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Abstract 

 

Humans are trichromatic, and yet their perception of colours is rich and complex. The 

research presented in this thesis explores the process of colour appearance of uniform 

patches and natural polychromatic stimuli. This is done through the measurement and 

analysis of the achromatic locus (Chapter 2), modelling of chromatic adaptation in a 

large dataset of unique hues settings (Chapter 3), and measurement of thresholds for 

uniform and polychromatic stimuli derived from simulated skin images (Chapter 4). 

 

Chapter 2 proposes a novel navigation scheme based on unique hues for traversing 

colour space. The results show that when colour adjustments are made using this novel 

scheme, the variability of achromatic settings made by observers is reduced compared 

to the classical method of making colour adjustments along the cardinal axes of the 

𝐶𝐼𝐸𝐿𝑈𝑉 colour space. This result holds across the tested luminance levels 

(5, 20, 50 𝑐𝑑/𝑚2) in each of the three tested ambient illumination conditions – dark, 

simulated daylight and cool white fluorescent lighting. The analysis also shows that 

the direction of maximum variance of the achromatic settings lies along the daylight 

locus.  

 

Chapter 3 evaluates models of chromatic adaptation by using unique hues settings 

measured under different ambient illumination conditions. It is shown that a simple 

diagonal model in cone excitation space is the most efficient in terms of the trade-off 

between accuracy and degrees of freedom. It is also found that diagonal and linear 

models show similar performances, reiterating their theoretical equivalence. 

Performances of these diagonalisable models are found to be worse for UR and UG 

unique hue planes compared to UY and UB planes.  

 

Chapter 4 presents a set of three experiments reporting estimations of perceptual 

thresholds for polychromatic and uniform stimuli in a 3-D chromaticity-luminance 

colour space. The first experiment reports thresholds for simulated skin images and 

uniform stimuli of the corresponding mean 𝐶𝐼𝐸𝐿𝐴𝐵 colour. The second and third 
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experiments investigate the effect of ambient illumination and the location of the 

stimuli in colour space. The thresholds for the polychromatic stimuli are found to be 

consistently higher than those for the uniform patches, for both the chromatic, and the 

luminance projections. The area of the chromaticity ellipses shows a gradual increase 

with distance from the illuminant chromaticity. The orientations of these ellipses for 

simulated skin are found to align with the vector joining the mean patch chromaticity 

and the illuminant chromaticity.  
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(suddenly in sunlight 

he will bow, 

 

& the whole garden will bow) 

 

- e. e. cummings 

 

 

 

 

Dedicated to my mother. 
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Chapter 1  

 

Introduction 

 

 

The seeds of modern colour theory can be seen as early as the works of Newton 

(Newton, 1730), who explained colour based on light matching experiments. He 

proposed the concept of complementary colours, which he explained using a circular 

arrangement of colours akin to modern day colour-circles. In 1802 a model of colour 

vision based on three-primaries was proposed by Young (Young, 1802). Young’s 

theory was further expounded by Helmholtz (Helmholtz, 1867), who explained 

trichromatic colour based on the laws of additivity of light which had earlier been 

proposed by Grassmann (Grassmann, 1853). Maxwell (1860), by proposing a quality 

and a magnitude to colour, essentially introduced the idea of separable chromatic and 

luminance components of colour. In doing so, he not only provided evidence in support 

of Young’s trichromatic theory, but also introduced possibility of colour photography. 

It is these Grassmann and Maxwell laws (not to be confused with his laws of 

electromagnetism) which form the basis of modern colorimetry and colour theory.  

 

With the discovery of the three cone photoreceptors (which had been predicted by 

Young in 1802) in the human retina, the trichromatic theory was given a solid 

physiological basis in terms of the quantum catches in the three photoreceptors. The 

photosensitive pigments in the three cones, called the L, M and S cones, are reactive 

to long, medium and short range of visible frequencies respectively. Figure 1.1b shows 

the plot of the sensitivities for the L, M and S cone classes (Smith & Pokorny, 1975) 

as a function of the wavelength of incident light.  

 

In modern colorimetry, human trichromatic colour sensitivity is measured by what are 

known as colour matching functions. Given a set of three primary lights, these 

functions define the proportions in which these lights must be mixed in order to match 

the appearance of monochromatic reference lights. It must be noted that these 
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functions can also have negative values implying that the corresponding primary must 

be subtracted from the mixture, i.e., added to the reference light. These colour 

matching functions were first proposed (indirectly) by Maxwell (1860), and have 

traditionally been measured using either some form of bipartite field matching 

techniques (Stiles & Burch, 1955) or heterochromatic flicker photometry approaches 

(Stockman & Sharpe, 2000). In bipartite matching experiments the observer typically 

matches the colour between two separate fields, a test and a reference field, till they 

appear the same. In heterochromatic flicker photometry the observer views a stimulus 

that alternates between a test and a reference colour at a certain frequency, and adjusts 

the colour of the test stimulus till the flicker is no longer perceptible.  

 

Thus, the modern formulation of the trichromatic theory describes the light reaching 

an observer’s eyes in terms of a three dimensional vector of tristimulus values which 

describe the proportion in which a given set of primary lights must be mixed to illicit 

the same response as the stimulus. Since light has a continuous spectrum, this is 

achieved by projecting the spectrum of incident light on to a three-dimensional space 

defined by the three colour matching functions which operate on human-perceptible 

(visible) range of frequencies. If a surface is viewed normally under a light which is 

also incident normally, the tristimulus coordinates of the light reaching the observer’s 

eye are given by  

 𝑿𝑖 = ∫ 𝑳(𝜆) ⋅ 𝒓(𝜆) ⋅ 𝒙̅𝒊(𝜆) ⋅ 𝑑𝜆

 

𝑣𝑖𝑠𝑖𝑏𝑙𝑒

, 𝑖 ∈ {1,2,3} Eq.  1.1 

Here, 𝜆 is the wavelength in the visible spectrum, 𝑳(𝜆) is the spectrum of the 

illuminant, 𝒓(𝜆) is the reflectance spectrum at the point of incidence, 𝒙̅𝒊(𝜆) is the 𝑖𝑡ℎ 

colour matching function (such as a cone sensitivity function or a CIE colour matching 

function) and 𝑿𝑖 is the 𝑖𝑡ℎ tristimulus coordinate corresponding to 𝒙̅𝒊(𝜆). The product 

𝑳(𝜆) ⋅ 𝒓(𝜆) simply represents the amount of light reflected by the surface. The colour 

matching functions 𝒙𝒊(𝜆) most commonly employed in human vision science are the 

cone sensitivities such as those reported by Smith & Pokorny (1975) or Stockman & 

Sharpe (2000). In applied colorimetry, the most widely used formulations of 

trichromatic colour spaces are those proposed by the Commission Internationale de 
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l’éclairage (CIE). A standard set of colour matching functions defined by the 𝐶𝐼𝐸 for 

a 2° standard observer, called the CIE 1931 2° 𝑋𝑌𝑍 matching functions, is shown in 

Figure 1.1a. An important point to note here is that since these colour matching 

functions are each based on sets of three primaries (or reference lights), they are related 

to each other through linear transformations. Thus, any set of matching functions can, 

theoretically, be used to derive every other set of matching functions provided this 

transformation matrix is known. 

 

 

Figure 1.1: (a) CIE 1931 2° colour matching functions (b) Smith Pokorny 2° cone fundamentals, 

normalised. Data for both sets of curves downloaded from http://www.cvrl.org/.  

 

While this trichromatic view of colour is sufficient to characterise a given light in terms 

of the photoreceptor quantum catches, it fails to explain the percept elicited by this 

light to any satisfactory degree. In other words, it cannot describe how an observer 

would experience the appearance of this light in terms of perceptual dimensions such 

as its apparent brightness, its hue or its saturation. A subtle but important corollary of 

this limitation is that trichromatic values can predict when two given lights will match 

(i.e., evoke equivalent photoreceptor responses); but, if the two lights do not match, 

trichromatic theory, by itself, is not sufficient to make any predictions about how 

different the two lights are. Thus, trichromatic theory does not offer a rigorous 

perceptual description of light beyond matching. Due to this, trichromatic theory also 

fails to offer explanations for more complex colour appearance phenomena such as 

http://www.cvrl.org/
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simultaneous contrast and the Bezold-Brücke effect. Simultaneous contrast (Blackwell 

& Buchsbaum, 1988) refers to a change in the appearance of a given stimulus with a 

change in background colour, while the Bezold-Brücke effect describes the 

observation that the perceived colour of a monochromatic stimulus changes as a 

function of its luminance (Purdy, 1931). 

 

A more successful explanation of colours appearance was offered by the opponency 

mechanisms proposed by Hering (1920). Hering’s colour opponency theory describes 

colour in terms of four basic percepts – red, green, yellow and blue, which operate in 

red-green and yellow-blue opponency mechanisms. According to this theory, it is 

impossible to experience two opponent colour percepts simultaneously, e.g., a reddish-

green or a yellowish-blue colour. Although red and green lights can indeed be mixed, 

the resulting percept is not red-green, but rather, yellow. Based on the idea of 

opponency mechanisms, the colours perceived by humans were recognised to have 

certain quasi-invariants, such as the four unique hues and a percept of achromaticity. 

The percept of a unique hue is said to occur when one of the opponent mechanisms is 

silenced. For example, a unique red percept would imply the yellow-blue mechanism 

to be at a resting state. In a similar fashion, an achromatic percept is experienced when 

both the opponency channels are at equilibrium. In other words, an achromatic percept 

is neither red nor green, and at the same time, neither yellow nor blue.  

 

Physiologically, while chromatic opponency pathways have been identified in the 

LGN (Lateral Geniculate Nucleus), their cardinal axes have been found to code 

opponency channels which do not correspond directly to these perceived unique hues 

(Derrington, Krauskopf, & Lennie, 1984; Tailby, Solomon, & Lennie, 2008). Plausible 

higher order representation of the unique hues in the glob cells of the inferior temporal 

cortex has been suggested by Stoughton & Conway (2008), but their results cannot be 

considered conclusive due to the limitations of the methodology used (Conway & 

Stoughton, 2009; Mollon, 2009). Thus, as it stands, no unequivocally clear neural basis 

of unique hues has so far been reported (Mollon & Jordan, 1997; Valberg, 2001), and 

they are often considered a putative third stage in the colour vision pathway (Kuehni, 

2014; Smithson, 2014).  



13 

 

 

Despite offering a better explanation of certain observations, colour opponency is still 

far from sufficient as an accurate description of colour appearance. Phenomena such 

as chromatic adaptation (MacAdam, 1956) and non-linearity reported in these 

adaptation mechanisms (MacAdam, 1961, 1963) require more elaborate models which 

can reliably predict the appearance of stimuli across a number of illumination 

conditions. A more complete description of colour appearance is offered by modern 

day Colour Appearance Models (Fairchild, 2013) or CAMs. CAMs aim to achieve this 

by offering a colour space which can accurately describe perceptual colour order 

systems such as the Munsell colour system and the Natural colour system or NCS. 

Both the Munsell and the NCS are systems that organise colours along three perceptual 

dimensions which roughly correspond to an achromatic percept, and a set of four 

unique hues arranged in two opponent directions, red-green and yellow-blue. Thus, 

most modern CAMs (Hunt, 1991; Moroney et al., 2002; Nayatani, Takahama, & 

Sobagaki, 1981) rely heavily on quasi-invariants of human vision such as unique hues 

and the achromatic locus to formulate quantitative correlates of colour appearance. For 

instance, achromatic loci are used as a means to scale the cone fundamentals (Bompas, 

Powell, & Sumner, 2013; Walraven & Werner, 1991) and to define the null point of 

opponency mechanisms, while unique hues are used to formulate perceptually uniform 

partitions of the chromaticity plane (Xiao, Pointer, Cui, Chauhan, & Wuerger, 2015; 

Xiao, Wuerger, Fu, & Karatzas, 2011).  

 

To illustrate the structure of a typical colour appearance model, let us briefly consider  

the transformations employed by the CIECAM02, one of the more widely accepted 

CAMs originally proposed by Moroney et al. (2002). The steps described here are a 

quick run-through of the forward model, adapted from a detailed description by 

Fairchild (2013). The main inputs to the model are the 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 tristimulus 

values for the stimulus 𝑿 = {𝑥𝑖}𝑖=1
3  and the white point 𝑿𝑾 = {𝑥𝑖

𝑊}𝑖=1
3 , the adapting 

luminance, and various parameters describing the nature of the surround luminance, 

the degree of adaptation, the strength of stimulus-surround interaction, and an 

exponential non-linearity factor. Starting from these inputs, the following steps are 

followed to arrive at correlates of colour appearance proposed by the CIECAM02. 
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1. The input tristimulus values are transformed to a spectrally sharpened space 

using a transform (𝑴𝑪𝑨𝑻𝟎𝟐) called the CAT02 (Calabria & Fairchild, 2001). 

This transform is normalised such that an equal-energy illuminant produces 

equal cone responses. This transformation is also performed for the white 

point. 

 
𝑹 = {𝑟𝑖}𝑖=1

3 = 𝑴𝑪𝑨𝑻𝟎𝟐𝑿 

𝑹𝑾 = {𝑟𝑖
𝑊}𝑖=1

3 = 𝑴𝑪𝑨𝑻𝟎𝟐𝑿
𝑾 

Eq.  1.2 

Throughout this description, the symbol 𝑟 with subscripts 1, 2 and 3 will refer 

to quantities related to the long, medium and short wavelength cone 

photoreceptors respectively. 

2. Using the input parameter describing the degree of adaptation (𝐷) and the 

sharpened coordinates of the white-point 𝑹𝑾 calculated in the previous step, 

the sharpened responses 𝑹 are then transformed to a space corresponding to 

adaptation to an equal-energy white illuminant. This transform uses a von Kries 

type model where each sharpened channel is scaled independent of the other 

channels. The adapted coordinates 𝑹𝒂 are given by 

 
𝑹𝒂 = {𝑟𝑖

𝑎}𝑖=1
3  

𝑟𝑖
𝑎 = [(100𝐷 𝑟𝑖

𝑊⁄ ) + (1 − 𝐷)]𝑟𝑖 
Eq.  1.3 

3. A linear transform (𝑴𝑯𝑷𝑬) from the CAT02 primaries to the Hunter-Pointer-

Estevez (HPE) primaries is then employed to convert the adapted tristimulus 

values 𝑹𝒂 to coordinates 𝑹𝑯𝑷𝑬 in the HPE space. The primaries of this space 

closely resemble human cone sensitivities, and lead to more accurate 

calculations of subsequent non-linearities.  

 𝑹𝑯𝑷𝑬 = {𝑟𝑖
𝐻𝑃𝐸}𝑖=1

3 = 𝑴𝑯𝑷𝑬𝑴𝑪𝑨𝑻𝟎𝟐
−𝟏 𝑹𝒂 Eq.  1.4 

4. A post-adaptation non-linearity based on Hunt (1991) is then applied in the 

HPE space to derive the compressed responses 𝑹𝒄. 
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𝑹𝒄 = {𝑟𝑖
𝑐}𝑖=1
3  

𝑟𝑖
𝑐 =

400(𝐹𝐿𝑟𝑖
𝐻𝑃𝐸 100⁄ )0.42

27.13 + (𝐹𝐿𝑟𝑖
𝐻𝑃𝐸 100⁄ )0.42

+ 0.1 
Eq.  1.5 

Here, 𝐹𝐿 is a luminance-level adaptation factor which is calculated using the 

adapting luminance (an input parameter). 

5. The compressed responses are converted to opponency channels: the red-green 

channel 𝑎 and the yellow-blue channel 𝑏.  

 
𝑎 = 𝑟1

𝑐 − (12𝑟2
𝑐 11)⁄ + (𝑟3

𝑐 11)⁄  

𝑏 = (1 9⁄ )(𝑟1
𝑐 + 𝑟2

𝑐 − 2𝑟3
𝑐) 

Eq.  1.6 

6. From these opponency based coordinates, various perceptual correlates are 

calculated such as the hue angle, lightness, brightness, colourfulness, saturation 

and chroma.  

 

As is evident from the above description of CIECAM02, quasi invariants of human 

vision like the unique-hues and the achromatic locus strongly underpin the 

transformations employed by modern CAMs. In addition, CAMs also use a von Kries 

type chromatic adaptation (CAT02 in case of the CIECAM02) to transform cone-

excitations from the stimulus to a standard illumination condition (such as the equal-

energy white for CIECAM02).  

 

One of the most desirable features of any model of colour appearance is the definition 

of a perceptually relevant difference metric. Such a difference metric enables the 

interpretation of distances in the colour space proposed by the model as perceptual 

differences in the appearance of colours. Thus, two colours with coordinates that are 

equidistant from the coordinates of a given reference colour would have the same 

perceived difference in appearance from the reference colour. Helmholtz had first used 

a Riemannian line-element to define distances in colour space, and over the years there 

have been many proposed modifications to the line-element (Schrödinger, 1920; Stiles, 

1946; Vos & Walraven, 1972). The basic idea of the line-element is to define a 

differential space with a distance metric based on perceptual differences between 
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colours. The smallest unit of distance described by this perceptual colour-difference 

metric is the just-noticeable-difference or JND. Given a reference stimulus in a certain 

colour space, a JND describes the distance one must move in this colour space in order 

to achieve a just-perceivable change in the colour of the stimulus. The first successful 

integration of a Riemannian model with measured psychophysical data was 

accomplished by MacAdam (1942), who used the theory in a two dimensional 

chromaticity plane to define unit standard-deviation steps for his data. Since then, 

many other studies (Melgosa, Hita, Poza, Alman, & Berns, 1997; Poirson & Wandell, 

1990a; Poirson, Wandell, Varner, & Brainard, 1990) have measured and characterised 

colour discrimination surfaces, both in chromaticity as well as 3-D (i.e., luminance-

chromaticity) colour spaces. Many colour spaces with uniform perceptual distances 

have been proposed by the CIE such as the 𝐶𝐼𝐸𝐿𝐴𝐵 and the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 spaces. 

The descriptions of these spaces can be found in Appendix 1. 

 

A logical extension of colour appearance models is a model that describes appearance 

phenomena, not only for uniform patches, but also complex polychromatic stimuli. 

Although appearance models for images have been proposed in colour imaging, the 

most prominent being the iCAM.(Fairchild & Johnson, 2004), these models are geared 

towards assessment and description of image and video quality on the basis of metrics 

motivated by human vision. For instance, the iCAM model employs spatial 

convolution using low pass filters on the image as the first stage of processing, and 

then uses the output from these filters as the adapting stimulus in calculations very 

similar to CIECAM02 to arrive at correlates of image appearance. The focus of the 

model is to enable cross-media colour management and reproduction for colour 

images. Since it is very difficult to establish an equivalent of a colour-order system 

(such as the Munsell or NCS) for textures due to their complexity, the performance of 

these image-appearance models is harder to quantify in terms of human perception. 

 

Despite employing certain elements inspired by properties of early colour vision such 

as low-pass spatio-temporal filtering and colour opponent processing, current image 

appearance models do not use higher order phenomena reported in the literature on 

perception of polychromatic stimuli. For example, Thomson & Foster (1997) showed 
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that in a discrimination task, human observers are preferentially sensitive to second 

and higher order statistics in natural images. In fact, natural scenes and textures have 

been reported to be important priors for our visual system (Geisler, 2008; Nascimento, 

Ferreira, & Foster, 2002; Webster & Mollon, 1994, 1997). They have been proposed 

as important factors in the evolution of human colour vision itself (Changizi, Zhang, 

& Shimojo, 2006; Regan et al., 2001), and constraints based on the reflectance spectra 

of natural surfaces have also been used to provide rigorous accounts of observed colour 

phenomena such as the asymmetry in the unique hues and frequencies of linguistic 

colour categories (Philipona & Regan, 2006). Thus, in order to put forward a 

convincing model of image appearance, it is perhaps necessary to characterise the 

discrimination performance of the human visual system for natural polychromatic 

stimuli. This becomes especially relevant if one is to define differences metrics in the 

appearance space proposed by the model. In particular, comparison of discrimination 

performances for natural textures and uniform patches could be very informative in 

understanding how the statistics of complex polychromatic stimuli change 

discrimination thresholds compared to static uniform colour patches. Montag & Berns 

(2000) compared luminance thresholds for textures and uniform patches and found the 

luminance thresholds for textures to be higher by a factor of two. Hansen, Giesel, & 

Gegenfurtner (2008) and Giesel, Hansen, & Gegenfurtner (2009) estimated chromatic 

thresholds in an isoluminant plane for uniform patches, natural objects and 

polychromatic textures with colour distributions similar to natural stimuli. 

 

This thesis presents a series of experiments and analyses which can be divided into 

two parts. The first part examines two important quasi-invariants which underpin most 

modern CAMs – the achromatic locus (Chapter 2) and the unique hues (Chapter 3). 

The validity and robustness of these quasi-invariant percepts is investigated under 

varying illumination conditions. Chapter 3 also explores various models of chromatic 

adaptation for unique hues, and evaluates their accuracy and efficiency. The second 

part (Chapter 4) presents experiments aimed at extending CAMs to the appearance of 

a crucial natural texture – human skin. This is done by estimating discrimination 

thresholds for simulated colour-accurate skin patches, thereby providing JND 

measurements which can be used to define difference metrics in appearance space.  
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Chapter 2  reports measurements of achromatic settings made under three illumination 

conditions – dark, simulated daylight, and fluorescent lighting It introduces a novel 

algorithm for navigating colour space and evaluates its effect on the variability of the 

achromatic settings made by observers. Often, in experiments measuring achromatic 

settings, observers are asked to make adjustments in colour space such that each step 

falls along the cardinal axes of a colour or chromaticity space such as the MacLeod-

Boynton space (MacLeod & Boynton, 1979) or the 𝐶𝐼𝐸𝐿𝑈𝑉 space (CIE, 2004). The 

axes of these colour spaces do not necessarily denote perceptually robust colour 

directions. The first chapter of this thesis proposes a method of navigation in colour 

space which employs movements along unique-hue directions, and reports two 

estimates of achromatic settings for each observer (in each condition), one made using 

the novel navigation method, and the other made using the traditional method of 

movement along cardinal colour-space axes. The results indicate that achromatic 

settings made using the novel navigation scheme do indeed show a reduced variability. 

The measurements also reveal that achromatic settings show maximum variance along 

the daylight locus.  

 

Chapter 3 evaluates the performance of three models of chromatic adaptation 

(diagonal, linear and affine) using a large unique hues dataset (Wuerger, 2013; Xiao et 

al., 2011) collected in three different ambient illumination conditions. The model 

optimisation is done in three colour spaces – the cone excitation space, the differential 

cone excitation space, and the cone-contrast based 𝐷𝐾𝐿 opponency space. The small-

sample Akaike criterion 𝐴𝐼𝐶𝑐 (Akaike, 1974; C. Hurvich & Tsai, 1989), which takes 

the trade-off between the accuracy of the model and the number of free parameters 

into account, is used to evaluate the models. The diagonal Von Kries model in the cone 

excitation space is found to perform the best in terms of 𝐴𝐼𝐶𝑐. Model performance is 

also calculated for three metrics – the 𝐶𝐼𝐸𝐿𝐴𝐵 Δ𝐸𝐿𝐴𝐵 colour difference (CIE, 2004), 

the 𝐶𝐼𝐸𝐿𝐴𝐵 Δℎ𝑎𝑏 hue-angle difference (CIE, 2004), and the angle Δ𝜃𝑈𝐻 between 

unique hue planes (Wuerger, Atkinson, & Cropper, 2005) fitted to the measured and 

predicted settings. The model with the highest number of parameters, i.e. the Affine 

model, is found to perform the best on all the metrics. The diagonal and linear models 

show similar performances across colour spaces, reiterating their theoretical 

equivalence through decorrelation and sharpening transforms. In addition, these 
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models also show deviations from unimodality in the prediction errors for luminance 

dependent metrics Δ𝐸𝐿𝐴𝐵 and Δ𝜃𝑈𝐻 across observers.  

 

Although not a part of the corpus of this thesis, work was also done (Xiao et al., 2015) 

on evaluating whether CIECAM02 is indeed capable of matching NCS unique-hue 

data. The results of the study indicate significant differences between the CIECAM02 

defined unique hue lines and unique-hue lines corresponding to actual NCS data. 

 

Chapter 4, the main chapter in this thesis, presents three experiments which investigate 

the discrimination performance of human observers on simulated skin images and 

polychromatic images derived from simulated skin patches. These measurements are 

performed in three ambient illumination conditions – dark, simulated daylight and cool 

white fluorescent light. For each polychromatic stimulus, thresholds for the 

corresponding uniform patch of the same mean 𝐶𝐼𝐸𝐿𝐴𝐵 colour are also measured. The 

first experiment compares the thresholds for simulated skin and corresponding mean 

uniform patches. The thresholds for the polychromatic stimuli are consistently higher, 

for both the chromatic, and the luminance projections. The second and third 

experiments investigate the effect of ambient illumination and the relative location of 

the stimuli in colour space. The observed trends match those reported by Hansen et al. 

(2008) very closely, with the area of the chromaticity ellipses showing a gradual 

increase with distance from the illumination chromaticity. The orientations of the 

chromatic ellipses for simulated skin are found to align with the vector joining the 

mean patch chromaticity with the illuminant chromaticity. 
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Chapter 2  

 

The achromatic locus: effect of navigation direction in 

colour space 

 

 

Abstract 

 

The achromatic locus is defined as a light that is devoid of any hue. This is usually 

achieved by asking observers to adjust the stimulus such that it looks neither red nor 

green and at the same time neither yellow nor blue.  Despite the theoretical and 

practical importance of the achromatic locus, little is known about the variability in 

these settings.  

 

The main purpose of the current study was to evaluate whether achromatic settings 

were dependant on the task of the observers, namely the navigation direction in colour 

space. Observers could adjust the test patch either along the two chromatic axes in the 

CIE 𝑢∗𝑣∗ diagram, or alternatively, navigate along the unique hue lines.   

