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Abstract 

Herein, the CO2 reforming of methanol, or can be called dry reforming of methanol (DRM), was 

investigated for the first time using a rotating gliding arc plasma. The effect of input CH3OH 

concentration on the reaction performance of the DRM process has been investigated. Optical 

emission spectroscopy (OES) has been used to give insights into the formation of reactive species in 

the plasma chemical reactions. In addition, the possible reaction mechanisms of the plasma DRM 

process have been discussed. The plasma assisted DRM has been demonstrated to be a promising 

route for clean syngas production and high-efficiency CO2 conversion. This process provided a 

significantly higher efficiency for CO2 conversion compared to other plasma technologies, while 

maintaining a CO2 flow rate (or processing capacity) of one or several orders of magnitude higher. 
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1. Introduction 

Currently, the need to develop renewable and alternative energy sources and radically reduce 

greenhouse gas emissions is becoming ever more urgent. Therefore, increasing attention worldwide 

has been paid to the development of new and efficient methods of simultaneous production of syngas 

and reduction of greenhouse gases, such as dry methane reforming process [1-3]. Nevertheless, 

technical problems with the handling, storage, and transport of gas fuels largely restrict its 
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widespread use, particularly in mobile systems (e.g., on-board vehicles) [4, 5]. 

On-board methanol reforming has been considered as a promising portable syngas production 

technology due to a couple of advantages over other potential fuels: unlike gasoline or diesel fuel, 

methanol can be readily produced from biomass; it is easily adaptable to the current infrastructure; it 

is easily transported and stored; it has nearly nil sulphur content, and finally it has a high hydrogen 

density [6-9]. Methanol conversion via steam reforming (H2O + CH3OH) [6, 7, 9], methanol 

decomposition (pure CH3OH or noble gas + CH3OH) [10, 11], partial oxidation (O2/Air + CH3OH) 

[4], and oxidation steam reforming (H2O + O2/Air + CH3OH) [5, 8] has been extensively 

investigated. Whereas, CO2 reforming of methanol, or can be called dry reforming (CO2 + CH3OH) 

of methanol (DRM), has not been reported yet. This process should be of particular interest because 

it can simultaneously convert the main greenhouse gas CO2 into the value-added CO and produce H2. 

The DRM process has a good application foreground particularly in vehicles because it can convert 

the CO2 in the exhaust into CO and simultaneously produce syngas as a supplementary fuel for the 

internal combustion engines which has been shown to significantly improve the engine performance 

and reduce pollutant emission (e.g., CO and NOx) [12, 13]. Note that vehicle emission has been 

considered as one of the primary sources for CO2, particularly in developed countries [14]. 

Compared to traditional catalytic reforming process that has problems of high capital costs, 

requirement of high temperature, large equipment size, and rapid loss of catalyst activity [15, 16], 

non-thermal plasma technology provides a more attractive route for portable methanol reforming at 

low temperatures. In non-thermal plasmas, the overall gas temperature can be as low as room 

temperature, while the electrons are highly energetic with a typical electron temperature of 1-10 eV 

(104-105K), which is sufficient to break down most chemical bonds of molecules and produce highly 

reactive species for the initiation and propagation of chemical reactions. High reaction rate and fast 

attainment of steady state in plasma processes allows rapid start-up and shutdown of the process 

compared to catalytic processes, which is more suitable for on-board applications [1, 2, 17]. 

Herein, the DRM process was studied for the first time using a novel rotating gliding arc (RGA) 

plasma co-driven by a magnetic field and tangential flow, aiming at clean syngas production and CO2 

conversion in one step. Quite different from the traditional flat gliding arc that consists of two 

divergent knife-shaped electrodes [18], the RGA reactor provides a more stable plasma reaction zone 

by generating a rapidly rotating arc (80-120 rotations per second) under the synergistic effect of 

swirling flow and Lorentz force, in which the retention time of reactants can be significantly 
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increased [19]. The formed “plasma disc” area is shown in Fig. 1. Detailed descriptions of this 

reactor are available in our previous work [19, 20]. 

