deflator inflation, πt; the bottom
left panel is the the US 3–month Treasury Bill rate, it, and the bottom
right panel is annual Divisia money growth, mt, respectively. Grey bars

indicate NBER recession dates.
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FIGURE 3.2: UK Macroeconomic data from 1979 to 2015
Notes: This figure plots annual growth rates of UK macroeconomic data
from 1979Q1–2015Q2 respectively. We express all variables as annual
(%) growth rates as fourth order logarithmic differences; except for the
interest rate. The top left panel shows Real GDP growth, yt; the top right
panel is the annual rate of GDP deflator inflation, πt; the bottom left
panel is the UK 3–month Treasury Bill rate, it, and the bottom right panel
is annual Divisia money growth, mt, respectively. Grey bars indicate

NBER recession dates.
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3.3.2 A Time–varying Parameter VAR with Stochastic Volatility

We work with the following TVP–VAR model with p lags and M variables:

Yt = β0,t + β1,tYt−1 + · · ·+ βp,tYt−p + εt ≡ X
′
tθt + εt (3.1)

where Yt is defined as Yt ≡ [yt, πt, it, mt]
′
, with yt being annual real GDP growth, πt

is the annual rate of GDP deflator inflation, it is the short term interest rate (i.e. the 3–
month Treasury Bill rate), and mt is the annual growth of the Divisia money aggregate,
respectively. X

′
t contains lagged values of Yt and a constant. In our case,M = 4, and we

set a lag length p = 2 which is consistent with Primiceri, 2005, Benati and Mumtaz, 2007
and Benati, 2008. As in Cogley and Sargent, 2005, the VAR’s time–varying parameters
are collected in θt and evolve as

p(θt|θt−1, Q) = I(θt)f(θt|θt−1, Q) (3.2)

where I(θt) is an indicator function that rejects unstable draws. Therefore we impose a
stationarity constraint on the VAR where f(θt|θt−1, Q) follows a random walk

θt = θt−1 + νt (3.3)

where νt v N(0, Q). The innovations in (3.1) follow εt v N(0,Ωt). Ωt is the time–
varying covariance matrix which we factor as

V ar(εt) ≡ Ωt = A−1
t Ht(A−1

t )′ (3.4)

The structure of the time–varying matrices, At, Ht are:

Ht ≡


h1,t 0 0 0
0 h2,t 0 0
0 0 h3,t 0
0 0 0 h4,t

 At ≡


1 0 0 0

α21,t 1 0 0
α31,t α32,t 1 0
α41,t α42,t α43,t 1

 (3.5)

hi,t evolves as a geometric random walk and αt ≡ [α21,t, α31,t, . . . , α43,t]′ follows a
random walk, respectively

ln hi,t = ln hi,t−1 + ηt (3.6)

αt = αt−1 + ζt (3.7)
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The innovations in the model are jointly Normal
ut

νt

ζt

ηt

 v N(0, V ), V =


IM 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 (3.8)

where ut is such that, εt ≡ A−1
t H

1
2
t ut. The matrices Q, S, W are all positive definite and

we follow Primiceri, 2005 by imposing S is a block diagonal matrix:

S ≡ V ar(ζt) =


S1 01×2 01×3

02×1 S2 02×3

03×1 02×3 S3

 (3.9)

where S1 ≡ V ar(ζ21,t), S2 ≡ V ar([ζ31,t, ζ32,t]
′) and S3 ≡ V ar([ζ41,t, ζ42,t, ζ43,t]

′). This
implies that the non–zero and non–unit elements of At that belong to different rows
evolve independently. This is a simplifying assumption that allows us to estimate (the
non–zero and non–unit elements of)At equation by equation. We estimate the model in
(3.1)–(3.9) via Bayesian methods using 100,000 iterations of the Gibbs sampler using the
first 99,000 as burn–in, and save the remaining 1,000 iterations. Appendix A in Section
3.7.1 provides detail for our choices of priors and sketches the Markov–Chain Monte
Carlo (MCMC) algorithm to simulate the posterior distribution of hyperparameters
and states, conditional on the data. Appendix B in Section 3.7.2 assesses the conver-
gence properties of the MCMC algorithms of our estimated systems using US and UK
data.

3.3.3 Structural Identification and Computing Impulse Response Functions

We augment a standard New Keynesian framework of real GDP growth, yt; the rate of
GDP deflator inflation, πt and the interest rate, it with the inclusion of the economy’s
Divisia money aggregate, mt. We characterise the structural shocks as in Benati and
Mumtaz, 2007 and Benati, 2008, ut = [uSt , uDt , uMP

t , uMD
t ]′ as: supply shocks, demand

non–policy shocks, monetary policy shocks and money demand shocks, respectively.
To identify, we impose sign restrictions (on a period–by–period basis) for the contem-
poraneous impacts of structural shocks on the four endogenous variables. Table 3.2
summarises the contemporaneous impacts on the variable subject to a positive struc-
tural shock.

To compute impulse response functions, we implement the algorithm in Rubio-Ramirez,
Waggoner, and Zha, 2010. Let Ωt = PtDtP

′
t be the eigenvalue–eigenvector decomposi-

tion of the VAR model’s time–varying covariance matrix, Ωt and let Ã0,t = PtD
1
2
t . We
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TABLE 3.2: Sign Restrictions Imposed on Contemporaneous Relation-
ships of Variables

Shock: uSt uDt uMP
t uMD

t

Variable
yt ≥ ≥ ≤ ≤
πt ≤ ≥ ≤ ≤
it x ≥ ≥ ≥
mt x ≥ ≤ ≥

x denotes no constraint on the vari-
able.

then draw anM×M matrixK from theN(0, 1) distribution and take theQR decompo-
sition of K (i.e. K = Q · R). We then compute the contemporaneous structural impact
matrix, Ā0,t = Ã0,t · Q′. If the draw satisfies our restrictions we keep it, otherwise we
discard until the restrictions are satisfied.

3.4 Results

3.4.1 Reduced–Form Evidence

The Evolution of Ωt

Figures 3.3 and 3.4 provide simple illustrations of the Great Moderation followed by
the impact of the financial crisis. Specifically, we plot the time–varying median and
one standard deviation bounds of the distribution of the logarithmic determinant of
the reduced–form VAR covariance matrix, ln |Ωt| from our models of US and UK data
respectively7. Following Cogley and Sargent, 2005 we interpret this as the amount
of ‘noise hitting the system’ at each observation of our sample8. In general, we can
see that prediction variation fluctuates largely throughout time. It is evident that the
prediction variance increases during recessions. There are substantial surges from both
VAR models at the time the dot–com bubble bursts in 2001, and even more drastic
increases during the 2008 recession. Then, following the Great Recession, prediction
variation declines sharply in both economies to sample minimum in 2015Q2.

In the US and UK, we can see that the prediction variance starts to increase before
the 2008 recession, from 2006. There are two possible interpretations for these results.
First, our estimates of each respective TVP–VAR model from the Gibbs sampler are

7The one standard deviation bounds are the 16th and 84th percentiles under normality. This covers
68% of the object’s distribution under examination.

8However, this interpretation can be somewhat misleading. Supposing two shocks hit the system that
are linearly dependent, then the log determinant of the variance–covariance matrix will be very small.
However, the system may still be very difficult to predict. As in Benati and Mumtaz, 2007 it is not clear
how to solve this problem effectively.
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two–sided. Therefore, during times of structural breaks, the algorithm ‘mixes’ past and
future states. Second, our models are indirectly, but exactly capturing the underlying
turbulences in the financial sector that unwind both respective economies in 2008.
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FIGURE 3.3: Logarithmic Determinant of the Reduced–Form VAR Co-
variance Matrix, ln |Ωt| using US Data from 1989 to 2015

Notes: This figure shows the median and 1 standard deviation per-
centiles of the time-varying logarithmic determinant of the estimated
reduced–form VAR covariance matrix using US data from 1989Q3–

2015Q2 respectively. Grey bars indicate NBER recession dates.
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FIGURE 3.4: Logarithmic Determinant of the Reduced–Form VAR Co-
variance Matrix, ln |Ωt| using UK Data from 1989 to 2015

Notes: This figure shows the median and 1 standard deviation per-
centiles of the time-varying logarithmic determinant of the estimated
reduced–form VAR covariance matrix using UK data from 1989Q3–

2015Q2 respectively. Grey bars indicate NBER recession dates.
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The Persistence and Dynamic Predictability of Macroeconomic Fundamentals in the
US and UK

Following Cogley and Sargent, 2005, Benati and Mumtaz, 2007 and Baumeister and
Peersman, 2013, we approximate the persistence of our macroeconomic variables in
the frequency domain calculating each time series’ respective spectral densities

fx,t|T (ω) = sx(I4 − β̃t|T e−iω)−1 Ωt|T
2π

[
(I4 − β̃t|T e−iω)−1

]′
s′x (3.10)

where sx is a row vector selecting variable x = {yt, πt, it, mt}, β̃t|T are the time–
varying coefficient matrices, Ωt|T are the time–varying reduced–form VAR covariance
matrices and ω ∈ [0 π] denotes the frequency window, respectively9. We approximate
the time–varying persistence of each series, x = {yt, πt, it, mt}, by normalising the
spectrum for every observation of our sample at ω = 0.

Figures 3.5 and 3.6 plot the median together with the 16th and 84th percentiles of the
distribution for the persistence of our macroeconomic variables for the US and UK
respectively. We can see from Figure 3.5 how the persistence of US macroeconomic
fundamentals evolves over our sample. The persistence of US real GDP growth fluctu-
ates smoothly becoming slightly more persistent in 2015 relative to 1990. Interestingly,
the persistence of the interest rate increases substantially throughout time; particularly
following the 2008 recession. More specifically, in the latter years of our sample the per-
sistence of the US short–term interest rate doubles from 0.2 in 2008Q2 to 0.4 in 2015Q2
(from posterior median estimates). Contrastingly, note that the spikes in the persistence
of GDP deflator inflation and Divisia money growth correspond particularly well with
the start of NBER recession dates10. In general, the persistence of inflation and Divisia
money growth fluctuate around 0.35 and 0.15 respectively (from posterior median es-
timates).

Turning to Figure 3.6, it is clear there are differences in the persistence of UK macroe-
conomic fundamentals. The persistence of UK real GDP growth is declining until
2005Q2, then surges during the 2008 recession before reverting back to a constant level
of around 0.18 from 2009Q4 until the end of our sample. However, in general, the per-
sistence of inflation and Divisia money growth are slightly declining throughout time.
Note also that inflation and Divisia money persistence both surge in the most recent
recession and revert sharply back to levels consistent with those before the financial

9A series overall variance is given by the integral of the spectral densities over the frequency window,
ω.

σ2
x,t|T =

∫
ω

fx,t|T (ω)dω

10Our estimate of US inflation persistence is similar in shape from 1990–2005 to that of Benati and
Mumtaz, 2007.
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crisis. Contrarily, interest rate persistence is increasing smoothly throughout our sam-
ple. From posterior median estimates, persistence in the interest rate increases from 0.2
in 1989 to 0.45 in 2015.

It is well known that the persistence of a stochastic process relates positively to its
R2 forecastability (see e.g. Barsky, 1987 and Granger and Newbold, 2014). Therefore,
we should expect US real GDP growth, inflation and Divisia money growth to remain
relatively constant (with slight fluctuations), and the interest rate to become more pre-
dictable throughout time. To contrast, the trends in persistence of UK macroeconomic
variables automatically imply the predictability of: UK real GDP growth should de-
crease until 2005Q2 and then start to increase; inflation and Divisia money should ex-
hibit gradual decreases, and the interest rate should substantially increase; we show in
Table 3.3 that this has indeed been the case.

Table 3.3 reports the median and one standard deviation percentiles of the (1–quarter
ahead) multivariate time–varying R2 statistics for our US (Panel A) and UK (Panel B)
macroeconomic variables at five–year intervals from 1990Q2–2015Q2 respectively. We
calculate our R2 statistics following Cogley, Primiceri, and Sargent, 2010, who pos-
tulate that these pseudo–forecasts capture developments in the persistence of a time
series process. Furthermore, this measure provides information with regards to the
contribution of past shocks to current and future variation of the variable of interest
(Diebold and Kilian, 2001)11.

Perhaps unsurprisingly, the posterior median of the multivariateR2 statistics in 2015Q2
of the 3–month Treasury Bill rates in both the US and UK are 0.99 and 0.98 respectively.
These results are consistent with Benati and Mumtaz, 2007 and Benati, 2008 showing
the interest rates are exhibiting close to unit root behaviour. On the other hand, in-
terest rates plummet in the US and UK at the end of 2008 and the beginning of 2009
respectively. Given that, at the time of writing, interest rates in the US and UK are at
historical lows (and have been for over 6 years), it is intuitive to observe an increase in
predictability of short–term interest rates throughout our sample.

For the US, the pseudo–forecasts for real GDP growth, inflation and Divisia money
growth remain relatively constant throughout our sample. However, the predictability
of UK real GDP growth and inflation is diminishing throughout time with a decline in
the R2 forecastability of 0.13 and 0.19 percentage points respectively. Further, pseudo–
forecasts of UK Divisia money growth are relatively constant from 1995Q2–2015Q2
with posterior median estimates fluctuating around 0.67 respectively.

11We deem these statistics as pseudo–forecasts because we omit complications associated with real–
time forecasting. However, our objective is to obtain precise estimates, therefore this is not a short–cut;
thus, we opt for an ex–post exercise using final–time data and estimate our models using data through
the full–sample.
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FIGURE 3.5: Persistence of Macroeconomic Variables using US Data
from 1989 to 2015

Notes: This figure shows the median and 1 standard deviation per-
centiles of the spectrum at ω = 0 of: real GDP growth, yt; the rate of
GDP deflator inflation, πt; the 3–month Treasury Bill rate, it and Di-
visia money growth, mt using US data from 1989Q3–2015Q2 respec-

tively. Grey bars indicate NBER recession dates.
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FIGURE 3.6: Persistence of Macroeconomic Variables using UK Data
from 1989 to 2015

Notes: This figure shows the median and 1 standard deviation per-
centiles of the spectrum at ω = 0 of: real GDP growth, yt; the rate of
GDP deflator inflation, πt; the 3–month Treasury Bill rate, it and Divisia
money growth, mt using UK data from 1989Q3–2015Q2 respectively.

Grey bars indicate NBER recession dates.
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TABLE 3.3: Time–varying Multivariate R2 Statistics for US and UK
Macroeconomic Variables

Panel A: USA yt πt it mt

1990Q2 0.64 [0.55 0.75] 0.90 [0.84 0.95] 0.90 [0.80 0.96] 0.76 [0.64 0.86]
1995Q2 0.62 [0.53 0.71] 0.88 [0.82 0.94] 0.92 [0.83 0.97] 0.82 [0.74 0.90]
2000Q2 0.65 [0.56 0.76] 0.89 [0.83 0.95] 0.85 [0.76 0.93] 0.81 [0.73 0.89]
2005Q2 0.65 [0.56 0.74] 0.87 [0.80 0.92] 0.97 [0.94 0.99] 0.73 [0.62 0.82]
2010Q2 0.68 [0.59 0.79] 0.89 [0.81 0.95] 0.98 [0.96 0.99] 0.62 [0.54 0.71]
2015Q2 0.65 [0.55 0.75] 0.85 [0.78 0.92] 0.99 [0.98 0.998] 0.79 [0.67 0.90]

Panel B: UK yt πt it mt

1990Q2 0.85 [0.75 0.93] 0.79 [0.68 0.89] 0.78 [0.66 0.90] 0.76 [0.62 0.88]
1995Q2 0.68 [0.58 0.78] 0.65 [0.54 0.78] 0.85 [0.76 0.93] 0.69 [0.58 0.80]
2000Q2 0.66 [0.57 0.76] 0.64 [0.52 0.77] 0.90 [0.80 0.96] 0.67 [0.56 0.78]
2005Q2 0.65 [0.56 0.74] 0.59 [0.48 0.73] 0.92 [0.83 0.97] 0.66 [0.55 0.78]
2010Q2 0.71 [0.62 0.79] 0.60 [0.47 0.74] 0.94 [0.87 0.98] 0.69 [0.57 0.80]
2015Q2 0.72 [0.61 0.81] 0.60 [0.46 0.76] 0.98 [0.95 0.996] 0.67 [0.54 0.80]

Notes: This table reports the median and one standard deviation percentiles in square paren-
theses of the distribution of the 1–quarter ahead time–varying multivariate R2 statistics for
US and UK Macroeconomic Fundamentals: annual real GDP growth, yt; annual GDP defla-
tor inflation, πt; The 3–month Treasury Bill rate, it and annual Divisia money growth, mt

respectively. We report estimates at 5 year intervals spanning our estimation sample.

We follow Cogley, Primiceri, and Sargent, 2010, and determine the significance of a
change in the R2 forecastability of US and UK macroeconomic variables by plotting, in
Figures 3.7 and 3.8, the joint distribution of draws of the multivariate R2 statistics in
1990Q2 (x-axis), against those in 2015Q2 (y-axis) respectively.

In Figure 3.7 it is clear that the distribution of R2 statistics for US real GDP growth
clusters heavily around the 45◦ line thereby indicating little difference in the (pseudo)
forecastability of US GDP growth in 1990 and 2015. Similarly, the extent to which there
is a significant difference in the forecastability of US Divisia money growth is negligi-
ble; although around 65% of the distribution lies above the 45◦ line. However for US
GDP deflator inflation, around 80% of the distribution of R2 statistics lie below the 45◦

line. This suggests inflation is more predictable in the earlier years of our sample which
is consistent with results in Cogley, Primiceri, and Sargent, 2010 and Stock and Watson,
200712. Clearly and unsurprisingly, the 3–month Treasury Bill rate is more predictable
in 2015Q2 with the majority of the distribution congregating above (and away from)
the 45◦ line.

12That said, our sample begins only in 1989, whereas both of the former use notably longer time series
samples (i.e. 1948Q1–2004Q4 and 1960Q1–2004Q4 respectively). However, the former use quarterly rates
and annualised quarterly rates of US inflation respectively. In our case, we use the annual rate, which may
influence the relatively high estimates of our multivariate R2 statistics. Although we use a shorter time
series sample, we incorporate the Great Recession and a substantial period following the financial crisis.
It is beyond the scope of this chapter to assess in detail the long–run time–series properties of inflation
(or the changing dynamics of inflation during and after the recent financial crisis) as documentation on
this topic, particularly of postwar US inflation, is heavy (see e.g. Stock and Watson, 2007 and references
therein).
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For the UK economy, there are a number of differences. First, the distribution of R2

statistics for real GDP growth show clear evidence of a greater level of predictability
in 1990Q2 relative to 2015Q2. Second, the distribution of multivariate R2 statistics for
UK GDP deflator inflation has a wider dispersion than the US (see top right panel of
Figure 3.8), yet has a greater R2 in 1990Q2 relative to 2015Q2; with around 80% of
the draws lying below the 45◦ line. However, the distribution of R2 statistics for UK
Divisia money growth reveal no discernible differences in the overall forecastability in
1990Q2 and 2015Q2. Finally, it is clear that the UK 3–month Treasury Bill rate has a
multivariate R2 significantly greater in 2015Q2 than 1990Q2 indicating improvements
in pseudo–forecasts.

In general, what can be taken from our reduced–form evidence is that the amount of
‘noise hitting the system’ varies significantly throughout time for both the US and UK
respectively. In particular, sample minimums of ln |Ωt| are in 2015Q2; thereby indicat-
ing (possibly) fewer (or smaller) shocks hitting the system thus reducing overall predic-
tion variation. A contributing factor may lie with the historically low levels of interest
rates in the US and UK from late 2008 and early 2009 to the end of our sample. Adding
to this, we provide evidence of linkages between the persistence and predictability of
US and UK macroeconomic fundamentals, which is consistent with Cogley and Sar-
gent, 2005, Benati and Mumtaz, 2007 and Cogley, Primiceri, and Sargent, 2010. Specif-
ically, we document a significant increase in the forecastability (from 1990Q2 relative
to 2015Q2) of both US and UK 3–month Treasury Bill rates which is in contrast to the
interpretations in Benati and Mumtaz, 2007 and Benati, 2008 since we are taking into
account the entire joint distribution of the R2 statistics13.