 

The main result of the study is that the navigation method affects the reliability of these 

achromatic settings. Observers are able to make more reliable achromatic settings 

when adjusting the test patch along the directions defined by the four unique hues as 

opposed to navigating along the main axes in the commonly used CIE 𝑢∗𝑣∗ 

chromaticity plane.  This result holds across different ambient viewing conditions 

(DARK; D65; CWF) and different test luminance levels (5, 20, 50 𝑐𝑑/𝑚2).  The 

reduced variability in the achromatic settings is consistent with the idea that internal 

colour representations are more aligned with the unique hue lines than the 𝑢∗ and 𝑣∗ 

axes.  
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NOTE: This chapter is a modified version of the original article published in the 

Journal of Vision (Chauhan et al., 2014).  
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2.1 Introduction 

 

An achromatic stimulus is defined as patch of light that is devoid of any hue. This is 

usually achieved by asking observers to adjust the stimulus such that it looks neither 

red nor green and at the same time, neither yellow nor blue. In terms of opponent-

colour theory, both chromatic opponent mechanisms, the red-green and the yellow-

blue mechanisms, are at equilibrium if a colour-normal observer views such an 

achromatic stimulus. The output of the chromatic channels is hypothesised to be at 

zero since no hue is perceived in such a stimulus. The idea that the chromatic system 

is at a ‘resting state’ at the achromatic locus  has led to the use of the achromatic point 

as a mean to scale the cone fundamentals (Bompas et al., 2013; Walraven & Werner, 

1991). Experimentally, settings of the achromatic loci are widely used to establish the 

effect of illumination or to assess spatial or temporal context effects (e.g. Doerschner, 

Boyaci, & Maloney, 2004; Lee, Dawson, & Smithson, 2012).  The extent of invariance 

of these achromatic settings depends on the spatial configuration, the chromaticity of 

the background and the ambient illumination (Bäuml, 2002; Brainard, 1998; Delahunt 

& Brainard, 2004; Helson & Michels, 1948), on eye fixation (Granzier, Toscani, & 

Gegenfurtner, 2012), on viewing pattern (Golz, 2010) and on the precise task 

instructions (Ekroll, Faul, Niederee, & Richter, 2002). The purpose of the current study 

was to evaluate whether achromatic settings were dependent on one particular task 

aspect, namely the navigation direction in colour space. It focuses on the reliability of 

the achromatic settings across and within observers; virtually all experiments using 

achromatic settings make the implicit assumption that observers are able to 

consistently navigate in a two-dimensional (or even three-dimensional) colour space. 

Here this assumption was tested directly by manipulating the directions in colour space 

along which observers can adjust the stimuli to obtain an achromatic setting. In the 

first method, observers were able to adjust the stimuli along the two main axes in an 

approximately uniform CIELUV colour space (Wyszecki & Stiles, 2000). Here, this 

navigation method is referred to as the 𝑢∗𝑣∗ method. In the second method, referred 

to as UH method, stimuli could be adjusted along the unique hue lines (Hering, 1920).  

A secondary aim was to evaluate whether these achromatic settings are invariant under 

changes in ambient illumination. The main result of the study is that the reliability in 

the achromatic settings is higher when observers are able to adjust along the unique 
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hue directions; this result generalises over all three ambient viewing conditions and 

test luminance levels.   

 

2.2 Methodology 

 

2.2.1 Apparatus 

 

Stimuli were generated with the CRS MATLAB toolbox on a 14-bit ViSaGe system 

(Cambridge Research System, Kent, UK) and displayed on the CRT monitor 

(Mitsubishi DiamondPro 2070). Observer responses were collected using a CB6 

response box (Cambridge Research System, Kent, UK). The monitor was calibrated 

using the ColourCal calibration device (Cambridge Research System, Kent, UK).  The 

CIE chromaticity coordinates and luminance of the phosphors at peak output were as 

follows: red = (0.629, 0.3421, 25.4 𝑐𝑑/𝑚2); green = (0.290, 0.605, 65.5 𝑐𝑑/𝑚2); 

blue = (0.148, 0.070, 11.2 𝑐𝑑/𝑚2). The monitor was switched on at least 30 minutes 

before the start of the experiment to ensure a stable luminance output.  

 

A GTI ColorMatcher GLE M5/25 installed on the ceiling in the centre of a booth was 

used to provide two lighting conditions (Xiao, Fu, Mylonas, Karatzas, & Wuerger, 

2013): a D65 simulator for daylight, and CWF for typical white fluorescent office 

light; in addition, a DARK condition was also included where the only source of 

illumination was the test patch on the CRT screen. The inside of the booth was painted 

dark grey, reflecting very little light. Table 2.1 reports the luminance and CIE xy 

chromaticity coordinates of the illuminants as given by a white tile placed underneath 

the GTI ColorMatcher and measured by a PhotoResearch PR-650 spectroradiometer.  

 

The peak output of the monitor was measured under all three ambient viewing 

conditions (DARK, D65 and CWF). Due to the small amount of ambient light reflected 

from the CRT display, the transformation matrices from RGB to XYZ vary slightly 

under the different viewing conditions. These small differences have been taken into 

account in the computation of the 𝑢′𝑣′ co-ordinates.  
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 CIE xy coordinates Luminance Correlated Colour Temperature 

D65 (0.312, 0.334) 41 𝑐𝑑/𝑚2 6376 𝐾 

CWF (0.394, 0.387) 136 𝑐𝑑/𝑚2 3747 𝐾 

 

Table 2.1: Illuminant colour coordinates and Correlated Colour Temperatures 

 

2.2.2 Observers  

 

Thirty subjects (18 females and 12 males; mean age: 24.24 years; age range: 18–60 

years) participated in the experiment. All participants had their colour vision assessed 

using the Cambridge Colour Test (Regan, Reffin, & Mollon, 1994) and were found to 

be colour normal. 

 

2.2.3 Experimental Procedure 

 

The effect of three variables on the achromatic locus were investigated: the navigation 

direction in colour space (𝑢∗𝑣∗ method or UH method), which was the main 

manipulation; the luminance level of the stimuli (5, 20, and 50 𝑐𝑑/𝑚2), and the 

ambient illumination condition (DARK, D65, CWF).  Each participant repeated each 

achromatic setting three times; in the course of the complete experiment, each of the 

30 observers therefore made 54 achromatic settings (3 illumination conditions x 3 

luminance levels x 2 navigation methods x 3 repetitions).   

 

Achromatic settings under the different ambient illumination conditions were obtained 

in separate blocks which were run in the order: DARK, D65 and CWF.  The 

background of the monitor was set to black, throughout all experiments. The observer 

adapted for at least 5 minutes to the prevailing illumination to ensure steady adaptation. 

Within each block, the order of the navigation direction (which is the main variable in 

the study) was balanced: half the observers first conducted the 𝑢∗𝑣∗ task followed by 

the UH task; the other half ran the experiments in the reverse order.  This ensured that 
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learning effects would not differentially bias the achromatic settings in one of the two 

tasks.  

 

Each block (i.e. fixed ambient illumination condition) lasted about 15-20 minutes; 

hence the entire set of experiments lasted between 45 minutes and one hour for each 

observer, including pre-experiment adaptation and a short break between the different 

illumination conditions. Observers were compensated for their time with a small fee.  

 

Each trial started with an initial colour which was chosen randomly from a pre-defined 

radius of eight colours at distances of ~25 𝑢∗𝑣∗ units around the point (0, −5) in the 

𝑢∗𝑣∗ plane. The choice of this central point is to some extent arbitrary, and was chosen 

at (𝑥 =  0.289, 𝑦 =  0.298) since this was the background chromaticity used in 

previous unique hue experiments (Wuerger, 2013). The CIE 𝑥𝑦 coordinates of the eight 

starting values were as follows: (0.3908, 0.3006); (0.4079, 0.3587); (0.3947, 0.4148); 

(0.3458, 0.4433); (0.2765, 0.4273); (0.1869, 0.3159); (0.2018, 0.2244); (0.2936, 

0.2110).  On each trial the observer was asked to adjust the colour of a central circular 

~2.6° patch such that it contained neither red nor green and neither yellow nor blue. 

The participant could make these adjustments along four directions in colour space by 

pressing one of four buttons on the response box. These buttons roughly controlled 

movement along the red-green and yellow-blue directions (see details below), i.e., 

pressing the red button reduced the level of red in the test patch, pressing the green 

button reduced the level of green and so on.  There was no time limit and observers 

could switch back and forth between the two chromatic axes. When observer was 

satisfied with his/her choice s/he pressed a fifth button and the next trial started.  

 

To statistically evaluate the effects of all three variables, a multivariate analysis of 

variance (MANOVA; SPSS Version 20) was performed with the dependent variable 

being the two-dimensional co-ordinates in the 𝑢′𝑣′ chromaticity diagram. A MANOVA 

is most efficient for moderately correlated dependent variables (Stevens, 2009); in the 

data reported below the correlations varied from 0.2 to 0.8, which is in line with the 

range of recommended correlations (0.3-07). Subsequently post-hoc comparisons 

were performed with correction for multiple comparisons.  
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2.2.4 Navigation Directions in Colour space.  

 

The main manipulation was the navigation direction in colour space: to find an 

achromatic setting, the observers could adjust the stimuli either along the two axes (𝑢∗ 

and 𝑣∗) of the standard CIE LUV colour space (denoted as 𝑢∗𝑣∗ task; see Fig 1a) or 

along the unique-hue directions (denoted as UH task; see Fig 1c). The unique hue lines 

used were based on the unique hue settings of 185 colour-normal observers (Wuerger, 

2013) and obtained using a hue selection task (Wuerger et al., 2005).   In this large 

sample, the inter-observer variability exceeded the intra-observer variability by a 

factor of 2 ( details on observer variability are in Table II, Xiao, Wuerger, Fu, & 

Karatzas, 2011). Inter-observer perceptual errors (expressed in Δ𝐸00) for the four 

unique hues range from 1.17 to 2.3. The inter-observer variability was therefore 

considered sufficiently small to use the same directions for all observers.  If anything, 

unique hue directions not optimised for each individual observer should result in less 

pronounced task differences, and thereby underestimating the effect of navigation 

direction.   

 

Both tasks in the current experiment were cancellation tasks, i.e., the colour directions 

chosen by the observers were used to cancel colour from the stimulus to obtain the 

subsequent stimulus. Figures 2.1b and 2.1d describe how the stimulus was updated 

after each observer’s response.  For both navigation directions, the step size in 𝑢∗𝑣∗ 

space was fixed to 5 units, which corresponds roughly to a distance of 0.007 in the 

𝑢′𝑣′ diagram. This step-size has been derived from extensive preliminary studies with 

the authors as experienced observers; it is well below the discrimination threshold 

around a typical CRT white point obtained for colour-normal observers (Regan et al., 

1994).  Within each trial, the luminance level of the test patch was fixed and observers 

could only adjust the chromaticity of the patch.   

 

For the 𝑢∗𝑣∗ method (Figure 2.1b) the starting value for the chromaticity of the test 

patch might be at (𝑢𝑜 , 𝑣𝑜), for example. The next colour stimulus (𝑢𝑛, 𝑣𝑛) was 

calculated by moving 5 units from the initial point (𝑢𝑜 , 𝑣𝑜) along one of the four 

directions determined by the axes of the 𝑢∗𝑣∗ plane. The direction was chosen by the 
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participants by pressing one of four buttons. In response to the button press, the test 

patch was updated accordingly (as shown in Figure 2.1b). 

 

In the UH method (Figure 2.1d), the step-size was also 5 𝑢∗𝑣∗ units, but now the 

direction of change was calculated as follows.  First the directional unit vector 𝒆̂ from 

the chosen unique hue 𝒙𝒖𝒉 = [𝑢𝑢ℎ 𝑣𝑢ℎ]
𝑇 to the initial colour 𝒙𝟎 = [𝑢0 𝑣0]

𝑇 was 

computed as:  

 𝒆̂ = −
𝒙𝒖𝒉 − 𝒙𝟎
‖𝒙𝒖𝒉 − 𝒙𝟎‖

= −
1

√(𝑢𝑢ℎ − 𝑢𝑜)2 + (𝑣𝑢ℎ − 𝑣𝑜)2
[
𝑢𝑢ℎ − 𝑢𝑜
  𝑣𝑢ℎ − 𝑣𝑜

] Eq.  2.1 

The new stimulus at iteration 𝑛, 𝒙𝒏 = [𝑢𝑛 𝑣𝑛]
𝑇, was then defined as the point lying at 

a distance of 𝑠 = 5 units from the initial colour in direction 𝒆̂.  Here 𝑠 denotes the step 

size in the 𝑢∗𝑣∗ space. 

 𝒙𝒏 = [
𝑢𝑛
  𝑣𝑛

] = 𝒙𝟎 + 𝑠 ⋅ 𝒆̂ Eq.  2.2 

An example is shown in Figure 2.1d, where the initial point is assumed to be at (𝑢𝑜 , 𝑣𝑜) 

and the participant cancels unique yellow, i.e. yellow is reduced in the stimulus. Since 

the 𝐿∗ values always remained constant (at 𝐿𝑜) in this process, the new colour stimulus 

is at (𝐿𝑜 , 𝑢𝑛, 𝑣𝑛). This new colour is then the starting point for the next iteration. This 

procedure was repeated until the participant confirmed that according to him/her the 

stimulus displayed on the screen was achromatic, i.e. contained neither red nor green 

and neither yellow nor blue.  
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Figure 2.1: Navigation direction in colour space: (a) 𝑢∗𝑣∗ method: observers navigate along the axes in 

the 𝑢∗𝑣∗ chromaticity diagram. (b) The step size is 5 units in 𝑢∗𝑣∗ space. After each response the colour 

is updated along the relevant direction and the updated setting is used as the new starting value for the 

next iteration.  (c) UH method: observers navigate along the directions of the unique hues. (d) The step 

size for the UH task is again 5 𝑢∗𝑣∗ units but now the adjustment is made in one of the directions defined 

by the unique-hues. The updated setting is used as the new starting value for the next iteration.   

 

During the experiment, the display RGB values of the final achromatic settings 

selected by the participants were automatically saved. Subsequently, they were 

transformed to CIE XYZ tristimulus values using the calibrated display profile that 

was generated based on colour measurements results by a spectroradiometer.  To 

confirm the accuracy of the calibration, the CIE tristimulus values derived from the 

display profile were compared with the actual measurements; the differences were 

found to lie within measurement error.  
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2.3 Results 

 

All achromatic settings will be presented in the 𝑢′𝑣′ chromaticity diagram rather than 

in the CIE 𝑥𝑦 chromaticity diagram, since the former is known to be approximately 

uniform, that is, equal Euclidean distances in 𝑢′𝑣′ reflect approximately similar 

perceptual distances.  Approximate uniformity is of relevance for the interpretation of 

these results since comparisons of the intra- and inter-observer variability across 

different navigation methods and illumination conditions (Wuerger, Maloney, & 

Krauskopf, 1995) will be made. In what follows, the mean achromatic settings are 

reported first, followed by the effect of the navigation method on the reliability of the 

achromatic settings.  

 

2.3.1 Mean achromatic settings: Effect of navigation method, 

ambient illumination and test luminance level 

 

Figure 2.2 shows the achromatic settings averaged over all observers; error bars denote 

± standard error of the mean. This section will, in turn, discuss the effect of the 

navigation method, the effect of illumination and test luminance level on the 

achromatic loci.  As depicted in Figure 2.2, the achromatic settings depend on the 

navigation method; achromatic loci obtained with the UH method () differ from the 

settings obtained with the 𝑢∗𝑣∗ method (), 𝐹(2, 521) = 23.1, 𝑝 < 0.0001.   
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Figure 2.2: Achromatic loci averaged over all 30 observers and all test luminance levels. Error bars 

denote ±1 standard error of the mean. Grey symbols denote the mean settings under the dark viewing 

condition; blue symbols under D65 and yellow symbols under CWF. The settings for the UH method 

and the 𝑢∗𝑣∗ method are indicated by  and  respectively, while  denotes the mean setting under 

each illuminant. 

 

Secondly, ambient illumination affects the achromatic locus by shifting the settings 

towards the prevailing illumination, 𝐹(4, 1042) = 65.7;  𝑝 < 0.0001. The filled 

circles indicate the grand mean settings (averaged over all observers, all test luminance 

levels and both navigation methods) for the dark viewing condition (), under D65 

(), and under CWF (). When compared to achromatic settings obtained under dark 

viewing conditions (grey symbols), the settings are shifted towards the chromaticity 

of the prevailing illumination (bluish symbols for D65; yellowish symbols for CWF).  

When viewed in the D65 condition () achromatic settings ( and ) move along 

the daylight locus towards D65; similarly, when viewed in the CWF condition (), 

the achromatic settings ( and ) move towards the chromaticity of the ambient 

illumination.  Post-hoc comparisons revealed that all pairwise differences in the 

achromatic settings (DARK vs. D65; D65 vs. CWF; CWF vs. DARK) were 

statistically significant (𝑝𝑠 corrected <  0.05).  
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Figure 2.3: Achromatic settings under stimulus luminance level of (a) 5 𝑐𝑑/𝑚2, (b) 20 𝑐𝑑/𝑚2 and (c) 

50 𝑐𝑑/𝑚2.  The settings are averaged over the 30 observers and the same symbols as Figure 2.2 are 

used. At the highest luminance level both navigation methods converge on very similar achromatic 

settings.  

 

Thirdly, the luminance level of the test patch affects the achromatic settings, 

𝐹(4,2042) = 14.6;  𝑝 < 0.0001. Figure 2.3 shows the achromatic settings for all 
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three luminance levels: (a) 5 𝑐𝑑/𝑚2, (b) 20 𝑐𝑑/𝑚2 and (c) 50 𝑐𝑑/𝑚2.  Higher 

luminance level yield less variable results (cf Figure 2.3c with Figure 2.3a), both in 

terms of observer consistency as well as the discrepancy between the two navigation 

methods.  At the highest luminance level (Figure 2.3c; 50 𝑐𝑑/𝑚2) both navigation 

methods converge on very similar achromatic settings.  The effect of test luminance 

level on the achromatic settings is driven by the differences in 𝑣′ under low luminance 

(5 𝑐𝑑/𝑚2 vs. 20 𝑐𝑑/𝑚2: 𝑝 < 0.001; 5 𝑐𝑑/𝑚2 vs. 50 𝑐𝑑/𝑚2: 𝑝 < 0.0001).  The 

larger variability for the achromatic settings at the 5 𝑐𝑑/𝑚2 luminance levels is likely 

to be related to the rod-cone interactions at mesopic light ranges (Stockman & Sharpe, 

2006; Yebra, García, Nieves, & Romero, 2001). Since these interactions are non-linear 

and depend on a number of factors such as the distribution of the rod and cone 

receptors in the observer retina (Stockman & Sharpe, 2006),  individual differences in 

receptor distribution are likely to play a role in the achromatic settings at 5 𝑐𝑑/𝑚2 . 

 

It must be noted that no effects of learning were found in the results. To evaluate this 

possibility, conducted further MANOVAs with session number as a factor were 

conducted. Each neutral grey setting was obtained three times; if learning took place 

one would expect to find a difference between these three settings. To test for such a 

difference, the data were split in three different groups for each of the 18 conditions (3 

illuminants x 3 test luminance levels x 2 tasks) before running the MANOVAs. The 

results showed no statistically significant dependence on the session number: the 18 

MANOVA p-values varying between 0.15 and 0.88, none of them significant.  

 

2.3.2 Effect of navigation method on the variability of the 

achromatic settings 

 

Figure 2.4 shows in more detail how the navigation method affects the variability of 

the achromatic settings.  Each data point reflects the mean setting for an individual 

observer, for a particular test luminance level (Figure 2.4a: 5 𝑐𝑑/𝑚2; b: 20 𝑐𝑑/𝑚2; c: 

50 𝑐𝑑/𝑚2) and for both navigation methods (on the left: UH method; on the right: 

𝑢∗𝑣∗ method). Details of the ambient viewing conditions are as before (cf Figure 2.1). 
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The spread in the data points is larger for the 𝑢∗𝑣∗ method compared to the UH method 

(compare left and right panels in Figure 2.4); the spread in the settings is also reduced 

when the test luminance level is increased (compare Figure 2.4a with Figure 2.4c).   

 

To quantify the effect of navigation method and test luminance level on the variability 

in the settings, both the intra-observer and inter-observer variability in the 

approximately uniform 𝑢′𝑣′ chromaticity diagram (Xiao et al., 2013, 2011) were 

computed. Inter-observer variability indicates the extent to which individual observers 

agree with the average observer, whereas intra-observer variability indicates how 

consistent the individual observer is across several repetitions.  Intra-observer 

variability is defined as: 

 𝑂𝑉𝐼𝑁𝑇𝑅𝐴 =
1

𝑛
∑√(𝑢𝑖

′ − 𝑢′̅)2 + (𝑣𝑖
′ − 𝑣′̅)2

𝑛

𝑖=1

 Eq.  2.3 

where 𝑛 denotes the number of observations for a particular stimulus, (𝑢𝑖
′, 𝑣𝑖

′) is the 

𝑖𝑡ℎ observation, and (𝑢′̅, 𝑣′̅) is the mean of these n observations. Inter-observer 

variability is calculated similarly:  

 𝑂𝑉𝐼𝑁𝑇𝐸𝑅 =
1

𝑚
∑√(𝑢𝑖′̅̅̅̅ − 𝑢′̿)2 + (𝑣𝑖′̅̅ ̅ − 𝑣′̿)2
𝑚

𝑖=1

 Eq.  2.4 

where 𝑚 denotes the number of participants, (𝑢𝑖′̅, 𝑣𝑖′̅) is the average setting for the 𝑖-th 

participant, and (𝑢′̿, 𝑣′̿) is the mean of the average settings for all 𝑚 observers. 

 

The ratio between inter- and intra-observer variability is an indicator of how consistent 

the settings are across the sample in relation to the consistency within each observer 

(Kuehni, 2005).  There is a large effect of navigation method on the variability (Mean 

variabilities: Table 2.2; Range of variabilities: Table 2.3): both inter- and intra-observer 

variability are much smaller when settings are obtained using the UH method, in 

comparison to the 𝑢∗𝑣∗ method; variability in the UH method is, on an average, just 
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above 70% of the variability in the 𝑢∗𝑣∗ method (73% for the intra- and 74% for the 

inter-observer variability). This reduction in variability in the UH method is seen for 

all test luminance levels, but is more pronounced under the dark viewing condition. 

The ratio between inter- and intra-observer variability is on average 1.74, and does not 

depend on the navigation method. This ratio ranges from about 1.5 to 2, indicating a 

good consistency in the achromatic settings across participants, and is comparable to 

the ratios found for unique hue settings (Xiao et al., 2013, 2011).  

 

To quantify the reduction in variability the ratio between the variability in the UH 

method and the 𝑢∗𝑣∗ method for all conditions (Figure 2.5) were plotted. This ratio is 

always smaller than unity, for both intra- (light bars) and inter-observer variability 

(dark bars) indicating that the settings are less variable when observers adjust the 

achromatic locus along the UH directions. This result is not contingent on the choice 

of 𝑢′𝑣′ space; almost identical variability ratios are obtained when using LAB space 

(Figure 2.6).  
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Figure 2.4: Mean achromatic settings for each observer under a stimulus luminance level of (a) 

5 𝑐𝑑/𝑚2, (b) 20 𝑐𝑑/𝑚2, (c) 50 𝑐𝑑/𝑚2. Grey points denote the dark condition; blue points denote D65, 

and the yellow points denote CWF. The observed spread in the settings is larger for the 𝑢∗𝑣∗ method 

(right panel) compared to the UH method (left panel). 
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DARK  D65  CWF  

Avg. over 

Illuminants 

Intra Inter Ratio 

 

Intra Inter Ratio 

 

Intra Inter Ratio 

 

Intra Inter Ratio 

UH                

5 𝑐𝑑/𝑚2   9.6 14.9 1.55  6 14.7 2.45  6.2 13.7 2.21  7.3 14.4 1.99 

20 𝑐𝑑/𝑚2  6.4 9.1 1.42  4.7 7.7 1.64  5.2 8.8 1.69  5.4 8.5 1.57 

50 𝑐𝑑/𝑚2  5.3 10.2 1.92  5.6 8 1.43  5.4 9.3 1.72  5.4 9.2 1.69 

Lum. avg. 7.1 11.4 1.61  5.4 10.1 1.87  5.6 10.6 1.89  6 10.6 1.77 

𝑢∗𝑣∗                 

5 𝑐𝑑/𝑚2  11.5 18.3 1.59  8.2 15.9 1.94  7.2 13.7 1.90  9 16 1.78 

20 𝑐𝑑/𝑚2  10.2 14.7 1.44  6.7 14.1 2.10  7 13.3 1.90  8 14 1.76 

50 𝑐𝑑/𝑚2  8.8 15 1.70  7.2 11.8 1.64  7.7 12.2 1.58  7.9 13 1.65 

Lum. avg. 10.2 16 1.57  7.4 13.9 1.89  7.3 13.1 1.79  8.2 14.2 1.73 

Avg. 8.6 13.5 1.58  6.3 11.9 1.87  6.4 11.8 1.84  7.1 12.4 1.74 

 

Table 2.2: Mean intra- and inter-observer variability (expressed in e-3 units) for the achromatic settings 

for all three illumination conditions (DARK, D65, CWF), test luminance levels (5, 20, 50 cd/m2) and 

both navigation methods (UH method, 𝑢∗𝑣∗ method). The ratio between inter- and intra-observer 

variability is independent of the navigation method.  
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 UH  𝑢∗𝑣∗ 

 Intra Inter  Intra Inter 

DARK      

5 𝑐𝑑/𝑚2 (0.58,69.30) (2.22,39.56)  (0.57,93.36) (3.63,45.97) 

20 𝑐𝑑/𝑚2 (0.67,19.81) (0.53,26.37)  (0.95,74.01) (0.65,34.57) 

50 𝑐𝑑/𝑚2 (0.11,17.25) (3.25,32.94)  (1.30,65.26) (3.70,49.74) 

D65      

5 𝑐𝑑/𝑚2 (0.75,19.65) (2.43,42.75)  (0.53,52.56) (1.61,58.02) 

20 𝑐𝑑/𝑚2 (0.55,18.17) (0.38,23.92)  (0.00,22.78) (2.76,50.99) 

50 𝑐𝑑/𝑚2 (0.13,19.54) (0.21,25.04)  (0.24,21.56) (0.38,46.28) 

CWF      

5 𝑐𝑑/𝑚2 (0.78,20.15) (0.89,45.54)  (0.5421.43) (1.60,57.81) 

20 𝑐𝑑/𝑚2 (0.23,20.23) (0.64,21.81)  (0.34,40.49) (3.37,35.08) 

50 𝑐𝑑/𝑚2 (0.47,20.51) (0.61,24.46)  (0.83,35.58) (2.21,26.46) 

 

Table 2.3: Minimum and maximum values of Intra- and inter-observer variability (expressed in e-3 

units) for the achromatic settings for all three illumination conditions (DARK, D65, CWF), test 

luminance levels (5, 20, 50 cd/m2) and both navigation methods (UH method, 𝑢∗𝑣∗ method). Each entry 

is in the form (Min,Max) such that Min is the minimum and Max is the maximum value of the intra- or 

inter- observer variability in the corresponding condition. 
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Figure 2.5: The main finding of the study is that the variability in the UH task is always smaller than 

in the 𝑢∗𝑣∗ task.  The ratio between the variability in the UH method and the 𝑢∗𝑣∗ method, plotted 

against the stimulus luminance level (5, 20 and 50 cd/m2). The intra-observer variability ratios are in 

light colour, while the inter-observer variability ratios are in dark. Each subplot denotes a separate 

ambient viewing condition (DARK, D65 and CWF). The calculations for these plots are performed in 

the 𝑢′𝑣′ space, but the same effects are found in other colour spaces too (See Figure 2.6). 