 

2. Experimental 

The experimental setup mainly consists of a RGA reactor, a mass flow controller (MFC), a 

syringe pump, temperature controllers, a DC power supply, a two-stage condenser system and 

measurement systems. It is schematically shown in Fig. 1. Methanol was controlled and injected into 

the gas tube by a high-resolution syringe pump (Harvard, 11 plus), and the mixture of CO2 and 

methanol was then heated to 100 °C in a stainless steel tubing with an inner diameter of 4 mm (40 

cm in length) to generate a steady-state vapour before flowing into the RGA reactor. The RGA 

reactor was powered by a DC 10kV power source for the generating and maintaining of plasma. A 

40-kΩ resistance was connected in series in the circuit for current limitation and stabilization. A 

two-stage condenser was added after the reactor to remove and collect the condensable vapors in the 

effluent stream: a first-stage coil condenser equipped with an ice-cooled water circulation system and 

a second-stage liquid trap that placed inside an ice water container.  

 

 

Fig. 1. Schematic diagram of the RGA plasma assisted DRM system 

 

The gaseous products were measured by a gas chromatograph (GC) (GC9790A, Fuli Analytical 

Instrument) equipped with a thermal conductivity detector (TCD) for detecting H2 and O2 as well as 
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a flame ionization detector (FID) for detecting CO, CO2, and CH4. No C2 or higher hydrocarbons 

were detected in the effluent gas. The GC columns are 5A molecular sieve packed column (2m×3 

mm, helium carrier gas) for the TCD detector and GDX-104 packed column (2m×3 mm, helium 

carrier gas) for the FID detector. The FID detector is equipped with catalytic methanation to analyze 

CO and CO2. The optical emission spectroscopy (OES) system comprises a 750-mm monochromator 

(PI-Acton 2750), an intensified charge-coupled device (ICCD) (PI-MAX 2, 512×512 pixel), and an 

optical fiber. The optical fiber was placed at around 10 cm above the “plasma disc” to collect the 

plasma radiation. 

The performance of the DRM process was evaluated in terms of conversions of CH3OH 

(XCH3OH), CO2 (XCO2), and total-carbon (XTC), selectivity of gas product, energy conversion efficiency 

of the reaction, as well as the efficiency for CO2 conversion (the definitions of these parameters are 

available in the Electronic Supporting Information).  

 

3. Results and discussion 

Fig. 2 and Fig. 3 show the effect of input CH3OH concentration on the performance of the DRM 

process. The total flow rate was fixed at 0.6 mol/min. H2 and CO were detected as the main gas 

products, while trace amount of CH4 and O2 (<3.4% selectivity for each) were also formed. 

In our previous study, for pure CO2 decomposition process in the RGA plasma (flow rate = 11.5 

L/min), the conversion of CO2 was only 1%. Whereas, as shown in Fig. 2, the addition of 5% 

(mol/mol) CH3OH into CO2 significantly enhanced the CO2 conversion to 3.9%, indicating that 

CH3OH facilitates the conversion of CO2. With further increasing CH3OH concentration to 35% 

(mol/mol), the CO2 conversion escalated to 18.6%. Strong OH spectral bands were observed in the 

CH3OH/CO2 spectra and the H2/CO ratio was lower than 1.0, demonstrating the occurrence of 

reverse water-gas shift (RWGS) reaction (Eq. (1)) in the DRM process. 

CO2 + H2 → H2O (g) + CO   ΔHo=41.2 kJ/mol (1) 

 

The facilitating effect of CH3OH on CO2 conversion arises from the RWGS reaction as well as 

the oxidation reactions between H2 (or CO) and O2 that produced from CO2 decomposition. On the 

other side, CO2 can also promote the dissociation of CH3OH in the same way. The decrease of CO2 

concentration from 95 to 80% led to a significant drop of CH3OH conversion from 64.4 to 29.9 %. 