13Indeed, plotting the time–varying R2 statistics for the short–term interest rates (along with other
macroeconomic fundamentals) in the US and UK respectively and simply looking at these plots infers
little change in the predictability of the 3–month Treasury Bill rates. For the sake of brevity, we do not
report these plots, but they are available on request.
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FIGURE 3.7: Joint Distributions of Multivariate R2 Statistics for US
Macroeconomic Variables 1990Q2, 2015Q2

Notes: This figure plots the joint distributions of the 1–quarter ahead
multivariate R2 statistics of US real GDP growth, yt; GDP deflator in-
flation, πt; the 3–month Treasury Bill rate, it and annual Divisia money
growth, mt for 1990Q2 (x-axis) and 2015Q2 (y-axis) respectively. In ad-

dition to the scatter plots, we include a 45◦ line.
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FIGURE 3.8: Joint Distributions of Multivariate R2 Statistics for UK
Macroeconomic Variables 1990Q2, 2015Q2

Notes: This figure plots the joint distributions of the 1–quarter ahead
multivariate R2 statistics of UK real GDP growth, yt; GDP deflator in-
flation, πt; the 3–month Treasury Bill rate, it and annual Divisia money
growth, mt for 1990Q2 (x-axis) and 2015Q2 (y-axis) respectively. In ad-

dition to the scatter plots, we include a 45◦ line.
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3.4.2 Structural Evidence

The Transmission of Monetary Policy Shocks

To assess the dynamic transmission of monetary policy shocks in the US and UK, we
plot in Figures 3.9 and 3.10 the posterior median of the distribution of the impulse
response functions for our macroeconomic data at each observation in our sample,
1989Q3–2015Q2 respectively. As we can see from the top left panels of Figures 3.9 and
3.10, the sensitivity of real GDP growth in both economies varies considerably through-
out time. In particular notice that the contractionary impact of monetary policy shocks,
in both the US and UK, is greatest during the financial crisis period. Interestingly, the
median response of GDP growth in both economies becomes positive around 6 quar-
ters following the shock during the recession; albeit marginal for the UK.

Similarly, the response of inflation (see the top right panels of Figure 3.9 and 3.10) varies
remarkably over our sample. Again, the contraction in inflation is greatest during the
2008 recession for both the US and UK. The profile of the median response of both
economy’s respective 3–month Treasury Bill rates reveal that peaks are predominantly
in conjunction with NBER recession dates (see bottom left panels of Figure 3.9 and
3.10). Furthermore, Divisia money growth declines following a monetary policy shock
in both the US and UK (see the bottom right panels of Figure 3.9 and 3.10). In the US,
the economic impact of monetary policy shocks on Divisia money growth is greater
during times of recession. In the UK, there is less variation in the median impulse
response functions relative to the US. However, the impact of a monetary policy shock
in the most recent recession is clearly distinguishable14.

14Interestingly, the response of UK real GDP growth with respect to a monetary policy shock in 2015Q2
(Figure 3.10) far outweighs the decline in US real GDP growth with respect to a monetary policy shock
in 2015Q2 (Figure 3.9). Arguably, there appears to be less pressure on the Bank of England’s Monetary
Policy Committee (MPC) than on the Federal Open Market Committee (FOMC) to raise the Bank rate at
this time. We note that the FOMC raised the target range for the Federal Funds rates by 25 basis points to
0.5% in December 2015 see https://www.federalreserve.gov/newsevents/press/monetary/
20151216a.htm.

https://www.federalreserve.gov/newsevents/press/monetary/20151216a.htm
https://www.federalreserve.gov/newsevents/press/monetary/20151216a.htm
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FIGURE 3.9: Impact of Monetary Policy Shocks for the US Economy
from 1989 to 2015

Notes: This figure plots the median impulse response functions of: real
GDP growth; inflation; the interest rate and Divisia money growth to a
monetary policy shock. We plot the response along a 20–quarter horizon

for each observation of our sample 1989Q3-2015Q2.

In order to assess the extent of the time–variation in the response of monetary policy
shocks, we follow Barnett, Groen, and Mumtaz, 2010 and plot the joint distribution of
the average one year accumulated response of US and UK macroeconomic data over
the most recent recession (i.e. 2008Q2–2009Q2) (x-axis), and the final year in our sample
(i.e. 2014Q2–2015Q2) (y-axis), in Figures 3.11 and 3.12 respectively. We choose these
time–periods in order to assess the relative economic significance of monetary policy
shocks during crisis and non–crisis periods over a one–year horizon15.

Figure 3.11 reveals that, on average, there is no clear difference in the cumulated re-
sponse of US real GDP growth during 2008–2009 and 2014–2015 respectively with the
distribution being evenly spread across the 45◦ line. Having said this, the joint distri-
butions of average cumulated impulse response functions of inflation, the interest rate
and Divisia money all reveal substantial differences over the most recent recession and
subsequent recovery. The impact of monetary policy shocks on inflation and Divisia
money growth are more contractionary during the Great Recession relative to the final
year in our sample. Specifically, around 70% and 95% of the respective distributions

15Specifically, we sum the impulse response function at each observation in our selected periods over a
4–quarter horizon, and then take the average over the time period considered.
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FIGURE 3.10: Impact of Monetary Policy Shocks for the UK Economy
from 1989 to 2015

Notes: This figure plots the median impulse response functions of: real
GDP growth; inflation; the interest rate and Divisia money growth with
respect to liquidity shock. We plot the response along a 20–quarter hori-

zon for each observation of our sample 1989Q3-2015Q2.

of the average accumulated impulse response functions of US inflation and Divisia
money growth lie above the 45◦ line. Similarly, the cumulated impact of a monetary
policy shock on the interest rate during the Great Recession is greater than in 2014–2015
with almost the entire distribution lying below the 45◦ line.

In Figure 3.12, it is clear that the average cumulated impact of UK GDP growth, follow-
ing a monetary policy shock during the Great Recession, is more severe than during
the final year of our sample; where 80% of the joint distribution lies above the 45◦ line.
Adding to this, the average cumulated impact of inflation and Divisia money growth
is also greater in 2008–2009 relative to 2014–2015. Again, around 80% to 85% of the
joint distribution of average cumulated responses of UK inflation and Divisia money
growth, are above their respective 45◦ lines. Finally, as is the case for the US economy,
it is also evident that the 4–quarter cumulative impact of a monetary policy shock on
the 3–month Treasury Bill rate is greater during the most recent recession.

In general, our results reveal notable time–variation in the transmission of monetary
policy shocks in both the US and UK economies. The sign and shapes of our impulse
response functions are consistent with Benati and Mumtaz, 2007 and Benati, 2008.
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However, we extend conventional impulse response analysis, and examine the aver-
age cumulated response of variables following monetary policy shocks over the peri-
ods 2008–2009 and 2014–2015 respectively. Our results reveal stark differences in the
cumulative impact of monetary policy shocks on macroeconomic fundamentals during
the most recent crisis period, and the subsequent recovery which further substantiates
the need to account for time–variation.
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FIGURE 3.11: Joint Distributions of the Average Accumulated Impulse
Responses (4–quarter horizon) of US Macroeconomic Variables to a

Monetary Policy Shock during Crisis and Non–crisis Periods
Notes: This figure plots the joint distributions of the average accumu-
lated 4–quarter impulse response functions of US real GDP growth, yt;
GDP deflator inflation, πt; the 3–month Treasury Bill rate, it and annual
Divisia money growth, mt during the periods 2008Q2–2009Q2 (x-axis)
and 2014Q2–2015Q2 (y-axis) respectively. We calculate in the following
manner: for every saved draw of the Gibbs sampler, we sum the impulse
response function of each macroeconomic variable over a 4–quarter hori-
zon for every observation in our selected period (i.e. 2008Q2,...,2009Q2
and 2014Q2,..., 2015Q2). Then we take the average of the accumulated
responses over the period respectively. In addition to the scatter plots,

we include a 45◦ line.
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FIGURE 3.12: Joint Distributions of the Average Accumulated Impulse
Responses (4–quarter horizon) of UK Macroeconomic Variables to a

Monetary Policy Shock during Crisis and Non–crisis Periods
Notes: This figure plots the joint distributions of the average accumu-
lated 4–quarter impulse response functions of UK real GDP growth, yt;
GDP deflator inflation, πt; the 3–month Treasury Bill rate, it and annual
Divisia money growth, mt during the periods 2008Q2–2009Q2 (x-axis)
and 2014Q2–2015Q2 (y-axis) respectively. We calculate in the following
manner: for every saved draw of the Gibbs sampler, we sum the impulse
response function of each macroeconomic variable over a 4–quarter hori-
zon for every observation in our selected period (i.e. 2008Q2,...,2009Q2
and 2014Q2,..., 2015Q2). Then we take the average of the accumulated
responses over the period respectively. In addition to the scatter plots,

we include a 45◦ line.
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Structural Variance Decompositions: Assessing the Contribution of Structural Shocks
to the Variance in US and UK Macroeconomic Fundamentals

To obtain an idea of how our identified structural shocks contribute to the overall vari-
ation of our macroeconomic variables, we report results from a time–varying structural
variance decomposition following Barnett, Groen, and Mumtaz, 2010. Specifically, we
compute the contribution of each structural shock using the ratio of the conditional
and unconditional volatilities of the variable of interest in the frequency domain. The
unconditional volatility of variable x = {yt, πt, it, mt} is given by

fx,t|T (ω) = sx(I4 − β̃t|T e−iω)−1 Ωt|T
2π

[
(I4 − β̃t|T e−iω)−1

]′
s′x (3.11)

where Ωt|T = Ā0,t|THt|T Ā′0,t|T , Ā0,t|T is a draw of the contemporaneous structural im-
pact matrix that satisfies our sign restrictions; each column of Ā0,t|T is divided by
diag(Ā0,t|T ). Ht|T is a diagonal matrix containing the variances of the structural shocks.
The conditional volatility of variable x = {yt, πt, it, mt} is

f̄x,t|T (ω) = sx(I4 − β̃t|T e−iω)−1 Ω̄t|T
2π

[
(I4 − β̃t|T e−iω)−1

]′
s′x (3.12)

where we replace Ωt|T with Ω̄t|T = Ā0,t|T H̄t|T Ā′0,t|T , Ā0,t|T is consistent with its defini-
tion in (3.12). H̄t|T is a diagonal matrix that contains the variances of the shocks shut-
ting off the variances of all structural shocks except for the one of interest16. Therefore
the contribution of identified structural shocks is given by the ratio

f̄x,t|T (ω)
fx,t|T (ω) (3.13)

In Figure 3.13 and 3.14 we report the time–varying contributions of our structural
shocks at different frequencies (which we plot along each individual panel of the z-
axes and y-axes respectively; the dates are along the respective x-axes) to the overall
variance in US and UK macroeconomic variables we use in our respective TVP–VAR
models. This allows us to examine the contribution of each structural shock over all
frequency windows (i.e. ω) at every observation in our sample (i.e. t). The sum of the
contributions of our identified structural shocks at every ω in each observation t, by
construction, is equal to the spectral density of the series of interest (at the given fre-
quency, ω). Therefore, these plots show the influence each identified structural shock
has on the volatility of the variable of interest at different frequencies.

Panel 1 of Figure 3.13 and 3.14 show the posterior median contribution of supply
shocks to the variance of variables in our US and UK TVP–VAR models respectively.

16It is not possible to uniquely identify the innovation variances of our structural shocks. However, it is
plausible to compute the TVP–VAR covariance matrix at each point in time that results from setting one
or more of the structural innovation variances to zero.
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The contribution of supply shocks in the US are highest for inflation in the late 1990s
and early 2000s at higher frequencies fluctuating around 55–60%. Then, the contribu-
tion drops to below 20% during the financial crisis and increases gradually to around
30% in 2015. Furthermore, supply shocks explain around 50% of real GDP variance,
particularly at higher frequencies, throughout our sample; with a slight decline from
2008. In a similar fashion, the contribution of supply shocks to the interest rate is
greater at higher frequencies explaining over 50% of the overall variation in the 1990s
and early 2000s. During the financial crisis, the contribution to total uncertainty falls
to around 2% before gradually rising during the final 5 years of our sample. The con-
tribution of supply shocks to US Divisia money growth fluctuates between 20% and
40% respectively in the first 15 years of our sample, before falling to around 5% at all
frequencies throughout the financial crisis.

Turning our attention to the UK, Panel 1 of Figure 3.14 shows the contribution of sup-
ply shocks to UK macroeconomic fundamentals, where these shocks make the highest
contribution (i.e. around 20%) to inflation in 2005 at a frequency of around 6 quarters17.
The contribution of supply shocks to UK GDP growth variation follows a similar pat-
tern to that of inflation. In both cases we can see that the contribution of these shocks
declines during the financial crisis at all frequencies. Contrastingly, the contribution of
supply shocks to the UK Treasury Bill rate and Divisia money growth remains constant
throughout our sample.

In Panel 2 of Figure 3.13, we report the contribution of demand shocks onto US eco-
nomic variables. Notably, demand shocks contribute relatively little to US macroeco-
nomic uncertainty with the greatest contributions of demand shocks, at just over 10%
in 2005 for US real GDP growth (at very high and low frequencies) and inflation (at
low frequencies). In addition, these shocks explain less than 5% of the overall variation
in both the US Treasury Bill rate and Divisia money growth. Panel 2 of Figure 3.14
reports the contribution of demand shocks to UK macroeconomic variables, where the
contribution of these shocks is greatest for inflation, typically at low and business cy-
cle frequencies at around 55%18. Likewise, the greater contributions of demand shocks
for the UK Treasury Bill rate and Divisia money growth are at lower frequencies. The
contribution of demand shocks for UK real GDP growth remains constant throughout
time, with greater contributions at higher frequencies at every observation.

It is clear from Panel 3 in Figures 3.13 and 3.14 that the contribution of monetary pol-
icy shocks to both US and UK macroeconomic uncertainty surge during recessionary

17The frequency window we use is ω ∈ [0 π] where ω is a vector with equal distances between 0 and
π split into 52 segments (i.e. half the number of time–series observations in our sample). The largest con-
tributions are made at ω = 1.047 which corresponds to around 6 quarters. Using 2π/ω, we can calculate
the number of quarters associated to each ω.

18We define business cycle frequencies as in Borio, 2014 which corresponds to 8 years (or 32 quarters);
in our case this is when ω ≈ 0.2464. We refer to the long–run at frequency zero (i.e. the infinite horizon)
and when ω ≈ {0.0616, 0.1232}, which correspond to a 25.5 and 12.75 year horizon, respectively.
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periods, yet are negligible during non–recessionary periods. The contributions of mon-
etary policy shocks to both US and UK GDP growth during recessions is greatest at low
frequencies. For the US, monetary policy shocks at low frequencies explain over 40%
of the variance of GDP growth during the three (NBER) recessions our sample covers.
Similarly for the UK, the contribution to GDP growth variation fluctuates around 35%–
45% during recessions. To contrast, the contribution of monetary policy shocks to both
US and UK inflation during recessionary periods is greatest at higher frequencies. In
particular, during economic decline, the contribution of monetary policy shocks to US
inflation variance reaches 60% at the highest frequency we consider (i.e. 2 quarters);
the same holds for the contribution of monetary policy shocks to UK inflation variance
during the 2008 recession.

We can see from the third column in Panel 3 of Figures 3.13 and 3.14, monetary policy
shocks explain 40% of the variability of both US and UK Treasury Bill rates during the
financial crisis; particularly in the long–run. For the US Treasury Bill rate, the contribu-
tion of monetary policy shocks during recessions declines at business cycle frequencies,
and then starts to increase back to fractions consistent with very low frequencies. The
contribution of monetary policy shocks to the variance in the UK Treasury Bill rate is
clearly greater during the 2008 recession relative to the 1991 and 2001 recessions in our
sample.

The fraction of variance that monetary policy shocks explain of US and UK Divisia
money growth are in the fourth columns of Panel 3 in Figures 3.13 and 3.14 respec-
tively. Evidently, we can see the surges in contributions of these shocks onto Divisia
money growth are episodic. For the US, monetary policy shocks during recessions
explain around 20% of the variance in Divisia money growth at all frequencies. For
the UK, it is clear that the contribution of monetary policy shocks to Divisia money
growth is greater during the Great Recession relative to other recessions in our sam-
ple; explaining around 25% of the overall variance at higher frequencies. At business
cycle frequencies however, monetary policy shocks explain around 30% of UK Divisia
money growth.

The final rows in Figures 3.13 and 3.14 report the contribution of money demand shocks
to US and UK economic volatility. We can see the fraction of variation of US real GDP
growth explained by money demand shocks is minor during the 1990s, then from 2008,
these shocks explain over 50% of the overall volatility of real GDP growth. In a sim-
ilar manner, we see the same pattern for the contribution of money demand shocks
on US inflation. Notably for real GDP growth and inflation, money demand shocks
seem to explain a greater fraction over the short and medium–term from 2008 onwards.
The influence these shocks have on the US interest rate are clearly more prominent at
medium–term horizons throughout our sample. During the first half of our time series,
money demand shocks appear to contribute around 20%, at most, to interest rate vari-
ability at high frequencies. Yet from 2008 the impact of money demand shocks at high
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frequencies surge to over 50%. It is also evident that money demand shocks contribute
to the uncertainty around US Divisia money growth from the early 2000s, particularly
at medium and short horizons. Following the Great Recession, money demand shocks
explain the majority of volatility in Divisia money growth at all frequencies.

Panel 4 in Figure 3.14 reports the proportions of macroeconomic uncertainty attributable
to money demand shocks in the UK. It is clear that money demand shocks explain real
GDP growth fluctuations at lower frequencies. The fraction of these shocks peak in
2015Q1 and 2015Q2; at 40% over the long–run. Contrarily, these shocks explain sub-
stantially larger proportions of inflation volatility at high frequencies. This is greatest at
a 2 quarter frequency (i.e. when ω = π). Turning our attention to the impact of money
demand shocks on UK interest rate and Divisia money growth volatility, it is clear that
these shocks bear minimal influence during the 2008 recession. Yet during the 1990s,
money demand shocks explain over 50% of interest rate and Divisia money growth
uncertainty over the short and medium–term. Then, following the financial crisis (i.e.
from 2009 to 2015), the contribution of these shocks surges at short and medium–term
horizons to around 60%.

Overall, our structural variance decompositions imply a variety of notable features.
Both US and UK macroeconomic uncertainty during the Great Recession are predom-
inantly influenced by monetary policy shocks. In both economies, monetary policy
shocks during recessions explain greater proportions of GDP uncertainty at low and
business cycle frequencies. In fact, during the 2008 recession, monetary policy shocks
explain 60% and 42% of GDP growth volatility in the US and UK respectively. Contrast-
ingly, monetary policy shocks during recessions explain higher proportions of inflation
uncertainty over the short–term. During the Great Recession, over 60% of inflation
variability is attributable to monetary policy shocks at a 2–quarter frequency.

Our results are consistent with Theodoridis and Mumtaz, 2015, who show that mone-
tary policy shocks increase output, inflation and interest rate volatility using US data to
estimate both an SVAR model and DSGE model. However, our analysis offers a vari-
ance decomposition that accounts for contributions at different frequencies throughout
time. The implications of these results are twofold. First, this equips policymakers
with an idea of the influences different structural shocks have on macroeconomic un-
certainty throughout time. Second, policy response to shocks, particularly monetary
policy shocks, during economic downturn can be tailored to the central bank’s initia-
tives with an idea of how these shocks propagate onto the volatility of real GDP and
price growth at different frequencies.

Furthermore, money demand shocks heavily influence interest rate and Divisia money
growth volatility both during, and following the financial crisis for both economies. In
addition, money demand shocks contribute significantly to US real GDP growth and
inflation uncertainty across all frequencies from 2008 until the end of our sample. Yet
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for the UK, our decompositions reveal that money demand shocks explain uncertainty
in real GDP growth more prominently at low and business cycle frequencies. For UK
inflation, these shocks are significant drivers in volatility at high frequencies.

Taken together, both the long and shorter–term impact of monetary policy and money
demand shocks justify the policy responses pursued by the Federal Reserve and Bank
of England following the Great Recession. Specifically, our analysis reveals that mon-
etary policy shocks heavily contribute to real GDP growth and inflation volatility at
business cycle and high frequencies, respectively. This implies that lowering inter-
est rates during 2008 and 2009, and injecting liquidity into the economy through QE,
influences GDP growth volatility over the long–term and inflation volatility over the
short–term. The signalling channel of QE is qualitatively equivalent to cutting interest
rates and acts as a credible commitment to keep interest rates low in the future; even
after the economy recovers (Krishnamurthy and Vissing-Jorgensen, 2011). Therefore,
through the signalling channel of QE, our results imply that policy responses to the
2008 recession may hinder GDP growth variability over the medium to long–run. Con-
sequently, this helps explain the sluggish recoveries in US and UK GDP growth rates
from 2009 to 201519.