 

 

Figure 2.6: 𝐶𝐼𝐸𝐿𝐴𝐵 space calculation of the ratio between the variability in the UH method and the 

𝑢∗𝑣∗ method. The exact same axes and colours as Figure 2.5 are used.  
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2.4 Discussion 

 

The purpose of this study was to evaluate the reliability with which colour-normal 

human observer can perform achromatic settings, that is, to adjust a patch of light such 

that it appears void of any hue. Two different navigation methods in chromaticity 

planes of constant luminance were evaluated. The main finding is that observers’ 

achromatic settings are more reliable (in terms of inter- and intra-observer variability) 

when they are asked to adjust the light along the unique hue lines compared to 

adjustment along the main axes of the commonly used CIE 𝑢∗𝑣∗ chromaticity diagram 

(Figure 2.5).  

 

This effect of navigation method on the variability in the achromatic settings holds 

across all test luminance levels and ambient illumination conditions.  While the stimuli 

used in the experiment are of limited complexity, there is no reason to believe that this 

effect of navigation method on the reliability of the achromatic setting depends on the 

particular spatial structure or viewing condition. Since the UH method relies on unique 

hues which are approximate pseudo-invariants of human colour vision, it is more likely 

that the effect of navigation method is related to the internal representation of the 

different directions in colour space.  

 

A unique hue percept theoretically corresponds to an equilibrium state in one of the 

colour opponent channels (either red-green or yellow-blue), while an achromatic 

percept corresponds to an equilibrium in both the opponent channels. In the UH 

method, the navigation scheme constantly aims to balance one of the opponent 

channels by restricting movement in colour space to be always towards one of the four 

unique hues. Thus, the reduced variability of achromatic settings obtained by the UH 

navigation scheme could be a result of this iterated asymptotic balancing of colour 

opponency channels.  
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2.4.1 Shifts in the achromatic locus under changes in ambient 

illumination 

 

In comparison to the achromatic settings obtained under the dark viewing condition, 

the achromatic loci move towards the chromaticity of the ambient illumination (Figure 

2.7:  indicates a light source).  The observed shift (from D65 to CWF) is indicated 

by a ; the predicted shift by .  A simple cone adaptation model fails to predict the 

achromatic shifts on several accounts: Firstly, while the direction of the shift is 

accounted for by cone adaptation without assuming any cross-talk between the 

different cone classes (Wuerger, 1996),  the observed magnitude of the shift is much 

smaller, only about 30% of the predicted shift.  This is consistent with previous studies  

showing  poor colour constancy – on a dark background (Hansen, Walter, & 

Gegenfurtner, 2007), for increments relative to the background instead of decrements 

(Helson & Michels, 1948) and when the immediate surround is not at the chromaticity 

of the Illuminant (Delahunt & Brainard, 2004; Kraft & Brainard, 1999).  

 

Secondly, consistent with Kuriki’s study (Kuriki, 2006), the achromatic settings vary 

with stimulus intensity (Figure 2.3) which precludes modelling the effect of ambient 

illumination with cone adaptation where the scaling factors depend only on the cone 

absorptions of the illuminations. To compare the test luminance dependency of the 

achromatic settings with Kuriki’s, the same analysis was performed: the relative cone 

weights (M/L and M/S) were plotted against the luminance in a log-log plot (Figure 

2.8). It was found that the log-relative cone ratios depend both on the luminance of the 

test patch and on the ambient illumination. Under D65 viewing, the achromatic settings 

converge for high luminance values to the settings obtained under the dark viewing 

condition, which is in agreement with Kuriki’s findings (Fig. 4; Kuriki, 2006). This 

suggests that the achromatic settings become independent of the illumination when the 

luminance level increases. However, no convergence under CWF (comparable to 

Kuriki’s orange illumination) is found; when observers are adapted to CWF, the test 

luminance has little effect on the cone ratios but the cone ratios depend on the ambient 

illumination.  There are important differences between these two studies: the area 

surrounding the test patch in Kuriki’s study was about 10 𝑐𝑑/𝑚2 whereas in this study 
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the background was black; in this experiment no attempt was made to induce an ‘object 

mode’ and the observers were aware that the test patch was a self-luminous source.  

 

 

Figure 2.7: Von Kries prediction for the mean achromatic setting when the ambient illumination changes 

from D65 to CWF. The observed shift is in the same direction as the predicted shift.  

 

Qualitatively similar shifts have been reported by Brainard and colleagues (Brainard, 

1998; Brainard & Ishigami, 1995). Figure 2.9 shows a comparison of the achromatic 

loci obtained in the current study (, and ) with previous experiments. Although 

there is some variability in the previously reported achromatic loci, generally, the 

points for all viewing conditions lie close to the daylight locus.  The achromatic points 

under dark viewing condition are close to the equal energy white point, and shifts 

introduced by a change in illumination along the daylight locus generally follow the 

daylight locus (Brainard, 1998; Schefrin & Werner, 1993; Valberg, 1971).   
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Figure 2.8: Comparison with Kuriki (2006). Effect of stimulus luminance on achromatic settings, in 

terms of relative weights for M and L cones (a, b) and  M and S cones (c, d).  The vertical axis shows 

the relative cone weights for the achromatic settings; different symbols indicate different ambient 

illumination conditions. 
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Figure 2.9: Mean achromatic settings reported by previous studies, along with those for the current 

study. The achromatic settings are denoted by symbols as listed in the legend, while the corresponding 

ambient illuminations are denoted by a  of the same colour. The grey dotted line indicates the daylight 

locus. The achromatic loci for the dark condition lie close to the equal energy white point and illuminant 

shifts along the daylight locus induce achromatic shifts in the same direction. 

 

2.4.2 Covariation along the daylight locus.  

 

Within  a particular illumination and test luminance condition, the 𝑢′𝑣′ settings are not 

independent (see Figure 2.4), but are aligned with the daylight locus, as reported by 

Witzel and colleagues (Witzel, Valkova, Hansen, & Gegenfurtner, 2011). A principal 

component analysis (PCA) of the achromatic settings confirms their results; in Figure 

2.10, the direction of the main co-variation (1st principal component; solid grey line) 

is aligned with the daylight locus (dotted line).   
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Figure 2.10: The direction of the first principal component (axis of maximum covariance; thick black 

line) of the achromatic settings in the 𝑢′𝑣′ plane, shown together with the daylight locus (yellow dotted 

line). The axis of maximum covariance closely follows the daylight locus. 

 

The illuminations used in this experiment are close to the daylight locus (Figure 2.9); 

however, it is important to note that the lower variability in the achromatic settings 

with the UH method is not simply a consequence of the illumination change coinciding 

with the yellow-blue UH line. Observers are never asked to match achromatic points 

between illumination conditions; their task is to reach an achromatic point from a 

randomly chosen starting point for a fixed illumination condition.  
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Figure 2.11: Starting points (black filled circles), along with the data for each navigation method (UH 

and 𝑢∗𝑣∗)  collapsed across the luminance levels. The starting points were chosen randomly.  

 

These randomly chosen starting points are shown in Figure 2.11, along with the 

observer settings collapsed across luminance conditions. In most cases adjusting the 

test patch along the daylight locus will not suffice to obtain an achromatic stimulus 

since the starting points are not restricted to lie on the daylight locus but vary randomly 

along both dimensions.  It is however conceivable  that the unique hue lines, at least 

the line connecting yellow and blue,  are more salient perceptual colour directions, in 

comparison to 𝑢∗𝑣∗, since the unique yellow-blue line reflects a naturally occurring 

change in illumination, the ‘cerulean line’ (Mollon, 2006).  Whether unique hue lines 

have any special status in the perceptual colour space is still an open question and not 

much substantial evidence exists supporting this claim, with the exception of 

UH Method 

𝒖∗𝒗∗ Method 
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Danilova’s work demonstrating improved discrimination performance for lights close 

to the unique yellow-blue hue line (Danilova & Mollon, 2010). 

 

In conclusion, this study shows that observers’ ability to make reliable achromatic 

settings is increased when observers are asked to adjust the test patch along the 

directions defined by the four unique hues as opposed to navigating along the main 

axes in the commonly used CIE 𝑢∗𝑣∗ chromaticity plane.  While this reduced 

variability in the achromatic settings does not prove that observers use particular 

salient mechanisms in the UH method, it is consistent with the idea that internal colour 

representations are more aligned with the unique hues than the 𝑢∗ and 𝑣∗ axes.  

 

The UH task in this experiment was designed using previous measurements of unique 

hue directions (Wuerger, 2013). An interesting extension to this study would be to 

measure the unique hue directions of each observer at each luminance level, and to 

then use these directions in the UH method of navigation for achromatic settings. 

Under these conditions, the conclusions from the present study would predict a further 

decrease in the variability of the achromatic settings. 
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Chapter 3  

 

Modelling Chromatic Adaptation in Unique Hues 

 

 

Abstract 

 

A large (𝑁 = 185) set of unique hue settings collected in three different ambient 

illumination conditions was used to model chromatic adaption using three forms of the 

transform – diagonal, linear and affine. This study critically examines the accuracy of 

these models in predicting both, the individual unique hue settings, and the unique hue 

planes fitted to the data. The structure of the data itself is analysed, especially with 

respect to the bimodality of the unique hues. The results show that a simple diagonal 

model in the 𝐿𝑀𝑆 cone excitation space is the most efficient in terms of the trade-off 

between accuracy and degrees of freedom. They also show that diagonal and linear 

models show similar performances, reiterating their theoretical equivalence. The 

performance of these diagonalisable models: 1. Shows a tendency to deviate from 

unimodality when evaluated against luminance-dependent metrics 2. Is worse for UR 

and UG planes compared to UY and UB planes.   
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3.1 Introduction 

 

Humans are trichromatic, yet their perception of colours is defined by four basic 

colours – red, green, yellow and blue (Helmholtz, 1867). The photoreceptors in the 

human retina which absorb long, medium and short wavelengths of light (L, M and S 

cones respectively) combine in opponency mechanisms (Hering, 1920) to generate 

these sensations. These perceived sensations of unique colours are referred to as unique 

hues and have been measured time and time again (Rubin, 1961; Webster, Miyahara, 

Malkoc, & Raker, 2000; Wuerger et al., 2005). Although chromatic cone-opponency 

pathways have been identified in the LGN, their cardinal axes have been found to code 

opponency channels which do not correspond to perceived unique hues (Derrington et 

al., 1984; Tailby et al., 2008). Stoughton & Conway (2008) suggested a plausible 

higher-order neural representation of unique hues in the glob cells of the posterior 

inferior temporal cortex. Due to methodological limitations of their work (Conway & 

Stoughton, 2009; Mollon, 2009), as it stands, no unequivocally clear neural basis of 

unique hues has so far been reported (Mollon & Jordan, 1997; Valberg, 2001). 

 

Perceived unique hues have been shown to be fairly robust to diverse factors such as 

age (Schefrin & Werner, 1990; Wuerger, 2013), gender (Hinks, Cárdenas, Kuehni, & 

Shamey, 2007) and individual differences in spectral sensitivities (Webster et al., 

2000). Thus, in some sense, they could be called pseudo-invariants of perceived colour 

sensation. It then follows that transforms which can predict the appearance of these 

unique hues under different illumination conditions are central to the understanding of 

colour vision, and to the development of a theory of colour appearance in general 

(Brainard & Wandell, 1992; Fairchild, 2013; Moroney et al., 2002; Xiao et al., 2015).  

 

In the following analyses, a large dataset of unique hues settings (Wuerger, 2013; Xiao 

et al., 2011) was used to calculate optimised chromatic adaptation transforms. Three 

forms of the transform were considered – diagonal, linear and affine; and the 

optimisations were performed in three colour spaces – the cone excitation space 𝐿𝑀𝑆, 

the differential cone excitation space with respect to the background Δ𝐿𝑀𝑆, and the 
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higher-order contrast opponency space 𝐷𝐾𝐿 (Derrington et al., 1984; the current 

implementation was based on Appendix IV of Kaiser & Boynton (1996), which was 

contributed by David Brainard). The aim of the modelling was to evaluate the best-

performing model for adaptation under the given illumination conditions, the 

performance being defined by an information-theoretic metric. Since unique hues 

represent the putative third stage in human colour vision (Smithson, 2014), a better 

understanding of chromatic adaptation models operating on these colours could also 

suggest possible sites for the adaptations (Dunn, Lankheet, & Rieke, 2007). 

 

3.2 The experiment and the dataset 

 

This section gives an overview of the experimental procedure and the task used to 

collect the data, ending with a short summary of the data itself. Since the experimental 

details have previously been described in Xiao et al. (2011) and Wuerger (2013), the 

aim of this section is a brief recapitulation of the experimental methods used to collect 

the data.  

 

3.2.1 Experimental set-up 

 

The experiments were carried out in a light-proof anechoic chamber fitted with a 

Graphic Technology Inc. GLE-M5/32 overhead luminaire. The light reaching the 

screen in each luminaire mode was measured using a Photo Research© PR-650 

spectroradiometer. The measured SPDs (Spectral Power Distributions) of the two 

illuminants are shown in Figure 3.1.  
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Figure 3.1: Spectral Power Distributions of illuminants used. 

 

The two sources were approximately metameric with standard D65 and F11 (Philips 

TL84) illuminants and the measured illuminant chromaticities and those of the closest 

CIE standard illuminants are shown in Table 3.1 below. 

 

 

D65 TL84 

Luminaire Standard Luminaire Standard 

Correlated Colour 

Temperature (K) 
~6100 ~6500 ~3900 ~4000 

x-y chromaticity (0.32, 0.34) (0.31, 0.33) (0.39, 0.39) (0.38, 0.38) 

 

Table 3.1: Illuminant chromaticities 

 

The stimuli were displayed on a 21-inch Sony GDM-F520 monitor. A ViSaGe stimulus 

generator and a ColorCAL colorimeter (both manufactured by Cambridge Research 

Systems, CRS©) were used to calibrate the screen. The chromaticities and luminance 

of the screen primaries are presented in Table 3.2. The White Point of the monitor was 
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theoretically at ≈ 8800𝐾.  

 

 Red Green Blue 

x-y chromaticity (0.63,34) (0.30,0.61) (0.15,0.08) 

Luminance (cd/m2) 26.36 73.96 14.82 

 

Table 3.2: CRT Primaries 

 

The stimuli were generated using the CRS© toolbox for MATLAB (Mathworks Inc.) 

and displayed using a CRS© ViSaGe system. Observer responses were collected using 

a CRS© CT6 response-box. 

 

3.2.2 Task, stimuli and observers 

 

A modified hue selection task (Wuerger et al., 2005) was used to determine the unique 

hue settings. The stimuli consisted of ten circular uniform colour patches, spatially 

arranged along the circumference of a large circle (Figure 3.2). Each circular patch 

subtended a visual angle of 2° while the annulus eccentricity was about 4°. The 

background throughout the experiment was a mid-grey (CIE 𝐿∗ = 50 with respect to 

the monitor white point) with CIE coordinates of (0.29, 0.30, 24 𝑐𝑑/𝑚2). For 

determining the settings for a given unique hue, the instructions given to the observers 

emphasised the silencing of the alternate colour-opponent mechanism. For instance, to 

identify unique-red, the observers were asked to choose a patch that contained neither 

yellow nor blue.  

 

The experiment was conducted in a lightproof anechoic chamber. In each session, 

observers adapted to the ambient illumination for about 5 minutes before starting the 

experiment. In each trial, a stimulus with ten circular uniform colour patches arranged 

in an annulus (Figure 3.2) was shown to the observer. The observer used the response 
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pad to select one of the ten uniform patches being shown as the required unique hue. 

After the button press the experiment moved on to the next stimulus. The stimulus 

presentation was not time-limited and the observers could take as long as they needed 

to complete the task. Each session involved 108 stimuli presentations and (4 unique 

hues × 9 lightness-saturation combinations × 3 repetitions) and lasted for about 20 

minutes on average. 

 

 

 

Figure 3.2: A schematic of the hue selection task (not to actual scale or colour accuracy). The circular 

patches were arranged along an annulus. The patches within a given stimulus were isoluminant and of 

equal saturation, with a constant hue difference between two adjacent patches. The circular patches 

subtended 2° of visual angle on the observer’s retina while the annulus eccentricity was 4°. 

 

In each trial of the experiment, all ten circular patches on a given stimulus had the 

same luminance and saturation, and were equally spaced in terms of the CIELUV hue 

angle. The hue angle steps between the patches (and consequently the range of hues 

displayed) for each trial was based on hue ranges obtained in earlier experiments by 

Wuerger et al. (2005). For each unique hue, the observers were tested at nine 

saturation-brightness combinations, with the brightness ranging from 8.5 𝑐𝑑/𝑚2 to 

60 𝑐𝑑/𝑚2. Care was taken to ensure that all tested colours were within the gamut of 

the monitor, resulting in a slightly different set of luminance levels for each unique 
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hue. Further details, including the exact colour coordinates of the stimuli are available 

in Xiao et al. (2011).  

 

The three ambient illumination conditions were tested in separate sessions (due to the 

stabilisation period of the luminaire), with the observers adapting to the ambient 

illumination for about five minutes before the start of each session. Each observer 

made each setting three times. In total, 185 observers (age range: 18-75 years, mean 

age = 32.2 years) were tested during the course of the study. Each observer was 

screened for colour-normal vision using the Cambridge Colour Test (Regan et al., 

1994). The participants were compensated for their time with a small fee.   

 

3.2.3 The dataset 

 

During the course of the experiment, each of the 185 observers made 324 judgements 

(4 unique hues × 9 saturation-brightness combinations × 3 illumination conditions × 

3 repetitions). Throughout the article, the measured data are presented in the colour-

opponency based 𝐷𝐾𝐿 space (Derrington et al., 1984), which is described in detail in 

Section 3.3.2. The three panels in Figure 3.3 show the average settings for all four 

unique hues for each observer under the three illuminants. The two axes of the graph 

represent the S-Luminance and the L-M mechanisms, the plane thereby being what 

could be called a chromaticity space. The unique hues are colour coded with Unique 

Red (UR) being in red, Unique Green (UG) being in green and so forth. Averages 

across observers for each of the 9 saturation-brightness combinations for each unique 

hue are shown as larger filled circles. The projections of planes passing through these 

9 average settings for each unique hue are also shown. The planes were calculated 

using least-square fitting. Due to the nature of the 𝐷𝐾𝐿 space, the relative thickness of 

these planes on the chromaticity diagramme indicates the amount of interaction 

between the luminance and the chromatic opponency channels. The UG and UR in 

TL84 show marked interactions.  

 

Figure 3.4 shows a rotation of the same plots such that the luminance variation of these 



54 

 

settings is apparent. For the Dark condition, Xiao et al. (2011) proved that there is 

indeed an interaction between the luminance, saturation and the hue angle of the 

unique hues. Later, they also went on to report (Xiao et al., 2015) a difference between 

Unique hues settings measured using different media such as NCS chips and a cathode-

ray-tube monitor. Thus, it must be borne in mind that the settings in the dataset were 

obtained on a CRT monitor with a constant, grey background. 
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Figure 3.3: Unique Hue settings. Observer settings are shown as colour coded points of the colour 

corresponding to the Unique Hue. This colour coding is maintained for all points and lines in the graph. 

Larger colour coded, filled circles represent average settings at a given saturation-brightness 

combination (9 per Unique Hue). Projections of planes fitted to these average settings are also shown. 

The filled black circle represents the background.  
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Figure 3.4: Unique Hue settings rotated in colour space to show the luminance variation of the 

measurements. The luminance settings differ between the unique hues due to gamut constraints 

imposed by the display. The aesthetics of the graph are identical to Figure 3.3.  
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3.3 Chromatic adaptation models 

 

3.3.1 Previous work 

 

Colour constancy and the description of colour appearance under changing illuminants 

has traditionally employed chromatic adaptation transforms based on the Von Kries 

model (Helmholtz, 1867; von Kries, 1905). Several variations of chromatic transforms 

optimised for various datasets have been reported (Bianco & Schettini, 2010; 

MacAdam, 1956; Nayatani et al., 1981; Vazquez-Corral, O’Regan, Vanrell, & 

Finlayson, 2012). At some stage or the other, all of these transforms use an illumination 

dependent gain control to adjust the cone excitations for each channel. The limitations 

of a channel-wise gain control mechanism have been analysed and often criticised 

theoretically (West, 1979; West & Brill, 1982; Worthey & Brill, 1986) and through 

experimental data (MacAdam, 1961, 1963; and more recently Kulikowski et al., 2012). 

Despite this, the diagonal model of gain control has been supported time and time 

again by studies such as those by Walraven (1976) and Brainard & Wandell (1992). 

Theoretical arguments like the spectral sharpening hypothesis by Finlayson, Drew, & 

Funt (1993), and the rank-constraint theory by Chong, Gortler, & Zickler (2007) have 

established the mathematical equivalence of methods involving linear channel 

interactions and the traditional diagonal von Kries transform.  

 

3.3.2 Colour spaces 

 

In the present analysis the unique hues dataset described in Section 3.2.3 was used to 

test different models of chromatic adaptation. These models were tested in three colour 

spaces: the cone excitation space 𝐿𝑀𝑆 (see Eq.  1.1), the differential cone excitation 

space Δ𝐿𝑀𝑆 which represents the cone excitations with respect to the background, and 

the higher order cone-contrast based opponency space 𝐷𝐾𝐿 (Derrington et al., 1984).  

 

In the 𝐿𝑀𝑆 space, let 𝒙 represent the vector of cone excitations elicited by a certain 
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stimulus displayed on a background with coordinates 𝒙𝟎 (also in 𝐿𝑀𝑆 space). In other 

words, 𝒙 denotes a measure of the photonic absorption at the three cone photoreceptors 

due to the stimulus. If 𝑃𝐿, 𝑃𝑀 and 𝑃𝑆 are used to denote the absorptions at the long, 

medium and short wavelength cones, the cone excitation vector can be written as 

 

 
𝒙 = [

𝑃𝐿
𝑃𝑀
𝑃𝑆

] 

 

Eq.  3.1 

 

Similarly, let 𝒙𝟎 = [
𝑃𝐿0
𝑃𝑀0
𝑃𝑆0

] denote the 𝐿𝑀𝑆 coordinates of the background.  

 

Next, let 𝚫𝒙 denote the differential coordinates of the same stimulus in the Δ𝐿𝑀𝑆 

space. Using Eq.  3.1 we can now write  

 

 
𝚫𝒙 = [

Δ𝑃𝐿
Δ𝑃𝑀
Δ𝑃𝑆

] = 𝒙 − 𝒙𝟎 

 

Eq.  3.2 

 

Here, the symbol 𝚫 in Δ𝑃𝐿 etc. simply denotes the differential nature of the coordinates. 

Coordinates in this space represent very early retinal processing such as the contrast 

coding carried out by horizontal cells, albeit without feedback processing.  

 

The third set of colour coordinates used in this analysis was the 𝐷𝐾𝐿 system. The 𝐷𝐾𝐿 

coordinate system describes early visual processing based on contrast-opponency 

mechanisms. As mentioned earlier, the current implementation was based on Appendix 

IV of Kaiser & Boynton (1996), contributed by David Brainard. This model proposes 

opponent coding channels based on luminance, L - M cone opponency, and the S cone 

- luminance opponency. Throughout this chapter, these channels are denoted by the 

symbols Δ𝑅𝐿𝑢𝑚, Δ𝑅𝐿−𝑀 and Δ𝑅𝑆 respectively, the ΔR in these symbols simply 
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implying a differential channel response. 

 

The calculation of 𝐷𝐾𝐿 coordinates involves the computation of cone contrast signals, 

their appropriate combination and weighting based on opponency constraints, and 

most crucially, the normalisation of channel isolating stimuli such that a channel 

isolating stimulus with a unit pooled-contrast produces a unit response in the intended 

𝐷𝐾𝐿 channel.  

 

Let 𝚫𝒓 denote the signal in 𝐷𝐾𝐿 space such that  

 𝚫𝒓 = [

Δ𝑅𝐿𝑢𝑚
Δ𝑅𝐿−𝑀
Δ𝑅𝑆

]  Eq.  3.3 

 

where the opponent channels are represented by the corresponding subscripts: 𝐿𝑢𝑚 

(luminance), 𝐿 −𝑀 (red-green opponency) or 𝑆 (yellow-blue opponency). 

Furthermore, using previously introduced symbols (Eq.  3.1 and Eq.  3.2), one could 

write the contrast signal as  

 𝒄 = [
C𝐿
C𝑀
C𝑆

] = [

Δ𝑃𝐿 𝑃𝐿0⁄

Δ𝑃𝑀 𝑃𝑀0⁄

Δ𝑃𝑆 𝑃𝑆0⁄
], Eq.  3.4 

 

where 𝐶𝐿, 𝐶𝑀 and 𝐶𝑆 are the contrasts defined for the three cone classes. The pooled-

contrast can now be defined as the magnitude of this contrast signal  

 ‖𝒄‖2 = √𝐶𝐿
2 + 𝐶𝑀

2 + 𝐶𝑆
2 

Eq.  3.5 

 

After the combination, weighting and normalisation of the differential signal using 

opponency and unit-pooled contrast constraints, the final form of the transform for the 

conversion of differential cone signals to 𝐷𝐾𝐿 signals can be calculated to be as 

follows 
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 𝚫𝒓 =

[
 
 
 
 
 
 √3

𝐿0 +𝑀0

√3

𝐿0 +𝑀0
0

√𝐿0
2 +𝑀0

2

𝐿0(𝐿0 +𝑀0)
−

√𝐿0
2 +𝑀0

2

𝑀0(𝐿0 +𝑀0)
0

−
1

𝐿0 +𝑀0
−

1

𝐿0 +𝑀0

1

𝑆0]
 
 
 
 
 
 

𝚫𝒙 

Eq.  3.6 

 

 

Eq.  3.6 is a closed form representation of the unit-normalisation procedure for pooled 

contrasts outlined by David Brainard, and does not appear directly in the reference 

(Appendix IV, Kaiser & Boynton, 1996). 