5 

It is somewhat surprising that a drastic lift of CH3OH conversion from 29.9 to 50.9% appeared 

when the CH3OH concentration further raised from 20 to 25%. Simultaneously, the significant rise of 

specific energy input also manifested the enhancement of CH3OH decomposition reaction 

(endothermic) in the plasma system. The noticeable elevation of CH3OH conversion was probably 

attributed to the rise of electron temperature (known from optical emission diagnostics), impelling 

the decomposition reaction of CH3OH. Then, with further increase of CH3OH concentration, the 

CH3OH conversion continued to decline. The total-carbon conversion first increased to a maximum 

of 24.6% at a CH3OH concentration of 25% and then slightly decreased. 

 

 

Fig. 2. Effect of CH3OH concentration on conversions of CH3OH, CO2, and total-carbon, as well as 

specific energy input 

 

The strong RWGS reaction during the DRM process was responsible for the higher selectivity 

of CO than H2, as shown in Fig. 3. With the decrease of CO2 concentration, the RWGS reaction was 

thought to be gradually weakened, giving rise to an increase in both H2 selectivity and H2/CO ratio. 

The H2 selectivity increased from 5.1 to 39.3 % and the H2/CO ratio escalated linearly from 0.18 to 

0.73 with rising CH3OH concentration from 5 to 35%. The production rate of H2O was also 

estimated based on the hydrogen balance of the DRM process. After adding the estimated H2O 

production rate into the calculation, the final oxygen balance was 92.9-99.0% under the tested 

conditions. The selectivity of converted CH3OH towards H2O was found to decrease drastically from 

93.0 to 57.9% with increasing CH3OH concentration from 5 to 35%, revealing less and less 
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proportion of produced H2 took part in the RWGS reaction. The selectivity of CO also showed an 

increase with rising CH3OH concentration, probably resulted from the reduce of O2 molecules in the 

system that can deplete CO molecules. 

 

 

Fig. 3. Effect of CH3OH concentration on product selectivity and energy conversion efficiency 

 

The selectivities towards CH4 and O2 were only 1.2 to 2.8% and 0.2 to 3.4%, respectively. The 

increasing production rate of H2 and CO with the increase of CH3OH concentration should be 

responsible for both the increase of CH4 selectivity and decrease of O2 selectivity due to the 

methanation reactions of CO [21] and oxidation reactions of H2 and CO. The energy conversion 

efficiency (ECE) significantly increased with increasing CH3OH concentration due to the weakening 

of the RWGS reaction that could consume H2 molecules. The maximum ECE reached up to 49.3% at 

a CH3OH concentration of 30% and the slight drop of ECE at CH3OH concentration = 35% may be 

resulted from the instability of the arc operation. 

It should be noted that a few scholars [22] also defined the energy efficiency as the ratio of the 

total energy of the product to the input plasma energy in plasma assisted fuel reforming process. 

Based on this definition, the energy efficiency of the DRM process increased from 49.3 to 116.2% 

with increasing CH3OH concentration from 5 to 35% and then dropped to 107.8% when the CH3OH 

concentration reached 35%. 
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Fig. 4. Emission spectra of (a) pure CO2, (b) 15% CH3OH/CO2, and (c) 20% CH3OH/CO2 plasmas 

(Q = 0.6 mol/min) 

 

To give insight into the mechanisms of the DRM process, the reactive species formed in the 

process were detected using a spectrometer. Typical emission spectra of pure CO2, 15% CH3OH/CO2, 

and 20% CH3OH/CO2 plasmas are shown in Fig. 4. For the pure CO2 spectra, the CO, C, CN, C2, 

and O species, as well as several Fe lines were observed. Whereas, strong OH bands and Hα spectral 

line also occurred in the CH3OH/CO2 spectra, indicating that the addition of CH3OH into CO2 gave 

rise to the formation of H2O and H2 molecules. According to the Fe and Hα spectral lines, we also 

estimated the electron temperature Te and electron density Ne, which could greatly influence the 

reaction performance in plasma (the calculation methods are available in the Electronic Supporting 