In addition, the portfolio rebalancing channel associated with QE argues that investors
rebalance funds with the extra cash attained from selling long–term government bonds.
This is because they are not perfect substitutes for one another. Our variance decom-
position reveals influential proportions of macroeconomic uncertainty are explained
by money demand shocks following the financial crisis. As a result, the rebalancing
channel reduces the demand for money by investors, which could hinder the impact(s)
of money demand shocks and aid stabilisation. The implications of our analysis are
consistent with the results in Kapetanios et al., 2012, and Baumeister and Benati, 2013,
who show that without QE policies, GDP growth in the US and UK would have been
lower following the financial crisis.

19Similarly, the contribution of monetary policy shocks to inflation volatility at high frequencies implies
why inflation after the first round of QE in 2009, for both economies, remained stubbornly high.



Chapter 3. Evolving Macroeconomic Dynamics: A Time–varying Structural Approach
using the Correct Measure of Money 63

1990
20150

2

0.5

ω

Fr
ac

tio
n,

u
S t

yt

1990
20150

2

0.2
0.4
0.6

πt

1990
20150

2

0.5

it

1990
20150

2

0.2
0.4
0.6

mt

1990
20150

2

0.05
0.1

ω

Fr
ac

tio
n

u
D t

1990
20150

2

0.05
0.1

1990
20150

2

0.05
0.1

1990
20150

2

0.05
0.1

1990
20150

2
0

0.2
0.4
0.6

ω

Fr
ac

tio
n,

u
M

P
t

1990
20150

2
0

0.2
0.4
0.6

1990
20150

2
0

0.2
0.4

1990
20150

2
0

0.2

1990
20150

2

0.5

ω

Fr
ac

tio
n,

u
M

D
t

1990
20150

2

0.5

1990
20150

2

0.5

1990
20150

2

0.5

FIGURE 3.13: Time–varying Contributions of Structural Shocks to the
Variance of US Macroeconomic Fundamentals over different Frequen-

cies from 1989 to 2015
Notes: Panels 1 to 4 show the time–varying contributions of our struc-
tural shocks, uSt , uDt , uMP

t , uMD
t to the overall variation in US real GDP

growth, yt; GDP deflator inflation, πt, the 3–month Treasury Bill rate, it;
and Divisia money growth, mt from 1989Q3–2015Q2 respectively. We

report the contributions over the frequency window, ω ∈ [0 π].
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FIGURE 3.14: Time–varying Contributions of Structural Shocks to the
Variance of UK Macroeconomic Fundamentals over different Frequen-

cies from 1989 to 2015
Notes: Panels 1 to 4 show the time–varying contributions of our struc-
tural shocks, uSt , uDt , uMP

t , uMD
t to the overall variation in US real GDP

growth, yt; GDP deflator inflation, πt, the 3–month Treasury Bill rate, it;
and Divisia money growth, mt from 1989Q3–2015Q2 respectively. We

report the contributions over the frequency window, ω ∈ [0 π].

3.5 Robustness Analysis

3.5.1 Analysis using Simple–sum Monetary Aggregates

To assess the relative empirical benefits of using Divisia aggregates, we compare our
main results to systems replacing US and UK Divisia money growth rates with the
annual growth of US and UK broad money respectively. For the US we use the same
M2 series, which we obtain from the Federal Reserve Bank of St Louis, as Benati and
Mumtaz, 2007. For the UK, we construct a break adjusted M4/M4ex series that splices
conventional M4 with M4 excluding intermediate other financial corporations (OFCs);
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the Bank of England’s preferred measure of broad money20. All data series used to
construct our M4/M4ex measure are available from the Bank of England’s statistical
database. We then replace Divisia money, mt in each of our TVP–VAR models with the
economy’s measure of broad money growth, mb

t . We re–estimate the model in (3.1)–
(3.9) using the priors and algorithm that we outline in Section 3.7.1, Appendix A.

In order to satisfactorily answer whether a system using Divisia aggregates predicts
macroeconomic fundamentals with a higher degree of accuracy than those using broad
money aggregates, we plot the range of posterior credible intervals from our time–
varying multivariate R2 statistics. Specifically, we compute the range of posterior cred-
ible intervals by taking the difference between the 84th and 16th percentiles of the dis-
tributions of our multivariate R2 statistics. Therefore a lower value (or range) implies
pseudo–forecasts are estimated with more precision. In Figures 3.15 and 3.16 we plot
the range of posterior credible intervals from the 1, 4 and 8–step ahead multivariate R2

statistics for real GDP growth and inflation for the US and UK. We choose to compare
these horizons because the Federal Reserve (and the Bank of England) focus on these
horizons, especially when examining inflation (Cogley, Primiceri, and Sargent, 2010)21.

The top, middle and bottom left Panels of Figures 3.15 and 3.16 correspond to multi-
variate R2 statistics at 1–quarter, 4–quarter and 8–quarter horizons for US and UK real
GDP growth. In general it is clear, from each Panel, that our TVP–VAR models us-
ing Divisia indices produce a lower range of posterior credible intervals for real GDP
growth at every horizon. Notably, the range of posterior credible intervals for real GDP
growth is considerably lower at 4 and 8–quarter horizons respectively. Specifically,
for both economies in the period following the Great Recession, the range of poste-
rior credible intervals from our TVP–VAR models using Divisia money are at least 2
percentage points lower at a 1–quarter horizon. Furthermore, at 4 and 8–quarter hori-
zons, the range of posterior credible intervals for pseudo–forecasts of US and UK real
GDP growth are as much as 10 percentage points lower from our systems using Divisia
money growth.

The right Panels of Figures 3.15 and 3.16 plot the range of posterior credible intervals
of the time–varying multivariate R2 statistics for US and UK GDP deflator inflation
at 1, 4, and 8–quarter horizons. On the whole, there are negligible differences in the
precision of pseudo–forecasts of US inflation at all horizons; particularly at 1 and 4–
quarter horizons. However, at an 8–quarter horizon until 2005, the range of posterior

20We splice headline M4 with M4ex because M4ex data starts in 1997Q4. The method we use to con-
struct our break adjusted UK broad money series is available at http://www.bankofengland.co.uk/
statistics/Pages/iadb/notesiadb/Break_adjusted_levels_data.aspx.

21We do not report the range of posterior credible intervals for the 3–month Treasury Bill rate and Di-
visia (and broad) money growth since the Federal Reserve and Bank of England are primarily concerned
with output and price stability. However for both the US and UK, the range of posterior credible intervals
are remarkably similar. For Divisia and broad money growth there are some divergences and the impli-
cation of pseudo–forecasts for Divisia money are less precise until 2005 at all horizons. However, from
2005 onwards, the precision of pseudo–forecasts using Divisia money growth are superior than those for
broad money growth; results are available upon request.

http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/Break_adjusted_levels_data.aspx
http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/Break_adjusted_levels_data.aspx
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credible intervals using Divisia money growth is up to 5 percentage points greater than
the system using broad money growth. Then, from 2005, the precision of pseudo–
forecasts of US inflation from our TVP–VAR using Divisia money growth increases
and is comparably lower than our TVP–VAR using broad money growth. To contrast,
the precision of pseudo–forecasts of UK GDP deflator inflation using Divisia money
growth are greater than those of broad money growth; particularly at 4 and 8–quarter
horizons.

Overall the results implied by our TVP–VAR models provide considerable support for
using theoretically sound monetary aggregates. Both our systems of the US and UK
economies reveal a higher precision in pseudo–forecasts of real GDP growth and infla-
tion. These results are consistent with Schunk, 2001 who shows that VAR models using
Divisia money growth better forecasts US real GDP growth. Likewise, our results cor-
roborate with Barnett, Chauvet, and Leiva-Leon, 2016 who show that nowcasts of US
nominal real GDP are most accurate when incorporating Divisia money aggregates us-
ing an array of non–linear models. Similarly, our results correspond well with Florackis
et al., 2014, who show that regime–switching models forecasting UK real GDP growth
using Divisia money growth outperform forecasts published by the Bank of England.
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FIGURE 3.15: Range of Posterior Credible Intervals for Multivariate
R2 statistics using US Data from 1989 to 2015

Notes: This figure shows the difference between 84th and 16th per-
centiles of the distributions of the multivariateR2 statistics for each time
series in our VAR models using US data from 1989Q3–2015Q2 respec-

tively. Grey bars indicate NBER recession dates.
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To establish whether there are substantial differences in the dynamic transmission of
monetary policy shocks from TVP–VAR models using broad money aggregates, Fig-
ures 3.17 and 3.18 plot the joint distribution of the average one year accumulated re-
sponse of real GDP growth, yt; GDP deflator inflation, πt; the 3–month Treasury Bill
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rate, it and broad money growth, mb
t over the periods 2008Q2–2009Q2 (x-axis) and

2014Q2–2015Q2 (y-axis), respectively.

Comparing Figure 3.17 with Figure 3.11, and Figure 3.18 with Figure 3.12, it is clear that
more of the respective joint distributions of the cumulated impulse response functions
lie on, around (or closer to) the 45◦ lines in Figures 3.17 and 3.18. This indicates less sig-
nificance in the time–variation of the real effects of monetary policy shocks, from our
TVP–VAR models, using broad money aggregates. Our conjecture is that the weight-
ing mechanism inherent in Divisia aggregates not only facilitates closer time–varying
covariances with macroeconomic fundamentals, but also more accurately parametrises
lagged Divisia money growth rates in the equations within our systems. In general
the conclusions from Figures 3.17 and 3.18 are similar to those in Figures 3.11 and 3.12.
However, these results echo the findings in Barnett and Chauvet, 2011, who argue that
theoretically sound measures of money better signal recessions, and perhaps more im-
portantly, the impact of monetary policy.
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FIGURE 3.17: Joint Distributions of the Average Accumulated Impulse
Responses (4–quarter horizon) of US Macroeconomic Variables during

Crisis and Non–crisis Periods
Notes: This figure plots the joint distributions of the average accumu-
lated 4–quarter impulse response functions of US real GDP growth, yt;
GDP deflator inflation, πt; the 3–month Treasury Bill rate, it and annual
broad money growth, mb

t during the periods 2008Q2–2009Q2 (x-axis)
and 2014Q2–2015Q2 (y-axis) respectively. We calculate in the following
manner: for every saved draw of the Gibbs sampler, we sum the impulse
response function of each macroeconomic variable over a 4–quarter hori-
zon for every observation in our selected period (i.e. 2008Q2,...,2009Q2
and 2014Q2,..., 2015Q2). Then we take the average of the accumulated
responses over the period respectively. In addition to the scatter plots,

we include a 45◦ line.
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FIGURE 3.18: Joint Distributions of the Average Accumulated Impulse
Responses (4–quarter horizon) of UK Macroeconomic Variables dur-

ing Crisis and Non–crisis Periods
Notes: This figure plots the joint distributions of the average accumu-
lated 4–quarter impulse response functions of UK real GDP growth, yt;
GDP deflator inflation, πt; the 3–month Treasury Bill rate, it and annual
broad money growth, mb

t during the periods 2008Q2–2009Q2 (x-axis)
and 2014Q2–2015Q2 (y-axis) respectively. We calculate in the following
manner: for every saved draw of the Gibbs sampler, we sum the impulse
response function of each macroeconomic variable over a 4–quarter hori-
zon for every observation in our selected period (i.e. 2008Q2,...,2009Q2
and 2014Q2,..., 2015Q2). Then we take the average of the accumulated
responses over the period respectively. In addition to the scatter plots,

we include a 45◦ line.

In order to examine the differences between structural variance decompositions using
Divisia and broad money growth, we plot in Figures 3.19 and 3.20 the posterior me-
dian of the time–varying contributions our structural shocks possess for US and UK
macroeconomic uncertainty. Figure 3.19 is directly comparable with Figure 3.13 and
Figure 3.20 is comparable with Figure 3.14. There are a number of notable differences
in the shares of variance explained by structural shocks implied by our TVP–VAR mod-
els using broad money growth. First, the proportions attributable to supply shocks and
demand non–policy shocks to macroeconomic volatility in Figures 3.19 and 3.20 reveal
that the impact of these shocks remains relatively constant over different frequencies.

Notably, the impact of demand non–policy shocks on UK GDP growth from our TVP–
VAR model using broad money growth (Panel 2 of Figure 3.20), is remarkably differ-
ent to the influence of these shocks from our TVP–VAR model using Divisia money
growth. This result implies that demand–non policy shocks contribute heavily to real
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GDP growth variability at low frequencies, and gradually decrease at higher frequen-
cies. This result contrasts the variance decomposition of demand non–policy shocks
in Barnett, Groen, and Mumtaz, 2010. However, our variance decomposition of UK
real GDP growth in Figure 3.14 is coherent with the former; further supporting the use
of Divisia money aggregates. One possible explanation is that systems using broad
money growth over approximate the contribution of money demand shocks to UK real
GDP growth variation, at higher frequencies, due to the flawed aggregation method
used by simple–sum monetary aggregates. Clearly, Figure 3.14 shows the effects of
money demand shocks on GDP uncertainty are comparably lower at higher frequen-
cies.

Results implied by our TVP–VAR models using broad money growth indicate that
monetary policy shocks during recessions contribute relatively greater proportions to
both US and UK real GDP growth volatility at higher frequencies. Furthermore Figure
3.19 and 3.20 show that monetary policy shocks explain lower proportions of inflation
uncertainty at higher frequencies than the same shocks generated by our models us-
ing Divisia money growth rates. If monetary policy shocks from models using broad
money growth contribute substantially less to inflation uncertainty at high frequencies,
then results from our models imply inflation is more resilient to changes in the interest
rate; especially in the short–term. Assuming central banks use multivariate models that
include conventional simple–sum measures to guide monetary policy, then reduced–
form and structural counterfactual analysis will likely result in an insensitive response
of inflation to movements in the interest rate. Therefore, central bankers and policy-
makers may conclude that monetary policy is more accommodative, or contractionary,
than in reality.

The implication here is that conclusions with regards to the tightness of monetary pol-
icy generated by these models may be misleading. If monetary policy shocks con-
tribute less to inflation uncertainty generated by models using simple–sum measures
of money, then the impact of raising the interest rate implied by these models may be
distorted. Therefore interest rates set by central banks based on models using simple–
sum aggregates could, in fact, be more contractionary than previously anticipated. Our
analysis corroborates with Barnett and Chauvet, 2011, who argue that monetary policy
during the Great Moderation in the US and UK was, indeed, more contractionary than
previously thought. We advocate the arguments in the aforementioned in increasing
the quality of monetary statistics, and consequently the information set, which guides
monetary policy.

On the whole, the structural variance decompositions of US and UK macroeconomic
uncertainty, and comparisons of forecast precision, from systems using simple–sum
and Divisia money growth provide ample support for using Divisia indices. It is clear
from Figures 3.19 and 3.20 that structural shocks exhibit less variation in the frequency
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domain at every observation in our sample. However, our decompositions of macroe-
conomic volatility from systems using Divisia growth provide guidance of the impacts
of structural shocks throughout time, and at different frequencies. Therefore, policy-
makers have a better idea of the short, medium and longer–term impacts of structural
shocks on macroeconomic fluctuations. Policy response can be tailored to central bank
objectives with an idea of the effects these shocks have on macroeconomic uncertainty
over different frequencies. Combining this with an increased (pseudo) forecast accu-
racy, only echoes the importance of correctly measuring money.



Chapter 3. Evolving Macroeconomic Dynamics: A Time–varying Structural Approach
using the Correct Measure of Money 73

1990
20150

2

0.2
0.4

ω

Fr
ac

tio
n,

u
S t

yt

1990
20150

2

0.2
0.4

πt

1990
20150

2

0.2
0.4

it

1990
20150

2

0.2
0.4

mb
t

1990
20150

2

0.1
0.2

ω

Fr
ac

tio
n

u
D t

1990
20150

2

0.1
0.2

1990
20150

2

0.1
0.2

1990
20150

2

0.1
0.2

1990
20150

2
0

0.2
0.4

ω

Fr
ac

tio
n,

u
M

P
t

1990
20150

2
0

0.2
0.4

1990
20150

2
0

0.2

1990
20150

2
0

0.2
0.4

1990
20150

2

0.2
0.4
0.6

ω

Fr
ac

tio
n,

u
M

D
t

1990
20150

2
0.2
0.4
0.6

1990
20150

2

0.2
0.4
0.6

1990
20150

2

0.2
0.4
0.6

FIGURE 3.19: Time–varying Contributions of Structural Shocks to the
Variance of US Macroeconomic Fundamentals over different Frequen-

cies from 1989 to 2015
Notes: Panels 1 to 4 show the time–varying contributions of our struc-
tural shocks, uSt , uDt , uMP

t , uMD
t to the overall variation in US real GDP

growth, yt; GDP deflator inflation, πt, the 3–month Treasury Bill rate,
it; and broad money growth, mb

t from 1989Q3–2015Q2 respectively. We
report the contributions over the frequency window, ω ∈ [0 π].
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FIGURE 3.20: Time–varying Contributions of Structural Shocks to the
Variance of UK Macroeconomic Fundamentals over different Frequen-

cies from 1989 to 2015
Notes: Panels 1 to 4 show the time–varying contributions of our struc-
tural shocks, uSt , uDt , uMP

t , uMD
t to the overall variation in US real GDP

growth, yt; GDP deflator inflation, πt, the 3–month Treasury Bill rate,
it; and broad money growth, mb

t from 1989Q3–2015Q2 respectively. We
report the contributions over the frequency window, ω ∈ [0 π].
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3.6 Conclusions

In this chapter we provide comprehensive reduced–form and structural insights into
evolving US and UK macroeconomic dynamics from 1979 to 2015, using theoretically
sound measures of money, Divisia indices. We then test the empirical properties of our
baseline systems against those using simple–sum monetary aggregates.

A summary of our results is as follows: First, we link the persistence of US and UK
economic data to multivariate R2 forecastability and, in the spirit of Cogley, Primiceri,
and Sargent, 2010, show that there are distinct differences in the overall forecastability
of macroeconomic fundamentals between 1990 and 2015; further justifying the conclu-
sions in Schunk, 2001 and Barnett, Chauvet, and Leiva-Leon, 2016. Specifically, in 2015,
interest rates in the US and UK are substantially more predictable than in 1990. Sec-
ond, TVP–VAR models using Divisia money growth provide more accurate (pseudo)
forecasts of real GDP growth at 1, 4, and 8–quarter horizons for both economies than
systems using broad money aggregates. At 4 and 8–quarter horizons, our baseline
models produce a range of posterior credible intervals 10 percentage points lower than
models using conventional broad money growth. Third, we track changes in the trans-
mission of monetary policy shocks and note a significant difference in the response of
inflation, Treasury Bill rates and Divisia money growth in both economies between the
periods 2008Q2–2009Q2 and 2014Q2–2015Q2; thereby vindicating our modelling strat-
egy. Finally, structural variance decompositions reveal that monetary policy shocks
are episodic in their impacts on macroeconomic volatility, and explain the majority of
variation during recessionary periods. Notably during the Great Recession, monetary
policy shocks explain 60% and 42% of GDP growth volatility in the US and UK respec-
tively. In the same period, these shocks explain around 60% of inflation uncertainty in
both the US and UK.

The implications of our study lie in two main areas. First, forecasters should consider
replacing simple–sum monetary aggregates with Divisia indices, in multivariate anal-
ysis, to obtain greater forecast precision. Second, our results outline how monetary
policy shocks, on impact, contribute to real GDP growth and inflation uncertainty at
different frequencies. Thus, policy response may be guided by the implications these
shocks have on economic volatility over different time horizons; conditional on central
bank objectives.

Our study provides notable prospects for future research. It would be interesting to
see the performance of Divisia money aggregates in a multivariate out–of–sample fore-
casting exercise that accounts for parameter change. Improving the predictability of
macroeconomic fundamentals during times of economic turbulence is of paramount
importance to central bankers. Furthermore, a structural analysis incorporating the
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term–spread into our systems in order to examine the effectiveness of QE could facil-
itate understanding on the real effects of conventional and unconventional monetary
policies in the US and UK.

3.7 Appendix to Chapter 3

3.7.1 Appendix A: Prior Information and Posterior Simulation

Prior Information

We use Bayesian methods to estimate (3.1)–(3.9). One issue in estimating these classes
of models is how to deal with the initial conditions. We follow, among others, Primiceri,
2005, Cogley and Sargent, 2005 and Benati and Mumtaz, 2007. We posit that the initial
values of the states θ0, α0, h0 are Normal, and independent from one another and from
the distribution of the hyperparameters. To calibrate the initial conditions we estimate
a standard (time-invariant) VAR using the first 10 years of data, from 1979Q3–1989Q322.
We set

θ0 v N
[
θ̂OLS , 4 · V̂ (θ̂OLS)

]
(3.14)

for α0, h0, let Σ̂OLS be the estimated covariance matrix of the residuals from the time–
invariant VAR. Let C be the lower–triangular Choleski factor such that CC

′ = Σ̂OLS .
We then set

ln h0 v N(lnµ0, 10× I4) (3.15)

where µ0 collects the logarithms of the squared elements along the diagonal of C. We
divide each column of C by the corresponding element on the diagonal; call this matrix
C̃. We then set

α0 v N
[
α̃0, Ṽ (α̃0)

]
(3.16)

with α̃0 ≡ [α̃0,11, α̃0,21, . . . , α̃0,61]′ which is a vector collecting all the elements be-
low the diagonal of C̃−1. We assume Ṽ (α̃0) is diagonal with each element equal to 10
times the absolute value of the corresponding element of α̃0. This is an arbitrary prior
but correctly scales the variance of each element of α0 to account for their respective
magnitudes (Benati and Mumtaz, 2007).