 

3.3.3 Proposed adaptation models 

 

In each of these colour spaces, models similar to those tested by Brainard & Wandell 

(1992) were used to model chromatic adaptation in the data. The models used in the 

analysis were the diagonal model, the simple linear model and the affine model. A 

summary of these models is provided in Table 3.3, with 𝒙 and 𝒚 representing the input 

and output colour coordinates in a particular colour space. 𝜺 denotes the channel noise 

vector.  

 

The diagonal model is a simple channel gain mechanism. In the 𝐿𝑀𝑆 space, it 

corresponds to what is often referred to as an ideal von Kries transform (von Kries, 

1905). In this model, adaptation is represented by channel-specific gains which lie 

along the diagonal of the transform matrix.  

 

The linear model extends the idea of the diagonal model by allowing for channel cross-

talk. This cross-talk allows each channel to influence adaptation in the other channels. 

One possible hypothesis explaining this cross-talk is the spectral sharpening of cone 

sensitivities (Finlayson et al., 1993), and a number of adaptation models using linear 

sharpened transforms have been proposed (Finlayson & Süsstrunk, 2000; Vazquez-

Corral et al., 2012). It must be noted here though, that all linear transforms can 
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essentially be whitened, i.e., the channels can be decorrelated using diagonalisation 

methods such as Singular Value Decomposition, Principal Component Analysis and 

rank-constraint procedures on measurement tensors (Chong et al., 2007). 

 

Model Form Parameters 

Diagonal 𝒚 = [
𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

] 𝒙 + 𝜺 6 

Linear 𝒚 = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] 𝒙 + 𝜺 12 

Affine 
𝒚 = [

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] 𝒙 + [

𝑏1
𝑏2
𝑏3

]

+ 𝜺 

15 

 

Table 3.3: The models tested. The adaptation stimuli are represented as 𝒙 and the test stimuli are 

represented as 𝒚. The linear matrix is denoted by 𝑨 = [𝑎]𝑖𝑗  and the translation component in the affine 

transform by 𝒃 = [𝑏]𝑖. The channel noise is denoted by the vector 𝜺. The third column lists the number 

of parameters for each model, including the channel-errors. 

 

The third and final model considered here was the affine model. It differs from the 

diagonal and linear models in that it cannot be explained solely in terms of three 

diagonalisable gain controlled channels. Brainard & Wandell (1992) described this 

model as a generalisation of the two-process model proposed by Jameson & Hurvich 

(1964). This two-step structure of adaptation has classically been explained in various 

ways. Walraven (1976) and Shevell (1978) interpreted the additive term as a result of 

simultaneous contrast mechanisms. Jameson, Hurvich, & Varner (1979) later proposed 

that the multiplicative term of the transform could denote the fast receptoral or early 

post-receptoral gain mechanisms, while the additive term could explain the slower 

changes in the biases of the neural opponency-based mechanisms. 

 

Finally, it must be noted that the parameters of each model depend on the specific 
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illumination change being modelled. 

 

3.3.4 Model fitting and evaluation 

 

Transforms between 6 pairs of illumination conditions were modelled, corresponding 

to pairwise permutations of the D65, TL84 and Dark conditions in the dataset. In each 

of the three colour spaces (𝐿𝑀𝑆, Δ𝐿𝑀𝑆 and 𝐷𝐾𝐿), for each permuted pair of 

illumination conditions, three mappings (corresponding to the three models being 

tested) of the settings were calculated for each observer. These mappings or model-

predictions were then compared to the actual measured settings in order to derive error 

and efficiency criteria of the models for each observer. This process is expressed in 

detail below.  

 

Let 

1. 𝑓𝑖,𝑗
𝑛  denote one of the transforms (Diagonal, Linear or Affine) which models 

settings of the 𝑛𝑡ℎ observer from illumination condition 𝑖 to 𝑗. Here 𝑖 and 𝑗 can 

be any two non-equal illumination conditions out of Dark, D65 and TL84. 6 

such pairings of illumination conditions are possible in total. 

2. 𝒓𝒊
𝒏, 𝒈𝒊

𝒏, 𝒚𝒊
𝒏 and 𝒃𝒊

𝒏 be the average (over the three repetitions) unique hue 

settings for unique red, green, yellow and blue respectively, made by the 𝑛𝑡ℎ 

observer in illumination condition 𝑖. These settings are assumed to be in one 

of the three colour spaces: 𝐿𝑀𝑆, Δ𝐿𝑀𝑆 or 𝐷𝐾𝐿. For a given observer and 

illumination condition, each of these sets contains 9 individual settings 

corresponding to nine luminance-saturation combinations tested. 

3. 𝒙𝒊
𝒏 = ⋃{𝒓𝒊

𝒏, 𝒈𝒊
𝒏, 𝒚𝒊

𝒏, 𝒃𝒊
𝒏} be the set of all unique hue settings made by the 𝑛𝑡ℎ 

observer in illumination condition 𝑖. Thus, for each observer in a given 

illumination condition, this set contains 36 settings, 9 per unique hue. 

 

The optimal transform 𝑓𝑖,𝑗
𝑛  which optimally transforms all settings made by the 𝑛𝑡ℎ 

observer in illumination condition 𝑖 to illumination condition 𝑗 can now be written as 
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 𝑓𝑖,𝑗
𝑛 = min

𝑓𝑖,𝑗
𝑛  
‖𝒙𝒋

𝒏 − 𝑓𝑖,𝑗
𝑛 (𝒙𝒊

𝒏)‖
2
 Eq.  3.7 

There are three points to note here. First, each optimised 𝑓 denotes an optimal 

transform of a certain form (Diagonal, Linear or Affine) in a certain colour space 

(𝐿𝑀𝑆, Δ𝐿𝑀𝑆 or 𝐷𝐾𝐿). Thus, any given 𝑓 denotes one of nine possible model-colour 

space combinations. The current study models all nine combinations. 

 

Second, 𝑓𝑖,𝑗
𝑛  is optimised separately for each of the 𝑛 observers, and each of the six 

ordered pairs of illumination conditions (𝑖, 𝑗). Thus, any perceptual error or 

information-efficiency metric must be calculated for each observer and each pair of 

illumination conditions. In this study, no pair of illumination conditions was preferred 

and all metrics were averaged over all six possible pairs of illumination conditions, 

thus giving a unique error or efficiency index for each observer. Let Λ𝑖,𝑗
𝑛 (𝑓𝑖,𝑗

𝑛 ) denote a 

metric (such as the 𝐶𝐼𝐸𝐿𝐴𝐵 colour difference or the Akaike information criterion) 

calculated over 𝑓𝑖,𝑗
𝑛 . Since no particular pair of illumination conditions is preferred, an 

adaptation-averaged value of the metric is calculated such that  

 Λ̂𝑛 =
1

𝑁(𝑁 − 1)
∑∑Λ𝑖,𝑗

𝑛

3

𝑗=1
𝑗≠𝑖

3

𝑖=1

  
Eq.  3.8 

where 𝑁 = 3 is the total number of illumination conditions. All analyses in this chapter 

were performed on this adaptation-averaged form of the metrics. 

 

Third, 𝑓𝑖,𝑗
𝑛  and 𝑓𝑗,𝑖

𝑛  must be invertible for a symmetric model. Under constraints of 

optimality, one does not expect this requirement to be difficult to satisfy. 

 

The optimisation calculations were performed in MATLAB (Mathworks Inc.). The 

diagonal model was optimised using the pre-implemented Simulated Annealing 

algorithm in the Global Minimisation Toolbox. For faster computation in case of the 
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linear and affine models, an anisotropic scaling extension of the Procrustes analysis 

developed by Paláncz, Zaletnyik, Awange, & Heck (2010) was implemented and used. 

Generalised Procrustes matching traditionally solves the problem of finding a 

similarity transformation (i.e., assuming rotation, translation and isotropic scaling of 

the three axes, with no anisotropy) for two sets of data points, and the algorithm used 

here is an extension of the ABC algorithm (Awange, Bae, & Claessens, 2008). 

 

Since the optimisation process in the three different colour spaces optimised Euclidean 

distance within that space, to compare results across these models, the data and the 

model-predictions were converted to the 𝐶𝐼𝐸𝐿𝐴𝐵 colour space (CIE, 2004) – a 

perceptual colour space with a widely used and industrially accepted colour-difference 

metric. The calculation of 𝐶𝐼𝐸𝐿𝐴𝐵 coordinates is further explained in Appendix 1.1. 

The traditional Δ𝐸𝐿𝐴𝐵 colour-difference and Δℎ𝑎𝑏 hue-angle difference metrics were 

used to evaluate the models. If 𝒍𝒊
𝒏 = [𝐿𝑖

𝑛 𝑎𝑖
𝑛 𝑏𝑖

𝑛]𝑇 and 𝒍𝒋
𝒏 = [𝐿𝑗

𝑛 𝑎𝑗
𝑛 𝑏𝑗

𝑛]
𝑇
 are the 

𝐶𝐼𝐸𝐿𝐴𝐵 colour coordinates of the settings made by the 𝑛𝑡ℎ observer for a given unique 

hue under illumination conditions 𝑖 and 𝑗 respectively, these metrics are defined as  

 Δ𝐸𝐿𝐴𝐵 = ‖𝒍𝒊
𝒏 − 𝒍𝒋

𝒏‖
2
 Eq.  3.9 

 Δℎ𝑎𝑏 = cos−1

(

 
|𝑎𝑖
𝑛𝑎𝑗

𝑛 + 𝑏𝑖
𝑛𝑏𝑗

𝑛|

√{(𝑎𝑖
𝑛)2 + (𝑏𝑖

𝑛)2} ⋅ {(𝑎𝑗
𝑛)
2
+ (𝑏𝑗

𝑛)
2
})

  Eq.  3.10 

 

In addition, the angle between the least-squares fitted planes for measured and 

predicted unique hue settings was also calculated. If 𝜼̂𝟏 and 𝜼̂𝟐 are unit vectors normal 

to the measured and predicted planes for a given unique hue 𝑈𝐻, the angle Δ𝜃𝑈𝐻 

between them is calculated as  
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 Δ𝜃𝑈𝐻 = cos−1(𝜼̂𝟏 ⋅ 𝜼̂𝟐) Eq.  3.11 

The above metrics give us a method of comparing the results of the models, but do not 

offer any information on the model performance in terms of sufficiency of parameters 

and over- and under-fitting. Since the models have a large difference in their degrees 

of freedom, the small-sample correction of the Akaike Information Criterion (Akaike, 

1974) recommended by Burnham & Anderson (2004), denoted here by 𝐴𝐼𝐶𝑐, was used 

to evaluate the performance of the models.  

 

The Akaike Information Criteria or 𝐴𝐼𝐶 is an information theoretic measure which 

evaluates models on the basis of a trade-off between the goodness of fit and the 

complexity of the model. It is given by  

 𝐴𝐼𝐶 = 2𝑘 − 2 log(ℒ(𝜽̂|𝒙)) Eq.  3.12 

where 𝑘 is the number of estimated parameters, and ℒ(𝜽̂|𝒙) represents the maximised 

likelihood of the model described by estimated parameters 𝜽̂, given the data 𝒙. The 

maximised likelihood of a model is a measure of the goodness of fit of the model given 

a particular set of data.  

 

Two observations about the nature of the 𝐴𝐼𝐶 can be made through an examination of 

Eq.  3.12. First, as the 𝐴𝐼𝐶 varies inversely with the goodness of fit ℒ(𝜽̂|𝒙), one can 

say that a lower 𝐴𝐼𝐶 indicates a better fit. Second, if two models fit a given dataset 

equally well, 𝐴𝐼𝐶 penalises the model with the higher number of free parameters (as 

𝐴𝐼𝐶 increases with an increase in 𝑘). In other words, 𝐴𝐼𝐶 is a measure of model 

performance which incorporates a trade-off between the goodness of fit and model 

complexity, with lower values indicating a better performance. 

 

In cases where the number of parameters  is comparable to the number of samples 𝑛 
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(recommended strongly for 𝑘 𝑛⁄ < 40, Burnham & Anderson, 2004), a corrected 

version, often denoted by 𝐴𝐼𝐶𝑐 (C. Hurvich & Tsai, 1989; Sugiura, 1978) is used. 

 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 Eq.  3.13 

For linear least-square estimations under the assumption of normally distributed errors, 

this definition reduces to 

 𝐴𝐼𝐶𝑐 = 𝑛 log (
∑𝜖𝑖

2

𝑛
) + 2𝑘 +

2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 Eq.  3.14 

where ∑𝜖𝑖
2 simply denotes the residual-sum-of-squares from the fitted model.  

 

3.4 Results 

 

The 𝐴𝐼𝐶𝑐 values averaged over all observers and all 6 permutations of the adaptation 

and test illumination conditions are shown in Figure 3.5. Each panel shows the 

performance of the models for one of the three colour spaces. The error-bars mark the 

standard error across observers. 
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Figure 3.5: 𝐴𝐼𝐶𝑐 for the models in 𝐿𝑀𝑆, Δ𝐿𝑀𝑆 and 𝐷𝐾𝐿 spaces. 

 

A 2-way repeated-measures ANOVA confirms a clear effect of both the colour space 

and the model (𝑝 < 0.001 in both cases) with a strong interaction (also 𝑝 < 0.001). 

The best performance (corresponding to the lowest 𝐴𝐼𝐶𝑐) is given by the Diagonal 

model in the 𝐿𝑀𝑆 space. It must be noted though, that the Affine model outperforms 

the other two models in both the 𝐷𝐾𝐿 and the Δ𝐿𝑀𝑆 spaces, and is very close in mean 

performance to the Diagonal model in the 𝐿𝑀𝑆 space as well.  

 

Since reciprocal pairs of illumination conditions were modelled, in each case, for each 

observer, the invertibility of the optimised models between corresponding pairs was 

also investigated, and reciprocal pairs of transforms were indeed found to be nearly 

invertible to one another.  

 

Although the 𝐴𝐼𝐶𝑐 gives us a means of choosing a model, it is also interesting to see 

how each model optimises the mappings in terms of the colour (Δ𝐸𝐿𝐴𝐵) and hue-angle 
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(Δℎ𝑎𝑏) differences. Figure 3.6 shows boxplots and superimposed violin plots for 

Δ𝐸𝐿𝐴𝐵 colour differences between the predicted and measured settings for each model. 

The box edges in the plot denote the first and third quartiles while the central line 

denotes the median. The extents of the upper and lower whiskers mark ±1.5 times the 

inter-quartile range, while the notch around the median line (often found to be 

extremely small in the present study) indicates 95% confidence-intervals. The 

superimposed violin plot shows the kernel density estimation of the data. The lowest 

Δ𝐸𝐿𝐴𝐵 values were found for the Affine model in all colour-spaces. Thus, an increased 

number of parameters does, as expected, lead to better fitting. It is also interesting to 

note that the performances of the Diagonal and Linear models are quite similar, once 

again an expected result if one considers their theoretical equivalence through 

sharpening transforms.  

 

Analogous to the previous figure, Figure 3.7 shows hue-angle differences between the 

predicted and measured unique hue settings. Here too, the Affine model was found to 

show the smallest hue-angle deviation between the predicted and measured values, 

although the three models have very similar performances.  
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Figure 3.6: Δ𝐸𝐿𝐴𝐵  colour difference between the model-predictions and the measured settings. The box 

edges denote first and third quartiles while the central line denotes the median. Upper and lower 

whiskers mark ±1.5 times the inter-quartile range. 

 

Figure 3.7: Δhab hue-angle difference between the model-predictions and the measured settings. The 

boxplots denote the same statistics as in Figure 3.6.  
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The colour and hue difference measures compare the unique hue settings predicted by 

the models and the actual settings. Here, one must note that even though the 𝐶𝐼𝐸𝐿𝑈𝑉 

colours of the stimuli in different illumination conditions were matched, there is no 

reason to expect a one-to-one correspondence between the settings made by the 

observers due to added noise from the surroundings as well as the observer’s own 

visual system. Assuming that the underlying unique-hue mechanisms are relatively 

robust, it is perhaps more interesting to compare the deviation of the predicted unique 

hue mechanism planes from the planes fitted to the measured data. The angles between 

the normal vectors of the predicted and the measured unique-hue planes are shown in 

Figure 3.8. Once again, one finds that the Affine models outperforms the other two in 

all three colour spaces. 

 

 

Figure 3.8: Angle Δ𝜃𝑈𝐻 between the normal vectors of unique hue planes predicted by the models and 

the best-fit planes for the measured settings. 
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3.5 Discussion 

 

This study evaluated the performance of three models with different degrees of 

freedom in predicting illuminant-dependent changes in unique hue settings in three 

physiologically relevant colour-spaces. The Diagonal model is a direct form of the 

classical Von Kries law, the Linear model can be viewed as a sharpened (Finlayson et 

al., 1993; Finlayson & Süsstrunk, 2000) form of the diagonal model, and the Affine 

model describes a two-step theory involving not only scaling, but a slower, induced 

lateral interaction (Brainard & Wandell, 1992; Jameson & Hurvich, 1964).  

 

Figure 3.5 shows that the best performance in terms of the 𝐴𝐼𝐶𝑐 criterion was achieved 

in the 𝐿𝑀𝑆 space by the Diagonal model. It was almost equalled by the Affine model, 

albeit with a higher inter-observer variance. This suggests possible over-fitting in case 

of the Affine model, a possibility that is further supported by Figures 3.6, 3.7 and 3.8, 

where the Affine model shows nearly perfect median fits for all three metrics – the 

Δ𝐸𝐿𝐴𝐵, the Δℎ𝑎𝑏 and Δ𝜃𝑈𝐻. Thus, in terms of purely fitting efficiency, the Diagonal 

model delivers the best accuracy-complexity trade-off.  

 

Furthermore, it is also interesting to note that for metrics which are functionally 

dependent on luminance differences, i.e. Δ𝐸𝐿𝐴𝐵 (Figure 3.6) and Δ𝜃𝑈𝐻 (Figure 3.8), 

the Diagonal and Linear models showed a distinct trend towards deviation from a 

compact unimodal distribution, and secondary optima can be observed. This is not the 

case for hue-angle differences (Figure 3.7) which showed a strictly unimodal 

distribution for each model. This reaffirms the relevance of the issues raised by 

Kulikowski et al. (2012) concerning the bias of Von Kries adaptation transforms 

towards chromatic optimisation, and the consequent sub-optimality in their estimates 

of lightness constancy.  

 

The plausibility of bimodality holds a special significance in unique hue literature, 

especially for unique green UG (L. Hurvich, Jameson, & Cohen, 1968; Rubin, 1961; 

Volbrecht, Nerger, & Harlow, 1997; Welbourne, Thompson, Wade, & Morland, 2013). 
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To further investigate how the distributions of these metrics were affected by the local 

structure of the unique hue data, the figures were re-plotted with separate boxplots and 

violin plots for each unique hue. The plots for Δ𝐸𝐿𝐴𝐵 and Δℎ𝑎𝑏 (Figure 3.9 and Figure 

3.10 respectively) do not show noticeable differences between individual unique hues, 

except slightly higher values of Δ𝐸𝐿𝐴𝐵 for UR in the Diagonal and Linear models. For 

Δ𝜃𝑈𝐻 (Figure 3.11), on the other hand, one observes that in the 𝐿𝑀𝑆 and Δ𝐿𝑀𝑆 spaces, 

the Diagonal and Linear model predictions are significantly worse for the UR and UG 

compared to the UY and UB. 
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Figure 3.9: Δ𝐸𝐿𝐴𝐵  colour difference between the model-predictions and the measured settings.  
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Figure 3.10: Δhab hue-angle difference between the model-predictions and the measured settings.  
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Figure 3.11: Angle Δ𝜃𝑈𝐻 between the normal vectors of unique hue planes predicted by the models and 

the best-fit planes for the measured settings.  
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In other words, using purely diagonal or diagonalisable transforms in linear cone 

excitation spaces it is possible to relatively accurately model adaptations in the UY 

and UB mechanisms, but not the UR and UG mechanism planes. To investigate this 

further, the measured unique hues settings were plotted as a function of hue angle in 

the chromaticity plane of the 𝐷𝐾𝐿 space. This is shown in Figure 3.12 where the colour 

of the points code for the unique hue. It is to be noted that the aim of this figure is to 

show the hue-angle spread, and the plotted points correspond to settings across all nine 

saturation-luminance combinations for each unique hue. 

 

 

Figure 3.12: Measured unique hue settings as a function of phase in the chromaticity plane of the 𝐷𝐾𝐿 

space. This aim of this diagram is to merely illustrate the extent of the hue-angle variation for each 

unique hue. It does convey the kernel densities. 

. 

The UR and UG do indeed display a higher spread if one were to consider only hue 

angles in a colour-opponent space. While the UY and UB show a total spread of about 

5°, UR and UG show spreads of almost 20° − 25°. Kuehni (2014), in his review article 

analyses several datasets of unique hues and reports a similar difference in spreads. To 

further see how these angles are distributed, and to investigate the often debated 

bimodality of UG, the kernel density functions for these spreads are plotted in Figure 

3.13. The ten highest and lowest hue-angles for each set have also been labelled with 

the corresponding observer-number. The y-axis across the 4 unique hue panels have 

different scales as the figure is aimed solely at illustrating the densities of the spreads.   
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Figure 3.13: Kernel density functions and boxplots for the spreads in Figure 3.12. Note that in order to 

clearly show the shapes of the density functions, the scales for the 4-subpanels are not matched.  



78 

 

No bimodality is observed for the UG in the Dark and D65 conditions, but the TL84 

condition does indeed show some signs of a multimodal distribution. Furthermore, if 

one examines the outliers, it can be seen that within a given unique hue, some observers 

consistently show settings which deviate considerably from the median, e.g., Observer 

158 for UR and Observer 148 for UG. Since the plots show all 9 settings made by each 

observer in each condition, some of the observers show multiple settings which are 

outliers.  

 

The data and the fitted models offer two, not necessarily mutually exclusive, 

explanations of the previous reports of bimodality. First, as pointed out by Volbrecht 

et al. (1997), the difference in distributions might arise out of differences in 

experimental setups, in particular, luminance differences and the control of lightness 

adaptation. One would expect a well-controlled isoluminant study to produce primarily 

unimodal distributions. Second, what could perhaps be misconstrued as bimodality in 

very large datasets (Rubin’s dataset had 278 participants) are the exceptionally long 

tails of UG densities, which in the present dataset extend to about 10° − 20° of 𝐷𝐾𝐿 

hue angle under simulated daylight. Although these tails signify what would be classed 

as outliers, it is interesting to note that the number of these outliers is much higher for 

UR and UG when compared to UY and UB, which have relatively compact density 

functions. 

 

The non-unimodal performance of the Diagonal and Linear models (in both linear and 

contrast based colour spaces) on the UR and UG planes, combined with a long-tailed 

but primarily unimodal density function for these unique hues (except UG in TL84) 

suggests three possibilities. First, that the adaptation does not follow a diagonalisable 

mechanism i.e., it is non-linear – a view which is not wholly uncommon in applied 

colour science (MacAdam, 1961, 1963; Moroney et al., 2002; Nayatani et al., 1981). 

Second, that the adaptation does not follow a three-channel optimisation, but is derived 

from adaptations along multiple selectively tuneable channels (Webster & Mollon, 

1994, 1997). Third, that the UR and UG surfaces themselves are non-linear. Although 

the first and the third possibilities are mathematically very similar, the origin of the 

non-linearity in the former case lies in the adaptation mechanism, while in the latter 
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case it is in the unique hue mechanisms. To further examine the current dataset in the 

light of the above possibilities, Figure 3.14 shows the hue-angles for the settings in 

each condition as a function of the luminance in 𝐷𝐾𝐿 coordinates. The plot also shows 

the best fit line in each case. The hue angles of the unique hue settings show a clear 

variation with the luminance of the settings, with steeper slopes for UR and UG 

compared to UY and UB. While this does not directly clarify whether the adaptation 

mechanisms involve multiple chromatic tunings or are non-linear, it strongly supports 

the possibility that the unique hue mechanisms themselves are non-linear, especially 

for UR and UG. 
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Figure 3.14: Hue angles of the unique hue settings plotted as a function of their luminance in 𝐷𝐾𝐿 space. 

The best-fit line in each condition is also shown.   



81 

 

3.6 Conclusion 

 

Chromatic adaptation was modelled using a large (𝑁 = 185) unique hue dataset which 

was collected in three illumination conditions – simulated daylight, cool white 

fluorescent and dark. The simple diagonal form of the Von Kries model in the 𝐿𝑀𝑆 

cone excitation space was found to be the most efficient in terms of the 𝐴𝐼𝐶𝑐 criterion 

which balances the accuracy and complexity of the models. In terms of prediction 

accuracy, the model with the highest number of parameters, i.e. the Affine model, gave 

the best performance for all tested metrics. The performances of the Diagonal and the 

Linear models were found to be very similar to each other, reiterating their theoretical 

equivalence. A deviation from strict unimodality in the density functions for the Δ𝐸𝐿𝐴𝐵 

and Δ𝜃𝑈𝐻 metrics, both of which take luminance mechanisms into account, was also 

observed. No such deviations from unimodality were noted for the Δℎ𝑎𝑏 metric which 

operates only along chromaticity planes. Poorer fits were also found for UR and UG 

planes using Diagonal and Linear transforms. The analysis of the dataset in terms of 

the hue-angles for individual unique hues shows a much larger spread for UG and UR 

compared to UY and UB, with the UG showing possible multimodality under TL84 

lighting. The hue angles of the settings also show a dependence on the luminance, 

suggesting possible non-linearities in the unique hue mechanisms.  