Information). The Te of Fe increased from 7830 ± 400 to 8450 ± 420 K and the Ne reduced from 7.4 

± 1.0 to 3.8 ± 1.2 ×1014 cm-3 with increasing CH3OH concentration from 5 to 35 %. It is worth noting 

that the Ne in the RGA plasmas is significantly higher than typical non-thermal plasmas, such as 

dielectric barrier discharges (DBD) (1010-1013 cm-3) and corona discharges (109-1013 cm-3) [17, 23], 

indicating a higher processing capacity of the RGA plasmas. 
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Fig. 5. Schematic representation of the mechanisms of the RGA assisted DRM process 

(“e” on the paths denotes “electron”) 

 

The possible prominent chemical paths in the RGA assisted DRM process are schematically 

shown in Fig. 5. The complex reactions in the plasma bulk are initiated from the dissociation of 

CH3OH and CO2 molecules that resulted from the frequent impact of energetic electrons. The overall 

CH3OH decomposition reaction is as follows. 

CH3OH → 2H2 + CO    ΔH298K=128.1 kJ/mol (2) 

 

According to previous studies, there are primarily seven initial reaction paths for methanol 

dissociation [24-26], which are labelled as (1)-(7) in Fig. 5. Paths (1)-(3) directly produce CH3· + 

OH·, CH2OH· + H· and CH3O· + H·, respectively. The other four paths have transition states. In path 

(4), one of the H atoms in the CH3· group migrates to the OH· group to form a van der Waals (vdw) 

complex and then produce 1CH2 + H2O [24, 27]. Paths (5) and (6) correspond to the H2 elimination 

from the CH3· group to form tran- and cis-CHOH. In path (7), the elimination of H2 forms CH2O and 

H2 via a four-member ring transition state [27]. 

To investigate the roles that different paths played in the dissociation of methanol, we also 

collected the spectra of CH3OH/N2 and CH3OH/Ar plasmas with the absence of CO2, in which 

CH3OH primarily underwent the decomposition process. In the CH3OH/N2 and CH3OH/Ar plasmas, 
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only quite weak OH spectral lines could be observed, indicating that paths (1) and (4) seem to be 

negligible, because OH radicals can easily form via the two paths. Another phenomenon that can 

support this conclusion is that only a CH4 selectivity of 1.2 to 2.8% and no C2H4 were obtained in the 

DRM process, considering that paths (1) and (4) produce CH3 and CH2 radicals that can then readily 

generate CH4 and C2H4 molecules respectively via the hydrogenation reactions [28]. Actually, the 

small amount of CH4 was more likely to form from the methanation reactions of CO2, CO and/or C 

[21]. 

Paths (2) and (3) are also considered to play little role in the dissociation of methanol because 

they are even less energetically favoured in comparison to paths (1) and (4) due to the higher 

dissociation energies [24]. Therefore, the H2 elimination routes (paths (5)-(7)) with lower activation 

energies than the abovementioned paths should predominate in the dissociation of methanol [24, 27], 

largely contributing to the production of H2 molecules simultaneously. 

The formed tran-CHOH, cis-CHOH and CH2O are the key intermediate products of the process, 

which are very unstable in non-thermal plasmas and would then readily dissociate to produce the 

main products: H2 and CO. 

No O spectral line or O2 product was detected in the methanol decomposition process both in N2 

and Ar due to the high bond dissociation energy of H2C-O, HC-O and CO (7.7, 8.4, 11.1 eV). 

Therefore, the electron impact dissociation of CH2O should proceed via the following paths. 