With regards to the hyperparameters, we posit independence between the parameters
corresponding to the matrices Q, S, W purely for convenience. Q is set to follow an

22Our results are insensitive to different prior specifications and larger samples of data to calibrate the
initial conditions of the model.
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inverse–Wishart distribution,

Q v IW (Q−1, T0) (3.17)

whereQ = T0 ·V̂ (θ̂OLS)·3.4×10−4, prior degrees of freedom are given by T0 = 40 which
is the number of observations used within the training sample. This value minimizes
the significance of the prior, thereby maximising the influence of information contained
within the sample. Our choice of scaling parameter 3.4×10−4 is consistent with Cogley
and Sargent, 2005. However, Primiceri, 2005 uses an even tighter scaling parameter of
1.0× 10−4. The scaling parameter essentially sets the amount of time–variation within
the parameters of the model. There is a growing literature on restricting the amount
time-variation prior to estimating this class of models; see e.g. Groen, Paap, and Ravaz-
zolo, 2013. The results and conclusions presented within the main body are robust to
reducing the value of the scaling parameter.

The blocks of S are also assumed to follow inverse–Wishart distributions with prior
degrees of freedom equal to the minimum allowed (i.e. 1 + dim(Si)).

S1 v IW (S−1
1 , 2) (3.18)

S2 v IW (S−1
2 , 3) (3.19)

S3 v IW (S−1
3 , 4) (3.20)

we set S1, S2, S3 in accordance with α̃0 as in Benati and Mumtaz, 2007 such that S1 =
10−3×|α̃0,11|, S2 = 10−3×diag([|α̃0,21|, |α̃0,31|]′), S3 = 10−3× diag([|α̃0,41|, |α̃0,51|, |α̃0,61|]′).
This calibration is consistent with setting S1, S2, S3 to 10−4 times the corresponding
diagonal block of Ṽ (α̃0). The variances for the stochastic volatility innovations, as in
Cogley and Sargent, 2005, follow an inverse–Gamma distribution for the elements of
W ,

Wi,i v IG(10−4

2 ,
1
2) (3.21)

Simulating the Posterior Distribution

In order to simulate the posterior distribution of the hyperparameters and states, con-
ditional on the data, we implement the following MCMC. We combine elements from
Primiceri, 2005 and Cogley and Sargent, 2005.

1) Draw elements of θt Conditional on Y T , αT and HT , the observation equation (3.1)
is linear with Gaussian innovations with a known covariance matrix. Factoring
the density of θt, p(θt) in the following manner

p(θT |yT , AT , HT , V ) = p(θT |Y T , AT , HT , V )
T−1∏
t=1

p(θt|θt+1, Y
t, AT , HT , V ) (3.22)
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the Kalman filter recursions pin down the first element on the right hand side
of the above; p(θT |Y T , AT , HT , V ) v N(θT , PT ), with PT being the precision ma-
trix of θT from the Kalman filter. We compute the remaining elements in the
factorisation via backward recursions as in Cogley and Sargent, 2005. Since θt is
conditionally Normal we have

θt|t+1 = Pt|tP
−1
t+1|t(θt+1 − θt) (3.23)

Pt|t+1 = Pt|t − Pt|tP−1
t+1|tPt|t (3.24)

which yields, for every t from T−1 to 1, the remaining elements in the observation
equation (3.1). More precisely, the backward recursion begins with a draw, θ̃T
from N(θT , PT ). Conditional on θ̃T , the above produces θT−1|T and PT−1|T . This
allows us to draw θ̃T−1 from N(θT−1|T , PT−1|T ) until t=1.

2) Drawing elements of αt Conditional on Y T , θT and HT we follow Primiceri, 2005
and note that (3.1) can be written as

AtỸt ≡ At(Yt −X
′
tθt) = Atεt ≡ ut (3.25)

V ar(ut) = Ht (3.26)

with Ỹt ≡ [Ỹ1,t, Ỹ2,t, Ỹ3,t, Ỹ4,t]
′

and

Ỹ1,t = u1,t (3.27)

Ỹ2,t = −α21,tỸ1,t + u2,t (3.28)

Ỹ3,t = −α31,tỸ1,t − α32,tỸ2,t + u3,t (3.29)

Ỹ4,t = −α41,tỸ1,t − α42,tỸ2,t − α43,tỸ3,t + u4,t (3.30)

These observation equations and the state equation (3.7) allows us to draw the
elements of αt equation by equation using the same algorithm as above; assuming
S is block diagonal.

3) Drawing elements ofHt Conditional on Y T , θT and αT , the orthogonal innovations
ut, V ar(ut) = Ht are observable. We sample, element by element, hi,t’s using the
algorithm of Jacquier, Polson, and Rossi, 2002; Cogley and Sargent, 2005 provide
details in Appendix B.2.5 of their paper.

4) Drawing the hyperparameters Conditional on Y T , θT , Ht and αT , the innovations in
θt, αt and hi,t’s are observable, which allows us to draw the elements ofQ,S1, S2, S3

and the Wi,i from their respective distributions.

This MCMC algorithm simulates the posterior distribution conditional on the data by
iterating over steps 1)–4). For our estimations in the main text, we use a burn–in period
of 99,000 iterations to converge to the ergodic distribution. Following this, we run 1,000
more iterations presenting results on these iterations. We use a large amount of burn–in
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iterations because sampling the elements ofHt is a single–move algorithm that requires
more burn–in draws to ensure convergence.

3.7.2 Appendix B: Convergence Diagnostics

To assess the convergence of the MCMC, we compute the inverse relative numerical
efficiency factors (RNEs) for the time–varying coefficients of the VAR models, and for
the hyperparameters of the models. We follow Primiceri, 2005 defining the RNEs as

RNE = (2π)−1 1
S(0)

∫ π

−π
S(ω)dω

where S(ω) is the spectral density of the sequence of draws from the Gibbs sampler for
the quantity of interest at frequency ω; S(0) is the spectral density of the sequence at
frequency zero.

Figures 3.21 and 3.22 plot the inefficiency factors for our US and UK VAR models re-
spectively. Specifically, we plot the time–varying coefficients (the βt), the non zero
elements of the matrix At and the volatilities (hi,t’s) respectively - and for the model’s
hyperparameters, i.e. the free elements of the matrices Q, S, and W respectively. Fig-
ures 3.21 and 3.22 clearly show that the autocorrelation between the draws is low, and
in the vast majority of cases below 1.5. As stressed in Primiceri, 2005 and others, values
of the inefficiency factors below 20 are satisfactory.
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Chapter 4

Liquidity Shocks and Real GDP
Growth: Evidence from a Bayesian
Time–varying Parameter VAR

4.1 Introduction

The links between asset markets and macroeconomic fluctuations are the subject of
lengthy debate (see e.g. Bernanke and Blinder, 1988). In light of the 2008 recession
(i.e. the Great Recession), liquidity provision is becoming a central topic (see Adrian
and Shin, 2008; Acharya, Shin, and Yorulmazer, 2011; Næs, Skjeltorp, and Ødegaard,
2011). Figure 4.1 depicts the annual rate of real GDP growth along with our proxies of
stock and house market liquidity conditions, the Amihud, 2002 measure, from 2000 to
2014. An increase in these measures constitutes a decline to liquidity (i.e. an increase in
illiquidity). Clearly, we can see that liquidity (illiquidity) is countercyclical (procyclical)
with real GDP growth. In particular, liquidity dries up in late 2008, corresponding with
the peaks in our stock and house market liquidity proxies, and these lead the slump in
GDP growth by around 1–2 quarters in early 2009.

The prime contribution of this chapter is to assess the effects of liquidity shocks stem-
ming from stock and house markets on real GDP growth throughout time. Our em-
pirical study examines the impact of liquidity shocks for the US economy from 1970
to 2014. Our sample captures prosperous and recessionary periods; as well as the re-
covery period following the financial crisis. To the best of our knowledge, there is no
document of an empirical investigation on the effects of liquidity shocks on the real
economy. In fact the majority of the literature concentrates on explanatory and fore-
casting performance (e.g. Næs, Skjeltorp, and Ødegaard, 2011 and Florackis et al.,
2014). The importance of understanding the dynamics of liquidity shocks and the real
economy is twofold. First, the structural links between asset market liquidity and the
real economy may be dependent on the business cycle. Second, model misspecification
can result in erroneous inference and policy recommendations.

81
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FIGURE 4.1: US Real GDP growth (%), House Market Illiquidity and
Stock Market Illiquidity from 2000 to 2014

Notes: This figure plots the annual % growth rate of US real GDP (LHS
axis), House market illiquidity (expressed as the standardised % from
its 3–year moving average) (LHS axis) and Stock market illiquidity (ex-
pressed as the standardised % deviation from its 3–year moving aver-

age) (RHS axis) from 2000 to 2014.

There are various reasons why liquidity conditions in stock and housing markets can
affect the real economy. Firstly, stock market liquidity may behave as a signalling pro-
cess uncovering the information set of investors (Florackis et al., 2014). In times of ex-
cess volatility or diminishing confidence regarding the future state of the economy, in-
vestors adjust portfolio holdings moving funds from high risk assets into ‘safe havens’
such as government debt or other short-term fixed income securities (flight to safety).
Furthermore if investors expect a liquidity shock (which we define as a sudden de-
cline to liquidity), portfolio compositions mirror this and greater proportions of wealth
move into liquid assets (flight to liquidity); Longstaff, 2004. Brunnermeier and Peder-
sen, 2009 develop a model where the provider’s ability to supply liquidity depends on
their capital and margin requirements. During periods of financial stress, a reinforcing
mechanism between funding and market liquidity leads to liquidity spirals. A shock to
funding liquidity forces providers to shift liquidity provision into low margin stocks.
On the other hand, Levine and Zervos, 1998 propose that investment channels within
a liquid secondary market facilitate investment into long–run (generally less liquid)
projects that enhance long–term productivity; and subsequently economic growth.
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Housing also plays multiple roles in affecting the real economy. First, houses can re-
turn capital gains or losses as an asset that directly influence housing wealth. Campbell
and Cocco, 2007 establish that increases in housing wealth relax borrowing constraints
and fuel consumption growth. Similarly Carroll, Hall, and Zeldes, 1992 argue from a
precautionary savings motive, that increases in the value of housing wealth increase
consumption expenditure. Second, housing can catalyse inter–temporal consumption
when credit markets are imperfect. Housing is a pledgeable asset, He, Wright, and
Zhu, 2015 allege that house prices contain a liquidity premium. Therefore, in equilib-
rium, people may be willing to pay more than the house’s fundamental value because
of the financial security this conveys when they need a loan. Moreover purchasing a
house requires a sizeable down payment, therefore the buyer’s liquidity affects the de-
mand for housing (Stein, 1995). Thus strong demand in the housing market requires
an extensive base of liquidity. Factors contributing to the notion of a housing bub-
ble prior to the Great Recession are: substantial increases in trading volumes, surging
prices and, mortgage defaults. With regards to the latter, Mian, Sufi, and Trebbi, 2015
states “when major shocks hit the economy and millions of homeowners simultane-
ously default . . . sales of foreclosed homes could lead to further reductions in house
prices, threatening real activity"1.

Our main results stem from a Bayesian time–varying parameter VAR (TVP–VAR) model
with a stochastic volatility structure. Our model allows for time–variation in the au-
toregressive parameters, structural shocks, contemporaneous relations and the stochas-
tic volatility innovations. We provide robust evidence that stock market liquidity shocks
yield damaging contractions to real GDP growth at each observation of our sample.
However, the magnitude of the impact is declining. Contrastingly, we document a re-
markable structural change between house market liquidity and real GDP growth as
frictions in the property sector surface in 2005. Our analysis reveals that house market
liquidity shocks are most damaging during the depths of the Great Recession. We pro-
vide substantial evidence supporting an asymmetric response of GDP to house market
liquidity shocks over the business cycle and across business cycle troughs in our sam-
ple. We further show that structural stock market and house market liquidity shocks
explain, on average, 15% and 36% of the overall variation in real GDP growth during
the Great Recession.

From a theoretical perspective, our results correspond with the liquidity shock hypoth-
esis in Kiyotaki and Moore, 2012. This refers to sudden drops in asset market liquidity
that may or may not relate to macroeconomic fundamentals, causing equity prices to
fall. Lower asset prices hinder firms’ financing abilities through issuing new equities
and/or using equity as collateral. Therefore, investment deteriorates, output falls and
recession begins. However, in discussing the financial crisis, there is recognition that

1A mortgage contract gives the lender the right to foreclose on a home should the buyer default on
repayment obligations.
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liquidity conditions in stock and housing markets are both countercyclical with the
business cycle (see among others, Jermann and Quadrini, 2012; Jaccard, 2013; Diaz
and Jerez, 2013). The innate appeal of the liquidity shock hypothesis corresponds par-
ticularly well with recent business cycles. If asset market liquidity is a causal factor,
policymakers can impede the cycle through the direct provision of liquidity to support
investment.

The empirical literature is relatively small (but growing) with regards to the role of asset
markets for the macroeconomy in a time–varying framework (see, among others Balke,
2000, Davig and Hakkio, 2010, Eickmeier, Lemke, and Marcellino, 2015, Abbate et al.,
2016). In general, results on the time–variation of financial shocks are not conflicting,
the volatilities of structural financial shocks evolve throughout time. A possible expla-
nation is that a financial shock simultaneously effects financial intermediaries, credit
conditions and segments of the financial market2. However, an abundance of litera-
ture accounts for financial conditions through one variable; typically a “financial con-
ditions" aggregate. Hubrich and Tetlow, 2015 emphasise the existence of an episodic
relationship between the macroeconomy and financial factors limits the amount of eco-
nomically (and statistically) significant evidence within the literature. They estimate a
Bayesian Markov–Switching VAR model using US data and analyse the effects of finan-
cial shocks using the Financial Stress Index. Time–variation is shown to be significant
and economically meaningful for financial shocks during “stress events".

However, aggregating conditions from different financial markets omits any interac-
tion between financial variables. Implicitly, this ignores important contemporaneous
structural links between asset markets. The empirical literature allowing for different
financial markets in a VAR framework is small (see e.g Björnland and Leitemo, 2009
and Prieto, Eickmeier, and Marcellino, 2016). Our works builds upon Prieto, Eickmeier,
and Marcellino, 2016, who evaluate the effects of asset price shocks to US GDP growth
in a time–varying framework. We extend upon their analysis by isolating the liquidity
component from stock and house prices overcoming the complex web of information
that nests within asset prices (Harvey, 1988). In particular our proxies of liquidity work
on the interaction between prices and quantities. We use the liquidity ratio in Amihud,
2002 which focuses on liquidity in the elasticity domain capturing the resilience of the
asset price. The attractiveness of this measure is twofold: first, data is readily available
for long periods of time and it is simple to compute . Second, the ratio rests on theo-
retical foundations of Kyle’s price impact coefficient (Goyenko, Holden, and Trzcinka,
2009).

Conceptually, our work relates to the Dynamic Stochastic General Equilibrium (DSGE)
literature focussing on financial shocks. Shi, 2015 deduces a tractable model able to
quantify the impact of financial shocks over the business cycle. Negative shocks to

2In particular, this general consensus corroborates with the findings of Stock and Watson, 2012 who
note that the size of the financial shocks were drivers of the financial crisis.
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asset liquidity are shown to cause investment, consumption and output to fall. Jaccard,
2013 calibrates a DSGE model using US data and evaluates the Great Recession by
computing the relative contribution of liquidity shocks. Results imply that the sharp
contraction in output was mainly due to negative liquidity shocks originating in the
financial sector. Christiano, Motto, and Rostagno, 2010 show that ‘financial factors’ are
key drivers to economic fluctuations. The main results show that risk shocks, affecting
the economy through the investment margin, are the main driver behind economic
variations explaining more than 60% of the volatility in US investment; and a third of
investment volatility in the Euro area. Furthermore, liquidity shocks display drastic
effects on real activity. In particular these shocks reveal a detraction of between 1/3
and 1.5 percentage points of the contraction in US GDP growth.

The structure of the remainder of this chapter is as follows: Section 4.2 shows how we
measure liquidity and provides a description of the macroeconomic data. We discuss
TVP–VARs, prior specification and identification of structural shocks in section 4.3.
Empirical analysis and robustness checks are in Section 4.4 and 4.5 respectively. Finally,
Section 4.6 provides concluding comments.

4.2 Measuring Liquidity and Data

To proxy stock market liquidity, we rely on the Return–to–Volume (RtoV) ratio of Ami-
hud, 2002:

RtoV s
t = 1

NY

Y∑
n=1

|ri,t|
V OLi,t

(4.1)

where |ri,t| is the absolute return of stock i on day t, V OLi,t is stock i’s trading volume
(in units of currency) on day t, Y is the number of days within the trading window. An
increase in Silliqt constitutes a decline in liquidity.

To calculate stock market liquidity, we use daily stock price and trading volume data
for all common stocks on the New York Stock Exchange (NYSE) from the CRSP database
over the time period 1968 to 2014. We implement standard filtering criteria similar to
Amihud, 20023.

3Specifically, we admit stocks into our estimate if they have at least 200 days of return and trading
volume data in the previous year. We also omit stocks with a price less than $5 at the end of the previous
year. Finally, we eliminate outliers by removing stock’s whose liquidity estimate is in the top and bottom
5% tails of the distribution for the current year (after satisfying the former criterion). Note, results and
conclusions remain the same when we eliminate the top and bottom 1% tails of the distribution which is
consistent with filtering criteria in Amihud, 2002. We calculate the liquidity measure for each quarter and
each security, then take an equally weighted average over the cross section of securities. To calculate our
stock market liquidity proxy, we include between 986 and 2613 stocks in each year; the average number
of stocks estimating market liquidity is 1805 per year.
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In a similar manner, we estimate house market liquidity as:

RtoV h
t = |∆ht|

V OLt
(4.2)

where |∆ht| is the absolute quarterly change in house prices in quarter t (i.e. house
price inflation) and V OLt is the trading volume (in thousands of units of currency) of
houses in quarter t; an increase in RtoV h

t corresponds to a decrease in liquidity. We
use Case and Shiller’s composite national house price index which tracks the prices of
single–family homes and is from Robert J. Shiller’s webpage. Trading volume is the
sum of the volume of sales of new and existing single–family homes (available from
Thomson Reuters DataStream)4. In Section 4.7.1 Appendix A, we report descriptive
statistics of the raw estimates of RtoV s

t , RtoV
h
t .

TABLE 4.1: Descriptive Statistics for Macroeconomic Data and Liquidity
Proxies from 1970 to 2014

πt yt it H illiq
t Silliqt

Mean -0.036 2.751 5.571 -6.632 -11.533
Median 0.047 2.958 5.3 -8.716 -22.933

Max 2.291 8.204 17.79 166.548 267.171
Min -2.627 -4.147 0.07 -99.566 -62.765

Std.Dev. 0.856 2.22 3.867 49.134 42.411
Skew -0.532 -0.583 0.676 0.671 2.662
Kurt 4.199 3.715 3.537 4.082 14.186

Notes: This table reports descriptive statistics for US
macroeconomic data from 1970Q4–2014Q4. πt is the an-
nual rate of GDP deflator inflation. This has been de-
trended using a one–sided Kalman filter as in Stock and
Watson, 1999; yt is the annual rate of real GDP growth; it
is the Federal Funds rate; Hilliq

t is house market liquid-
ity expressed as the % deviation from its 3–year moving
average and Silliqt is stock market liquidity which is also
expressed as the % deviation from its 3–year moving av-
erage.