 

Ideal data to tease apart some of the questions raised by this analysis would be 

isoluminant sets of unique hue settings collected over a large number of observers.  
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Chapter 4  

 

Discrimination thresholds for skin images 

 

 

Abstract 

 

In the past, colour discrimination thresholds have been measured under various 

conditions for uniform colours (MacAdam, 1942; Melgosa et al., 1997; Poirson et al., 

1990). To a lesser extent, attempts have also been made to estimate similar thresholds 

for natural textures (Giesel et al., 2009; Hansen et al., 2008). The first experiment in 

this set of studies was aimed at extending these measurements to polychromatic skin 

images in a 3-D chromaticity-luminance colour-space. Thresholds for uniform patches 

were also measured and the thresholds for the polychromatic stimuli were found to be 

consistently higher, for both the chromatic, and the luminance projections. In the 

second and third experiments, the effects of ambient illumination and the location of 

the stimuli in colour space were investigated. It was found that the observed trends 

match those reported by Hansen et al. (2008) very closely, with the area of the 

chromaticity ellipses showing a gradual increase with distance from the illumination 

chromaticity. The orientations of these chromatic ellipses for simulated skin were 

found to align with the vector joining the mean chromaticity of the patch and the 

illuminant chromaticity. This effect is not observed for the other textures, even though 

they have the same second and higher order statistics as simulated skin. 
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4.1 Introduction 

 

Skin colour and texture is used by humans in processing and accomplishing a variety 

of tasks such as face recognition (Bar-Haim, Saidel, & Yovel, 2009), judgements of 

health (Stephen, Law Smith, Stirrat, & Perrett, 2009) and evaluation of attractiveness 

(Fink et al., 2008; Fink, Grammer, & Thornhill, 2001; Stephen et al., 2009). 

Communication of skin colour has also been proposed as one of the main driving 

factors in the evolution of the human colour vision (Changizi et al., 2006). Besides its 

biological and evolutionary importance for humans, it is also regarded as an important 

component of realistic machine vision algorithms (Cula, Dana, Murphy, & Rao, 2004; 

Jones & Rehg, 2002), computer graphics (Crichton, Pichat, Mackiewicz, Tian, & 

Hurlbert, 2012; Giard & Guitton, 2010) and animation (Jimenez, Sundstedt, & 

Gutierrez, 2009). Skin appearance also plays a very important role in the evaluation of 

dermatological treatments (Khemis, Kaiafa, Queille-Roussel, Duteil, & Ortonne, 

2007) and prosthetics (Al-Harbi, Ayad, Saber, ArRejaie, & Morgano, 2015; Fine & 

Dent, 1978; Hungerford, Beatty, Marx, Simetich, & Wee, 2013). To these ends, various 

models of skin appearance have been proposed: models based on machine learning 

and image processing (Tsumura et al., 2003; Vezhnevets, Sazonov, & Andreeva, 2003), 

physics-based multi-layered models (Chen, Baranoski, Kimmel, & Miranda, 2015; 

Cula et al., 2004; Donner, Weyrich, D’Eon, Ramamoorthi, & Rusinkiewicz, 2008; 

Krishnaswamy & Baranoski, 2004), and, most recently, a model that uses imaging of 

skin microbiomes to predict appearance (Kaur, Dana, & Cula, 2015).  

 

Due to its importance as a natural polychromatic texture which could very well have 

been a key factor in the evolution of human colour vision (Changizi et al., 2006), an 

investigation of how humans perceive skin under various conditions could contribute 

greatly to how human vision, in general, processes and is constrained by properties of 

natural textures. Thomson & Foster (1997) showed that in a discrimination task, 

human observers were found to be preferentially sensitive to second and higher order 

statistics in natural images. In fact, natural scenes and textures have been proposed as 

important factors which constrain and shape the properties of the human visual system 

(Geisler, 2008; Nascimento et al., 2002; Regan et al., 2001; Webster & Mollon, 1994, 
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1997). Constraints based on the reflectance spectra of natural surfaces have also been 

used to provide rigorous descriptions of colour phenomena such as the asymmetry in 

the unique hues and frequencies of linguistic colour categories (Philipona & Regan, 

2006).  

 

Montag & Berns (2000) compared luminance thresholds for textures and uniform 

patches and reported a two-fold increase in the luminance thresholds for textures. More 

recently, Hansen, Giesel, & Gegenfurtner (2008) and Giesel, Hansen, & Gegenfurtner 

(2009) also estimated chromatic thresholds in isoluminant planes for natural objects 

and uniform patches. This chapter presents estimations of discrimination thresholds in 

a luminance-chromaticity 3-D colour space for another salient natural texture, namely, 

human skin. Besides skin images, thresholds were also estimated for textures derived 

from the relative colour distribution of skin, and furthermore, for each polychromatic 

patch that was tested, thresholds for a corresponding uniform patch with the same 

mean colour were also measured.  

 

In the first experiment, the discrimination thresholds for ecologically valid simulations 

of skin patches from two ethnicities were estimated under dark, cool white fluorescent, 

and simulated daylight illumination conditions. Since the human visual system has 

evolved under natural daylight (Mollon, 2006), an interesting question that arises is 

whether the performance of the human visual system would significantly change if the 

skin texture were to be viewed under a non-natural illuminant. The choice of simulated 

daylight – a naturalistic illuminant, and white fluorescent light – an artificial 

illuminant, were driven by this question. Furthermore, studies (Xiao et al., 2012) have 

shown that the gamut of skin colours within a given ethnicity is highly constrained. 

For this reason, representative skin patches from two ethnicities – Caucasian and 

Oriental, were used prepare the stimuli used in the experiment. 

  

 In the subsequent two experiments the effects of the illumination condition and the 

location of the stimulus in the colour space were investigated. Here, ecologically 

invalid stimuli were tested to investigate how the discrimination thresholds change 
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when the stimulus has the same relative distribution of colours as skin, but with a 

displaced mean. The stimuli were ecologically invalid because after the displacement 

of the mean they no longer represented valid simulations of skin. 

 

4.2 Methodology 

 

This section gives methodological details common to all four experiments described 

in this chapter. Experiment-specific details are described in the corresponding sections 

to avoid confusion. 

 

4.2.1 Lighting conditions 

 

The experiments were carried out in a light-proof anechoic chamber fitted with a 

Graphic Technology Inc. GLE-M5/32 overhead luminaire. Two illumination modes 

from the overhead luminaire were used in the experiments – metameric daylight and 

cool-white-fluorescent light. In the first two experiments, an additional ‘dark’ 

condition was also used, wherein the luminaire was switched off. 

 

The light reaching the screen in each luminaire mode was measured using a Photo 

Research PR-650 spectroradiometer and a standard white reflective tile. The white tile 

was placed at the same position on the screen as the centre of the stimulus. The 

measured SPDs (Spectral Power Distributions) of the two illuminants are shown in 

Figure 4.1. 
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Figure 4.1: Spectral Power Distributions of illuminants. They are different from Figure 3.1 due to the 

change in luminaire lamps between the two studies. 

 

The two sources are approximately metameric with standard D65 and F11 (Philips 

TL84) illuminants. The measured illuminant chromaticities and those of the closest 

CIE standard illuminants are shown in Table 4.1 below. 

 

 

D65 TL84 

Luminaire  Standard  Luminaire  Standard  

Correlated Colour 

Temperature (K) 
~6100 ~6500 ~3900 ~4000 

x-y chromaticity (0.32, 0.34) (0.31, 0.33) (0.39, 0.39) (0.38, 0.38) 

 

Table 4.1: Illuminant chromaticities. 
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4.2.2 The task and stimulus generation 

 

 

Figure 4.2: The stimulus (exaggerated colour difference). 

 

In all experiments, thresholds were estimated using a 4-AFC (4-Alternative Forced 

Choice) task. Four skin patches were simultaneously displayed on the screen, of which 

three were copies of the reference image, while one – the test patch – differed in colour 

(Figure 4.2). The observer’s task was to indicate the odd-one-out by pressing the 

corresponding button on a response box. The test patch was generated by adding a test 

vector in 3-D 𝐶𝐼𝐸𝐿𝐴𝐵 colour space to each pixel of the original patch. An example of 

this is shown in Figure 4.3.  

 

The 𝐶𝐼𝐸𝐿𝐴𝐵 space was chosen because of its wide acceptance as a uniform colour 

space. Although numerous other uniform colour spaces exist, e.g. 𝐷𝐾𝐿 (Derrington et 

al., 1984), 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 (CIE, 2004) , Boynton-McLeod (MacLeod & Boynton, 

1979); for the purposes of this experiment an effective sampling of the space was more 

important than its structural properties, so long as it described an approximately 

uniform colour space. The white point used for the normalisation of this 𝐶𝐼𝐸𝐿𝐴𝐵 space 

was fixed as the white-point of the display used for the experiment, with 

𝐶𝐼𝐸 1931 𝑥𝑦𝑌 coordinates of [0.28 0.30 106.1445]𝑇  
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Figure 4.3: Generation of test patches. The blue points represent the reference image. The black arrows 

show the direction of the test vector. The result is a displacement of the colour of each pixel in the 

direction of the test vector. 

 

The thresholds were estimated along 14 directions such that the space was sampled 

evenly. Six of these coincided with the cardinal ±𝐿∗, ±𝑎∗ and ±𝑏∗ directions while the 

other eight directions were along the centres of the eight octants. During the 

experiment, the length of the test vector in each direction was controlled by the QUEST 

adaptive algorithm (A. Watson & Pelli, 1983), leading to 14 interleaved staircases. The 

parameters of the QUEST algorithm were adjusted for the 4-AFC paradigm to optimise 

the sweat-factor (Robbins & Monro, 1951; Taylor, 1971), theoretically giving the 

measured threshold an 86% score on the psychometric function. In the best case 

scenario, staircases lasted approximately 40 trials; although some staircases lasted for 

as many as 90 trials if observers made frequent errors throughout the session. The 

optimisation of the QUEST parameters is described in the section that follows. 
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4.2.3 Optimisation of the QUEST procedure  

 

As stated in the previous section, the thresholds were estimated using a variation of 

the QUEST adaptive procedure (A. Watson & Pelli, 1983). The response thresholds 

were modelled using the log-Weibull function (Weibull, 1951), the classical form of 

which is shown below. 

 𝑊 = 1 − (1 − 𝛾) exp(−10(𝛽 20⁄ )⋅(𝑥−𝑇+𝜖)) Eq. 4.1 

Here 𝑊 is the response modelled using the log-Weibull function, 𝑥 is the stimulus 

intensity, 𝛾 is the probability of success at a stimulus intensity of zero, 𝛽 is the slope 

of the psychometric function, 𝑇 is the defined threshold point, and 𝜖 is a parameter 

introduced so that the efficiency of the testing procedure can be optimised at the 

threshold 𝑇. These parameters are illustrated in Figure 4.4. Since the experimental 

paradigm involved estimation of a very large number of thresholds in each session (14 

interleaved staircases), an optimised 𝜖 was crucial for keeping the number of trials 

required per staircase to a controlled minimum.  

 

Figure 4.4: Parameters of a typical psychometric curve modelled using the log-Weibull function 

described in Eq. 4.1. 
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To characterise the efficiency of psychometric estimation procedures, Taylor & 

Creelman (1967) proposed a measure they called the Sweat-factor. Given a parameter 

𝜃 and a sequence (or procedure) which best-estimates the parameter as 𝜃 after 𝑛 trials, 

the Sweat-factor 𝑆 is defined as 

 𝑆 = 𝜎𝜃̂
2 Eq.  4.2 

where 𝜎𝜃̂
2 simply denotes the variance in the estimated parameter 𝜃. Typically, for an 

online adaptive procedure, it is difficult to have an a priori estimate of this parameter 

variance. To this end, often an ideal Sweat Factor is used to estimate the efficiency of 

the adaptive process (Taylor, 1971; Treutwein, 1995). Taylor (1971) defined this ideal 

Sweat-factor in terms of Wetherill's (1966) derivation of the asymptotic variance of 

the Robbins-Monro process (Robbins & Monro, 1951). The Robbins-Monro process 

is a theoretical sequence of estimations which asymptotically converges to a given 

threshold, with each term of the sequence depending on the preceding terms, i.e., it is 

an adaptive estimation algorithm with proven convergence (Robbins & Monro, 1951) 

at a certain limit or threshold. Using the definition of Sweat-factor under the 

assumption of a Robbins-Monro process converging to a threshold 𝑇, the Sweat-factor 

𝑆𝑊 for the log-Weibull psychometric function 𝑊 defined above (Eq. 4.1) can be 

formulated as  

 
𝑆𝑊 =

𝑊(1 −𝑊)

[
𝜕𝑊
𝜕𝑥
]
2

 

 
Eq.  4.3 

It must be noted here that the more efficient a procedure, the lower its Sweat-factor. 

This is because an efficient procedure will converge faster, leading to higher values of 

𝜕𝑊 𝜕𝑥⁄ , and in turn, lower values of the Sweat-factor. By definition, for a given 

process, the sweat-factor reaches a minimum at the threshold 𝑇, i.e.,  



91 

 

 |
𝜕𝑆𝑊
𝜕𝑥

|
𝑥=𝑇

= 0 Eq.  4.4 

Substituting for 𝑆𝑊 in Eq.  4.4 using Eq.  4.3, and solving for 𝜖, one can show that the 

optimum value of the parameter 𝜖𝑜𝑝𝑡 is given by 

 𝜖𝑜𝑝𝑡 =
20

𝛽 log(10)
⋅ log (2 + Λ(0,

2(𝛾 − 1)

𝑒2
)) Eq.  4.5 

Here, 𝛽 and 𝛾 are parameters of the log-Weibull 𝑊 (Eq. 4.1), and Λ(𝑁, 𝑥) denotes the 

𝑁𝑡ℎ branch of Lambert’s 𝑊-function, which is the set of solutions to the equation 𝑤 ⋅

exp(𝑤) = 𝑥. Of course, this solution for 𝜖 is only valid for 𝛾 ∈ [0,1). It can also be 

numerically verified that for this range of 𝛾, the second derivative of the Sweat-factor 

is always positive, i.e., 

 |
𝜕2𝑆𝑊
𝜕𝑥2

|
𝑥 = 𝑇,   𝜖 = 𝜖𝑜𝑝𝑡

> 0, ∀𝛾 ∈ [0,1) Eq.  4.6 

Eq.  4.6 proves that the solution 𝜖𝑜𝑝𝑡 given by Eq.  4.5 does indeed represent a minima 

of the Sweat-factor with respect to the stimulus. 

 

One of the advantages of the Weibull formulation of the psychometric curve is that it 

allows for independent estimation of the slope 𝛽 and the threshold 𝑇. Since the primary 

interest in these experiments was the magnitude of the thresholds rather than the 

psychometric slope, a slope of 𝛽 = 3.5 was used throughout the study. To make the 

convergence more rapid, a 4-AFC task was used, corresponding to 𝛾 = 0.25. Using 

these values of 𝛽 and 𝛾 in Eq.  4.5 one obtains an optimised value of  𝜖𝑜𝑝𝑡 = 1.37 

which, theoretically, maximises the Sweat-factor of the estimation process. It is to be 

noted that the optimisation procedure proposed here does not allow for an explicit 

choice of the threshold. Instead, the threshold is adjusted for the most efficient 

performance of the adaptive estimation process, given the design of the study. For the 

current study, the optimised threshold roughly corresponded to a value of 𝑊 = 0.87, 
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i.e., an 87% score on the psychometric curve. 

 

4.2.4 Stimulus presentation 

 

The stimuli were presented on a colour calibrated EIZO ColorEdge CG243W monitor 

using the CRS ViSaGe system. The participants were seated 175 𝑐𝑚. away from the 

screen. At this distance, the opposing edges of the individual 5 𝑐𝑚.× 5 𝑐𝑚. patches 

subtended an angle of ≈ 1.65° at the observer’s retina (while the diagonals subtended 

and angle ≈ 2.3°). 

 

When the stimuli were displayed under the illumination from the luminaire, the screen 

was covered by a grey cardboard sheet with cut-outs such that only the four patches 

remained visible. The reasons for doing this were twofold. First, doing so occluded the 

self-luminous background, forcing the observer to further adapt to the ambient 

illumination. Second, it made the patches appear less like images presented on a self-

luminous screen, akin to what is often described as an object-mode of stimulus 

presentation (Tangkijviwat, Rattanakasamsuk, & Shinoda, 2010). This is a more 

ecologically valid method of presenting stimuli such as natural or known textures and 

surfaces on a computer screen. In the dark condition, the stimuli were displayed against 

a grey background of the same chromaticity as the simulated daylight from the 

luminaire (𝑥 = 0.32, 𝑦 = 0.34) at 20 𝑐𝑑/𝑚2. This was done in order to avoid 

adaptation to an arbitrary unpredictable source (the self-luminous stimuli) in the Dark 

condition. It also ensured that the condition would be somewhat comparable to one of 

the luminaire-illuminated conditions (D65).  

 

4.2.5 Response collection and analysis software 

 

The observer responses were collected using a Cedrus RB-350 mechanical-contact 

response box. The experiment was completely programmed in MATLAB using the 

CRS (Cambridge Research Systems) Toolbox. The ellipsoid fitting and data analysis 
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were performed in MATLAB and R.  

 

4.2.6 Experimental protocol 

 

The study began with an initial briefing explaining the general aims of the experiment 

to the observers. After this the participants were tested for colour normal vision using 

the Cambridge Colour Test (Regan et al., 1994). Due to the nature of the study, only 

colour normal participants were allowed to continue.  

 

In order to avoid observer fatigue, the testing was done in blocks held on separate days. 

The illumination condition within each block was kept constant. This was done 

because the stabilisation-period of the luminaire was prohibitively high to allow 

switching between illumination conditions within the same block. Before each block, 

the corresponding light source was allowed to stabilise for about half an hour.  

 

Each block was divided into several sessions, each session corresponding to the 

measurement of a separate discrimination boundary. It must be noted that a 

discrimination boundary is described (in this study) by measurements along 14 

directions. Thus, in other words, each session consisted of 14 randomly interleaved 

staircases operating along different directions. The sessions began with a test-run of 

30-50 presentations of stimuli along random directions. In this test-run, the stimuli 

were deliberately chosen such that the observers found the task easy, with ΔE𝐿𝐴𝐵 ≥ 5. 

The objective was to adapt the observers to the illumination condition and make sure 

they understood the task. After the test-run, the observers remained in the light-proof 

chamber for another minute before a long-beep signalled the start of the main 

experiment. At this point, the observer pressed a button to start the presentation of the 

trials. Each trial timed out after 5 seconds, irrespective of whether the observer 

responded or not. A button press or time-out was signalled by a beep, after which the 

experiment moved on to the next trial. If the observer failed to respond in a certain 

trial the experiment simply advanced to the next randomly chosen staircase while the 

state of the original staircase (for which the observer did not register a response) was 
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not changed, i.e., a failure to respond was not penalised. 

 

The thresholds for each stimulus were estimated thrice. There were breaks of 5-10 

minutes between the sessions, during which the observers were allowed to exit the 

light-proof chamber.   

 

4.2.7 Ellipsoid fitting 

 

Despite its intuitive interpretation for the purposes of colour differences and local 

colour directions, 𝐶𝐼𝐸𝐿𝐴𝐵 is, in effect, a relative colour space. More precisely, 

𝐶𝐼𝐸𝐿𝐴𝐵 uses a white-point adaptation to normalise colour coordinates to a given 

reference. In display calibration applications, this reference point is often taken as the 

white-point of the screen. In most other applications where accurate transfer of 

absolute tristimulus information is critical (such colour management chains), a 

standard illuminant such as 𝐷50 is commonly employed. In this study, a natural choice 

for the reference point would be the illuminant colour for the luminaire-illuminated 

conditions where the stimulus is presented through a cardboard cut-out in a booth with 

ambient illumination, and the background chromaticity for the Dark condition where 

the stimulus is displayed with a luminous background and the testing-booth is dark.  

 

Thus, any comparison of thresholds in 𝐶𝐼𝐸𝐿𝐴𝐵 coordinates defined using different 

reference points would implicitly be a test of the adaptation model implemented in 

𝐶𝐼𝐸𝐿𝐴𝐵. This makes comparison of raw thresholds across illumination conditions in 

this study quite difficult. To address this issue, the analysis was performed in a 3-D 

space defined by the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 chromaticities and a scaled luminance. The 

𝐶𝐼𝐸 1976 𝑈𝐶𝑆 chromaticities are projective mappings of the 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 

tristimulus coordinates without any assumptions about adaptation, and thus allow a 

direct comparison of absolute thresholds between illumination conditions. The exact 

formulation of the projection is described in Appendix 1.2. The luminance axis in our 

analysis was scaled by 1/100 so that it followed the order of magnitude of the 

chromaticity values, akin to methods previously employed by Melgosa et al. (1997) in 
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reporting supra-threshold ellipsoids for surface colours. This colour space will be 

referred to as the 𝑢′𝑣′𝑌′ space from here on. 

 

First, average threshold (over the 3 repetitions) along each of the 14 directions was 

calculated for each observer in each condition. Colour discrimination thresholds can 

be modelled by various methods and surfaces (Poirson et al., 1990), the most common 

of which are ellipses and ellipsoids determined by differential or line-element methods. 

These models have long been used in vision, and in particular, colour perception. 

Poirson & Wandell (1990b) showed the reliability of an ellipsoidal fit in interpolation 

of thresholds from measurements. Similar line element theory inspired ellipsoids were 

fitted to the estimated thresholds, both for colours and for textures. An ellipsoid was 

fitted to each set of 14 data-points by minimising the least-squared distance of the 

points from the ellipsoid surface.  

 

During the calculation of each ellipsoid, the mean colour of the corresponding stimulus 

(calculated in 𝐶𝐼𝐸𝐿𝐴𝐵 space and then converted to the illuminant-independent 

𝑢′𝑣′𝑌′ space) was taken as the centre of the ellipsoid. An ellipsoid with a known centre 

is completely defined by six independent parameters - the lengths of the three axes, 

and the three Brian-Tait angles. The Brian-Tait angles of an ellipsoid represent the 

sequence of orthogonal rotations about the cardinal axes required to achieve its axes-

orientations. Although the Brian-Tait angles encode the axes-orientations of the 

ellipsoid, they are not readily interpretable in terms of physical parameters of the 

ellipsoid. Therefore, after optimisation, the six optimised parameters were converted 

to more intuitive quantities for analysis, such as the volume, the axes lengths and 

orientation vectors, and the area and orientation of the projected ellipse on the 

chromaticity plane. These parameters are further illustrated in Figures 4.5 and 4.6, and 

a description of the ellipsoid fitting process is given below.  
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Figure 4.5: Ellipsoid parameters. 

 

Let a discrimination ellipsoid in a real 3-dimensional ℝ3 space (𝑢′𝑣′𝑌′ space in our 

case) be denoted by 𝐸. The threshold boundary of this ellipsoid 𝐸 can be written as  

 𝐸 ≡ {𝒙 | ‖𝚺𝑼𝑻(𝒙 − 𝒄)‖ = 1 } Eq.  4.7 

where 𝒙 ∈ ℝ3 is a colour on the threshold boundary, 𝚺 is a diagonal matrix [𝜎𝑖𝑖]𝑖=1
3  

with its entries representing the squared inverse lengths of the semi-axes, 𝑼 is an 

orthogonal matrix with each column representing a unit vector along one of the 

ellipsoid axes, and 𝒄 is the centre of the ellipsoid (defined as the average colour of the 

tested stimulus in this study). Of course, the above equation is superfluous in terms of 

the number of variables as 𝑼 is an orthogonal matrix, i.e., the three columns of 𝑼 are 

orthogonal. This fact is used to reduce the number of unknown variables in the 

equation, thereby making the optimisation process much faster. One beings by 

recognising the fact that 𝑼𝑻 is essentially a rotation matrix in 3 dimensions, and thus 

can be decomposed into a set of Brian-Tait angles or rotation angles. The Brian-Tait 

angles of an ellipsoid essentially describe the sequence of rotations one must perform 

on the cardinal axes of the colour space such that they are aligned with the ellipsoid 

axes. Although the mapping from 𝑼𝑻 to Brian-Tait angles is not bijective (it is many-

one), a branch of the solution suffices to cover all real 3-D cases computationally. If 
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𝑹 = 𝑼𝑻 = [𝑟𝑖𝑗]𝑖,𝑗=1
3  is the rotation matrix, 𝚯 = [𝜃𝑥 𝜃𝑦 𝜃𝑧]

𝑇
 are Brian-Tait angles for 

the three axes, and atan(𝑥, 𝑦) represents the 4-quandrant arctangent (which takes two 

arguments, and has a range different from that of the standard arctangent which is 

denoted here as tan−1𝑥), a sufficient mapping for 𝚯 is given by 

 

 

𝜃𝑦 = −asin(𝑟31) 

𝜃𝑥 = {

 atan(𝑟12, 𝑟13) , 𝑟31 ∈ {−1,1}

atan (
𝑟32
cos 𝜃𝑦

,
𝑟33
cos 𝜃𝑦

) ,  otherwise 
 

𝜃𝑧 = {

 0 , 𝑟31 ∈ {−1,1}

atan (
𝑟21
cos 𝜃𝑦

,
𝑟11

cos 𝜃𝑦
) ,  otherwise 

 

 

Eq.  4.8 

In the context of the ellipsoids in the given experiment, since 𝑐 is fixed as the mean 

𝐶𝐼𝐸𝐿𝐴𝐵 colour of the stimulus, the optimisation was performed for only for 𝚺 and 𝚯, 

i.e., six parameters. Suppose the estimated thresholds for a given condition and a given 

observer are given by the set  {𝒙𝟏, 𝒙𝟐, … , 𝒙𝟏𝟒}, such that each of 𝒙𝟏 through 𝒙𝟏𝟒 

represents the threshold along one of the 14 measured directions. Furthermore, let 

𝐸(𝚺, 𝚯) be an ellipsoid defined by the parameters {𝚺, 𝚯}. Let us also define a metric 

𝑑(𝒙, 𝐸) which denotes the Euclidean distance between a point 𝒙, and an ellipsoid 𝐸. 