CH2O + e → CHO· + H· + e  (3) 

CHO· + e → CO· + H· + e  (4) 

H· + H· → H2  (5) 

 

The O·, H·, and OH· that present in the plasma bulk may also take part in the conversion of 

CH2O and/or CHO, generating CO, CO2, H·, and H2 etc. [29]. 

The H2/CO ratios of the DRM process were only 0.18-0.73% under the studied conditions, 

which is much lower than the stoichiometric ratio of methanol decomposition reaction (H2/CO = 2.0). 

In addition, compared to the methanol decomposition process in N2 in the RGA plasmas, the H2 

yields as well as the H2/CO ratios of the DRM process are much lower while the CO yields are 

significantly higher (as shown in Table S2 in the Electronic Supporting Information). Therefore, the 

low H2 and high CO production rate as well as the strong OH spectral lines in the CH3OH/CO2 

spectra clearly demonstrate the occurrence of the RWGS reaction (Eq. (1)) in the DRM process. 
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Due to the abundance of CO2 molecules in the plasma bulk, the RWGS reaction probably plays 

an important role in the DRM process, resulting in an increase in the selectivity to CO but decrease 

in the selectivity to H2. The RWGS reaction can also largely contribute to the conversion of CO2 to 

CO. 

In addition to the RWGS reaction, CO2 molecules can also decompose from the direct electron 

impact dissociation of CO2 via Eq. (6) [30], giving rise to the production of CO and O (and then O2) 

simultaneously. Whereas, the direct electron impact route was thought to play less of role in CO2 

conversion, because only a CO2 conversion rate of around 1% could be obtained in the pure CO2 

decomposition process in  the RGA plasma. 

CO2 + e → CO + O· + e   (6) 

 

 

Fig. 6. Comparison of the efficiency for CO2 conversion using different non-thermal plasma 

technologies 

 

Compared with other non-thermal assisted methanol conversion technologies (shown in Table 

S3 in the Electronic Supporting Information), the RGA assisted DRM process shows a moderate 

CH3OH conversion, a high CO selectivity, but a relatively low H2 selectivity. It is interesting to note 

that the RGA assisted DRM process can be used to generate much cleaner gas products of which 

syngas is the main one with a high production rate. When compared with other non-thermal plasma 

assisted CO2 decomposition technologies, as shown in Fig. 6 (and Table S4 in the Electronic 
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Supporting Information), the RGA assisted DRM process shows significant advantages in terms of 

feed flow rate (i.e., processing capacity), CO2 conversion and efficiency for CO2 conversion. The 

efficiency in this study could reach up to 34.0-62.4%, which is much higher than that of other plasma 

technologies (0.95-19.33%) [30-38], such as DBD [30, 32-34], corona [35], glow discharge [36-38] 

and flat gliding arc [31], while maintaining a processing capacity of one or several order of 

magnitude higher. The addition of 5% CH3OH into pure CO2 could give rise to a significant lift of 

efficiency for CO2 conversion from around 18.0% to 34.0% in the RGA system. 

 

4. Conclusions 

In conclusion, this communication reported a new method of plasma assisted dry reforming of 

methanol (DRM) process, which was demonstrated to be a promising route for portable clean syngas 

production and high-efficiency CO2 conversion. The reverse water-gas shift (RWGS) reaction and 

oxidation reaction of CO and H2 in the process facilitate the conversion of both CH3OH and CO2. 

This process can produce clean syngas with high capacity and simultaneously, the efficiency for CO2 

conversion was significantly improved compared to other non-thermal plasma technologies. In 

addition, the RGA plasma enhanced the processing capacity of the existing non-thermal plasmas by 

one or several order of magnitude, which should be more suitable for further applications. 

 

Electronic Supporting Information available: Definition of parameters, Observed spectral lines in 

the optical emission spectra; Calculation methods of electron excitation temperature and electron 

density; Comparison of the DRM and methanol decomposition processes; Comparison with other 

non-thermal technologies for methanol conversion and CO2 decomposition. 
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