Our estimation sample spans from 1970 to 2014 and is reliant upon data availability.
We cover four National Bureau of Economic Research (NBER) recessionary periods,
including the Great Recession. We gather US economic data on inflation (using the
GDP deflator), real GDP and the Federal Funds rate from the Federal Reserve Bank of
St. Louis. We convert inflation and GDP into annual growth rates using logarithmic
differences. Using a one–sided Kalman filter, we de–trend inflation as in Stock and
Watson, 1999. The trend captures inflation expectations and is thought to alleviate price

4Case and Shiller’s national house price index gathers data from nine US census constituents for single
family homes; data is available from http://www.econ.yale.edu/~shiller/data.htm. Trading
volume data is the number of sales (in thousands), to convert into thousands of units of currency we
multiply trading volume by the median house price for the USA available from the Federal Reserve Bank
of St. Louis.

http://www.econ.yale.edu/~shiller/data.htm
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puzzles (Prieto, Eickmeier, and Marcellino, 2016). We transform both our liquidity
proxies into % deviations from their respective 3–year moving averages; denoting as
Silliqt , H illiq

t . Figure 4.2 plots our data series5.
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FIGURE 4.2: Macroeconomic and Financial Variables from 1970 to 2014
Notes: This figure plots the annual rate of US inflation, πt; annual real
GDP growth, yt; the Federal Funds rate, it; House Market Liquidity,
Hilliq
t and Stock Market Liquidity, Silliqt . We detrend the annual infla-

tion rate, using a one-sided Kalman filter as in Stock and Watson, 1999.
Our liquidity proxies are % deviations from their 3–year moving aver-

ages respectively. Grey bars indicate NBER recession dates.

Table 4.1 reports descriptive statistics for our macroeconomic and financial data. On
average US real GDP growth is around 2.75%, it peaks in 1984 at 8.2% and troughs
in the depths of the most recent recession at -4.15% (i.e. 2009Q2). House and stock
market liquidity, on average, fluctuate 6.63% and 11.53% below their respective 3–year
moving averages. Both measures peak as liquidity dries up during the Great Reces-
sion in 2008Q4 at 166.59% and 267.17% respectively. The contemporaneous correlation
between real GDP growth and stock market and house market liquidity are -0.35 and -
0.05 respectively. Negative correlations with real GDP growth are intuitive, an increase
in the Amihud, 2002 measure corresponds to worsening liquidity conditions (i.e. the
market is more illiquid). The contemporaneous correlation between our liquidity prox-
ies is 0.35.

5We also run our analysis using the annual growth rate of our liquidity proxies. Results and conclu-
sions are consistent with the results we report in this chapter. We abstain from reporting these results
since during the 2008 recession the annual change in our proxies reach up to 800%.
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4.3 Econometric Methodology

4.3.1 A Time–varying Parameter VAR with Stochastic Volatility

Following Primiceri, 2005 the full TVP–VAR with M variables, p lags and t time series
observations takes the form:

yt = Z ′tβt +A−1
t Φtεt (4.3)

βt = βt−1 + υt, υt v N(0, Q) (4.4)

where Zt = IM ⊗ [1, y′t−1, . . . , y
′
t−p], ⊗ denotes the Kronecker product and IM is an

M dimensional identity matrix; in our case M = 5. We set p = 2 in line with Cogley
and Sargent, 2005; Primiceri, 2005; Hubrich and Tetlow, 2015 and Prieto, Eickmeier,
and Marcellino, 2016. The structural shocks of the model, εt follow εt viid N(0, IM ).
The coefficients βt follow driftless random walks. The matrix At is an M ×M lower
triangular matrix with ones along the diagonal. Below the diagonal elements are the
contemporaneous relations of the variables in the model. Φt is an M × M diagonal
matrix that contains the reduced form stochastic volatility innovations. In our case, we
define the time–varying matrices At, Φt as:

Φt ≡



φ1,t 0 0 0 0
0 φ2,t 0 0 0
0 0 φ3,t 0 0
0 0 0 φ4,t 0
0 0 0 0 φ5,t


At ≡



1 0 0 0 0
α21,t 1 0 0 0
α31,t α32,t 1 0 0
α41,t α42,t α43,t 1 0
α51,t α52,t α53,t α54,t 1


(4.5)

the contemporaneous relations αij,t and the volatility innovations φi,t drift throughout
time. Constructing αt as the row-wise stacking of elements below the diagonal

αt = [α21,t, α31,t, α32,t, . . . , α54,t]′

and collecting the diagonal elements in the vector, φt

φt = [φ1,t, φ2,t, φ3,t, φ4,t, φ5,t]′

we assume:

αt = αt−1 + ζt, ζt v N(0, S) (4.6)

lnφt = lnφt−1 + ηt, ηt v N(0,W ) (4.7)
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The entire system contains four sources of uncertainty that are jointly Normal:
εt

υt

ζt

ηt

 v N(0, V ), V =


I5 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 (4.8)

where I5 is a 5 × 5 identity matrix; Q, S, W are all positive definite matrices. S is
block diagonal where the blocks correspond to the parameters belonging in each re-
spective equation. This increases the efficiency of the estimation algorithm in Section
4.7.2 Appendix B.

Priors

Our prior specification follows closely the specifications in Cogley and Sargent, 2005
and Primiceri, 2005. We use the first 41 observations (from 1970Q4–1981Q2) to calibrate
the initial conditions for the parameters of the model6. The initial conditions for the co-
efficient matrix, β0 are the OLS point estimates from a standard VAR. We set V ar(β0) as
four times the variance of the standard OLS estimates from the training sample. We ob-
tain the prior to initialise A0 in the same manner. We set lnφ0,i to have a mean equal to
the (logarithmic) standard errors of the OLS estimates (in each equation) to initialise β0;
its covariance matrix is an M -dimensional diagonal matrix where the elements along
the main diagonal are equal to 10. Further, setting the degrees of freedom and scale
for the inverse–Wishart prior distributions of the hyperparameters; for each of the five
blocks of S, the degrees of freedom are 1 + dim(Si). The degrees of freedom for Q are
set to 1+K (i.e. 1 plus the dimension of βt), where K = 55. W follows an inverse–
Gamma distribution with a single degree of freedom with a scale parameter kW = .01.
The scale matrices are chosen to be constant fractions of the OLS estimates from the
training sample. To summarise:

6Our results remain similar when we allow for 50 and 60 observations to calibrate the initial conditions
of the model, and for different values of the hyperparameters.
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β0 v N(β̂OLS , 4 · V (β̂OLS))

A0 v N(ÂOLS , 4 · V (ÂOLS))

lnφ0,i v N(ln φ̂OLS,i, 10)

Q v IW (k2
Q · (1 +K) · V ar(β0), (1 +K))

Wi,i v IG

(
k2
W

2 ,
1
2

)
, i = 1 . . .M

Si v IW (k2
S · (i+ 1) · V ar(Âi,OLS), (i+ 1)), i = 1 . . .M − 1

where IW denotes the inverse–Wishart distribution and Si, i = 1, . . . , 5 denote the
blocks of S. Âi,OLS denotes the blocks of the OLS estimates of the blocks of the estimate
of ÂOLS matrix within the training sample following the method in Primiceri, 2005. In
line with the former, and Cogley and Sargent, 2005, we set kQ = .01 and kS = .1.
We allow for 70,000 iterations of the Markov–Chain Monte Carlo (MCMC) algorithm
discarding the first 60,000 as burn–in; of the remaining 10,000 iterations, we sample
every 10th draw to reduce autocorrelation amongst the draws7. Section 4.7.2, Appendix
B assesses the convergence properties of the MCMC algorithm.

4.3.2 Identification of Structural Shocks

We add our liquidity variables to the macroeconomic data and order our TVP–VAR
model as follows: the inflation rate, πt; output growth, yt; the interest rate it; house
market liquidity H illiq

t and stock market liquidity Silliqt . We assume a block recursive
composition of the covariance matrix of structural shocks which is standard in the lit-
erature (see among others: Cogley and Sargent, 2005, Primiceri, 2005, Hubrich and
Tetlow, 2015 and Prieto, Eickmeier, and Marcellino, 2016). In our case, we define a liq-
uidity shock as a sudden decline to liquidity (i.e. an increase in illiquidity). Under this
identification scheme, macroeconomic variables are slow to react to liquidity shocks.
Notably under this identification scheme, our results are sensitive to ordering; an is-
sue we discuss in Section 4.7.3, Appendix C. Our ordering scheme imposes monetary
policy reacts slowly to liquidity shocks; typically monetary policy decisions are made
every six weeks (Swiston, 2008)8. Additionally, ordering our liquidity variables last in
our VAR model is indicative of reality. For example, we observe liquidity shocks in
late 2008 and policymakers respond by lowering interest rates in early 2009. Further-
more our liquidity proxies reach their respective peaks at the end of 2008, US real GDP

7Our results are robust when setting the scale matrices to different values; larger values of the scale
matrices induce a higher degree of time–variation into the model.

8The Federal Open Market Committee (FOMC) holds eight meetings throughout the year at regular
intervals.
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growth troughs in early 2009. Therefore we postulate our identification scheme is valid
and proceed on this premise; Section 4.7.3 Appendix C reports additional results under
an alternative ordering scheme9.

4.4 Empirical Results

4.4.1 Stochastic Volatility and Changing Dynamics

In what follows we analyse whether we can characterise time–variation to the size of
shocks or to changing dynamics of the transmission mechanism. In Figure 4.3, we
present the posterior median along with the one standard deviation percentiles of the
stochastic volatility of liquidity shocks (i.e. the quantiles of the distribution over the
draws of φ4,t, φ5,t). It is clear there is remarkable time–variation in the stochastic volatil-
ity innovations of liquidity shocks. Notice that the volatility of house market liquidity
shocks in the 2008 recession remains persistently high for at least four years after the
recession ends. This resilience may suggest a magnifying and longer lasting impact of
house market liquidity shocks following the Great Recession. Figure 4.3 corroborates
with Claessens, Kose, and Terrones, 2012 in that recessions preceding a property mar-
ket bust are more extensive, in depth and time, than those without. For example the
2001 recession yields little change in the volatility of house market liquidity shocks.
Contrastingly in the same periods, the volatility of shocks to stock market liquidity
surge temporarily and then revert back to levels consistent with non–recessionary pe-
riods10.

In Figure 4.4 we plot the posterior median impulse response functions of GDP growth
to liquidity shocks at a 5–year horizon for each observation in our sample; which covers
the period 1981Q3–2014Q4. Given an increase in our proxies constitutes a decline in liq-
uidity, a liquidity shock therefore implies a sudden decline in market liquidity. Clearly,
shocks to stock market liquidity yield temporarily contractionary effects to real GDP
growth. Over time the magnitude of the response of real GDP growth with respect to
stock market liquidity shocks are decreasing, yet the persistence remains similar. This
result is consistent with Prieto, Eickmeier, and Marcellino, 2016, who show that stock
price shocks also exhibit a decreasing impact on US real GDP growth. In fact, they find
that the overall contribution of the stock market to the Great Recession plays a neg-
ligible role11. Nevertheless, the impact of stock market liquidity shocks on real GDP

9Results are consistent if we place GDP growth before inflation. Ordering GDP and inflation in this
manner is uniform to Hubrich and Tetlow, 2015 and Prieto, Eickmeier, and Marcellino, 2016.

10We report the stochastic volatility of macroeconomic shocks in Section 4.7.3 Appendix C; along with
plots of the time–varying parameters and time–varying covariances.

11Our results are similar when we include credit spreads in our model, the credit spread is the difference
between Moody’s BAA-AAA corporate bond spread. Appendix C in Section 4.7.3 reports the results
including credit spreads.
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FIGURE 4.3: Stochastic Volatility of Liquidity Shocks from 1981 to 2014
Notes: This figure shows the median and 1 standard deviation per-
centiles of the time–varying standard deviations of structural shocks for
Stock Market liquidity, Silliqt and House Market liquidity, Hilliq

t from
1981Q3–2014Q4. Grey bars indicate NBER recession dates.

growth are significant, relative to 68% posterior credible intervals, across all time peri-
ods. Although the impact is diminishing throughout time, there are still economically
meaningful contractionary effects.

On the other hand, the real effects of house market liquidity shocks are trivial from
1981 to 2005 with the posterior median response of real GDP growth barely fluctuat-
ing away from 0. However, GDP growth becomes gradually more sensitive to house
market liquidity shocks from around 2005 onwards; the impulse response functions’
posterior credible intervals indicate significance from 2005Q2 (further results available
on request). The transition in impact of house market liquidity shocks aligns closely
with disturbances in the housing market. Interestingly, the economic significance of
house market liquidity shocks is greatest when real GDP growth is at its (sample) min-
imum value (i.e. -4.15% in 2009Q2). To compare, the maximum value of GDP growth
in our sample is in 1984Q1, notice in Figure 4.4 that there is virtually no reaction of
GDP growth to a liquidity shock in this period. The difference in the transmission of
house market liquidity shocks across our sample indicates there is a structural change
in the relationship between GDP growth and house market liquidity. We postulate the
change in the impact of liquidity shocks on real GDP growth links with the increasing
securitisation of mortgages that eventually unwound the US financial sector.
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FIGURE 4.4: Impact of Liquidity Shocks on GDP Growth 1981 to 2014
Notes: This figure plots the median impulse response functions of US
real GDP growth with respect to: a stock market liquidity shock and
a house market liquidity shock. We plot the response along a 5–year
horizon for each quarter of our sample 1981Q3–2014Q4. We define a

liquidity shock as a sudden decline in market liquidity.

Following the practice of Galí and Gambetti, 2009 and Prieto, Eickmeier, and Mar-
cellino, 2016, we plot in Figure 4.5, the differences in average impulse response of GDP
growth to liquidity shocks between different periods stemming from NBER recession
dates. This allows us to distinguish if there are differences in the economic impact of
liquidity shocks across the business cycle. We compute for each draw of the Gibbs sam-
pler, the average impulse response over each of the periods, take the difference between
the averages and then calculate the quantiles over the draws. In Panel 1, we compare
all recessions excluding the Great Recession with non–recessionary periods. Panel 2
compares the Great Recession with non–recessionary periods, and Panel 3 compares
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the Great Recession with all other recessions in our sample; this is to evaluate possible
heterogeneities in the transmission of liquidity shocks. Our results suggest little differ-
ence in the average impact of stock market liquidity shocks across periods. However,
this finding is unsurprising since Figure 4.4 reveals a decline in the susceptibility of real
GDP growth to stock market liquidity shocks.

On the other hand, we see asymmetries in the response of real GDP growth to house
market liquidity shocks. Our model implies an increasing exposure of real GDP growth
to house market liquidity shocks in the post financial crisis period; which links closely
with the persistence of the volatility of structural shocks in Figure 4.3. Clearly, our
results show that the impact of house market liquidity shocks on real GDP growth
are stronger during the Great Recession than non–recessionary periods. Perhaps even
more interestingly, Figure 4.5 shows the effects of house market liquidity shocks during
the Great Recession are more damaging, in terms of magnitude and tenacity, relative
to both normal times and other recessions within our sample12.

In Figure 4.6, we report the median and one standard deviation percentiles of the con-
tributions of stock and house market liquidity structural shocks to the overall variance
of real GDP growth across our sample. The discussion following refers to posterior
median estimates of the distribution of our structural variance decompositions. Fol-
lowing Benati and Mumtaz, 2007, we compute the variance decomposition in the fre-
quency domain by computing, for each quarter, at each iteration of the Gibbs sampler,
real GDP’s actual spectral density and the five counterfactual spectral densities by set-
ting to zero the variances of each of the structural shocks but one13. The following
discussion and analysis refers to the posterior median estimates of the structural vari-
ance decompositions. The contribution of stock market liquidity shocks to the variance
of real GDP growth varies considerably over our sample. We can see that during the
stock market crash of 1987 and the 1991 recession, the structural stock market liquidity
shocks account for 20% of the variation in real GDP growth. In 2008 the stock market
explains 36% of the variance of real GDP growth; however, this is a temporary shift and
by 2010, the fraction of GDP’s variance attributable to stock market liquidity shocks is
only 5%.

The contribution of house market liquidity shocks to the overall variance of real GDP
growth also varies remarkably over our sample. In the 1980s, the fraction of GDP’s
variance we associate to house market liquidity shocks fluctuates around 10%. Then,

12This finding could be partly attributable to our methodology and the length of the most recent re-
cession. Our model allows for smoothly changing parameters throughout time which may, in fact, only
capture parameter change over long periods. However, our model implies liquidity shocks in the property
sector yield contractionary real effects even after the financial crisis.

13Since a series’ variance is equal to the integral of its spectral density, we can compute a structural de-
composition of GDP growth’s variance at each point in time; noting that the sum of the five counterfactual
spectral densities is by construction equal to the overall variance of the series in question. It is not possi-
ble to uniquely identify the innovation variances of the structural shocks, but it is possible to compute the
time–varying covariance matrix of the VAR that results by setting innovation variances to zero.
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FIGURE 4.5: Impulse Responses of GDP growth: Differences in aver-
ages over periods

Notes: Panels 1 to 3 show the averages of differences in impulse re-
sponses of GDP growth to liquidity shocks between: other recession-
ary (i.e. NBER recession dates excluding the Great Recession) and non–
recessionary periods (Panel 1: Other Recess-No Recess); The Great Re-
cession and non–recessionary periods (Panel 2: 08 Recess-No Recess)
and The Great Recession and other recessionary periods (Panel 3: 08
Recess-Other Recess). Recessionary periods are NBER recession dates.
We compute as follows: for each draw of the Gibbs sampler, we average
the impulse response over each of the selected periods, take the differ-
ence between the averages of selected periods and then calculate the

quantiles over the draws.

following the recession in 1991, the fraction jumps to around 35% and remains persis-
tently high (i.e. around 30%) until 1997. In the early 2000s and during the dot–com
bubble burst, the contribution of house market liquidity shocks revert back to around
10%. However as the problems within the property sector start to emerge from 2005,
house market liquidity shocks start to have an increasing effect. From 2008 until the
end of 2014, house market liquidity shocks explain on average, 46% of the variation in
real GDP growth.

The shape of these figures are strikingly similar to the volatility of structural shocks in
Figure 4.3. This implies the majority of the time–variation in the structural variance
decompositions is due to changing shock sizes. Taking the results together, the key
driving forces to during the Great Recession are structural liquidity shocks. The aver-
age contribution of stock and house market liquidity shocks to the variation in GDP
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FIGURE 4.6: Contribution of Structural Liquidity Shocks to the Over-
all Variance of Real GDP Growth from 1981 to 2014

Notes: This figure plots the median and one standard deviation per-
centiles of the contribution of structural stock and house market liquid-
ity shocks to real GDP growth from 1981Q3–2014Q4. Grey bars indicate

NBER recession dates.

growth during the most recent recession are 15.36% and 36.34% respectively. The av-
erage total contribution of liquidity shocks to the variation in GDP growth is therefore
51.7%14. At the end of our sample (i.e. 2014Q4) the contribution of stock and house
market liquidity shocks to GDP growth variance are 2.74% and 36.85% respectively.
This, together with Figure 4.6, suggests the stubbornly low rates of GDP growth after
the Great Recession are predominantly due to a fragile and sluggish recovery of the US
property market.

In general, the resilience of real GDP growth to stock market liquidity shocks may re-
flect a diminishing demand for precautionary savings stemming from less uncertainty
(Arestis, Demetriades, and Luintel, 2001). Further, as financial integration increases,
domestic real effects may be offset by international investor participation as risks (and
subsequently economic impacts) leak to other economies15. The increasing real effects
of house market liquidity shocks may arise due to surges in subprime mortgage lend-
ing causing increases in debt levels (Mian and Sufi, 2009; Mian, Sufi, and Trebbi, 2015).
Similarly, increases in the net worth of financial intermediaries due to surges in house
prices in the early 2000s facilitates a relax in lending constraints; consequently injecting
too much liquidity into the property sector. Coupling with the former, the proliferating

14Which is consistent with Figure 2 in Prieto, Eickmeier, and Marcellino, 2016.
15An important future avenue would be to quantify real international spillover effects of stock market

liquidity shocks.
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sensitivity of GDP to house market liquidity shocks are in line with explanations in
Iacoviello and Neri, 2010, who maintain housing preference shocks have larger effects
on GDP when collateral effects are taken into account.

Overall our results provide substantial evidence that the US property sector has asym-
metrical real effects not only across the business cycle, but also amongst business cycle
troughs across our sample (see Panel 3 of Figure 4.5). Furthermore, we show that liq-
uidity conditions in the stock and housing markets contribute heavily to the overall
variation in real GDP growth; particularly during crisis periods. Our results contrast
Prieto, Eickmeier, and Marcellino, 2016 and document that the stock market (i.e. stock
market liquidity) is an important factor in explaining US GDP variance during the
Great Recession. The immediate policy implication is that liquidity provision to fi-
nancial and asset markets is necessary to counteract damaging contractions to GDP
growth. Studying the economic impact of liquidity shocks throughout time signals liq-
uidity provision, particularly in the property sector, is essential to promote recovery.
Our findings justify US policy responses to the turmoil of 2008 such as: injecting liq-
uidity into financial asset markets through Quantitative Easing (QE) policies; providing
Fannie Mae and Freddie Mac with capital injections in September 2008; both the Home
Affordable Modification and Home Affordable Refinancing Programs (HAMP, HARP)
and incentives to reduce principal loans to borrowers whose mortgages exceed their
property value.