The optimisation problem to be solved for fitting an ellipsoid with optimised 

parameters {𝚺𝐨𝐩𝐭, 𝚯𝐨𝐩𝐭} can now be written down as 

 {𝚺𝐨𝐩𝐭, 𝚯𝐨𝐩𝐭} = min
𝚺,𝚯

∑𝑑(𝒙𝒊, 𝐸(𝚺,𝚯))

14

𝑖=1

 Eq.  4.9 

As can be seen from Eq.  4.8, 𝚯 is not a very intuitive parameter for a discrimination 

ellipsoid. For this reason, after optimisation, it was converted back to the more easily 

interpretable orthogonal matrix 𝑼 of unit vectors along the axes of the ellipsoid. From 

this, the elevations (𝜃𝑖) and azimuths (𝜑𝑖) for each column 𝒖𝒊 = [𝑢1𝑖  𝑢2𝑖 𝑢3𝑖]
𝑇 of 𝑼 

were derived simply by converting them to polar coordinates using 
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𝜃𝑖 = tan

−1
𝑢𝑖3

√𝑢𝑖1
2 + 𝑢𝑖2

2  

, 𝜃𝑖 ∈ {−
𝜋

2
,
𝜋

2
} 

Eq.  4.10 

and 

 𝜑𝑖 = atan (𝑢𝑖1, 𝑢𝑖2), 𝜑𝑖 ∈ {−𝜋, 𝜋} Eq.  4.11 

The volume 𝑉 of a given ellipsoid with scaling matrix 𝚺 was calculated by using  

 𝑉 =
4

3
𝜋|𝚺|−1/2 Eq.  4.12 

Furthermore, assume that there is a plane 𝐿 defined by  

 𝐿 ≡ {𝒙 | 𝒙 = 𝒅 + 𝑻𝒕 } Eq.  4.13 

such that 𝒅 is a point on the plane, 𝑻  is the set of basis vectors in ℝ3 defining the 

plane, and 𝒕  is the vector of weights for each of the basis vectors, i.e. the local 

coordinates of a given point in the plane 𝐿. With 𝒅 = 𝟎 and 𝑻 = [
1 0
0 1
0 0

], one can 

model this plane 𝐿 to represent the zero luminance chromaticity plane in the 𝑢′𝑣′𝑌 

colour space. The parallel-projection 𝑃𝐸 of an ellipsoid 𝐸  (as defined in Eq.  4.7 above) 

on this plane 𝐿 can be calculated to be 

 𝑃𝐸 ≡ {𝒙 ̃| ‖𝚺̃𝑼̃(𝒙̃ − 𝒄̃)‖ = 1 } Eq.  4.14 

where 𝒙̃ is a point on the projected ellipse 𝑃𝐸, 𝒄̃ = 𝑻𝑻(𝒄 − 𝒅) is the centre of the 

ellipse, and 𝑼̃ and 𝚺̃ are the left singular-vector matrix and the inverse of the truncated 

singular-value matrix respectively, found by the singular value decomposition of 

𝑻𝑻𝑼𝚺−𝟏. The matrices 𝑼̃ and 𝚺̃ have interpretations in a 2-D chromaticity plane 
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analogous to those of 𝑼 and 𝚺 in a 3-D space, i.e., 𝑼̃ is a matrix such that each of its 

columns is one of the axes of the projected ellipse 𝑃𝐸, and 𝚺̃ is a diagonal matrix with 

each entry denoting the squared inverse length of the corresponding semi-axis. The 

area of this projected ellipse is given by  

 𝐴 = 𝜋|𝚺̃|
−1/2

 Eq.  4.15 

The azimuth φ̃1 of the major axis of the projected ellipse (often referred to as the 

orientation of the ellipse) is calculated simply by using the first column of the 𝑼̃  matrix 

𝒖̃𝟏 = [𝑢̃11 𝑢̃12]
𝑇 which denotes a unit vector along the major axis of 𝑃𝐸.  

 φ̃1 = tan
−1 (𝑢̃11, 𝑢̃12), φ̃1 ∈ {−

𝜋

2
,
𝜋

2
} Eq.  4.16 

 

The volume (Eq.  4.12) of the ellipsoids can be taken as a measure of the actual number 

of non-discriminable stimuli. Further analysis was divided into analysis of the 

projections of these ellipsoids on the chromatic plane (theoretically, the envelope of 

chromatic discrimination ellipses across luminances), and analysis of the luminance 

projections of the ellipsoids (illustrated in Figure 4.6). This analysis of the 

discrimination ellipsoid in terms of luminance and chromaticity projections was 

driven, in part by the difficulty of demonstrating 3-D plots and their parameters, and 

in part, by the independence in the chromaticity and luminance projections of 

discrimination ellipsoids found by other researchers (Melgosa, Pérez, El Moraghi, & 

Hita, 1999), and later verified by results from the present study (Figures 4.11 and 4.12). 

It also breaks down the 3-D discrimination boundaries into two components which are 

relatively easier to interpret.  
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Figure 4.6: Ellipsoids were fitted to 14 thresholds in each condition for each observer. These ellipsoids 

were projected on the chromaticity plane and the luminance axis for further analysis. Please note that 

this is only an illustration to demonstrate the projections; the actual ellipsoids showed a much closer 

alignment with the vertical luminance axis (see Figures 4.9 and 4.17). 

 

Both the area of the chromatic projections (Eq.  4.15), as well as the azimuth of their 

major-axes (Eq.  4.16) were analysed. This gives us an insight as to which colour 

directions generate the maximum confusion for a given stimulus. This analysis of the 

discrimination ellipsoid in terms of luminance and chromaticity projections was 

driven, in part by the difficulty of demonstrating 3-D plots and their parameters, and 

in part, by the independence in the chromaticity and luminance projections of 

discrimination ellipsoids found by other researchers (Melgosa et al., 1999), and later 

verified by results from the present study (see Figures 4.11 and 4.12). 

 

4.2.8 Analysis 

 

The analysis was carried out in R and MATLAB. Circular variables were analysed 

using directional statistics (Fisher, 1953). This was implemented using the ‘circular’ 

package in R and the ‘CircStat’ toolbox (Berens, 2009) in MATLAB. Both these 
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packages use routines based on Jammalamadaka & Sengupta (2001). Repeated-

measures ANOVAs were used to conduct inferential statistics on all parameters except 

directional quantities – for these, the Harrison-Kanji test (Harrison & Kanji, 1988) was 

used. Post-hoc investigation of interactions was done by testing simple effects at the 

relevant levels using Bonferroni corrected pairwise t-tests. The circular analogue of 

this was the Watson-Williams test (Stephens, 1969; G. Watson & Williams, 1956).  

 

It must be noted that satisfactory circular analogues of repeated-measures statistical 

tests (such as t-tests and ANOVAs) have so far not been proposed in the relevant 

literature (McMillan, Hanson, Saunders, & Gallun, 2013). Hence, the directional tests 

conducted here do not take repeated measures into account.  

 

4.3 Experiment 1a: Skin images 

 

The first experiment was aimed at investigating the effects of illumination condition 

and skin-type on the discrimination thresholds for skin images. To this end, the 

participants were tested in three different lighting conditions (dark, daylight D65 and 

cool-white-fluorescent TL84) using calibrated images of two skin-types (Caucasian 

and Oriental).  

 

4.3.1 Image acquisition and spectral reconstruction 

 

Images of Caucasian and Asian female faces were captured under controlled D65 

lighting in a Verivide® DigiEye light-booth using a calibrated Nikon D7000 camera. 

The images were controlled for size by including a marker of known dimensions in the 

frame. This was important for reproducing the actual size of the skin patches during 

the experiment. Approximately 5 𝑐𝑚.× 5 𝑐𝑚. patches were cropped from the forehead 

regions of two selected images. The cropping was done such that the patches looked 

uniformly lit, planar and textured. Care was taken to minimise cues besides colour and 

texture – such as obvious illumination gradients, shadows, furrows, wrinkles, 



102 

 

blemishes, and facial and stray hair. Since these patches were obtained under 

controlled lighting with a known illuminant and a booth with grey non-reflective walls, 

they were taken as stock images for the reconstruction of the spectra at each pixel. 

Since the illuminants in the experiment-booth were different from the Verivide® 

DigiEye light-booth used to register the images, access to the reconstructed spectral 

image (i.e., the reflectance spectrum of each pixel) instead of a tristimulus image was 

preferred as it allowed for calculation of the colour of the skin patches under any given 

illuminant. 

 

The workings of the reflectance reconstruction algorithm are inspired by PCA based 

methods such as those proposed by (Agahian, Amirshahi, & Amirshahi, 2008; Babaei, 

Amirshahi, & Agahian, 2011; Shen, Cai, Shao, & Xin, 2007). An essence of the 

spectral reconstruction model is provided in what follows. 

 

The model was fit using measurements of a Silicon skin-colour chart manufactured by 

Spectromatch® as the training data. The reflectance spectra of this chart closely 

resemble those of measured human skin. This skin specific calibration was performed 

in order to gain better accuracy as compared to broader gamut calibration charts such 

as the MacBeth® chart calibration. Let the reflectance and 3-channel 𝑅𝐺𝐵 measures of 

the skin-samples in the chart be 𝑹𝑻 and 𝑿𝑻 respectively, with the subscript 𝑻 denoting 

the training dataset. Both 𝑹𝑻 and 𝑿𝑻 are matrices, with measurements for individual 

skin-chart samples placed column-wise. The optimisation can be made more robust by 

considering a Singular Value Decomposition (SVD) of 𝑹𝑻 and only using the first few 

bases which explain most of the variance, thereby reducing noise. Thus, we write 𝑹𝑻 

as 

 𝑹𝑻 − 𝑹̅𝑻 = 𝑩̃𝑻
𝒌 ⋅ 𝑳̃𝑻

𝒌 Eq.  4.17 

where 𝑹̅𝑻 stands for the mean reflectance of the training set and 𝑩̃𝑻
𝒌 stands for the first 

𝑘 bases of the training set, with 𝑳̃𝑻
𝒌 denoting the corresponding loadings.  
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The main idea here is to optimise a regression matrix 𝚲 which would help transform a 

function 𝑓 of any 3-channel skin colour measurement vector 𝒙 to a reflectance 

spectrum, say, 𝒓. Let us denote the output of 𝑓 as 𝒚, i.e., 𝒚 = 𝑓(𝒙). We now propose a 

regression model of the form 

 𝑹𝑻 − 𝑹̅𝑻 = 𝚲 ⋅ 𝑓(𝑿𝑻) = 𝚲 ⋅ 𝒀𝑻 Eq.  4.18 

This model allows the determination of 𝚲 by a simple pseudo-inverse calculation. 

 𝚲 = (𝑹𝑻 − 𝑹̅𝑻) ⋅ 𝒀𝑻
𝑻 ⋅ (𝒀𝑻 ⋅ 𝒀𝑻

𝑻)
−𝟏 

 Eq.  4.19 

Combining Eq.  4.17 and Eq.  4.19 we now get a noise-reduced regression matrix 

 𝚲 = 𝑩̃𝑻
𝒌 ⋅ 𝑳̃𝑻

𝒌 ⋅ 𝒀𝑻
𝑻 ⋅ (𝒀𝑻 ⋅ 𝒀𝑻

𝑻)
−𝟏 

 Eq.  4.20 

Let the 𝑰𝑹𝑮𝑩 represent the camera three channel image of a skin patch recorded in the 

VeriVide booth such that the 𝑅𝐺𝐵 values at a given location (𝑥, 𝑦) are given by  

 𝑰𝑹𝑮𝑩(𝑥, 𝑦) = 𝒙𝒑𝒊𝒙𝒆𝒍 = [

𝑅𝑝𝑖𝑥𝑒𝑙
𝐺𝑝𝑖𝑥𝑒𝑙
𝐵𝑝𝑖𝑥𝑒𝑙

] Eq.  4.21 

Furthermore, let the estimated reflectance at (𝑥, 𝑦) be denoted by 𝒓̂𝒑𝒊𝒙𝒆𝒍, with the hat 

over the 𝒓 denoting that it is an estimate. Using Eq.  4.18 and Eq.  4.20, the spectral 

reconstruction now reduces to the regression 

  𝒓̂𝒑𝒊𝒙𝒆𝒍 = 𝑹̅𝑻 + 𝑩̃𝑻
𝒌 ⋅ 𝑳̃𝑻

𝒌 ⋅ 𝒀𝑻
𝑻 ⋅ (𝒀𝑻 ⋅ 𝒀𝑻

𝑻)
−𝟏 
⋅ 𝑓(𝒙𝒑𝒊𝒙𝒆𝒍) Eq.  4.22 

Two critical aspects of the algorithm are the number of bases 𝑘 used in the SVD, and 

the transformation function 𝑓. In other collaborative experiments outside the scope of 

the current thesis  (Xiao, Qin, Chauhan, Li, & Wuerger, 2014), the optimal value for 𝑘 
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was found to be 5, while the function 𝑓 providing the best regression results was found 

to be the 4th order polynomial. In other words, the first 5 bases were used to extract the 

reflectance information from the training set, while the three-channel 𝑅𝐺𝐵 values were 

converted to 4th order polynomial forms for the regression.  

 

The spectral reconstruction described above was applied to each pixel of the VeriVide 

booth images, resulting in corresponding spectral images where the reflectance at each 

pixel was known. These spectral images allowed for the simulation of the colour of 

each pixel under any given illuminant using the simple illuminant-reflectance-sensor 

equation (Eq.  1.1) for each pixel.   

 𝑿𝑖 = ∫ 𝑳(𝜆) ⋅ 𝒓̂𝒑𝒊𝒙𝒆𝒍(𝜆) ⋅ 𝒙̅𝒊(𝜆) ⋅ 𝑑𝜆

 

𝑣𝑖𝑠𝑖𝑏𝑙𝑒

, 𝑖 ∈ {1,2,3} Eq.  4.23 

Here, 𝜆 is the wavelength in the visible spectrum, 𝑳(𝜆) is the spectrum of the 

illuminant, 𝒓̂𝒑𝒊𝒙𝒆𝒍(𝜆) is the estimated reflectance spectrum calculated for each pixel 

(Eq.  4.22), 𝒙𝒊(𝜆) is the 𝑖𝑡ℎ 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 colour matching function and 𝑿𝑖 is the 𝑖𝑡ℎ 

tristimulus coordinate corresponding to 𝒙̅𝒊(𝜆). 

 

In this experiment, values of 𝑳(𝜆) corresponding to the curves shown in Figure 4.1 

were used for simulating the patches. The colour gamuts of the patches simulated using 

both overhead luminaires are shown below (Figure 4.7).  
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Figure 4.7: Colour distributions of the stimuli. Caucasian and Oriental skin patches were simulated (Eq.  

4.23) using D65 and TL84 illuminant SPDs (Figure 4.1), and pixel-wise reconstructed reflectance 

spectra (Eq.  4.22). Displayed stimuli were always consistent with the ambient illumination in the test-

booth. 

 

The luminance and chromatic projections of these distributions are shown in Figure 

4.8. The first row shows plots of luminance (ordinate) against the 𝑢′ coordinate 

(abscissa), while the second row shows 𝑢′𝑣′ chromaticity plots (𝑣′ ordinate, 𝑢′ 

abscissa).  The Caucasian patch gamuts are plotted in the left column while the Oriental 

patch is plotted in the right column.  
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Figure 4.8: Luminance and chromatic spreads of the stimuli simulated using the luminaire illuminants: 

D65 and TL84. Patches are shown column-wise (left column, Caucasian; right column, Oriental). First 

row shows the luminance spreads (luminance in 𝑐𝑑/𝑚2 along the ordinate, 𝑢′ along abscissa) while the 

second row shows chromatic spreads (𝑣′ ordinate, 𝑢′ abscissa). 

 

The Caucasian patch shows a luminance spread of about 6.5 − 7.5 𝑐𝑑/𝑚2 while the 

Oriental patch has an 8 − 9 𝑐𝑑/𝑚2 spread. Interestingly, for a given patch, the 

luminance spreads are very similar (within 1 𝑐𝑑/𝑚2) under the two illuminants. 

Chromatically, while the two patches show an overlap under each illumination, the 

Oriental patch has a more elongated distribution of chromaticities. Furthermore, for 

each patch, the chromatic gamut in D65 seems to be larger than in TL84. A more 

detailed description of the gamuts for the two patches is shown in Table 4.2 below.  

 

Caucasian Patch Oriental Patch 
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Volume  

(× 𝟏𝟎−𝟔) 

Luminance range  

(𝒄𝒅/𝒎𝟐) 

Area  

(× 𝟏𝟎−𝟒) 

Orientation of first PC  
(°) 

     

     

Caucasian Patch    

    

D65 7.44 6.63 2.42  5.1 (var. exp. = 61%) 

TL84 5.82 7.42 1.69 -2.7 (var. exp. = 87%) 

     

     

Oriental Patch    

    

D65 7.78 8.24 1.97 34.3 (var. exp. = 89%) 

TL84 6.46 9.18 1.40 13.5 (var. exp. = 92%) 

     

     
Table 4.2: The colour distributions of the two skin patches (Caucasian and Oriental) described using 

four parameters. Volume: Calculated by fitting a convex hull to the distributions in 𝑢′𝑣′𝑌′ space. 

Luminance range: Calculated by using maximum and minimum luminance values in the distributions. 

Area: Calculated by fitting a convex hull to the chromatic projections of the data on the 𝑢′𝑣′ plane. 

Orientation of the first principal component: Calculated by performing a principal component analysis 

on the chromatic projections and computing the angle made by the first principal component with the 

positive 𝑢′ axis. 

 

As noted earlier, the oriental patch shows a higher luminance range in each 

illumination condition. One also sees that both patches show higher volumes and areas 

in 𝐷65 compared to 𝑇𝐿84. The variance explained by the first principal component 

was high in all cases (87% − 92 %) except the Caucasian patch in the 𝐷65 condition 

(61%), and the orientation of the first principal component shows that while the colour 

distribution of the Caucasian patch varied along the 𝑢′ axis in both illumination 

conditions, the Oriental patch showed variation along an inclined axis with the 

inclination changing markedly with the illuminant. 

 

4.3.2 Experimental protocol 

 

The protocol as described in Section 4.2.6 was used. Within a given illumination block, 

the two skin patches (Caucasian and Asian) were tested alternately, three times each, 
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leading to a total of six sub-blocks. On average, the observers responded to 

approximately 40 trials per staircase; and since there were 14 interleaved staircases, 

each sub-block consisted of at least 550 trials lasting from 20 to 25 minutes. In total, 

252 thresholds (3 illuminants × 2 patch-ethnicities × 3 repetitions × 14 measurement 

directions) were measured per participant, amounting to about 7.5 hours of testing. 

The participants were compensated for their time with a fee. In total, 18 participants 

were tested in this experiment. 

 

4.3.3 Results 

 

The mean ellipsoids derived from the data are shown in Figure 4.9 below. The average 

measured thresholds are plotted as dots, with the standard error for each threshold 

represented by a black line along the direction of measurement. The fluorescent 

illuminant (TL84) condition is plotted in yellow, simulated daylight (D65) in blue, and 

the Dark condition in grey. 
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Figure 4.9: Mean ellipsoids for skin stimuli. The ellipsoids correspond to average values of the 

parameters. The average thresholds across the observers in each direction are marked with a small 

sphere of the corresponding colour, with the standard error being marked as a black line through the 

sphere. 

 

The volumes of the ellipsoids across the observers is shown in Figure 4.10 below, with 

the error bars marking the 95% confidence-intervals (Cousineau, 2005; Morey, 2008). 

This form of presentation will be used throughout the chapter for other parameters as 

well. 
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Figure 4.10: Mean ellipsoid volumes for skin images. 

 

Repeated-measures two-way ANOVA reveals main effects of both illumination 

condition (𝐹2,34 = 4.655, 𝑝 = 0.0163) and the patch-ethnicity (𝐹1,17 =  38.78, 𝑝 <

 0.001), along with an interaction between the two (𝐹2,34 = 11.36, 𝑝 <  0.001). Post-

hoc tests reveal larger discrimination volumes for the TL84 condition compared to the 

D65 condition (𝑝 < 0.001 for both Caucasian and Oriental patches). They also suggest 

that the main-effect of the patch-ethnicity is found in the Dark (𝑝 < 0.001) and D65 

(𝑝 = 0.013) conditions, but not in TL84 (𝑝 = 0.21). 

 

The next two figures (4.11 and 4.12) show plots of the average semi-lengths of the 

major axes and their projection on the luminance axis respectively.  
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Figure 4.11: Mean major axes for discrimination ellipsoids for skin images. 

 

 

Figure 4.12: Luminance axis projections of the discrimination ellipsoids for skin images. 
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Both these parameters show almost identical trends, which also come out in the 

statistical analysis. This is true for all the analyses in all subsequent experiments 

reported in the paper. Since the luminance axis projection is easier to interpret, all 

result sections in this chapter will use this parameter instead of the length of the major 

axis.  

 

Repeated-measures two-way ANOVA show a main effect of illumination 

condition (𝐹2,34 = 106.7, 𝑝 < 0.001), and a strong interaction between the 

illumination condition and the patch-ethnicity (𝐹2,34 = 11.33, 𝑝 < 0.001). No main 

effect of the patch-ethnicity is observed. Post-hoc tests reveal higher luminance 

thresholds in TL84 compared to D65 (𝑝 < 0.001) for both patch types and a higher 

threshold for TL84 than the Dark condition (𝑝 < 0.001) for the Caucasian patch. 

 

Figures 4.13 and 4.14 show the mean projections of the ellipsoids on the 𝑢′𝑣′ 

chromaticity plane for the two patch-ethnicities.  
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Figure 4.13: Mean projected ellipses for the Caucasian patch.  

 

 

 

Figure 4.14: Mean projected ellipses for the Oriental patch.  



114 

 

 

To explore these projections, let us first consider the area of the ellipses (Figure 4.15).  

 

 

Figure 4.15: Area of the projected chromaticity ellipses for skin images.  

 

A repeated-measures two-way ANOVA reveals a marginal main effect of the 

illumination condition interaction (𝐹2,34 = 3.211, 𝑝 = 0.0528), a significant main 

effect of the patch-ethnicity (𝐹2,17 = 99.25, 𝑝 < 0.001) and a significant 

interaction (𝐹2,34 = 8.988, 𝑝 < 0.001). Bonferroni corrected post-hoc comparisons 

show that the area of the chromatic projections is higher for the Oriental patch than the 

Caucasian patch (𝑝 < 0.001 for Dark and D65, and 𝑝 = 0.005 for TL84). For the 

Oriental patch, one also observes that the area of the Dark condition ellipse is higher 

than that of the D65 (𝑝 = 0.034) and the TL84 (𝑝 = 0.012) conditions. 

 

The orientation of these projections are further explored by plotting the azimuth of the 

major axis in Figure 4.16. The azimuth denotes the angle made by the major axis of 

the ellipse with the positive 𝑢′ axis of the chromaticity plane. 
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Figure 4.16: Azimuth of the projected ellipse major axis for skin images. 

 

The Harrison-Kanji test shows main effects of both the illumination condition 

(𝐹2,102 = 71.94, 𝑝 < 0.001) and the patch-ethnicity (𝐹1,102 = 7.358, 𝑝 = 0.0078), 

with no interaction between the two factors. Post-hoc analysis using the Watson-

Williams test shows that for both patch-types the azimuth is about 25° smaller in the 

TL84 condition than in the D65 and Dark conditions (𝑝 < 0.001 in all cases). The D65 

and Dark conditions do not differ statistically for both the patches. It is also found that 

the effect of patch-ethnicity is driven by mainly by the TL84 condition (𝑝 = 0.0077) 

with the azimuth being about 5° higher for the Oriental patch. 

 

4.3.4 Discussion 

 

Figure 4.10 shows that the discrimination volume is larger in TL84 compared to D65 

for both patch-ethnicities. In other words, irrespective of the ethnicity of a given patch, 

human observers are better at discriminating small differences in daylight than under 
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artificial fluorescent lighting. This variation in discrimination ability is not reflected 

equally in the luminance and chromatic dimensions. While the area of the projected 

chromaticity ellipses remains roughly the same (Figure 4.15), the luminance 

projections of the ellipsoids seem to follow the overall changes in the discrimination 

volume (compare Figure 4.12 and Figure 4.10). One possible reason for this could be 

the spikes in the TL84 illuminant spectral power distribution (see Figure 4.1) in the 

525-650 nm region. This range of wavelengths covers the yellowish part of the visible 

spectrum, and thus spikes in this region of the illuminant spectrum could imply higher 

luminance of the simulated skin patch under TL84, thereby leading to an increase in 

thresholds.  

 

Another effect that merits closer examination is the systematic difference in the 

azimuths of the projected chromatic ellipses (Figure 4.16). In the light of Figures 4.13 

and 4.14, this could be explained in two ways. First, one observes that the azimuths 

for both the patches seem to be aligned with the daylight locus. This would support the 

theory that discrimination thresholds are minimal orthogonal to the ‘caerulean line’ – 

the line representing natural illuminants (Danilova & Mollon, 2010); in other words, 

observers tend to confuse colours that lie along the daylight locus more than the 

colours that lie orthogonal to it. Second, the ellipses also seem to be aligned with the 

first principal component direction of the colours in the respective skin patches. This 

is similar to the results obtained by Hansen et al. (2008) who found that isoluminant 

discrimination ellipses roughly follow the direction of maximum chromatic variation 

in natural stimuli (banana, orange and lettuce). These two explanations are by no 

means exclusive, and could be reconciled by the interesting possibility that colour 

distributions of natural surfaces and textures under varied lighting conditions fall along 

the daylight locus. 

 

This discussion has thus far mainly focussed on the daylight and fluorescent lighting 

conditions. This is because the stimuli in these two conditions represent ecologically 

valid simulations of the skin patches and produce consistent trends in the results. The 

dark condition, on the other hand, does not represent an ambient illumination, but 

rather a forced surround illumination. The patches in this condition could easily be 
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made out by the observers to be self-luminous images displayed on a screen.  

 

In this case, an interesting comparison to analyse is that between the simulated daylight 

and the dark condition. Although the two conditions use stimuli simulated using the 

same illuminant (luminaire D65), they have different viewing parameters in terms of 

the display mode (object mode in D65 vs. self-luminous surface patch in Dark), 

surround (grey cardboard, reflecting ambient lighting in D65 vs. self-luminous grey 

screen in the Dark condition), and the ambient lighting (≈ 51 𝑐𝑑/𝑚2 simulated 

daylight from an overhead luminaire in D65 vs. ≈ 20 𝑐𝑑/𝑚2 simulated daylight from 

the surround in the Dark condition). Bearing this in mind, one observes that the 

ellipsoids under these two conditions display very similar orientations and chromatic 

ellipse areas (for both patch types). One also observes that in the Dark condition, the 

two ethnicities display a difference in the volume of the ellipsoids (with the ellipsoids 

being smaller for the Caucasian patch as compared to the Oriental patch) while no such 

difference is seen in the D65 condition. This difference is driven entirely by the 

luminance projections of the discrimination volumes. This could suggest that while the 

bases mechanisms (which determine the orientations of the ellipsoids) involved in the 

discrimination are primarily determined by the spectrum of light emitted by the 

stimulus in the foveal field of view (as the stimuli in the two conditions were identical), 

the aspect ratio of the discrimination ellipsoid, i.e., the relative weights of the 

mechanisms involved, are affected by the adaptation and viewing conditions.  