4.5 Robustness Analysis

4.5.1 The Real Effects of Uncertainty Shocks

There is an implicit relationship between asset market liquidity and asset price uncer-
tainty. For example, Florackis et al., 2014 note a negative correlation between stock
market liquidity and volatility; particularly in a bear market. Levine and Zervos, 1998
stress that liquidity and uncertainty may possess an important relationship and pro-
vide an empirical investigation on the real effects of stock market liquidity and uncer-
tainty. From a theoretical perspective, Bloom, 2009 links uncertainty shocks to the real
economy showing a simulated model matches the estimations from a structural VAR
(SVAR) model in terms of magnitude and timing. Additionally, Arestis, Demetriades,
and Luintel, 2001 state that increases in uncertainty can hinder an efficient allocation of
investment. Furthermore, the former argue that the ambiguous impact of uncertainty
on saving establishes a link with liquidity. Therefore, a liquid stock market can de-
crease uncertainty which reduces the precautionary motive to save; consequently this
can hinder economic growth.
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Campbell and Cocco, 2007 provide an explanation between house market uncertainty
and the real economy via the consumption channel. The volatility of house prices cor-
responds to changes in housing wealth, which exhibit a positive correlation with con-
sumption. Moreover, a house is pledgeable as collateral to obtain credit. Surging prices
relax borrowing constraints and allow agents to smooth consumption over the life cy-
cle (Ortalo-Magne and Rady, 2006). Stein, 1995 associates uncertainty and liquidity in
the property sector under the assumption that a down payment must be made. The
multiple equilibria the model implies help explain large fluctuations in house prices16.
Diaz and Jerez, 2013 establish an intuitive link between liquidity and uncertainty. Their
theoretical model is able to reproduce the cyclical time series properties of the US prop-
erty sector. As liquidity decreases in the property sector before and during the Great
Recession, prices fluctuate and volatility intensifies.

Notably, as market liquidity and uncertainty may possess an important connection, it is
necessary to investigate the economic impact of uncertainty shocks. If we cannot prop-
erly distinguish between the real effects of uncertainty and liquidity shocks, adequate
policy recommendations cannot be made. To proxy market uncertainty we estimate an
ARCH(1) and GARCH(1,1) model of the absolute value of quarterly stock and house
price changes from 1968 to 2014 respectively. Using the absolute value of price changes
is shown to predict volatility with greater precision than squared returns (Forsberg and
Ghysels, 2007)17. We use stock data on the NYSE composite price index (available from
Thomson Reuters DataStream); house price data is from Robert J. Shiller’s website.
We convert stock and house prices into real variables by dividing by the GDP defla-
tor; returns are logarithmic differences. We include lags of the dependent variables in
the mean equations of our ARCH(1) and GARCH(1,1) models to whiten the residuals;
deleting those that are not statistically significant18.

Table 4.2 reports our ARCH(1) and GARCH(1,1) specifications for stock and house
price inflation, and autocorrelation diagnostics, from 1968 to 2014. Note also that we
restrict the variance equation in our GARCH(1,1) model of house price inflation to
ρ+ θ = 1; otherwise the conditional variance is explosive. To keep our analysis consis-
tent, our uncertainty proxies are the % deviations from their 3–year moving averages of
the conditional volatilities from our ARCH(1) and GARCH(1,1) models19. We replace
our liquidity proxies with our uncertainty proxies, σst , σht and re-estimate (4.3)–(4.8).

16However, the implications for uncertainty are sensitive to parameter values and the initial level of
liquidity within the market.

17Using absolute returns is also thought to be robust to outliers than volatility measures using squared
returns (Florackis et al., 2014). We also estimate specifications using squared real returns, analysis results
in the same conclusions to those we report herein.

18Initially, we estimate GARCH(1,1) models of the absolute value of real quarterly stock and house price
changes, with lags of the dependent variables up to and including 5 lags.

19A widely accepted measure of stock market uncertainty is the VIX index (see among others Connolly,
Stivers, and Sun, 2005). The VIX index uses option implied volatility of 30–day puts and calls for at the
money options for stocks listed on the S&P500 index. However, VIX data starts in 1990 which is too short
to use in our analysis. The contemporaneous correlation (from 1990 to 2014) between our proxy for stock
market uncertainty and the VIX index is 0.55.
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TABLE 4.2: ARCH/GARCH Models of Real Stock and House Price In-
flation from 1968 to 2014

|∆st| = µ+ β1|∆st−1|+ β2|∆st−3|+ νt,

σ2
νt = ω + ρν2

t−1
|∆ht| = µ+ β1|∆ht−1|+ β2|∆ht−2|+ β3|∆ht−4|+ β4|∆ht−5|+ υt,

σ2
υt = ρυ2

t−1 + θσ2
υt−1

Panel/Eq: A: |∆st| B: |∆ht|
Sample: 1968Q1-2014Q4

Mean Eq:
µ 2.998(0.69) µ 0.345(0.09)
β1 0.152(0.07) β1 0.542(0.07)
β2 0.203(0.08) β2 -0.096(0.06)

β3 0.60(0.06)
β4 -0.38(0.06)

Variance Eq:
ω 12.023(2.63) ρ 0.102(0.06)
ρ 0.618(0.33) θ 0.898(0.06)

Autocorrelations

lag AC lag AC
1 -0.033 1 0.003
2 0.093 2 -0.038
3 0.021 3 0.091
4 -0.081 4 0.046
5 -0.017 5 0.056
6 -0.086 6 -0.086
7 0.047 7 0.018
8 -0.083 8 0.014

Notes: Panel A of this table presents an ARCH(1) model of
the absolute value of real stock price inflation using quarterly
NYSE composite index returns from 1968 to 2014. Panel B of
this table presents a GARCH(1,1) model of the absolute value
of quarterly house price inflation using Case & Shiller com-
posite price index from 1968 to 2014. Standard errors are in
parantheses. We restrict the variance equation for house price
inflation such that ρ + θ = 1. The bottom Panel reports the
autocorrelation functions of the residuals up to lag length 8.
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FIGURE 4.7: Impact of Uncertainty Shocks on GDP growth from 1981
to 2014

Notes: This figure plots the median impulse response functions of US
real GDP growth with respect to a stock market uncertainty shock, σst
and a house market uncertainty shock, σht . We plot the response along
a 5–year horizon for each quarter of our sample 1981Q3–2014Q4. We

define a liquidity shock as a sudden decline in market liquidity.
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Figure 4.7 plots the posterior median estimates of the impulse response functions of
real GDP growth with respect to uncertainty shocks throughout time. Our results re-
veal that GDP growth responds positively to stock market uncertainty shocks and that
the impact is slowly declining across our sample. Moreover the 68% posterior credible
intervals of the response of real GDP growth to stock market uncertainty shocks con-
tain 0 over the 5–year horizon in all time periods; indicating no significant response of
real GDP growth to stock market uncertainty shocks within our sample. Turning our
attention to the real effects of uncertainty shocks in the housing market, the sensitivity
of real GDP growth remains relatively similar at each observation. Also the poste-
rior credible intervals of the impulse response functions of real GDP growth to house
market uncertainty shocks indicate economically meaningful contractions at every ob-
servation in our sample. In comparing the ramifications of property sector uncertainty
shocks with liquidity shocks it is clear that there are obvious differences throughout
time. In the latter decade of our sample, our results reveal the economic significance of
uncertainty and liquidity shocks in the property sector are remarkably similar20.

To understand the potential asymmetries of the real effects of uncertainty, we plot in
Figure 4.8 the differences in average impulse responses over different time periods.
Our results reveal no asymmetries between the impact of uncertainty shocks in the
Great Recession and other recessions in our sample. Adding to this, there are no promi-
nent differences in average impulse responses between the Great Recession and non–
recessionary periods. This implies that, on average, the response of real GDP growth
with respect to uncertainty shocks from stock and housing markets are not conditional
on the business cycle; or different over business cycle troughs in our sample.

In general these findings reveal that there are stark differences between the real effects
of uncertainty shocks relative to liquidity shocks. Our results show the response of
real GDP growth to uncertainty shocks do not vary over time; or the business cycle. In
particular, the response of real GDP growth to stock market uncertainty shocks echoes
Levine and Zervos, 1998 who show a fragile link between stock market uncertainty
(relative to stock market liquidity) and economic growth. Our findings with regards
to house market uncertainty shocks demonstrate little variation in the contraction of
real GDP growth throughout time. Nonetheless it is difficult to ascertain asymmetries
in the response of GDP growth to uncertainty shocks across the business cycle and
different recessions for our sample. Therefore, our analysis suggests the real effects
of uncertainty shocks from stock and house markets are fundamentally different to
liquidity shocks.

20Note also that we also consider the annual change in conditional volatilities implied from our models
in Table 4.2. Results and conclusions are consistent with those we report within.
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FIGURE 4.8: Impulse Responses of GDP growth: Differences in aver-
ages over periods

Notes: Panels 1 to 3 show the averages of differences in impulse re-
sponses of GDP growth to liquidity shocks between: other recession-
ary (i.e. NBER recession dates excluding the Great Recession) and non–
recessionary periods (Panel 1: Other Recess-No Recess); The Great Re-
cession and non–recessionary periods (Panel 2: 08 Recess-No Recess)
and The Great Recession and other recessionary periods (Panel 3: 08
Recess-Other Recess). Recessionary periods are NBER recession dates.
We compute as follows: for each draw of the Gibbs sampler, we average
the impulse response over each of the selected periods, take the differ-
ence between the averages of selected periods and then calculate the

quantiles over the draws.



Chapter 4. Liquidity Shocks and Real GDP Growth: Evidence from a Bayesian
Time–varying Parameter VAR 103

4.5.2 Liquidity Shocks and Inflation

Although the main focus of this chapter is the impact of liquidity shocks on real GDP
growth, we examine the inflationary impact of liquidity shocks from stock and hous-
ing markets from our baseline TVP–VAR. In Figure 4.9 we plot the impact of stock
and house market liquidity shocks for inflation for each observation of our sample. It
is clear that stock market liquidity shocks result in temporary increases in inflation for
around a year following the shock. The median inflationary impact exhibits some slight
time variation, and the 68% posterior credible intervals indicate marginal significance
of the response in all time periods. While this might seem counter–intuitive, we postu-
late that our stock market liquidity proxy is picking up supply side effects of financial
tightening. Prieto, Eickmeier, and Marcellino, 2016 argue that the empirical and DSGE
literature is ambiguous on the inflationary impact of financial tightening. Demand and
supply side factors can contribute to the overall inflationary impact of shocks. Supply
side factors are thought to dominate demand factors during the crisis period. A de-
cline in stock market liquidity may imply a lack of access to funds for investment and
a lower availability of working capital which is mirrored in increasing loan rates21.

Gilchrist et al., 2015 develop a DSGE model relaxing the assumption of frictionless
financial markets and show that during crisis periods, adverse financial shocks shift
the Phillips curve upwards. However, for the 2008 recession in particular, liquidity
constrained firm’s balance sheets were weak. Typically after contractionary financial
shocks, firms have the incentive to drop prices and invest in market share. Yet Gilchrist
et al., 2015 argue that firms with weak balance sheets have the incentive to keep share
prices high in order to remain profitable. Whilst our stock market liquidity proxy filters
out highly illiquid stocks, we do not weight our aggregate based on the ‘liquidness’
of the stocks. Therefore, our model implies (on aggregate) that supply side effects
dominate the demand side effects of financial tightening due to liquidity shocks across
our sample22.

The inflationary impact of house market liquidity shocks varies considerably within
our sample. Intuitively if liquidity in the housing sector dries up and prices decline,
housing wealth depletes and feeds through into falling consumption levels. Simulta-
neously as property values decrease the ability to obtain credit diminishes, collateral
value falls and households become increasingly constrained. This explanation is in
line with Guerrieri and Iacoviello, 2015, who show that negative house price shocks
are more detrimental when the borrowing constraint is binding. We propose that the

21We also cannot discount the possibility that the response of inflation to stock market liquidity shocks
is simply because of the negative correlation with real activity.

22An interesting future avenue of research would be to separate our aggregate stock market liquidity
proxy into liquid and illiquid firms and assess the impact of liquidity shocks from both proxies. Næs,
Skjeltorp, and Ødegaard, 2011 show the predictive power of highly illiquid stocks is richer than liquid
stocks.
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FIGURE 4.9: Impact of Liquidity shocks on Inflation 1981 to 2014
Notes: This figure plots the median impulse response functions of US
inflation with respect to: a stock market liquidity shock and a house
market liquidity shock. We plot the response along a 5–year horizon
for each quarter of our estimated sample 1981Q3–2014Q4. We define a

liquidity shock as a sudden decline in market liquidity.
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effect of house market liquidity shocks work through demand channels thereby de-
creasing inflation. As borrowing constraints become binding during the Great Reces-
sion, the contractions of inflation deepen. Note that from 2008 to the end of our sample,
inflation becomes more vulnerable to house market liquidity shocks and the impact du-
ration increases to around three years following the shock. The response of inflation
is significant, relative to 68% posterior credible intervals, during the Great Recession
around 6 quarters after the shock is observed; thereby indicating a gradual emergence
of the disinflationary demand side effects from tightening credit conditions and falling
consumption.
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FIGURE 4.10: Impulse Responses of GDP growth: Differences in aver-
ages over periods

Notes: Columns one to three show the averages of differences in im-
pulse responses of GDP growth to liquidity shocks between: other re-
cessionary (i.e. NBER recession dates excluding the Great Recession)
and non-recessionary periods (Panel 1: Other Recess-No Recess); The
Great Recession and non-recessionary periods (Panel 2: 08 Recess-No
Recess) and The Great Recession and other recessionary periods (Panel
3: 08 Recess-Other Recess). All recessions are defined as NBER recession
dates. We compute as follows: for each draw of the Gibbs sampler, we
average the impulse response over each of the selected periods, take the
difference between the averages of selected periods and then calculate

the quantiles over the draws.

Figure 4.10 gives insight into the asymmetrical response of inflation during recession-
ary periods, these plots further support findings in Guerrieri and Iacoviello, 201523.
As we can see, there is little difference in the impact of house market liquidity shocks
on inflation to all NBER recessions excluding the 2008 recession and non–recessionary
periods. The (dis)inflationary impact of house market liquidity shocks in the Great
Recession relative to normal times is marginally significant; referring to 68% posterior
credible intervals. However, the inflationary impact of property sector liquidity shocks

23We abstain from reporting the results on the inflationary impact of stock market liquidity because
there is very little time–variation in the posterior median response of inflation (see Figure 4.9).
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is clearly less persistent in all NBER recessions relative to the Great Recession; provid-
ing further support with Claessens, Kose, and Terrones, 2012.

Overall, we provide evidence that the inflationary impact of shocks to house market
liquidity possess demand side factors in terms of tightening credit conditions thereby
reducing price growth. Supply side factors are inherent in our stock market liquidity
proxy that influences firm abilities’ to obtain credit. Corresponding with Prieto, Eick-
meier, and Marcellino, 2016, firms keeping share prices high helps explain the puzzling
phenomena of a stubbornly decreasing inflation rate during the Great Recession. Our
results further reinforce the challenges for policy outlined in Gilchrist et al., 2015; a
tradeoff between output and inflation stabilisation in light of financial hardship.

4.6 Conclusions

In this chapter we provide insights into the links between asset market liquidity and the
real economy using US data, by fitting a Bayesian VAR model with time–varying pa-
rameters from 1970 to 2014. A summary of our results is as follows: First, stock market
liquidity shocks result in economically meaningful contractions to real GDP growth;
however, the magnitude is decreasing throughout time. Second, our analysis demon-
strates a distinct change in the structural relationship between real GDP growth and
house market liquidity from 2005; as disruptions in the property sector start to emerge.
Third, we provide notable evidence of an asymmetric response of GDP growth with
respect to house market liquidity shocks. In particular, these arise both across the busi-
ness cycle and among business cycle troughs in our sample. Fourth, counterfactual
analysis reveals that structural liquidity shocks contribute the lion’s share of variation
in GDP growth; particularly during crisis periods. In the most recent recession, on av-
erage, stock and house market liquidity shocks explain 15% and 36% of US real GDP
growth variation, respectively. Finally, house market liquidity shocks contribute, on
average, 46% of the overall variance in real GDP growth from 2008 onwards. This im-
plies that the fragile recovery in the US is partially due to imbalances within the prop-
erty sector. Taken together, our analysis sheds light on the need for liquidity provision
into asset markets; particularly during recessions following a property bust (Claessens,
Kose, and Terrones, 2012). Consequently our study justifies attempts to inject liquidity
into the property sector and stock market in response to the Great Recession.

We extend upon the main results by showing that the response of GDP to uncertainty
shocks does not vary with time, the business cycle, or business cycle troughs in our
sample. For policymakers, these results imply that house price uncertainty damages
prospects for economic growth, which suggests a need to monitor house price volatil-
ity. However, noting that liquidity conditions can propagate through to house price
uncertainty through factors such as trading delays (Diaz and Jerez, 2013), and relaxes



Chapter 4. Liquidity Shocks and Real GDP Growth: Evidence from a Bayesian
Time–varying Parameter VAR 107

in borrowing constraints (Mian and Sufi, 2009), indicates liquidity provision may hin-
der the economic impact of house price uncertainty shocks.

Our work provides considerable scope for future research. First, our results show
house market liquidity shocks explain the majority of GDP growth variation in the
post–financial crisis period. This supports the use of our house market liquidity proxy
for predicting future recessions over and above existing leading economic indicators.
Improving forecasts of fundamental macroeconomic indicators would be of great in-
terest to central banks. Delving deeper into the origins of macroeconomic–financial
structural dynamics, possibly linking parameter evolution to regulatory reform, would
be of paramount importance to examine the effectiveness of policy implementation.
Finally, accounting for stock and house market liquidity in a DSGE model provides
thought provoking avenues in deducing optimal policy responses to asset market liq-
uidity shocks in a time–varying framework.
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4.7 Appendix to Chapter 4

4.7.1 Appendix A: Raw liquidity Estimates

Table 4.3 reports descriptive statistics on the raw estimates of our liquidity proxies. In
Panel A, we report the full sample mean and median, along with sub–period means
for both RtoV s

t , RtoV
h
t . Panel B reports the contemporaneous correlations between

our liquidity proxies from 1968 to 2014, along with sub–period correlations (where we
denote correlation as ρ(RtoV s

t , RtoV
h
t )). The sub–sample means imply liquidity in both

the stock and property market are increasing throughout time. The contemporaneous
full sample correlation between our raw liquidity proxies 0.64. Turning our attention
to the sub–sample correlations, there are substantial differences among decades. In
particular the correlation between US stock and house market liquidity from the late
1960s until 1989 is positive; however from 1990 to 1999, correlation is -0.10. In the next
decade (i.e. between 2000 and 2009), the correlation is 0.3724. Differences in sub–sample
correlations suggest the market fundamentals are different.

24The correlation between our liquidity proxies from 2000-2007 is 0.58; during 2008 and 2009 the corre-
lation is 0.68; finally, between the years 2000 and 2014 the correlation is 0.44.
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TABLE 4.3: Descriptive Statistics for Raw Estimates of Liquidity Proxies
from 1968 to 2014

Panel A: Mean Analysis of Liquidity Proxies

Full Sample: 1968-2014
Mean Median Skew Kurt

RtoV s
t 0.19 0.105 3.124 13.433

RtoV h
t 0.063 0.019 2.387 5.994

Sub Sample Means: 1968-79 1980-89 1990-99 2000-09 2010-14
RtoV s

t 0.486 0.181 0.098 0.023 0.006
RtoV h

t 0.181 0.047 0.011 0.016 0.011

Panel B: Correlation between Liquidity Proxies

Full Sample: 1968-2014
ρ(RtoV s

t , RtoV
h
t ) 0.641

Sub Sample: 1968-79 1980-89 1990-99 2000-09 2010-14
ρ(RtoV s

t , RtoV
h
t ) 0.204 0.132 -0.101 0.373 -0.06

Notes: This table reports descriptive statistics for the raw estimates of stock and
house market liquidity proxies, RtoV st , RtoV ht from 1968Q4-2014Q4. We follow
Amihud, 2002 in constructing our liquidity proxies as in equations (1) and (2);
RtoV st is scaled by 106 and RtoV ht is scaled by 109. Panel A reports mean and
median estimates. The top half of Panel A reports full sample estimates of the
respective means and medians along with estimates of skewness and kurtosis.
The bottom half of Panel A reports sub–sample mean estimates. Panel B re-
ports the contemporaneous correlations between our liquidity proxies, denoted
as ρ(RtoV st , RtoV ht ). The first half of Panel B reports the full sample correlation.
The second half of Panel B reports sub–sample correlations.
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4.7.2 Appendix B: Estimation Algorithms

Posterior Computation of TVP–VAR with Stochastic Volatility

To estimate our TVP–VAR with stochastic volatility, we use the algorithm developed
in Primiceri, 2005. Our notation is consistent with the notation in section 4.3. The first
step is to draw the time–varying coefficients. Following Carter and Kohn, 1994, the
density of βt, p(βt) can be factored as:

p(βT |yT , AT ,ΦT , V ) = p(βT |yT , AT ,ΦT , V )
T−1∏
t=1

p(βt|βt+1, y
t, AT ,ΦT , V )

where

βt|βt+1, y
t, AT ,ΦT , V v N(βt|t+1,Ξt|t+1)

βt|t+1 = E(βt|βt+1, y
t, AT ,ΦT , V ),

Ξt|t+1 = V ar(βt|βt+1, y
t, AT ,ΦT , V ).

E(·) & V ar(·) denote the expectation and variance operator. The vector, βt, is drawn
using forward and backward Kalman filter recursions. The last recursion of the filter
provides the mean and variance of the posterior distribution of βt.

In order to draw covariance states, S is assumed to be block diagonal and the Kalman
filter is applied backward equation by equation. We recursively recover:

αi,t|t+1 = E(αi,t|αi,t+1, y
t, AT ,ΦT , V ),

Υi,t|t+1 = V ar(αi,t|αi,t+1, y
t, AT ,ΦT , V ).

here αi,t is the ith block of αt which corresponds to the coefficients of the ith equation
in:

ŷt = Xtαt + Φtεt

because (4.3) can be written as

At(yt − Z ′tβt) = Atŷt = Φtεt

αi,t is sampled recursively in the same way as sampling the coefficients βt from the
N(αi,t|t+1,Υi,t|t+1).

Drawing volatility states requires sampling from a mixture of 7 Normal distributions
(Kim, Shephard, and Chib, 1998). We convert ŷt = Φtεt into a system of linear equations
by squaring and taking logarithms of every element which leads to an approximating
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state space form:

log(ŷ2
t + 0.001) = 2φt + εt

φt = φt−1 + ηt

where εi,t = log(ε2
i,t). As noted in Primiceri, 2005, the measurement equation innova-

tions are logχ2(1) distributed. The mixture of 7 Normals is now required to transform
this equations into a linear Gaussian system as in Kim, Shephard, and Chib, 1998. Now
defining νT = [ν1, . . . , νT ]′ as a matrix of indicator variables that selects which member
of the mixture of Normal approximations is used at every point in time. Conditional
on βT , AT , V, and νT , we are now able to recursively recover φt|t+1 and Φt|t+1 from a
Normal distribution. Note:

φt|t+1 = E(φt|φt+1, y
t, AT , βT , V, νT )

Φt|t+1 = V ar(φt|φt+1, y
t, AT , βT , V, νT )

Finally, we draw the hyperparameters of the model from their inverse–Wishart distri-
butions. In summary, the steps are as follows:

1. Initialise parameters

2. Sample βT from p(βT |yT , AT , ΦT , V )

3. Sample AT from p(AT |yT , βT , ΦT , V )

4. Sample ΦT from p(ΦT |yT , AT , βT , νT , V )

5. Sample νT from p(νT |yT , AT , ΦT , V )

6. Sample V by sampling Q, W, S

7. Repeat steps 2–6

Assessing the Convergence of the MCMC Algorithm

We compute the inefficiency factors for the draws of states from their respective pos-
terior distributions. Following Primiceri, 2005, we compute the inefficiency factors as
the inverse of the relative numerical efficiency (RNE) measure

RNE = (2π)−1 1
S(0)

∫ π

−π
S(ω)dω

where S(ω) is the spectral density of the sequence of draws from the Gibbs sampler for
the quantity of interest at frequency ω.

Figure 4.11 plots the inefficiency factors for the time–varying coefficients of the TVP–
VAR (the βt), the non zero elements of the matrix At, the volatilities (φi,t’s), and for
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the model’s hyperparameters, i.e. the free elements of the matrices Q, S, and W . The
figure clearly shows that the autocorrelation of the draws is impeccably low, in the vast
majority of cases below 0.8. As stressed in Primiceri, 2005 and others, values of the
inefficiency factors below 20 are satisfactory.
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FIGURE 4.11: Convergence of the MCMC Algorithm; Inefficiency Fac-
tors

Notes: This figure shows the inefficiency factors computed for the draws
of the elements of the matrices: βt, At, Ht, Q, S and W
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4.7.3 Appendix C: Additional Results

A Standard Bayesian VAR model using Stochastic Search Shrinkage

We start with a standard SVAR with p lags and M variables:

Byt = Γ0 +
p∑
i=1

Γiyt−i + εt

where yt for t = 1, . . . , T is an M ×1 vector of M variables, B is an M ×M matrix, Γ0 is
an M × 1 vector, Γi, i = (1, 2, ..., p) are M ×M matrices and εt = (ε1,t, ε2,t, ..., εM,t) are
the structural errors from the VAR model. Under the assumption that B is invertible
and pre–multiplying both sides of the above byB−1 we have the reduced–form VAR(p)
model:

yt = A0 +
p∑
i=1

Aiyt−i + εt

where A0 = B−1Γ0, Ai = B−1Γi, i = (1, 2, ..., p) and εt = B−1εt with εt viid N(0,Σ).
Now we define Y as a T×M matrix which stacks the T observations for each dependent
variable (in a column-wise manner) and E stacking the residuals conformable to Y .
Defining A = (A0, A1, . . . , Ap)′ and the T × K matrix X where K = 1 + Mp is the
number of coefficients in each equation of the system we have:

Y = XA+ E

Let α = vec(A) which is a vector of KM elements, we can see that the number of
parameters to estimate increases exponentially when adding variables to the system.
Similarly, Σ has M(M+1)

2 elements. In typical macroeconomic applications, the number
of parameters to estimate is far greater than the number of time series observations. In
this section, we use the algorithm developed in George, Sun, and Ni, 2008; it is com-
monly referred to as using a Stochastic Search Variable Selection (SSVS) prior. The in-
tuition behind the SSVS prior specifies a hierarchical prior as a mixture of two Normal
distributions25. Let αi denote the ith element of α:

αi|γi v (1− γi)N(αi, κ2
0,i) + γiN(αi, κ2

1,i)

here γ is a dummy variable. It is treated as an unknown parameter and is estimated
in a data–based fashion. If γi = 0, then αi is drawn from the first Normal distribution
and drawn from the second Normal distribution if γi = 1. In particular, George, Sun,
and Ni, 2008 note that the SSVS aspect of this method arises by choosing κ2

0,i � κ2
1,i.

Thus, the coefficient, if drawn from the first Normal is restricted to be virtually zero.

25A hierarchical prior is a prior in which the parameters expressing have a prior of their own
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Conversely, if the coefficient in αi is drawn from the second Normal (with an uninfor-
mative prior), the coefficient is included within the equation. The prior given above
may be written more compactly as:

α|γ v N(α,D)

D is a diagonal matrix with di denoting the (i, i)th element where:

di =
{
κ2

0,i if γi = 0
κ2

1,i if γi = 1

The prior for γ = (γ1, . . . , γKM )′ assumes each element is independent of one another
and of Bernoulli form such that:

Pr(γi = 1) = q
i

Pr(γi = 0) = 1− q
i

setting q
i

= 0.5 implies each coefficient is equally likely to be included or excluded.

Posterior Computation of the SSVS Algorithm

Here, we sketch out the procedure to compute the posteriors of the SSVS prior Let Λ
denote the set of parameters for the VAR model and Λ−c note all the parameters except
for c. For the coefficient matrix of the VAR we have

α|Y,Λ−α v N(α, V α)

V α = [Σ−1 ⊗ (X ′X) +D−1]−1

α = V α[D−1α+ vec(X ′Y Σ−1)]

γi is independent ∀i Bernoulli random variables:

Pr(γi = 1|Y,Λ−γi) = qi

Pr(γi = 0|Y,Λ−γi) = (1− qi)

and

qi =
1
κ1,i

exp
(
− α2

i

2κ2
1,i

)
1
κ1,i

exp
(
− α2

i
2κ1,i

)
q
i
+ 1

κ0,i
exp

(
− α2

i

2κ2
0,i

)(
1− q

i

)
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The error covariance matrix is decomposed as:

Σ−1 = ΨΨ′

where Ψ is upper triangular. A Gamma prior is used for the squared diagonal ele-
ments of Ψ. A mixture of two Normal distributions is used for each element above
the diagonal. The implication here is that the diagonal elements are included within
the model which guarantees Σ−1 is positive definite. Define the non zero elements
of Ψ as ψi,j where ψ = (ψ1,1, . . . , ψn,n)′, ηj = (ψ1,j , . . . , ψj−1,j)′ for j = 2, . . . , n and
η = (η′2, . . . , η′n)′. These elements are assumed to have prior independence with a
Gamma distribution:

ψ2
j,j v G(aj , bj)

where G(aj , bj) notes the Gamma distribution with scale and shape parameters aj , bj
respectively. In our application, aj = 0.01 and bj = 0.01 ; results are robust to the
choices of hyperparameters selected. The prior for the off diagonal elements of Ψ takes
an identical mixture of two Normals as in α.

ηj |ωj v N(0, Lj)

where

ωj = (ω1,j , . . . , ωj−1,j)′, ωi,j ∈ {0, 1}
Lj = diag(l1,j , . . . , lj−1,j)

where

li,j =
{
κ2

0,ij if ωi,j = 0
κ2

1,ij if ωi,j = 1

for j = 2, . . . , n and i = 1, . . . , n − 1. Values of κ0,ij and κ1,ij are specified as 0.1 and
1 respectively. For ω = (ω′2, . . . , ω′n)′ each element has a Bernoulli form and again is
independent from one another thus:

Pr(ωij = 1) = q
i

Pr(ωij = 0) = (1− q
i
)

We set q
i

= 0.5 allowing each parameter is equally likely to be included or excluded.
Note as in George, Sun, and Ni, 2008 ψ2

jj are independent of one another with:

ψ2
jj |Y,Λ−ψjj v G

(
aj + 0.5T, bj

)
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with

bj = b1 + 0.5v11, if j = 1

bj = b1 + 0.5(vjj − v′j [Vj−1 + L−1
j ]−1vj), if j = 2, . . . , n

note that V = (Y −XA)′(Y −XA) with elements vij , vj = (v1,j , . . . , vj−1,j)′, Vj is the
upper left block of V (with dimension j × j). The posterior of η can be written in terms
of the conditional posteriors of ηj for j = 2, . . . , n since they are independent of one
another and:

ηj |Y,Λ−ηj v N(ηj , V j)

V j = [Vj−1 + L−1
j ],

ηj = −ψjjV jvj

The posterior for ωij (independent Bernoulli random variables):

Pr(ωij = 1|Y,Λ−ωij ) = qij

Pr(ωij = 0|Y,Λ−ωij ) = (1− qij)

and

qi =
1

κ1,ij
exp(−

(
ψ2
ij

2κ2
1,ij

)
1

κ1,ij
exp

(
− ψ2

ij

2κ1,ij

)
q
ij

+ 1
κ0,ij

exp
(
− ψ2

ij

2κ2
0,ij

)(
1− q

ij

)
The MCMC algorithm draws sequentially from the posterior distributions reported
above.
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Standard VAR models over Sub Samples

To obtain an idea of on the sources of time–variation, we estimate constant parame-
ter VAR models using three sub–samples: 1984Q1 to 2006Q4, 1984Q1 to 2014Q4 and
1995Q1 to 2014Q4. We use Bayesian methods to estimate these VAR models and follow
the algorithm in George, Sun, and Ni, 2008 implementing the SSVS prior. As in Prieto,
Eickmeier, and Marcellino, 2016, 1984Q1 marks the starting point of the Great Moder-
ation. The first sub–sample ends before the Great Recession; the second includes the
Great Recession and the third uses the last two decades of our sample. We plot in Fig-
ure 4.12, the impulse response functions of GDP growth with respect stock and house
market liquidity shocks.

It is clear that there is variation in the response of GDP growth with respect to both liq-
uidity proxies, conditional on the estimation sample. Notice in Panel 1, liquidity shocks
have no substantial real effects on US GDP growth during the Great Moderation. From
our estimated VAR model using a sample from 1984 to 2014 (in Panel 2), we see that
stock market liquidity shocks result in significant contractions of real GDP growth; rel-
ative to 68% posterior credible intervals. However, as we can also see in Panel 2, the
economic impact of house market liquidity shocks are trivial. Yet, Panel 3 reveals that
there are persistently damaging effects of house market liquidity shocks in the latter
two decades sample (i.e. from 1995 to 2014). Contrastingly in the very same period,
stock market liquidity shocks appear immaterial. Having said this, the remarkable dif-
ferences in the impact of stock market liquidity shocks on GDP growth support the
use of models accounting for time–variation. These findings are also consistent with
the main results. Specifically, the constant parameter VAR models are picking up eco-
nomically meaningful real effects of house market liquidity shocks in the latter years
of our sample. Finally, the difference in the shapes of the impulse response functions
support the use of a volatility structure that accounts for changing shock sizes; clearly
the impact of a 1% standard deviation shock is changing over time.
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FIGURE 4.12: Impulse Response Functions of GDP growth from Con-
stant Parameter VAR models in Different Sub Samples

Notes: This figure plots the posterior median and 1 standard deviations
percentiles of the impulse response function of GDP growth with respect
to stock and house market liquidity shocks for estimated VAR models
using different sub samples. The first sub sample considered is 1984Q1
to 2006Q4 (Panel 1); the second is 1984Q1 to 2014Q4 (Panel 2) and the
third is 1995Q1 to 2014Q4 (Panel 3). We define a liquidity shock as a

sudden decline in market liquidity.
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Stochastic Volatility, Parameter Evolution, and Contemporaneous Relations for our
main TVP VAR model

In Figure 4.13, we plot the median and one deviation percentiles of the time–varying
volatility estimates of the structural shocks for our macroeconomic variables. A note-
worthy point to consider is the remarkable similarities between the volatility estimates
of structural shocks to the interest rate implied by our model, and those in Justiniano
and Primiceri, 2008 and Prieto, Eickmeier, and Marcellino, 2016; the former estimates
are from a DSGE model.
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FIGURE 4.13: Stochastic volatility of Macroeconomic Shocks from 1981
to 2014

Notes: This figure shows the median and 1 standard deviation per-
centiles of the time–varying standard deviations of structural shocks for
the inflation rate, πt, real GDP growth, yt and the interest rate, it from

1981Q3–2014Q4. Grey bars indicate NBER recession dates.
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Figures 4.14 and 4.15 plot the evolution of the autoregressive parameters which we
sum over lags, and the contemporaneous relations between the variables. There is
time–variation in both the time–varying coefficient matrices and the contemporaneous
relations; as we can see, the degree of variation is more significant in the contempora-
neous relations.
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FIGURE 4.14: Parameter Evolution (elements of βt)
Notes: This figure plots the posterior median (and one standard devi-
ations percentiles) of the autoregressive parameters summing over the
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The Response of Inflation to Contractionary Monetary Policy Shocks

As we report in the main text, we detrend inflation using a one–sided Kalman filter as
in Stock and Watson, 1999. This is thought to alleviate price puzzles that are often ap-
parent in VAR analysis (see Björnland and Leitemo, 2009)26. Figure 4.16 plots the pos-
terior median impulse response function of inflation with respect to a contractionary
monetary policy shock in all time periods of our sample. Notice that inflation responds
marginally positively in all periods; although the response is not significant relative
to 68% posterior credible intervals for all observations in our sample. Furthermore,
our plot reveals that inflation becomes less sensitive to movements in the interest rate
throughout time. This could possibly link to the declining trend in the Federal Funds
rate within our sample. In the first observation of our sample (1981Q3) the interest rate
is 17.59% and in the last observation the interest rate is 0.1%. Therefore our model sug-
gests that inflation is more sensitive to contractionary monetary policy shocks at higher
rates of interest.

An alternative argument is that, with the interest rate approaching its zero lower bound
from 2008 until the end of our sample, the Federal Funds rate is not an effective indica-
tor of monetary policy stance. Combining this with QE implementation, suggests that
monetary policy from 2008 is even more expansionary than the information content
within the interest rate. Therefore, the resilience of inflation to contractionary monetary
policy shocks, in the post–financial crisis period, may be partly due to the injections of
liquidity into the economy that the interest rate cannot capture.

26Analysis using the (raw) annual rate of GDP deflator inflation results in a significant (relative to 68%
posterior credible intervals) price puzzle for a year after the shock. Results available on request.
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FIGURE 4.16: Impact of Contractionary Monetary Policy Shocks on
Inflation 1981 to 2014

Notes: This figure plots the median impulse response functions of in-
flation with respect to a contractionary monetary policy shock. We plot
the response along a 5–year horizon for each quarter of our estimated

sample 1981Q3–2014Q4.
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Baseline TVP–VAR using an Alternative Identification

The assumptions underpinning our identification scheme requires discussion. Our
baseline identification scheme places financial variables after the macroeconomic vari-
ables. This implies that our liquidity proxies react immediately to macroeconomic
shocks. Conversely macroeconomic variables are slow to respond to liquidity shocks.
Another plausible assumption is that interest rates can react contemporaneously to liq-
uidity shocks within the property sector27. Our alternative identification scheme places
house market liquidity before the interest rate. Therefore variables enter the TVP–VAR
in the following order: inflation, πt; GDP growth, yt; house market liquidity, H illiq

t ; the
interest rate, it and stock market liquidity, Silliqt .

Figure 4.17 plots the median impulse response function of GDP to liquidity shocks.
Unsurprisingly, the posterior median response of real GDP growth to stock market
liquidity shocks remains similar. The impact of house market liquidity shocks under
our alternative ordering remain largely similar to those from our baseline identification
scheme. The only difference is the posterior median response of real GDP growth, in
late 2009, reaches a trough considerably lower than the posterior median responses
both during the Great Recession and the following period. Apart from this anomaly,
the profile of the posterior median impulse response functions remain similar to those
we report in the main text28.

Figure 4.18 plots the differences in average impulse responses of GDP to stock and
house market liquidity shocks in different periods under our alternative identification
scheme. It is clear that the same conclusions hold as in our baseline analysis for the
impact of stock market liquidity shocks on real GDP growth during different periods.
Conversely, ordering house market liquidity before the interest rate yields different
conclusions. In particular, note that our results here suggest no difference in the aver-
age impact of house market liquidity shocks between all NBER recessions (excluding
the Great Recession) and non–recessionary periods. However, this result is driven by
the sensitivity of GDP growth to a house market liquidity shock in late 2009 (see Figure
4.17); consequently the response of real GDP growth in this time period influences the
average impulse response of GDP in non–recessionary periods. Similarly the results
yield no difference, on average, between the Great Recession and non–recessionary
periods. However, there are differences in the real effects of house market liquidity
shocks between the Great Recession and other recessions within our sample. We find
that the severity of liquidity shocks, in terms of duration and magnitude, is greater (on
average) in the most recent recession.

27Björnland and Leitemo, 2009 place house prices before the interest rate in a standard VAR model.
28Ordering the interest rate last in our TVP–VAR models reveals qualitatively similar conclusions.
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FIGURE 4.17: Impact of Liquidity shocks on GDP growth 1981 to 2014
Notes: This figure plots the median impulse response functions of US
real GDP growth with respect to: a stock market liquidity shock and
a house market liquidity shock. We plot the response along a 5–year
horizon for each quarter of our sample 1981Q3–2014Q4. We define a

liquidity shock as a sudden decline in market liquidity.
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FIGURE 4.18: Impulse Responses of GDP growth: Differences in aver-
ages over periods

Notes: Panels 1 to 3 show the averages of differences in impulse re-
sponses of GDP growth to liquidity shocks between: other recession-
ary (i.e. NBER recession dates excluding the Great Recession) and non–
recessionary periods (Panel 1: Other Recess-No Recess); The Great Re-
cession and non–recessionary periods (Panel 2: 08 Recess-No Recess)
and The Great Recession and other recessionary periods (Panel 3: 08
Recess-Other Recess). Recessionary periods are NBER recession dates.
We compute as follows: for each draw of the Gibbs sampler, we average
the impulse response over each of the selected periods, take the differ-
ence between the averages of selected periods and then calculate the

quantiles over the draws.
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A TVP–VAR Model Including Credit Spreads

In this section we extend upon our model in the main body of the chapter and ac-
count for credit risk. To proxy credit risk we use the corporate bond spread, which
we measure as the difference between Moody’s BAA and AAA corporate bond yields;
available from the Federal Reserve Bank of St. Louis. We abstain from reporting results
using credit spreads in the main text because of difficulties in isolating the liquidity
component from a credit spread29. However, omitting credit risk may over exaggerate
the impact of our liquidity proxies in our counterfactual structural variance decompo-
sition and influence impulse response analysis.