 

4.4 Experiment 1b: Uniform skin-colour patches 

 

Discrimination thresholds for uniform colour stimuli have been measured time and 

time again – from the initial experiments by MacAdam (1942) and Brown (1951) to 

the more recent studies such as those by Poirson & Wandell (1990a), Krauskopf & 

Gegenfurtner (1992), Melgosa et al. (1997), and Yebra et al. (2001). Attempts have 

also been made to extend these measurements to polychromatic natural stimuli by 

Hansen et al. (2008).  
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Experiment 1a looked at discrimination thresholds for polychromatic skin images in 

detail. But how do these thresholds compare to those for uniform colour patches in the 

same location in colour space? Furthermore, does the relation change with changes in 

the ambient illumination condition? The aim of this experiment (Experiment 1b) was 

to measure thresholds for uniform colour patches under the same three ambient 

illumination conditions as Experiment 1a. 

 

4.4.1 Stimuli 

 

The stimuli used in this experiment were uniform patches, i.e., patches wherein each 

pixel was the same colour. These uniform patches had the same colour as the mean 

𝐶𝐼𝐸𝐿𝐴𝐵 colour of the skin images used in Experiment 1a. The idea was to investigate 

how colour discrimination abilities change as one removes texture and second-order 

colour information from a skin image. 

 

4.4.2 Experimental protocol 

 

The experiment followed the exact same protocol as Experiment 1a, except that the 

polychromatic skin images were replaced by the uniform patches. A subset (𝑁 = 8) of 

the observers tested in Experiment one was recalled. Once again, each observer was 

tested for about 7.5 hours and 252 thresholds per observer were measured. 

 

4.4.3 Results 

 

In this section, the results of this experiment are presented in a manner analogous to 

Experiment 1a. Figure 4.17 shows the average ellipsoids for each condition, with 

symbols carrying the exact same meaning as in Figure 4.9.  
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Figure 4.17: Mean ellipsoids for uniform stimuli. The plots use the same symbols as Figure 4.9. 

 

Since the rationale of this experiment relies on the measurements in Experiment 1a, 

all the subsequent results in this section are presented with the results for Experiment 

1a (only for the participants who participated in both experiments). This avoids 

plotting the same data twice as these comparisons will be frequently referred to in the 

Discussion section to follow. The statistical analysis presented in this section, though, 

will only consider data from Experiment 1b. The two patches will still be labelled as 

the ‘Caucasian’ and the ‘Oriental’ patch, the ethnicity names simply referring to the 

original skin image they were derived from.    

 

Figure 4.18 shows the average volumes of the discrimination ellipsoids. It also shows 

average volumes for Experiment 1a and 2 for the participants who participated in all 

the experiments 
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Figure 4.18: Ellipsoid volumes for uniform patches  

 

Repeated-measures two-way ANOVA reveals main effects of both illumination 

condition (𝐹2,14 = 5.93, 𝑝 = 0.0136) and the patch-type (𝐹1,7 =  5.821, 𝑝 = 0.047), 

with no interaction between the two (𝑝 = 0.0991). Post-hoc tests reveal lower 

volumes for the Dark condition compared to the D65 (𝑝 = 0.031) and TL84 (𝑝 =

0.021), and a higher volume for the Oriental patch (𝑝 = 0.0014). 

 

Analogous to the analysis for Experiment 1a, these volumes are first projected on the 

luminance axis. The length of these projections is shown in Figure 4.19. 
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Figure 4.19: Luminance projections for uniform patches  

 

A repeated measures ANOVA shows a main effect of illumination (𝐹2,14 = 48.48, 𝑝 <

0.001), no main effect of patch-type (𝑝 = 0.641), and a significant interaction of the 

two (𝐹2,14 = 4.84, 𝑝 = 0.0252). Post-hoc tests show the thresholds for the Dark 

condition to be lower than the D65 and TL84 conditions for both patch types 

(Caucasian: 𝑝 < 0.001 for both TL84 and D65; Oriental 𝑝 = 0.002 for TL84 and 𝑝 =

0.044 for D65). 

 

Next, chromaticity projections of the ellipsoids are examined in the figures below 

(Figures 4.20 and 4.21). The average ellipses for the uniform patches (this experiment) 

as well as skin images (Experiment 1a) are plotted, with only participants common to 

both experiments being included. 
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Figure 4.20: Caucasian patch-type: Average ellipses for uniform and skin patches  

 

 

Figure 4.21: Oriental patch-type: Average ellipses for uniform and skin patches 

 



123 

 

The area of these ellipses is shown in Figure 4.22.  

 

 

Figure 4.22: Area of chromatic projections for uniform patches  

 

A repeated measures ANOVA shows a main effect of patch-type (𝐹1,7 = 28.78, 𝑝 =

0.001) with no effect of the illumination condition. The areas of the projections for the 

Oriental patch are much larger than those for the Caucasian patch. 

 

Further, Figure 4.23 shows the azimuths for the projected chromatic ellipses. The 

Harrison-Kanji test shows significant main effects of the illumination 

condition (𝐹2,42 = 24.57, 𝑝 < 0.001), whilst showing no effect of the patch-type or 

an interaction effect. Post-hoc analysis using the Watson-Williams test shows that for 

both patch-types the azimuth is smaller in the TL84 compared to the D65 and Dark 

conditions (𝑝 < 0.001 in all cases). The Dark and D65 conditions do not show any 

difference. Although the effect is not powerful enough to be statistically significant as 

a main effect, from the figure one can observe a difference in the azimuths between 

the two patches in the TL84 condition. This is indeed verified by a post-hoc paired t-
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test (𝐹1,14 = 10.5445, 𝑝 = 0.0058).  

 

The results shown in this section are representative of the sample, verified by the 

individual projected ellipses for each observer which are included in Appendices 2.1 

and 2.2. 

 

 

Figure 4.23: Azimuth of chromatic projections for uniform patches  

 

 

4.4.4 Discussion 

 

Experiment 1a had estimated the discrimination thresholds for skin-patch images 

under varying illumination conditions. An important question to emerge from these 

measurements was how different these thresholds were from those for uniform colours 

under the same experimental conditions. Clearly, the first trend one notices is that the 
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ellipsoids for skin images are about 2-3 times larger than those for the corresponding 

uniform patches (mean 𝐶𝐼𝐸𝐿𝐴𝐵 colour). This is better shown in Figure 4.24. 

 

 

Figure 4.24: Ratio of volumes for the skin image and the uniform patch  

 

This shows that skin textural properties lower the discriminability of the patch 

compared to uniform patches, leading to an increase in the thresholds. This difference 

is found in both luminance and chromatic thresholds, though the ratios are higher for 

chromatic projections (Figure 4.25) than luminance projections (Figure 4.26).  
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Figure 4.25: Ratio of area of chromatic ellipses for the skin image and the uniform patch  

 

 

Figure 4.26: Ratio of luminance projections for the skin image and the uniform patch  

 



127 

 

 

A similar increase in chromatic thresholds was also reported by Hansen et al. (2008) 

for natural textures, and synthetic textures with colour distributions similar to natural 

textures. Montag & Berns (2000) also reported similar effects in luminance thresholds. 

A possible explanation of these results could lie in the theory proposed by Webster & 

Mollon (1997) that polychromatic natural stimuli entail adaptation not only to the 

mean luminance of the scene, but also a contrast adaptation to the colour distribution 

within the scene. They reason that although light adaptation could adjust for changes 

in mean colour, it cannot compensate for changes in the statistics of the colour 

distributions. They further propose that contrast adaptation mechanisms might operate 

by whitening the stimulus colour distribution based on changes in post-receptoral 

channel tunings, with new tunings emerging due to inhibition between channels which 

produce the most correlated responses (Atick, Li, & Redlich, 1993; Barlow & Földiák, 

1989; Webster & Mollon, 1997). Considering that in the current study the observer 

could view the whole scene, even if they fixated on the stimulus, one cannot 

completely ignore contrast adaptation regardless of whether the tested stimuli were 

uniform or textured. Even so, it is likely that the amount of possible contrast adaptation 

in case of the uniform patch stimuli was lower than that for the simulated skin patches 

(since there is no contrast within a uniform stimulus). This would mean that in the case 

of uniform patches, the observers were comparatively less adapted, and hence less 

capable of constancy or discounting the illuminant, resulting in the ability to notice 

smaller changes in the stimulus colour, i.e., better discrimination performance (or 

lower thresholds) compared to the simulated skin patches. 

 

It was noted in Experiment 1a that the thresholds for both patch-ethnicities were higher 

in TL84 than in D65 (Figure 4.10). Figure 4.18 shows that uniform patches produce 

statistically similar discrimination volumes for the TL84 and D65 conditions (although 

an analysis of simple effects suggests a marginally significant difference for the 

Oriental patch with 𝑝 = 0.042). This would suggest that second order properties of the 

colour distribution seem to modulate the discrimination thresholds such that it not only 

increases the number of discriminable configurations, but also makes observers 

markedly better at discrimination under D65 as compared to TL84. 



128 

 

 

Perhaps the most interesting effect when comparing discrimination of uniform patches 

and skin images is the orientation of the chromatic ellipses. In Experiment 1a, the 

ellipses for skin images were shown to lie along the daylight locus (Figures 4.13 and 

4.14). Figures 4.20 and 4.21 show that although this is still the case for the 

corresponding ‘Oriental’ uniform patch, the ‘Caucasian’ uniform patch shows a clear 

deviation. This effect is robust and can be observed for most observers (refer to figures 

in Appendix 2). The fact that this effect was found under a specific illumination (TL84) 

once again points towards an effect of second or higher order textural properties on the 

discrimination boundaries, hinting at possible contrast adaptation mechanisms 

(Webster & Mollon, 1997).  

 

4.5 Experiment 2: Swapped colour distributions 

 

The previous two experiments measured discrimination thresholds for skin patches, 

and compared them to those for uniform patches of the same mean colour. It was found 

that the presence of skin texture changes the thresholds one would otherwise obtain 

for uniform patches. Going back to Eq.  4.23 which was used to generate these stimuli, 

one sees that the set of tristimulus values 𝑋𝑖 is the form of the stimulus that reaches 

the photoreceptors in the eye, while the reflectance spectrum 𝒓̂𝒑𝒊𝒙𝒆𝒍(𝜆) is the physical 

property of skin which generates the tristimulus values under a given illumination. 

Thus, the stimuli used in these experiments can be interpreted in two, mutually non-

exclusive ways. First, as representations of a physically plausible or known surface – 

skin being viewed under the given illumination, and second, as textures with a colour 

distribution which resembles skin in appearance (under the given illumination) but 

may or may not necessarily represent an actual skin surface. The first interpretation 

(known surface) is driven by an implicit knowledge of the physical reflectance of the 

stimulus while the second interpretation can be sufficiently represented simply by 

considering the distribution of the colour in the stimulus. 

 

If one were to disregard the fact that the origin of the textures used in the previous two 
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experiments lies in the interaction between the illumination and the reflectance 

spectrum of human skin, one arrives at the interesting question as to whether higher 

order properties of the texture in colour space would, by themselves, allow for 

predictable changes in discrimination thresholds. In other words, if one were to change 

the mean colour of a textured patch while maintaining its higher order colour 

characteristics intact, would the thresholds change as a function of the new mean 

colour; or would they remain constant because the illuminant and the relative 

distribution of colours has not changed? If one were to abstract the idea further, are the 

spectral properties of the textured stimulus which identify it as skin reducible simply 

to relative colour distributions of the texture? The next set of experiments were aimed 

at answering these questions. The colour distributions of the simulated skin patches in 

the two illumination conditions (D65 and TL84) were translated such that their means 

were swapped, while the relative distributions remained intact in 𝐶𝐼𝐸𝐿𝐴𝐵 space. Three 

initial hypotheses were considered. H1: If the thresholds are affected only by the 

illumination condition and the relative 𝐶𝐼𝐸𝐿𝐴𝐵 distribution of colours, swapping the 

means should not affect the thresholds and they should be identical to Experiment 1a. 

H2: On the other hand, if the thresholds are completely driven by the location of the 

textures in colour space, their discrimination thresholds should be swapped as well. 

H3: The most likely possibility is that the thresholds neither remain unchanged, nor 

are completely swapped, but show an intermediate change. 

 

4.5.1 Reference stimuli and illumination conditions 

 

In Experiment 1a, the reference stimuli were colour-accurate skin-patch images under 

simulated daylight and fluorescent illuminants such that their colour values were 

consistent with the ambient illumination. For a given patch, the reference images used 

in the current experiment were obtained by swapping the average 𝐶𝐼𝐸𝐿𝐴𝐵 colour of 

the D65 and CWF simulations, while maintaining the same relative colour-

distributions (also in the 𝐶𝐼𝐸𝐿𝐴𝐵 space). In other words, in each illumination 

condition, the second order properties of the colour distribution of the image were the 

same as in Experiment 1a, but the first order properties between the two illumination 

conditions were swapped (Figure 4.27).  
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Figure 4.27: Polychromatic stimuli for Experiment 2.  

 

Only stimuli based on the original Caucasian patch were tested to reduce the testing 

time per participant. This choice was also based on the fact that the difference in 

orientation of the chromatic ellipses for the polychromatic and uniform stimuli was 

observed only in the Caucasian case. The observers were also tested with uniform 

patches derived from the mean 𝐶𝐼𝐸𝐿𝐴𝐵 colours of the stimuli. The experiments were 

carried out in simulated daylight and fluorescent lighting conditions. The dark 

condition was dropped.  

 

Given a certain (say, Caucasian) patch with a pixel-wise reflectance 𝒓̂𝒑𝒊𝒙𝒆𝒍(𝜆) we have 

two sets of absolute tristimulus values corresponding to each illumination condition. 

These are given by applying Eq.  4.23. If the two illuminant SPDs are denoted by 

𝑳𝑫𝟔𝟓(𝜆) and 𝑳𝑻𝑳𝟖𝟒(𝜆) respectively, the two sets of tristimulus values are given by 
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𝑿𝑖,𝑗 = ∫ 𝑳𝒋(𝜆) ⋅ 𝒓̂𝒑𝒊𝒙𝒆𝒍(𝜆) ⋅ 𝒙̅𝒊(𝜆) ⋅ 𝑑𝜆

 

𝑣𝑖𝑠𝑖𝑏𝑙𝑒

,

𝑖 ∈ {1,2,3} , 𝑗 ∈ {𝐷65, 𝑇𝐿84} 

Eq.  4.24 

where 𝜆 and 𝒙̅𝒊(𝜆) represent the wavelength and the CIE colour matching functions 

while the variable 𝑗 represents the illumination. A question that naturally arises out of 

the required manipulation is: In which colour-space should the swapping of the means 

be defined? If we were to define them in an absolute space such as the 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 

space or the 𝑢′𝑣′𝑌′  space (used for plotting all the results in the study), we swap the 

absolute tristimulus value distributions, with no guarantee that the manipulated patches 

will still retain the appearance of skin to any credible degree. In fact, such transforms 

were tested by displaying textures manipulated in 𝑢′𝑣′𝑌′ space (in the light-proof 

booth under the intended illumination conditions), and the patches were found to have 

an appearance quite different from skin. None of the consulted observers (CN, CT and 

PR) found the patches to be identifiable as skin.  

 

To maintain the skin-like appearance of the stimuli, it was decided to transform the 

colour distributions of the patches to a common 𝐶𝐼𝐸𝐿𝐴𝐵 space (using the same white-

point for normalisation as used for defining sampling directions in colour space, see 

Section 4.2.2) and swapping the means in this space. The same set of observers (CN, 

CT and PR) now reported the patches obtained by the 𝐶𝐼𝐸𝐿𝐴𝐵-swap to resemble skin 

much more than the patches obtained by a 𝑢′𝑣′𝑌′-swap. It must be noted that when 

one uses an absolute space (such as the 𝑢′𝑣′𝑌′ used here) to plot the 𝐶𝐼𝐸𝐿𝐴𝐵-swapped 

distributions, the shapes of the distributions appear to change, and distributions centred 

at the same location tend to resemble each other (see Figure 4.28). This also explains 

why observers found these 𝐶𝐼𝐸𝐿𝐴𝐵-swapped distributions to resemble skin much 

more than the 𝑢′𝑣′𝑌′-swapped ones. 
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Figure 4.28: Luminance and chromatic spreads of the simulated skin patches (left column) and the 

stimuli generated by swapping their relative distributions in 𝐶𝐼𝐸𝐿𝐴𝐵 space (right column). In each case, 

the colour of the points represents the illumination used for testing the corresponding patch (light and 

dark blue: D65; yellow and brown: TL84). The first row shows the luminance spreads (luminance in 

𝑐𝑑/𝑚2 along the ordinate, 𝑢′ along abscissa) while the second row shows chromatic spreads (𝑣′ 

ordinate, 𝑢′ abscissa). Notice that simply swapping the distribution means in 𝐶𝐼𝐸𝐿𝐴𝐵 space results in 

changes in the shapes of the entire distributions in 𝑢′𝑣′𝑌′ space. 

 

To further quantify the change in the shapes of the graphs, the following table (Table 

4.3) provides the key parameters of the Caucasian and the swapped-Caucasian patches. 

An interesting observation that emerges from Table 4.3 is that swapping the mean 

colour of the patches in 𝐶𝐼𝐸𝐿𝐴𝐵 space clearly changes the relative distribution of the 

colours in the 𝑢′𝑣′𝑌′ space as well. The effects are a swapping, not only of the mean 

colour, but also of the approximate luminance range and the projected chromatic area 

of the two gamuts. Thus, by maintaining the relative distributions of the colours in a 

Skin (Caucasian) Swapped 
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common appearance space (namely, the 𝐶𝐼𝐸𝐿𝐴𝐵 space normalised using a common 

white-point), we have managed to preserve the skin-like appearance of the stimuli.  

 

 
Volume  

(× 𝟏𝟎−𝟔) 

Luminance range  

(𝒄𝒅/𝒎𝟐) 

Area  

(× 𝟏𝟎−𝟒) 
Orientation of first PC  

(°) 

     

     

Caucasian patch    

    

D65 7.44 6.63 2.42  5.1 (var. exp. = 61%) 

TL84 5.82 7.42 1.69 -2.7 (var. exp. = 87%) 

     

     

Swapped patch    

    

D65 5.93  7.28  2.18  2.7 (var. exp. = 79%) 

TL84 7.28  6.75  2.04  -4.8 (var. exp. = 74%) 

     

     
Table 4.3: The colour distributions of Caucasian and the swapped-Caucasian patches described using 

the same four parameters as Table 4.2 – volume of the 3-D hull of the gamut in 𝑢′𝑣′𝑌′ space, luminance 

range, area of the hull covering the projections of the gamut on the 𝑢′𝑣′ space chromaticity plane, and 

the orientation of the first principal component found by a Principal component analysis of the 

chromatic projection of the data. 

 

4.5.2 Experimental protocol 

 

The experiment followed the exact same protocol as Experiments 1 and 2. A subset of 

the observers (𝑁 = 6) who had also participated in both Experiment 1a and 1b was 

recruited. In total, 168 thresholds (2 illuminants × 2 stimuli types (uniform and 

textures) × 3 repetitions × 14 measurement directions) were measured per participant, 

amounting to about 6 hours of testing. 

 

4.5.3 Results 
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This section presents results for observers (𝑁 = 6) common to both experiments. The 

statistical analysis here only pertains to the results for this experiment (Experiment 2), 

while comparisons with previous experiments (Experiments 1a & 1b) are made in the 

subsequent discussion (Section 4.5.4). To avoid multiple plots of the same data, the 

plots in this section present the results from both Experiment 1 (left) and Experiment 

2 (right). 

 

The ellipsoid volumes are plotted in Figure 4.29. The results from Experiment 2 are 

shown in the panel to the right. The locations of the two skin simulations used in 

Experiment 1a (shown in the small window on the top-right) are labelled as T (TL84) 

and D (D65). Since the positions of the stimuli are swapped in Experiment 2, these 

symbols also denote the location of the swapped stimuli under TL84 (D) and D65 (T) 

respectively. These labels will be used throughout this section to code the location of 

the stimulus in 𝑢′𝑣′𝑌′colour space. Thus, while the labels T and D encode the spatial 

location of patches, the colour of the bars represents the illumination condition. In 

addition, the figure also marks the predictions as per the first two hypotheses proposed 

in Section 4.5. H1 denotes the hypothesis that the thresholds are driven solely by the 

illumination condition, while H2 represents the hypothesis that the thresholds are 

driven exclusively by the location of the stimulus in colour space. 
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Figure 4.29: Ellipsoid volumes for participants common to all conditions. Left panel shows data for 

stimuli representing simulations of skin colour and texture under TL84 and D65 illuminants. Right panel 

shows the thresholds for stimuli derived by swapping mean colour of skin simulations for the two 

illumination conditions while maintaining the relative colour distribution of the stimuli. The locations 

of the patches in 𝑢′𝑣′𝑌′ colour space are labelled as T and D. The label T corresponds to the location 

of the simulated skin patch under TL84 (and the swapped patch under D65), while the label D 

corresponds to the location of the simulated skin patch under D65 (and the swapped patch under TL84). 

The original distributions are shown in a small window on the top-right. Furthermore, the graph also 

shows predictions as per the first two hypotheses proposed in Section  4.5. H1: The thresholds are driven 

by the illumination condition only, H2: The thresholds are driven by the location in colour space only. 

The results show neither H1 nor H2 holds completely.  

 

A two-way repeated measures ANOVA shows that there is no statistical effect of 

illumination condition (𝑝 = 0.0688), but a clear difference in the thresholds between 

the textures and the uniform patch (𝐹1,5 =  15.05, 𝑝 = 0.0116), with the uniform 

patches having lower thresholds. Here, the degrees of freedom derive from the fact 

that it is a within-subjects 2 × 2 design with 𝑁 = 6 participants. There are two factors, 

illumination condition (say, 𝐴) and the stimulus-type (say, 𝐵), each with two levels 

(Illumination condition: D65 and TL84, Stimulus type: Textured and Uniform 

patches), say 𝑛𝐴 and 𝑛𝐵. Here, 𝑛𝐴 = 𝑛𝐵 = 2. In a two-way repeated measures 

ANOVA, the main effect (say, of factor 𝐵) has the degree of freedom 𝑛𝐵 − 1, with an 
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associated (𝑛𝐵 − 1) × (𝑁 − 1) degrees of freedom for the error. In the present case, 

since 𝑛𝐴 = 𝑛𝐵 = 2 and 𝑁 = 6, the F-statistic for the main effect is reported with the 

degrees of freedom ( 2 − 1, (6 − 1) × (2 − 1)) = (1, 5). 

 

The next set of figures examines these threshold ellipsoids in terms of their luminance 

(Figure 4.30) and chromatic (Figure 4.31) projections. The symbols used in these plots 

are identical to Figure 4.29. It can be seen that the differences between the volumes of 

the uniform and texture stimuli emerges from the chromatic component of the 

ellipsoids (𝐹1,5 =  31.3, 𝑝 = 0.00252), with the luminance projections remaining very 

similar (𝑝 = 0.156). It is also found that although the volumes of the ellipsoids are not 

different under the two illuminants, both the luminance and chromatic projections 

show significant differences. The luminance projections are higher under TL84 (𝐹1,5 =

 95.24, 𝑝 < 0.001) whereas the area is higher under simulated daylight (𝐹1,5 =

 45.41, 𝑝 = 0.001), the two effects cancelling each other out to give similar volumes.  

 

The chromatic thresholds in the in 𝑢′𝑣′𝑌′ colour space are further illustrated in Figure 

4.32 (polychromatic stimuli) and Figure 4.33 (uniform patches). In addition to the 

chromatic projections of the thresholds, these plots also show the chromatic envelopes 

of the colour gamuts of both the actual and the swapped skin patches, along with the 

directions of the first principal components of each gamut. 
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Figure 4.30: Luminance projections of ellipsoids for participants common to all conditions. 

 

 

 

Figure 4.31: Area of chromatic projections of the ellipsoids for participants common to all conditions. 
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Figure 4.32: Average ellipses for Experiments 1a and 2a (polychromatic textured stimuli) 

 

 

 

Figure 4.33: Average ellipses for Experiments 1b and 2b (uniform stimuli)  
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Figure 4.34 below shows the azimuth angles for the chromatic ellipses. One sees a 

clear effect of illumination condition on the azimuths (the Harrison-Kanji test 

yielding 𝐹1,20 =  52.5276, 𝑝 < 0.001) with the ellipses for TL84 lighting being closer 

in orientation to the 𝑢′ axis than the D65 ellipses. This is true for both the textured and 

the uniform conditions. No effect of the type of stimulus (textured/uniform) or an 

interaction thereof is observed. 

 

 

 

Figure 4.34: Azimuth of chromatic projections for participants common to all conditions. 

 

4.5.4 Discussion 

 

Experiments 1a and 1b measured discrimination thresholds for simulated skin and 

uniform patches in various illumination conditions. Experiment 2 further investigated 

the effect of changing the mean colour of the stimuli while maintaining the relative 

distribution of colours in the textures. This translation of the mean chromaticity was 

done such that the mean colours of the stimuli under the two illumination conditions 
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were swapped in 𝐶𝐼𝐸𝐿𝐴𝐵 space.  

 

It must be noted that in doing so, between Experiment 1 and 2, one examines the same 

mean location in colour space under two different illumination conditions. The 

hypotheses are that any change in thresholds at the same location would prove an effect 

of the ambient illumination (H1), and any change between two locations would prove 

an effect of the mean colour of the stimulus (H2). From the results one does indeed 

note that the thresholds measured at the same location but under different illumination 

conditions show a difference in volume (Figure 4.29), although the direction of the 

effect is not readily apparent – being different for the two locations. In other words, 

neither H1 or H2 is completely fulfilled. This effect is consistent for both uniform and 

textured patches. Instead, as proposed by Giesel et al. (2009), an analysis of the 

chromatic projections (Figures 4.32 and 4.33) shows a consistent trend, with the areas 

of chromatic ellipses being proportional to distances from the ambient illumination. 

The luminance projections (Figure 4.30), on the other hand, show a higher threshold 

for the fluorescent TL84 illuminant, irrespective of the location in colour space. In 

combination, the luminance and chromatic effects do indeed predict the trend in the 

results obtained for the volumes.  

 

Furthermore, a comparison of the change in the gamut of the stimuli (Table 4.3 and 

Figure 4.28) and the change in the thresholds (volume: Figure 4.29, luminance: Figure 

4.30, chromatic area: Figure 4.31) yields no consistently predictable effects. For 

example, the luminance range of the stimulus decreases when it is translated from 

location D to T, predicting the direction of change of the discrimination thresholds 

(which also decrease); but this predictability breaks down when one examines the 

change from T to D. Here, the change in the luminance range (an increase) does not 

predict the direction of change in the thresholds (a decrease). Thus, these results cannot 

be completely explained on the basis of the change in the range of the gamuts of the 

stimuli. 