To investigate further, we estimate a 6–variable TVP–VAR model as in (4.3)–(4.8) in-
cluding Moody’s BAA-AAA corporate bond yield spread. The results below corre-
spond to the same priors we impose on the system in the main text, variables enter
the TVP–VAR in the following manner: inflation, πt; real GDP growth, yt; the Federal
Funds rate, it; house market liquidity, H illiq

t ; corporate bond spread, CRt; and stock
market liquidity, Silliqt . For the sake of brevity, we do not report convergence diagnos-
tics for the model; however inefficiency factors remain uniformly low. Furthermore,
note that the main messages from this analysis are consistent to different orderings
of our financial variables. We postulate shocks to the corporate bond spread capture
credit conditions worsening which therefore depress real GDP growth.

Figure 4.19 plots the posterior median and one standard deviation percentiles of the
stochastic volatility of our liquidity and credit risk shocks. In general, the volatility of
credit risk shocks surge temporarily in conjunction with the 1991 recession, the period
following the burst of the dot–com bubble, and the Great Recession. Furthermore, no-
tice the persistent increases from 2005–2009; which implies our model may be picking
up disturbances in credit markets before the crash in 2008. Note also that the shape
and time–variation in the volatility of our structural liquidity shocks remain similar to
Figure 4.3 in the main text.

29Schwarz, 2015 proposes a credit spread measure free from the risk component using the KFW yield
minus the German sovereign yield.
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FIGURE 4.19: Stochastic Volatility of Liquidity and Credit Risk Shocks
from 1981 to 2014

Notes: This figure shows the median and 1 standard deviation per-
centiles of the time–varying standard deviations of structural shocks for
stock market liquidity, Silliqt ; credit risk,CRt and house market liquidity,
Hilliq
t from 1981Q3–2014Q4. Grey bars indicate NBER recession dates.

In Figure 4.20, we plot the posterior median impulse response functions of real GDP
growth for every quarter in our sample (i.e. 1981Q3–2014Q4), with respect to liquidity
and credit risk shocks. We can see that shocks to credit risks yield considerable con-
tractions to real GDP growth. The impact of credit risk shocks is greatest immediately
following the 2001 recession. Notably, posterior credible intervals (68%) do not include
zero for every impulse response function for up to 6 quarters. Turning our attention to
the impact of stock and house market liquidity shocks, the shape and profile of the pos-
terior median response of real GDP growth for every observation remains consistent
with Figure 4.4 in the main text.



Chapter 4. Liquidity Shocks and Real GDP Growth: Evidence from a Bayesian
Time–varying Parameter VAR 129

1985
1995

2005 2014

0
10

−0.2

−0.1

0

Response of yt, Shock to Silliq
t

1985
1995

2005 2014

0
10

−0.1

0

Response of yt, Shock to CRt

1985 1995 2005 2014

0
10

20
−0.2

0

Response of yt, Shock to H illiq
t

FIGURE 4.20: Impact of Liquidity and Credit risk Shocks on GDP
growth 1981 to 2014

Notes: This figure plots the median impulse response functions of US
real GDP growth with respect to: a stock market liquidity shock; a credit
risk shock and a house market liquidity shock. We plot the response
along a 5–year horizon for each quarter of our sample 1981Q3–2014Q4.

We define a liquidity shock as a sudden decline in market liquidity.



130
Chapter 4. Liquidity Shocks and Real GDP Growth: Evidence from a Bayesian

Time–varying Parameter VAR

We show, in Figure 4.21, the difference in average impulse response functions of real
GDP growth to liquidity and credit risk shocks. This is analogous to Figure 4.5 in the
main text and we compute in the exact same manner. Again, the implications are sim-
ilar to our main results. However, the response of real GDP growth to stock market
liquidity shocks, on average, is stronger and more persistent in other recessions within
our sample, relative to the Great Recession (see Panel 3 of Figure 4.21). This result
is unsurprising and intuitive since, from Figure 4.19, real GDP growth becomes more
resilient to stock market liquidity shocks throughout time. Adding to this, liquidity
shocks in the US housing sector are stronger and more persistent in the most recent
recession (from Panels 2 and 3 of Figure 4.21) which is consistent with our main anal-
ysis. Note also that our analysis in Panel 2 of Figure 4.21 reports no difference in the
sensitivity of GDP growth to credit risk shocks (on average) within our sample.
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FIGURE 4.21: Impulse Responses of GDP growth: Differences in aver-
ages over periods

Notes: Panels 1 to 3 show the averages of differences in impulse re-
sponses of GDP growth to liquidity shocks between: other recession-
ary (i.e. NBER recession dates excluding the Great Recession) and non–
recessionary periods (Panel 1: Other Recess-No Recess); The Great Re-
cession and non–recessionary periods (Panel 2: 08 Recess-No Recess)
and The Great Recession and other recessionary periods (Panel 3: 08
Recess-Other Recess). Recessionary periods are NBER recession dates.
We compute as follows: for each draw of the Gibbs sampler, we average
the impulse response over each of the selected periods, take the differ-
ence between the averages of selected periods and then calculate the

quantiles over the draws.
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A final factor to consider is the robustness of our structural variance decomposition.
There is a possibility the financial and asset variables we include in our main model
are picking up important information from credit markets. For example, a relaxation
(contraction) in credit conditions can aid (hinder) prosperity in the housing market
when borrowing constraints are not (are) binding (see Mian and Sufi, 2009, Iacoviello
and Neri, 2010). Without explicitly accounting for credit risk, there may be over em-
phasis in the importance of our house market liquidity shocks for the overall variation
in real GDP growth30. Similarly, Justiniano, Primiceri, and Tambalotti, 2015 find that
credit shocks are not enough to solely explain the Great Recession and fragile recovery
for the US; disturbances in the housing market are thought to help match the data.

Therefore, we follow Benati and Mumtaz, 2007 and perform a counterfactual struc-
tural variance decomposition of US real GDP growth directly comparable to Figure
4.6 in the main body. Figure 4.22 reports the time–varying contributions, which we
express as the median and one standard deviation percentiles of the distributions, of:
stock market liquidity shocks (top Panel); credit risk shocks (middle Panel); and house
market liquidity shocks (bottom Panel), to the overall variation in real GDP growth.
The following analysis and comments are with regards to the posterior median esti-
mates of the distributions of our structural variance decomposition. Clearly there is a
considerable amount of time–variation in the contributions of our structural liquidity
and credit risk shocks.

It is evident that the contributions of stock market liquidity shocks are episodic in na-
ture. Notably, a significant proportion of real GDP growth variance (i.e. around 20%) is
attributable to stock market liquidity shocks from 1987–1992; corresponding well with
the crash of the stock market in 1987 preceding the savings and loan crisis. Further-
more note that in the 2001 recession, the stock market is the main driver of real GDP
growth variance. Moving on to the most recent recession, stock market liquidity shocks
contribute 38.5% to the overall variance in real GDP growth in 2008Q4, before declining
sharply to around 5% following the Great Recession.

In addition, the contribution of credit risk shocks to real GDP growth variance surges,
particularly in the earlier years of our sample, with NBER recession dates. Then, fol-
lowing the 2001 recession, the contribution of credit risk shocks increases to 43.12%.
From 2005 until late 2009, credit risk shocks are shown to contribute around 20% to
the variance in real GDP growth. The deterioration in credit conditions during this
time period links well with the findings in Gilchrist and Zakrajšek, 2012. Combining
the former, with the increase in subprime mortgage lending, helps explain why both
the contributions of house market liquidity shocks and credit risk shocks surge in the
late 2000s prior to the Great Recession (Mian and Sufi, 2009; Iacoviello and Neri, 2010).
Turning our attention to the bottom Panel, we can see substantial time–variation in the

30Although corporate bond spreads do not explicitly capture credit conditions households face, they
will give an indication of credit conditions within an economy.



132
Chapter 4. Liquidity Shocks and Real GDP Growth: Evidence from a Bayesian

Time–varying Parameter VAR

contribution of house market liquidity shocks. Notably, the changing contributions is
much more gradual than stock market liquidity and credit risk shocks.
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FIGURE 4.22: Contribution of Structural Liquidity and Credit Risk
Shocks to the Overall Variance of Real GDP Growth from 1981 to 2014
Notes: This figure plots the median and one standard deviation per-
centiles of the contribution of structural stock market liquidity, credit
risk, and house market liquidity shocks to real GDP growth from

1981Q3–2014Q4. Grey bars indicate NBER recession dates.

On average during the most recent recession, stock market liquidity shocks explain
12.87%; credit risk shocks explain 10.93%, and house market liquidity shocks explain
26.48% of the variance in real GDP growth respectively. Therefore the total average
contribution of liquidity and credit risk shocks is 50.28%; which is comparable with the
total average contribution of liquidity shocks from our main results (i.e. 51.7%). Over-
all, the shapes of the changing contributions, resemble the stochastic volatility plots
this model implies. Therefore the driving force of time–variation in the contributions
are changing shock sizes. Interestingly, both this, and the analysis in the main text un-
covers an important role for the stock market in the most recent recession. Contrasting
to Prieto, Eickmeier, and Marcellino, 2016 and Justiniano, Primiceri, and Tambalotti,
2015, our analysis reveals the stock market (i.e. accounting for liquidity conditions) is a
key explanatory factor for US real GDP growth variance during recessions; particularly
during 2008 and 2009. This implies that once accounting for stock market conditions
through prices and quantities, there is a credible link between the stock market and
real GDP growth during times of recession.

These results uncover an important structural and periodic relationship stock market
liquidity and credit risk shocks possess with the variance of US real GDP growth. To
contrast we uncover that the contributions of house market liquidity shocks to real
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GDP growth variance change smoothly in conjunction with changing shock sizes hit-
ting the system throughout time. Combining with the conclusions we report in the
main text, this analysis reveals that the impact and real effects liquidity shocks is ro-
bust to incorporating credit risk into the model.





Chapter 5

Conclusions and Directions for
Future Research

5.1 Concluding Comments

This thesis studies the links between money, liquidity and the wider economy. In Chap-
ter 2 we examine the impact of global liquidity movements, whilst controlling for do-
mestic monetary conditions and spare capacity, on UK RPI inflation (from 1984 to 2014)
and CPI inflation (from 1989 to 2014) respectively. In doing so we compare conven-
tional simple–sum (or broad) measures of money with theoretically founded Divisia
indices. A summary of our results in Chapter 2 are as follows: First, global liquidity
exerts significant inflationary pressures over and above that of domestic monetary con-
ditions and spare capacity. Building on this, we show that housing and financial assets
positively influence the demand for money, thereby exhibiting wealth effects. Further-
more, our study highlights a strong non–linear relationship of UK inflation rates with
our control variables. In particular inflation exhibits regime–switching behaviour, de-
pending on whether domestic money growth is contained between two endogenously
determined thresholds. When money growth is contained, UK inflation is well spec-
ified by a standard Phillips curve augmented by movements in global liquidity. Yet,
when money surpasses these thresholds, domestic monetary conditions dominate the
inflationary process. Finally we show, from a purely econometric specification, models
of CPI inflation using M4 money growth dominate those using Divisia money growth.

In Chapter 3, we investigate evolving macroeconomic dynamics of the US and UK
economies from 1979 to 2015 respectively. We augment a standard New Keynesian
system replacing simple–sum monetary aggregates with Divisia indices. Namely, we
provide comprehensive reduced–form and structural analyses, using Bayesian TVP–
VAR models with stochastic volatility structures. Our main findings in Chapter 3 are
as follows: First, we link the persistence of US and UK economic data to the dynamic
multivariate R2 forecastability of macroeconomic fundamentals, and uncover distinct
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differences in the predictability over our sample. Second, our TVP–VAR models us-
ing Divisia money growth generate more accurate pseudo–forecasts of both US and
UK real GDP growth than systems using simple–sum measures of money. At longer
forecast horizons, models using Divisia money growth produce a range of posterior
credible intervals 10 percentage points lower than those using broad money growth.
Third, we show that the transmission of monetary policy shocks has changed since the
financial crisis; further justifying the need to account for time–variation. Finally, our
structural variance decompositions show that monetary policy shocks explain 60% and
42% of real GDP growth uncertainty at low and business cycle frequencies in the US
and UK, respectively. In the very same period, these shocks explain 60% of inflation
uncertainty at high frequencies in both respective economies.

The final empirical chapter of this thesis, Chapter 4, constructs proxies of stock and
house market illiquidity in the spirit of Amihud, 2002 for the US economy. Then, we
add these proxies to US macroeconomic data and estimate a Bayesian TVP–VAR with
a stochastic volatility structure from 1970 to 2014, and provide a structural analysis of
the real effects of market specific liquidity shocks. In Chapter 4 our results consist of
four main findings. First, the contractionary affects of stock market liquidity shocks on
US real GDP growth are economically meaningful at every observation in our sample;
however, the magnitude is decreasing. Second, we uncover a stark structural change
in the relationship between US real GDP growth and house market liquidity shocks
from 2005, as turbulences in the property sector start to surface. Third, we provide
evidence in support of asymmetries in the response of real GDP growth both across
the business cycle and among business cycle troughs in our sample. Namely, these
results show that house market liquidity shocks during the 2008 recession are stronger
and more persistent than other recessions in our sample. Fourth and finally, stock and
house market liquidity shocks contribute, on average, 15% and 36% toward the total
volatility in US real GDP growth during the most recent recession, respectively.

Our main findings yield a number of implications for policymakers and central bankers.
To begin with, our work in Chapter 2 suggests that UK policymakers should monitor
domestic money growth. This is because the inflationary process depends on whether
money growth is contained or uncontained. Our results imply that UK CPI inflation is
currently governed by a regime where M4 money growth is weak. Therefore, with M4
growth currently low (annual M4 growth in 2016Q1 is 1.37%) and CPI inflation fluctu-
ating very close to zero (the annual rate of CPI inflation in 2016Q1 is 0.30%), our model
implies no immediate risk of inflationary pressures. Therefore, the Bank of England’s
Monetary Policy Committee (MPC) are not under immediate pressure to raise the pol-
icy rate of interest. In fact, in the most recent Inflation Report (i.e. July 2016), the MPC
unanimously voted to keep the Bank rate at 0.5%; only one MPC member voted to cut
interest rates in light of the UK’s choice to leave the European Union.
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Our analysis in Chapter 3 indicates that forecasters should consider replacing simple–
sum monetary aggregates with Divisia money in order to obtain more precise fore-
casts of US and UK real GDP growth. This supports the view that correctly measured
monetary statistics may have better signalled the financial crisis (Barnett and Chauvet,
2011). Our structural variance decompositions uncover how monetary policy shocks
contribute to macroeconomic uncertainty across our sample at different frequencies. It
is evident that monetary policy shocks sporadically contribute to US and UK economic
uncertainty in harmony with recessionary periods. Decomposing real GDP growth
and inflation volatility in the frequency domain reveal how monetary policy shocks af-
fect fluctuations over different cycles. Thus policy response, during times of economic
downturn, may be guided by the implications these shocks have on economic volatility
over different time horizons, conditional on central bank goals.

On the whole, our analysis in Chapter 4 uncovers important links that market specific
liquidity shocks have on US real GDP growth. The immediate policy implication is that
liquidity provision to financial and asset markets is necessary to counteract the sever-
ity of contractions to real GDP growth. In particular, the stark change in the structural
links between house market liquidity shocks and US real GDP growth, justifies the
market stimulating policies the US implemented following the Great Recession. Fur-
thermore, our structural variance decompositions imply that stock and house market
liquidity shocks during the 2008 recession explain a substantial share of US real GDP
growth volatility. Thus, providing further substance to US policy responses from 2008.
The surges in the contribution of stock market liquidity shocks to real GDP growth
variation correspond remarkably well with NBER recessions. This implies liquidity
provision to the US stock market during economic downturn is essential to hinder ad-
verse fluctuations in real GDP growth. Finally, the persistence in the proportion of US
real GDP growth variance attributable to house market liquidity shocks, implies the
fragile recovery in the US is, at least partially, due to imbalances in the property sec-
tor; a view shared by Ben Bernanke in the speech “Housing Markets in Transition" on
February 10 2012.
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5.2 Directions for Future Research

We now discuss several directions for future research that directly extend the findings
in this thesis.

5.2.1 Global Liquidity and the UK Economy: Evidence from Bayesian Smooth–
Transition VECM models

In Chapter 2 we show that UK inflation dynamics are well specified by Quadratic Lo-
gistic Smooth–Transition Autoregressive (QLSTAR) models; assuming domestic money
growth governs the regime–switching process. However, the results in this chapter
suffer from problems of endogeneity. Therefore an interesting question would be to
fit Bayesian Smooth–Transition VECM models to UK data and global liquidity proxies
respectively1. Gefang, 2012 extends cointegration state space methods in Strachan and
Inder, 2004 and uses a collapsed Gibbs sampler as in Koop, León-González, and Stra-
chan, 2009 that accounts for non–linearities. Specifically, Gefang, 2012 examines the
relationship between money and output for post–WWII US data and finds substantial
evidence in favour of non–linear causality between money and output; with regimes
depending on output and price levels. The methodological benefit in using Bayesian
methods to fit these models is that the parameters, logistic function, and thresholds
can be estimated simultaneously. This overcomes the inaccuracies in sequential testing
required when estimating these models using conventional Frequentist methods. Fur-
thermore, we can directly assess the reduced–form and structural properties in order
to ascertain whether models using both domestic and global Divisia money preferred
over models using simple–sum counterparts. In addition, using multivariate models
would allow us determine the impact of purely exogenous global liquidity shocks onto
the system, and trace out the regime–dependent implications on domestic macroeco-
nomic fundamentals.

5.2.2 Monetary Policy using Divisia Indices

The in–depth analysis in Chapter 3 may be extended in several directions. On the
whole, the study warrants using models that account for time–varying parameters.
Therefore when considering multivariate models, the assumption of constant param-
eters as in Albuquerque, Baumann, and Seitz, 2015 and Keating et al., 2014 may be
misleading. Our pseudo–forecasts document substantial improvements in the accu-
racy of the overall predictability of our TVP–VARs of the US and UK. Thus, it would
be interesting to explore the forecasting performance of our models in a full recursive

1Implicitly assuming global liquidity is a purely exogenous variable.
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out–of–sample forecasting exercise; to confirm the implications of the reduced–form
evidence we present in Chapter 3.

Adding to this, there is a growing base of literature replacing interest rates with Di-
visia indices and user–costs that are directly implied by the aggregating scheme (see
e.g. Keating et al., 2014, Keating, Kelly, and Valcarcel, 2014, Belongia and Ireland, 2015
and Belongia and Ireland, 2016). The structural analyses within the aforementioned
examine the implications of using Divisia money as the monetary policy indicator, as
well as including the user–cost within the information set. Monetary aggregation the-
ory implies, rather than using a single interest rate, the choice of how much money to
hold, depends on its user–cost. Keating et al., 2014 shows that the aggregate user–cost
of money is a weighted average of interest rate spreads. Furthermore, it is shown in
the former, that the user–cost contains much of the same information as the Federal
Funds rate with the added advantage that it is not at the zero lower bound. We pos-
tulate, replacing the short–term Treasury Bill rates with the user–cost of Divisia in our
TVP–VAR models will not only better identify monetary policy shocks (Keating et al.,
2014), but also allow for an assessment of monetary policy shocks insulated from the
zero lower bound problem.

5.2.3 Market Specific Liquidity Shocks

Chapter 4 provides significant scope for future research. Contrasting Prieto, Eickmeier,
and Marcellino, 2016, our analysis uncovers the importance of the US stock market
during the 2008 recession and its contribution to economic uncertainty. Specifically
examining the liquidity shocks from the US stock and housing market, results in very
different interpretations from the aforementioned, and simultaneously overcomes the
complex web of information contained within the price of an asset (Harvey, 1988).
Therefore, utilising our proxies of liquidity conditions in structural analysis may better
inform the economic implications of policy response; specifically tailored to liquidity
provision. Furthermore, based on our structural variance decompositions, using our
liquidity proxies could substantially improve forecasts of real economic activity, and
be useful for predicting future recessions over and above existing leading economic in-
dicators. A deeper insight into the origins of time–variation linking parameter change
to regulatory reform would also be beneficial to examine the effectiveness of policy
implementation; particularly in real–time. Finally, a theoretical examination of market
specific liquidity shocks in a DSGE model, in order to deduce optimal policy responses,
is a thought provoking line of future research.
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