 

Irrespective of the swap, one observes that the textured patches always have a higher 
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discrimination volume compared to the uniform patches. This is evident from in Figure 

4.35 which shows the ratio of the volumes of discrimination ellipsoids obtained for 

polychromatic stimuli to those for the corresponding uniform patches (the 𝐶𝐼𝐸𝐿𝐴𝐵 

mean colour). A ratio greater than one demonstrates that the volume was always higher 

for polychromatic stimuli. This increase is consistent, both in the chromatic (Figure 

4.36) and the luminance (Figure 4.37) projections. This indicates that the decrease in 

discriminability for textures compared to their means is independent of the 

illumination condition and the stimuli’s exact location in colour space. These results, 

once again reinforce those by Hansen et al. (2008) who found a similar increase in 

thresholds for textures.  

 

 

Figure 4.35: Ratio of discrimination volumes for the polychromatic and uniform stimuli 
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Figure 4.36: Ratio of area of chromatic ellipses for the polychromatic and uniform stimuli 

 

 

 

Figure 4.37: Ratio of luminance projections for the polychromatic and uniform stimuli 
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The fact that similar effects of ambient illumination and chromatic distance of the 

stimuli from the illuminant are seen for both textured and uniform stimuli, while 

maintaining larger thresholds for textures (Figure 4.38), suggests that the mechanisms 

governing these effects are perhaps dominated by the average colour signal. In the 

discussion to Experiment 1b (Section 4.4.4) it was proposed that this increase in 

threshold for textured stimuli compared to uniform stimuli could perhaps be a result 

of contrast adaptation mechanisms proposed by Webster & Mollon (1997). They 

suggest that these contrast adaptation mechanisms might operate by decorrelating the 

colour distribution of the stimuli (Atick et al., 1993; Webster & Mollon, 1991) using 

multiple chromatic channels tuned to different directions in colour space, and that the 

adaptation might emerge from inhibition between channels with the most correlated 

responses (Barlow & Földiák, 1989; Webster & Mollon, 1994). The results from this 

experiment offer further support for this possibility, proving that this increase of 

thresholds holds not only for ecologically valid simulations of skin (Experiment 1), 

but also for stimuli with similar skin-like relative colour distributions which are 

incongruent with the ambient illumination due to a shift in mean colour.  

 

 

Figure 4.38: Average ellipses for Experiments 2a and 2b 
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4.6 Experiment 3: Measurements at ambient illuminant 

chromaticity 

 

The experiments up to this point explore the effects of the illumination condition and 

the extent of adaptation on the discrimination volume in terms of luminance 

component and the area of the chromatic component. It has been reported by Hansen 

et al. (2008) and Giesel et al. (2009) that chromatic discrimination ellipses at the 

adaptation chromaticity are smaller in comparison to those further away. They also 

report that for polychromatic natural stimuli these ellipses are driven by the direction 

of the spread of the colour distribution. The next experiment was conducted in order 

to explore the discrimination thresholds at the ambient illuminant chromaticity in the 

light of these findings. 

 

4.6.1 Reference stimuli and illumination conditions 

 

The stimuli were generated in a manner analogous to Experiment 2 above, and the 

same two illumination conditions (D65 and TL84) were used. The reference images 

for the current experiment were generated by translating the mean chromaticity of the 

reference images from Experiment 1 (which, to reiterate, were ecologically accurate 

simulations derived from original skin reflectance spectra) to the chromaticity of the 

respective illuminant in 𝐶𝐼𝐸𝐿𝐴𝐵 space. The translation was only done in the 

chromaticity plane while holding the luminance (𝐶𝐼𝐸𝐿𝐴𝐵 𝐿∗ coordinate) constant. 

Each patch was then tested under the illuminant used to simulate the original patch so 

that the relative distribution under each illuminant was the same in Experiment 1 and 

Experiment 3. The observers were also tested with uniform patches of the same mean 

𝐶𝐼𝐸𝐿𝐴𝐵 colour as the reference images: 

 

4.6.2 Experimental protocol 

 

The experiment followed the exact same protocol as Experiments 1 and 2. All 
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participants (𝑁 = 6) who had also participated in both Experiment 1 and 2 were 

recruited. In total, 168 thresholds (2 illuminants × 2 stimuli types (uniform and 

textures) × 3 repetitions × 14 measurement directions) were measured per participant, 

amounting to about 6 hours of testing. 

 

4.6.3 Results 

 

The results in this section are presented along with results from Experiments 1 and. 

Only observers common to all the experiments (𝑁 = 6) are included. This section only 

presents the results for the current experiment, while comparisons with previous 

experiments are made in the discussion.  

 

Figure 4.39 shows the volumes of the discrimination ellipsoids. There is a statistical 

effect of illumination condition (𝐹1,5 = 13.41, 𝑝 = 0.0146) with higher volumes for 

TL84 than D65. No statistical difference in the thresholds between textures and 

uniform patches ( 𝑝 = 0.456) is observed. 

 

Figures 4.40 and 4.41 show that this effect is observable both in the luminance 

(𝐹1,5 = 8.757, 𝑝 = 0.0315) and the area of the chromatic ellipses (𝐹1,5 =

20.25, 𝑝 = 0.0064). Figure 4.42 shows the ellipses for both the uniform and the 

texture patches in the experiment. The envelopes and first principal component 

directions of the polychromatic patches are also provided. 
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Figure 4.39: Ellipsoid volumes for participants common to all conditions. The data for the current 

experiment is shown in the rightmost panel. The left panel shows data for stimuli representing 

simulations of skin colour and texture under TL84 and D65 illuminants. Centre panel shows stimuli 

derived by swapping mean colour of skin simulations for the two illumination conditions while 

maintaining the relative colour distribution of the stimuli. 

 

 

Figure 4.40: Luminance projections of ellipsoids for participants common to all conditions. The left, 

centre and right panels correspond to Experiment 1, 2 and 3 respectively. 
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Figure 4.41: Area of chromatic projections of the ellipsoids for participants common to all conditions. 

The left, centre and right panels correspond to Experiment 1, 2 and 3 respectively. 

 

 

 

Figure 4.42: Average ellipses for Experiment 3. The ellipses for textures are drawn in solid lines while 

ellipses for uniform patches are in dashed lines.  
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The azimuths of these ellipses are shown below (Figure 4.43). Although one still sees 

the overall statistical effect (𝐹1,20 =  6.6340, 𝑝 = 0.0181 in the Harrison-Kanji test) 

of the TL84 ellipses being aligned to a greater extent with the 𝑢′ axis than the D65 

ellipses, the variability, especially for the textures is very high. A simple effects post-

hoc analysis using the Watson-Williams test indeed shows that the effect only exists 

for uniform patches (𝑝 = 0.0073) and vanishes altogether for textures (𝑝 = 0.2519).  

 

 

Figure 4.43: Azimuths of chromatic ellipse major axes for Experiment 3. 

 

4.6.4 Discussion 

 

In this set of experiments (textures and uniform patches), one observes that the ratios 

of the thresholds for images and uniform patches is much lower than those observed 

in Experiments 1 and 2, reaching values below 1 for some cases. Figure 4.44 shows 

the ratio of the discrimination volumes for polychromatic images to the volumes for 

the corresponding uniform patches. Similarly, Figure 4.45 shows the ratios 

(polychromatic stimuli vs. corresponding uniform patches) for the areas of the 
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projected discrimination ellipses, and Figure 4.46 shows the ratios for the luminance 

projections of the discrimination volumes.  

 

 

Figure 4.44: Ratio of discrimination volumes for the polychromatic and uniform stimuli 

 

 

Figure 4.45: Ratio of area of chromatic ellipses for the polychromatic and uniform stimuli 
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Figure 4.46: Ratio of luminance projections for the polychromatic and uniform stimuli 

 

This lowering of the ratios is observed for ellipsoid volumes, luminance projections 

and chromatic projections, thereby suggesting that if the mean colour of the texture is 

approximately the same as the ambient illumination, the effect of the higher order 

statistical properties of the textural stimuli is diminished. It is also interesting to note 

that in Figure 4.40 the effect of larger thresholds being observed under fluorescent light 

than for simulated daylight does not hold for uniform patches, with very large 

variances in both lighting conditions.  

 

The findings from Experiments 1 and 2 had strongly supported those reported by 

Hansen et al. (2008) and Giesel et al. (2009). In addition to the results for stimuli away 

from the adaptation point, they had also found that at the adaptation point the chromatic 

ellipses for uniform patches were smaller than those for textures. The results from 

Experiment 3 do not agree with this finding. To an extent, this can be explained by the 

difference in the experimental setup and procedure – first, subjects in the current study 

adapted to the ambient illumination while their subjects adapted to the surround-field 

illumination from the self-luminous screen background; second, the stimuli used in the 
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current study were displayed in object-mode through cardboard cut-outs with no self-

luminous background while their stimuli were displayed on a screen with a self-

luminous background (the adaptation point). These differences could suggest that the 

adaptation state in the current experiment was a result of a mixed adaptation to the 

ambient and the surround fields, with the observers adapting to an effective colour that 

is different from the ambient illumination (Henley & Fairchild, 2000; Katoh, 

Nakabayashi, Ito, & Ohno, 1998). It is unlikely that this is the case, as the grey 

cardboard which served as the surround had a relatively flat reflectance spectrum 

(Figure 4.47), with colour chromaticities in each ambient illumination condition 

falling very close to the source spectrum (Figure 4.48). The effect of this combination 

of ambient and surround illumination cannot produce an adaptation that reconciles the 

current results with those obtained by Hansen et al. (2008) and Giesel et al. (2009).  

 

A close examination of Figures 4.42 and 4.43 reveals that the azimuths for the texture 

and uniform stimuli are very similar. Hansen et al. (2008) and Giesel et al. (2009) had 

concluded that the chromatic ellipses for textures measured at the adaptation 

chromaticity tend to align along the maximum variance direction of their colour 

distribution – a fact that is reflected in the average ellipses for the data from the current 

experiments, but with a large amount of variability. Data for individual observers 

suggest that this is not a robust effect (refer to individual observer plots in Appendix 

2).   
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Figure 4.47: Reflectance spectrum of the grey cardboard 

 

 

 

Figure 4.48: Chromaticities of the cardboard under D65 and TL84 illuminants 
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4.7 General discussion 

 

This section reports results and analyses which span across the three experiments. 

Previous discussions have remarked on the higher thresholds of textures compared to 

uniform patches. In the discussion to Experiment 1b it was pointed out how this could 

be explained in terms of the idea of contrast adaptation proposed by Webster & Mollon 

(1994). However, it is interesting to note that this increase in thresholds for isolated 

skin patch images stands in stark contrast to findings by Tan & Stephen (2013) who 

found a decrease in the thresholds for facial images. They found no changes in 

luminance thresholds, and increased sensitivity along chromatic directions for images 

of complete faces as compared to uniform patches. This suggests, once again, that skin 

without shape cues, is not as discriminable as the complete face – even on flat displays. 

Furthermore, care must be taken not to interpret the estimates of skin discrimination 

thresholds as acceptability thresholds, which normally tend to be higher (Paravina, 

Majkic, Del Mar Perez, & Kiat-Amnuay, 2009). 

 

One of the most interesting observations by Hansen et al. (2008) was that if the 

textured stimuli are sufficiently away from the adaptation point, the orientation of the 

isoluminant discrimination ellipses is dictated by the direction of adaptation, i.e., the 

direction of the vector connecting the illuminant and the stimulus chromaticities. 

While the current set of studies does indeed confirm this for the ecologically valid skin 

stimuli in Experiment 1a (Figures 4.13 and 4.14), the trend is absent for textures in 

Experiment 2 (Figure 4.32) which resemble actual skin simulations only in second and 

higher order statistic, but not in the mean colour. This might further indicate that the 

reflectance of natural stimuli and scenes (and consequently their appearance) 

introduces certain additional constraints which make estimation of the illuminant 

properties easier (Golz & MacLeod, 2002; Philipona & Regan, 2006). As noted earlier, 

the adaptation to natural textures could be explained in terms of contrast adaptations 

to colour distributions of the stimuli by the decorrelation of signals from multiple 

chromatic channels with a large array of colour tunings (Atick et al., 1993; Webster & 

Mollon, 1994, 1997).  
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Twer & MacLeod (2001), in their pleistochrome model, suggest that such tunings 

could possibly be represented by split coding of non-linear responses found in cells in 

the macaque parvocellular pathway (B. Lee, Pokorny, Martin, Valbergt, & Smith, 

1990). They propose a narrow operating range for these parvocellular responses which 

is determined by the distribution of colour in natural polychromatic stimuli. Goda, 

Koida, & Komatsu (2009) also report optimal response functions closely following 

those predicted by the pleistochrome model in populations of LGN neurones 

corresponding to colour statistics from natural scenes. Interestingly, Twer & MacLeod 

(2001) also point out that the non-linearity in the responses of cells from the 

magnocellular pathway (B. Lee et al., 1990) fitted using the same pleistochrome model 

is much more saturated, indicating that while the parvocellular pathway is optimised 

to minimise perceptual error in the detection of the colour of natural stimuli, the 

magnocellular pathway is optimised for the detection of boundaries (hence the steeper 

non-linearity).  

 

Next, let us examine the proposition that the area of the chromatic discrimination 

ellipse increases with increasing distance from the illuminant chromaticity. Figure 4.49 

shows the area of the chromatic ellipses plotted against the distance of the stimuli from 

the scene illuminant. Of course, since the current set of experiments were not originally 

designed to investigate the effect of the adaptation, the sampling of the points is not 

the same for all conditions. Even so, the curves indicate that the minima of the area of 

the chromatic ellipses do not coincide with the illuminant chromaticity (𝑥 = 0). This 

is true for both the textures and the uniform patches. It is also interesting to note that 

for uniform patches, the inter-observer variability decreases close to these minima. For 

the textures, the minima are close to the ±3𝜎 range of the major axis of a Gaussian 

distribution fitted to the colour distribution of the textures, except for observers MH, 

CN and CT in the fluorescent lighting condition.  
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Figure 4.49: Area of the chromaticity ellipses as a function of distance from the illuminant chromaticity. 

Each point represents an average measurement over three repetitions for each of the six observers. In 

each condition, observer-wise fits using a quadratic function are also plotted. The graph also contains 

an average quadratic fit (thicker black line) with 95% confidence regions. A vertical dashed-line denotes 

the ±3𝜎  range of the major axis of a Gaussian distribution fitted to the colour distribution of the 

textures. 

 

If one makes similar plots for the luminance (Figure 4.50), most of the average fitted 

quadratic curves show a very low curvature, almost resolving into straight lines. We 

also notice that the luminance thresholds are indeed higher under fluorescent TL84 

lighting than for artificial daylight for most observers. This is true both for textures 

and uniform patches. In general, the inter-observer variance for luminance is much 

lesser than for the area of the chromatic ellipses.  

 

As a result of these variations for luminance and chromatic projections, the volumes 

of the discrimination ellipsoids show a slight curvature which is more readily 

identifiable for uniform patches than for textures (Figure 4.51).  
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Figure 4.50: Luminance projections of discrimination ellipsoids as a function of distance from the 

illuminant chromaticity. The symbols and lines represent the same aesthetics as in Figure 4.49. 

 

Figure 4.51: Luminance projections of discrimination ellipsoids as a function of distance from the 

illuminant chromaticity. The symbols and lines represent the same aesthetics as in Figure 4.49.  
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4.8 Conclusion 

 

Experiment 1a estimated the discrimination thresholds for simulated skin patches from 

two ethnicities, Caucasian and Oriental, in 3-D colour space. A large amount of data 

using 18 participants was collected and these estimations may be used to define colour 

difference metrics for skin specific stimuli, and to design acceptability criteria for skin 

prosthetics.  

 

The subsequent experiments investigated the effect of illuminant and relative 

adaptation (distance and direction from the ambient illumination chromaticity) on the 

discrimination thresholds for textures and uniform patches. It was found that, for both 

textures and uniform stimuli, the discrimination was worse in fluorescent lighting 

compared to simulated daylight. It was also observed that the area of the projected 

chromatic ellipses first decreased and then increased with distance from the illuminant 

chromaticity. Furthermore, the orientation of the chromatic ellipses for texture stimuli 

away from the illuminant chromaticity were found to be influenced by the direction of 

the relative adaptation. This effect was more pronounced for ecologically valid 

simulations of skin as compared to textures with the same relative colour distributions 

but different means. At the illuminant chromaticity, the average chromatic ellipses for 

textures were aligned along the axis of maximum colour variation of the stimulus, 

albeit with a large inter-observer variability. 
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Chapter 5  

 

Scope and contribution 

 

 

The aim of the research presented in this thesis was to contribute towards the 

development of an appearance model for natural polychromatic stimuli. This was done 

in two steps. The first part of the thesis critically examines two important pseudo-

invariants which form the basis of most colour appearance models – the achromatic 

locus (Chapter 2) and the unique hues (Chapter 3). The second part (Chapter 4) 

presents measurements of discrimination thresholds for an important natural texture – 

human skin, and investigates how these discrimination thresholds change depending 

on the illumination condition and properties of the colour distribution of the texture. 

 

Chapter 2 reports measurements of achromatic settings made by 30 observers in three 

ambient illumination conditions – dark, simulated daylight and fluorescent lighting. 

The novel contribution of this chapter is a method of navigation through colour space 

which is based on unique hue directions. The results of this chapter show that 

compared to the conventional methods of colour adjustment which often employ 

movement along cardinal axes of the colour space, this novel unique-hues based 

navigation scheme results in a reduction in the variability of achromatic settings made 

by observers. Furthermore, the results also show that irrespective of the navigation 

scheme, the achromatic settings made by observers tend to closely lie along the 

daylight locus.  

 

Chapter 3 is devoted to the modelling of chromatic adaptation using a large dataset of 

unique hue settings (Wuerger, 2013; Xiao et al., 2011) made by 185 observers in three 

illumination conditions – dark, simulated daylight and fluorescent lighting. The results 

show that a simple von Kries model operating on cone absorptions is the most efficient 

model in terms of the information theoretic Akaike criteria. No neural substrates have 

been reported for unique hues so far (Conway & Stoughton, 2009; Mollon, 2009; 
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Stoughton & Conway, 2008). While the analysis in this chapter does not go so far as 

to propose a novel mechanism, the results support the possibility that the mechanisms 

for UR and UG are non-linear in terms of cone absorptions. Another contribution of 

this chapter is the analysis of the dataset itself. Although this dataset has previously 

been used to model age related effects (Wuerger, 2013) and to evaluate the 

performance of the CIECAM02 colour appearance model (Xiao et al., 2013, 2015, 

2011), no extensive analysis of the data has yet been reported. The analysis in this 

chapter shows that the distribution of hue angles of the unique hues is mostly unimodal 

(except the unique green in fluorescent lighting), and that the hue angles vary with the 

luminance of the settings.  

 

In addition to these two chapters, work was also done on two related studies. The first 

of these (Xiao et al., 2015) investigates the performance of CIECAM02 colour 

appearance model on NCS unique hue data. Significant differences were found in the 

UY and UB lines. The contributions to this paper were in terms of statistical analysis, 

data interpretation and manuscript preparation. The second study (Makin & Chauhan, 

2014) explores, in part, the performance of the Common Rate Controller hypothesis 

on the UY-UB line. The findings from this paper indicate that the same rate control 

mechanism which is used to estimate the position of an occluded moving target might 

be used to track the rate of colour change along the UY-UB line. Contributions made 

to this paper were in the form of experimental design and setup, and partial manuscript 

preparation. These two studies are not included in this thesis and have only been cited 

as references. 

 

The second, and main part of the thesis is a long three-part chapter (Chapter 4) which 

extends the idea of discrimination measurements to natural skin textures. Each of the 

three sub-chapters presents data from three related experiments. The first experiment 

reports thresholds in three illumination conditions for simulated skin images and 

corresponding mean uniform patches. The thresholds for the polychromatic stimuli are 

consistently higher, for both the chromatic, and the luminance projections. The results 

from this experiment can be used to optimise line-elements for describing skin texture 

differences in colour-space. The second and third experiments investigate how these 
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discrimination thresholds vary with the illumination condition and the mean location 

of the texture in colour space. The results show that the projected chromatic 

discrimination ellipses increase in area as a function of the distance between the 

illuminant chromaticity and the mean colour of the texture. A direct and practical use 

of these results can be in lighting design for environments which have specific (more 

often than not, maximal) skin discrimination requirements such as dermatology 

clinics, prosthetics colouring or printing labs, and workspaces for makeup artists.  

 

There were two additional outputs from the methods developed for the series of 

experiments described in Chapter 4. First, the QUEST adaptive procedure efficiency 

was optimised and a solution for the optimisation parameter (Eq.  4.5) was derived. 

Second, as described in Section 4.3.1, contributions were also made to the 

development of an algorithm for reconstructing reflectance spectra for skin from three-

channel colorimetric measurements (Xiao et al., 2014).  

 

Altogether, this thesis provides a critical examination of two fundamental theoretical 

underpinnings of modern colour appearance models – the achromatic locus and the 

unique hues, and introduces results which can be used to extend these models to natural 

polychromatic textures, in particular, human skin. Chapter 2 has been published in the 

Journal of Vision (Chauhan et al., 2014). Chapter 3 and Chapter 4 are currently being 

prepared for submission. 
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Colour spaces 

 

 

This section gives a brief mathematical description of the forward transformations for 

the 𝐶𝐼𝐸𝐿𝐴𝐵 and the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 colour spaces. 𝐶𝐼𝐸𝐿𝐴𝐵 is a 3-D luminance-

chromaticity space that uses a reference white to normalise its coordinates, while the 

𝐶𝐼𝐸 1976 𝑈𝐶𝑆 is an absolute chromaticity-only space (i.e., a 2-D plane) which does 

not employ any normalisations. Usually the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 chromaticity coordinates 

are supplemented by the luminance value to fully define the stimulus. Throughout this 

section, 𝑿 = [
𝑋
𝑌
𝑍
] and 𝑿𝑾 = [

𝑋𝑊

𝑌𝑊

𝑍𝑊
] denote the 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 tristimulus values (Eq.  

1.1) of a uniform colour stimulus and a reference white respectively.  

 

 CIELAB 

 

The 𝐶𝐼𝐸𝐿𝐴𝐵 space is characterised by a cube-root non-linearity along each normalised 

channel. It describes colour appearance using three coordinates – 𝐿∗, 𝑎∗ and 𝑏∗. 𝐿∗ 

denotes the lightness (relative brightness with respect to the reference white) of the 

stimulus, while 𝑎∗ and 𝑏∗ denote the red-green and the yellow-blue opponency 

channels respectively. The equations for the three coordinates are given by 

 

𝐿∗ = 116𝑓 (
𝑌

𝑌𝑊
) − 16 

𝑎∗ = 500 [𝑓 (
𝑋

𝑋𝑊
) − 𝑓 (

𝑌

𝑌𝑊
)] 

𝑏∗ = 200 [𝑓 (
𝑌

𝑌𝑊
) − 𝑓 (

𝑍

𝑍𝑊
)] 

Eq.  A1.1 

Here, the function 𝑓 represents the cubic non-linearity and is given by  
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 𝑓(𝑥) =

{
 
 

 
 

√𝑡
3
 , 𝑡 > (

6

29
)
3

1

3
(
29

6
)
2

𝑡 +
4

29
 ,  otherwise 

 Eq.  A1.2 

 

For a given reference 𝑿𝑾 the transformation is bijective, and thus, fully invertible.  

 

𝐶𝐼𝐸𝐿𝐴𝐵 also has an associated colour difference metric usually denoted by Δ𝐸𝐿𝐴𝐵, 

which is simply the Euclidean distance between two 𝐶𝐼𝐸𝐿𝐴𝐵 defined colours. For two 

colours  𝑳𝟏 and 𝑳𝟐 defined in 𝐶𝐼𝐸𝐿𝐴𝐵 space, this is given by 

 Δ𝐸𝐿𝐴𝐵 = ‖𝑳𝟏 − 𝑳𝟐‖
2
 Eq.  A1.3 

 

 

 CIE 1976 UCS 

 

CIE (2004) describes the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 as an alternative to the 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 

derived 𝑥𝑦 chromaticities with enhanced perceptual uniformity. It is an absolute (not 

normalised to a reference) chromaticity plane derived by a projective transformation 

of the 𝐶𝐼𝐸 1931 𝑋𝑌𝑍 tristimulus coordinates. The two chromaticity coordinates are 

conventionally denoted by the letters 𝑢′ and 𝑣′. For a given stimulus 𝑿 = [
𝑋
𝑌
𝑍
], they 

are given by 

 

𝑢′ =
4𝑋

𝑋 + 15𝑌 + 3𝑍
 

𝑣′ =
9𝑌

𝑋 + 15𝑌 + 3𝑍
 

Eq.  A1.4 

Due to the projective nature of the transform it is not invertible and thus does not 

describe the stimulus fully. To complete the stimulus description and to make the 
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transform bijective, the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 chromaticities are often quoted alongside the 

absolute luminance of the stimulus, which is simply the 𝑌 coordinate of the 

𝐶𝐼𝐸 1931 𝑋𝑌𝑍 tristimulus values. 

 

It is to be noted that the 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 space is distinct from the 𝐶𝐼𝐸𝐿𝑈𝑉 space (also 

described in CIE, 2004), which is a relative space, akin to 𝐶𝐼𝐸𝐿𝐴𝐵. The absolute and 

yet perceptually relevant nature of 𝐶𝐼𝐸 1976 𝑈𝐶𝑆 makes it an ideal choice for 

comparing colours spanning across a set of illumination conditions. 

 



164 

 

  

 

Projected ellipses for individual observers 

 

 

This appendix provides individual observer chromatic ellipses for textures and 

uniform stimuli. Only observers who participated in all the experiments (𝑁 = 6) are 

shown. In Appendix 1.1, Experiment 1 (simulated skin) and Experiment 2 (swapped 

stimuli) are compared. Two plots are shown for each observer – the first plot shows 

results for polychromatic stimuli while the second plot shows results for the uniform 

mean 𝐶𝐼𝐸𝐿𝐴𝐵 patches. Appendix 1.2 provides a similar comparison between 

Experiment 1 and Experiment 3 (illuminant-chromaticity centred stimuli).  
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Experiment 1 (simulated skin) 

vs. 

Experiment 2 (swapped means) 
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Observer: HA 

h 
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Observer: MH 
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Observer: BK 
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Observer: CN 
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Observer: PR 
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Observer: CT 
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Experiment 1 (simulated skin) 

vs. 

Experiment 3 (illuminant-chromaticity) 
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Observer: HA 
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Observer: MH 
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Observer: BK 
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Observer: CN 
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Observer: PR 
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Observer: CT 
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